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Abstract: Diffraction imposes a barrier to resolve objects smaller than half the wavelength used 
to illuminate them. In optical microscopy, this barrier was surpassed 25 years ago. One form of 
achieving super-resolution is the use of complex-amplitude pupil masks. Spatial light modulators 
can be used to produce these masks, if we compensate the aberrations introduced by them. In this 
paper we propose a method to encode a complex-amplitude pupil mask in a phase-only spatial 
light modulator of the Liquid Crystal on Silicon (LCoS) variety. We describe the form in which 
the pupil mask is encoded in a phase grating generated with an LCoS spatial light modulator, and 
how the aberrations introduced by this device can also be compensated with this grating. We 
present numerical and experimental results that validate the method. 

 

 

 

1. INTRODUCTION 

Diffraction imposes a barrier that prevents an optical system from resolving two points closer 
than half the wavelength used to illuminate them [1]. Later, it was demonstrated that the 
minimum separation between two points to be resolved is in fact nearly a quarter of a wavelength 
[2]. Several efforts have been made to surpass this limitation, either in microscopy or in 
astronomical instrumentation. Optical super-resolving systems are conceived to cope with 
fundamental challenges proper to the targeted application. For instance, in microscopy, 
fluorescence is extensively used nowadays, and different techniques have been proposed to 
obtain super-resolved images with fluorescence microscopy. Examples of these techniques are 
Structured Illumination Microscopy (SIM) [3], deterministic functional techniques such as 
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STimulated Emission Depletion (STED) [4], and stochastic techniques like STochastic Optical 
Reconstruction Microscopy (STORM) [5]. Dyba and Hell used a Phase Mask (PhM) in a STED-
4Pi microscope [6]. Since then, PhMs have been incorporated in microscopy. LCoS-SLMs have 
been proposed for phase measurements below the wavelength by using optical vortices [7]. More 
recently, spatial light modulators (SLMs) have also been incorporated in microscopy with the 
intention of surpassing the diffraction limit barrier [8–10]. In the case of astronomical telescopes, 
it has been suggested that the deformable mirrors that are used to compensate atmospheric 
turbulence can also be used to implement phase-only, continuous PhMs to achieve a moderate 
amount of super-resolution [11]. 

Super-resolving PhMs, also known as pupil filters or pupil masks, were originally proposed 
by Toraldo di Francia [12]. They were obtained in practice with two transmitting SLMs, used to 
synthesize a complex-amplitude (CA) PhM with two superimposed fields [14, 16] (A CA-PhM 
modifies both, the amplitude and the phase of an incoming beam). The new generation of SLMs, 
however, can exhibit phase fluctuations, a phenomenon known as flicker, preventing thus the 
realization of CA-PhMs with this method. This flicker depends on the electronic addressing of 
the signal to be displayed by the pixelated liquid crystal (LC). Then, the superposition of the 
fields from the two SLMs is neutralized by a biting phenomenon produced by the field 
fluctuations. In other words, given two SLMs acting as mirrors, each reflecting a portion of a 
common beam, the superposition of the two wavefronts reflected by the SLMs will be affected 
by non-synchronous fluctuations in phase resulting in a nullified interference pattern [17, 18]. 
Efforts have been made to reduce these fluctuations with polarized light [19], by cooling the LC 
molecules [17, 20], or by changing the period of the pulsed width modulation (PWM) of the 
SLMs [21].  

In addition to the limitation that represents this phase fluctuation, to achieve super-resolution 
with SLMs the panel should be flat with an optical quality better than that imposed by 
Maréchal’s condition [22], which is approximately of 1 4λ . In [23], a method to compensate the 

SLM panel deformations with residual errors below 30λ  was shown. This correction could not 

be improved further due to irregularities in the LC thickness, as described in [24]. Therefore, it is 
essential to calibrate the panel with a reference flat, since in this form it would be metrologically 
linked to a physical standard [25]; after doing this, all subsequent panel modifications could be 
readily detected. As explained in [23], a recursive wavefront aberration-compensation procedure 
with a Liquid Crystal on Silicon (LCoS) SLM can attain a high degree of correction for the +1 
diffraction order of a sinusoidal phase grating recorded on it. 

To avoid the effects of the phase fluctuations in SLMs, and other polarization effects [26, 
27], it is desirable to attain super-resolution using only one SLM, which would have the further 
benefit of simplifying the setup that is used for this purpose. Despite the flicker, the polarization 
effects, the surface aberrations, and the spatial distribution of LC molecules, we show here that a 
single SLM can be used to produce a dynamic, easy-to-use, super-resolving PhM. In section 2 
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we describe the modulation technique that we employ for this aim, in section 3 we validate this 
technique with a numerical simulation, and in section 4 we describe our experimental setup and 
present our best results. Section 5 includes some concluding remarks. 
 

 

2. COMPLEX-AMPLITUDE PUPIL MASK ENCODING 

Coding a phase and amplitude mask in a spatial light modulator is done by using two SLMs, one 
in phase and the other in amplitude. However, some SLMs such as LCoS are dependent on the 
polarization of the incident beam [26, 27]. Usually, for the optimal setup using two SLMs, two 
different incident polarizations must be created, one for the phase and one for the amplitude and 
then recombine them together. However, this procedure causes unwanted depolarizing effects in 
the output beam. By using only one SLM working in the first diffraction order instead of two 
different workings in the order zero, polarization effects can be neglected, as there is no 
interference of two different beams with different polarizations. 

One of the main advantages of using phase gratings to encode CA-PhMs is that they allow 
changing the diffraction efficiency at any point of its surface. As we mentioned above, one SLM 
was used before to generate an amplitude transmittance PhM, while a second one was used to 
make a phase-only PhM. As shown in [14], by superposing the outcome of both SLMs we obtain 
a CA-PhM. Aberrations introduced by the optical elements of a super-resolving system, 
however, is an important concern when making super-resolving PhMs. In optical engineering, 
we always look for reducing the number of elements because of several reasons: lower 
production costs, less raw materials, less space (compactness), to facilitate alignment, among 
others. This experiment was designed considering all these design parameters. Polarization, 
flicker, and LC-SLM intrinsic aberrations could be avoided with a CA-PhM embedded in a 
single SLM. Taking advantage of this, we decided to encode the CA-PhM in the field produced 
by the phase gratings in their +1 diffraction order.  
 

Let us suppose that a modulated phase grating is displayed on an LCoS SLM. At normal 
incidence, the CA of the field reflected by the LCoS of a plane wave of amplitude A will be 

 

[ ]{ }
[ ]

0( , ) exp ( , )cos 2 ( , )

exp ( , ) ,

U x y A i x y u x x y

A i x y

β π φ

α

= +

=
 (1) 

where A is a real constant, 0u  is the spatial frequency of the grating, and 2β(x,y) and φ(x,y) are, 

respectively, the phase modulation depth and the phase modulation function of the grating. 
Equation (1) resemblances the Jacobi-Anger expansion [28], 
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exp��� cos 
� � �
�
��� exp���
��

��� , 

(2) 

where nJ  is the Bessel function of the first kind and thn order, thus Eq. (1) can be rewritten as 

���, �� = � �  �
�
�β��, ��� exp���φ��, ��� exp ���2π�����

�� �  

           (3) 

so that, except for the constant factor in, the CA of the beam diffracted into the order  +1 is 

 [ ] [ ]1 1( , ) ( , ) exp ( , ) .U x y AJ x y i x yβ φ+ = ⋅  (4) 

If we wish to use 1( , )U x y+  to design a PhM with an equivalent CA transmittance  

 [ ]( , ) ( , )exp ( , ) ,      0 ( , ) 1,t x y a x y i x y a x yφ= ≤ ≤  (5) 

from Eqs. (4) and (5) follows that we must have  

 [ ]1 ( , ) ( , ).A J x y a x yβ =  (6) 

By construction, ( , )a x y  is a bounded function; if we restrict the values of the phase ( , )x yβ  to 

those within the first half-lobe of J1[β(x,y)], 0≤β(x,y)≤1.8412, so 0≤J1[β(x,y)]≤0.5819, then 

necessarily A=1/J1(βmax), where βmax≤1.8412 is the maximum value that can assume β(x,y). With 
this in mind, Eq. (6) can be rewritten as 

 [ ] ( )1 1 max max max( , ) ( , ) 0,        0 ( , ) ,        1.8412.J x y J a x y x yβ β β β β− ⋅ = ≤ ≤ ≤  (7) 

For this work we chose βmax(x,y)=1.8412, so that J1(βmax)=0.5819. 

 If we add the phase � ��, �� required to compensate the aberrations of the super-resolving 
system, including those introduced by the LCoS panel, from Eq. (1) follows that the phase we 
need to encode in the LCoS is:  

 [ ]0( , ) ( , )cos 2 ( , ) ( , )
c

x y x y u x x y x yα β π φ φ= + + , (8) 

where ( , )x yβ is obtained from Eq. (7), and ( , )  and ( , )a x y x yφ are given functions [Eq. (5)]. 
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Apart from the case of a phase-only PhM [ ( , ) 1 ]a x y = , where max( , )x yβ β= , the values of 

( , )x yβ  must be obtained from Eq. (7) through a root-finding algorithm. Eq. (7) can in principle 

have multiple solutions, depending on the value of ( , )a x y . For our purposes, however, those 

outside the first half-lobe of ( )1J β  would be irrelevant. The excursion of the phase ( , )x yα , 

then, will be at most ± βmax = ± 1.8412 ∼ ± 0.59π [Eq. (8)], or, equivalently, [0, 1.18 ]π . This 

phase interval was reachable with classic SLMs, which allowed a phase range 0 ( , ) 2x yα π≤ ≤ , 

approximately. In short, with this encoding technique we only required about 59 % of the 
maximum phase shift provided by our LCoS. 

To encode the phase α(x,y) in an LCoS, we display first in a personal computer monitor a 

255 grayscale image I(x,y) of the function α(x,y). In our case this had 1016×720 pixels - the 

number of pixels in our LCoS. Assuming for simplicity that φ(x,y) = 0 and φc(x,y) = 0, from Eq. 
(8) we would have 

 ( )

( )

0

0 0

0 max 0

( , ) ( , )

( , ) cos 2

( , ) cos 2 ,

I x y I x y

I x y u x

I V x y u x

α

β π

β π

= +

= +

= +

 (9) 

where 
0I  is a constant and 

 
max

( , )
( , ) ,      0 ( , ) 1

x y
V x y V x y

β
β

= ≤ ≤ . (10) 

Evidently ( , )V x y  is related to the visibility, or contrast, of the fringes in the pattern ( , ) .I x y  

Notice that  

 
max 0 max

min 0 max

( , ) 255,

( , ) 0.

I x y I

I x y I

β

β

= + ≤

= − ≥
  (11) 

and thus 
 

m ax m in m ax( , ) ( , ) 2 .I x y I x y β− =   (12) 

Therefore, the number of gray levels, or phase steps, assigned to ( , )I x y is proportional to 
maxβ . 

If 
m ax 0 .59β π< , say 

m ax 0 .35β π= , the number of phase steps at our disposal would be reduced 

from (1.18π/2π)×255 ∼ 150 (∼59%) to (0.70π/2π)×255 ∼ 89 (∼35%). In Fig. 1 are shown the 
graphs of ( , )V x y  vs ( , )a x y  for 

m ax 0 .59β π=  (solid line) and 
m ax 0 .35β π=  (dashed line) 

obtained from Eqs. (7) and (10). It is clear that the last yields a better mapping, but the price we 
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pay for this is less light in the +1 diffraction order of the phase grating, and a coarser sinusoidal 
profile, which will produce stronger diffracted fields of high spatial frequencies (noise). 

 
Fig. 1.  Visibility V (contrast) in the hologram to be displayed in the LCoS vs the amplitude a of the PhM. When a 
∼1, the curve corresponding to  βmax = 0.59π (solid line) becomes very steep. This undesirable behavior can be 
avoided if we choose βmax = 0.35π (dashed line), but the light in the +1 diffraction order would be less [Eq. (4)], and 
the sinusoidal phase grating profile in this case would be coarser. 

Since ( , )a x y  is variable, ( , )x yβ , and thus ( , )V x y , would also be  variables [Eqs. (7) and 

(10)]. When at some point of the LCoS ( , )V x y  decreases, the amplitude ( , )a x y  of the CA-PhM 

also decreases (Fig. 1). If ( , ) 0V x y = , there is no diffraction at that point and therefore the 

amplitude of the CA-PhM would be zero there. If in other point we shift the local fringes (phase 
modulation), the phase ( , )x yφ  of the PhM will change according to Eqs. (8) and (5). 

The idea behind the coding procedure can be presented as follows. We start with an ordinary 
phase grating, i.e., with a sinusoidal phase grating of constant phase depth and constant period. 
Let us vary the phase depth of every single pixel with respect to the original grating. The actual 
amplitude of the wave diffracted by every single pixel, ( , )a x y , would depend on its new phase 

depth, 2 ( , )x yβ  [Eq. (7)] keeping the same orientation of the grooves. The new pixel’s phase, 

relative to the phase of the wave diffracted ( , )x yφ [Eq. (8)] by the original grating (order +1) 

[Ec. (4)], depend on the shift that we gave to the modified grating.  

Thus, the amplitude ( , )a x y  of the PhM is encoded as the visibility V(x,y) of the fringes of 

the pattern I(x,y) [29]. Next, this pattern is relayed to the LCoS to obtain a digitized, modulated 
phase grating with a CA reflectance 
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 [ ] [ ]{ }0 0 max 0( , ) exp ( , ) exp ( , ) cos 2 ( , ) ( , )
c

r x y r i x y r i V x y u x x y x yα β π φ φ= = ⋅ + + , (13) 

where 0r  is a constant. For simplicity, we shall refer to ( , )I x y , the grayscale image of the phase 

( , )x yα , as the hologram [Eq. (9)]. 

 
3. NUMERICAL VALIDATION 

3.1 Complex amplitude phase mask 

A numerical simulation was carried out to validate the complex-amplitude encoding method 
described above. A super-resolving, axially symmetric, CA-PhM, proposed by V. F. Canales and 
M. P. Cagigal [30], was encoded in a phase grating. The mask consisted of 5 annuli, delimited by 
the normalized radial coordinates 

nρ =  ( 0.098,  0.222,  0.238,  0.472,  1 ), n =  1, 2, … ,5.  The 

amplitude transmittances of these annuli were 
na =  ( 0.598,  0.712,  0.824,  0.955,  1 ); beyond 

the last annulus, the LCoS was diaphragmed, and thus we had ( ) 0a ρ =  for 1ρ > . The phases 

were alternatively π  and 0: 
nφ =  ( π,  0,  π,  0,  π ) (see Fig. 2). The corresponding values of 

( )V ρ  were obtained from Eqs. (7) and (10), with 
m ax 1 .8 4 1 2 .β =  These were 

nV =  ( 0.4056,  

0.5017,  0.6137,  0.8061,  1 ). We used 33 fringes within a circle of 14 mm diameter, so that the 
value of the spatial frequency of the hologram was 

0 2 .3 6 cycles / m m .u =  Fig. 3 shows this 

hologram. Notice that phase variations are encoded as fringe dislocations, and amplitude changes 
as fringes of increasing contrast from the first to the last annulus. 
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Fig. 2.  Maps of Canales and Cagigal’s complex-amplitude pupil mask: a) amplitude, b) phase [30]. 

To check that the previous CA-PhM acts indeed as a super-resolving pupil, we computed the 
corresponding point spread function (PSF): 

 { } 22
( , ) ( , )h u v t x y= F , (14) 

where ( , )t x y  is given by Eq. (5), and F stands for Fourier transformation. The spatial 

frequencies ( , )u v  are related to the coordinates ( ), f fx y  at the back focal plane of the lens L1 

through the equation 

 ( ) ( ), , .
f f

u v x y fλ=   (15) 

 

 
 
Fig. 3.  Hologram of Canales and Cagigal’s complex-amplitude pupil mask. Phase variations appear as fringe 
dislocations and amplitude changes as fringes of distinctive contrasts (visibilities) [30]. 

Fig. 4 shows with a solid line the section 
2

( ,0)h u of this PSF. For comparison, the 

normalized PSF of a diffraction-limited system, the so-called Airy intensity distribution, was 

included in the figure with a dashed line. The values of the abscissas in the plot are of 1 ,fx r

where 1r  is the radius of the first zero of the Airy pattern. Notice that the super-resolving PSF 

has in fact a narrower central lobe, a mark of super-resolution, although, as expected, it is 
dimmer than the PSF of the clear pupil. 
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Fig. 4.  Computed PSF for the CA-PhM encoded in the +1 diffractive order of the phase grating recorded with the 
hologram of Fig. 3 (solid line). The normalized PSF of a diffraction-limited system, the so-called Airy pattern, is 

shown for comparison with a dashed line. The values of the abscissas are of 1f
x r , where 1r  is the radius of the 

first zero of the Airy pattern. 

 

3.2 Influence of flicker in the PSF when using two SLMs 

In this paper, we have shown that a complex filter can be implemented using only one phase 
spatial filter by encoding the amplitude into the visibility of a hologram. This complex filter can 
also be implemented using two different SLM, one acting as the phase component and the 
second one as an amplitude component. By superposing both components, the complex filter is 
achieved. However, these devices are well known to have an intrinsic flicker in the phase and or 
amplitude due to the move of the liquid crystal molecules.   

It has been shown that the flicker can be modelled in a simplified version with a triangular 
function 

 Γ�"� = # $% & '% ( 2 )*+,/) " 0 / " 0 ,)$% ( 3'% & 2 )*+,/) " ,) / " 0 2 ,     (16) 

where $% is the retardance of the flicker fluctuation independent to each SLM panel. '% 
corresponds to the fluctuation level. Polarimetric or physical methods can reduce the intrinsic 
flicker's level as already shown [17, 31].  We point out that in such a case, the flicker level is 
controlled, its retardance is exceptionally complicated to control. Let us model two different 
LCoS; each one has an amount of flicker and own transmittance.  
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"3��, �, "� = '3��, �� ( Γ3�"�")��, �, "� = exp4�5$��, �� ( Γ)�"�67   ,   (17) 

The transmittance of the panels is configured so that one SLM behaves as only-phase and the 
second one as an amplitude modulator. Moreover, it has to be noticed that the flicker function of 
each transmittance is different, and there is no way to synchronize the respective SLM’s panel 
retardance $%3and $%8. For simplicity, we are assuming that both SLMs have the same level of 

fluctuation '%. Thus, after superposing both transmittances, the resulting field can be expressed 
as 

 �%��, �, "� = �'3��, �� ( Γ3�"�� exp4�5$��, �� ( Γ)�"�67.   (18) 

A simulation using Eq. 18 has been done using the same values of the complex filter as in 
section 3.1, '% was set as a constant; nevertheless, it depends on the grey-level used by the 
spatial light modulator. Here, an amplitude of 0.001 volt/grey-level was chosen. The difference 
between the retardance of flicker in both SLMs was varied to look for effects in super-resolution. 
Here we express this difference as Δ$% = |$%) & $%3|. 
A temporal average in over one period was obtained in equation 18, and the resulting PSF 
computed. 

 ;%��, <� = 〈|�%��, �, "�|)〉,    (19) 

Where  〈 . 〉 corresponds to the average through the whole period of the flicker function. In Fig. 5, 
the effect over the PSF when two different SLM are not synchronized is shown. The PSF shows 
a degradation in amplitude and resolution, as the Strehl ratio of the function is reduced. In Figure 
5b, it can be seen that, when the respective SLM flicker is not in phase super-resolution is not 
achieved, or in the best case, flicker could provoke a certain error. 

 

Fig. 5. Effect of the flicker when two unsynchronized LCoS are used in super-resolution complex filters. a) 
deterioration of the PSF, b) Deterioration of the resolution gain (normalized with the Airy pattern). 
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4. EXPERIMENTAL SETUP AND RESULTS 

Fig. 6 shows the experimental setup that was used to record super-resolving PSFs. The beam of a 
He-Ne laser (L), 633 nmλ = , was expanded by a 25×  microscope objective (MO), a spatial filter 
(SF) and a 250 mm focal length collimating lens (L0). The SLM was a twisted nematic LCoS 
from Holoeye, model LC-R 2500. To bound the pupil area, a 14 mm diameter diaphragm (D) 
was placed in front of the LCoS. This diameter was equal to the height of the LCoS rectangular 

aperture of 
220 14  mm× , and corresponded thus to the largest circle that could be inscribed on 

it. 

 

Fig. 6.  Schematic diagram of the experimental setup. L is a He-Ne laser λ = 633 nm ; MO a 25×  microscope 
objective; L0 and L1 are lenses of 250 and 1,000 mm focal length, respectively; BS is a beam splitter; D a 14 mm 
diameter diaphragm; LCoS a 1016×720 pixels liquid crystal on silicon SLM; and CCD a charge-coupled device with 
pixels of 5.2×5.2 μm2. 

To observe a super-resolving PSF, we had to focus on a charge-coupled device (CCD) the 
beam diffracted by the LCoS and reflected by the beam splitter (BS), using a 1,000 mm focal 
length lens (L1). When doing this, it was essential that the focused beam was free from off-axis 
aberrations, basically coma and astigmatism, as well as spherical aberration. If the aberrations of 
the LCoS are compensated, the first could be averted if the ray through the center of the 
diaphragm D, after being diffracted by the LCoS into the +1 diffraction order, and reflected by 
the BS, coincides with the optical axis of the lens L1. Spherical aberration would be negligible if 
the focal ratio of the focusing beam were very large; it was for this reason that we chose L1 with 

a large focal length. In the present case, this focal ratio was ∼F/70. Additionally, this 
arrangement magnifies sufficiently the PSFs to be resolved by the CCD, which was from a 
Lumenera M-LU175 camera and had a pixel size of 25 .2 5 .2 m .µ×  The radius of the first zero of 

the Airy pattern in the focal plane of L1 is 

 ( )1 1.22 1.22 # .r f F
D

λ λ= =  (20) 
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In the present case, λ = 0.633 ×10-3 mm, D = 14 mm and f = 1000 mm. Therefore, the diameter 

of the central lobe of the pattern was 2r1 ∼ 110 μm. Summarizing, to observe a super-resolving 
PSF, it is crucial to form a relatively large, virtually aberration-free PSF. Otherwise, its potential 
super-resolving features would be lost. 

A. Spatial Light Modulator calibration 

Since the LCoS panel is thin, it is inevitable that it will have slight deformations that will spoil a 
potential super-resolving PSF, even if these deformations are small. At the top of Fig. 7 is shown 
an interferogram of our LCoS panel, obtained with a WYKO 6000 digital Fizeau interferometer. 
The deformation of the panel is evident. Using the raw data files from the interferometer, we can 
map this deformation in m,µ change their sign, and inject them back into the LCoS, following the 

procedure described in [23]. This is a recursive procedure, in which we consecutively test the 
wavefront emerging from the +1 diffraction order of a phase grating displayed in the LCoS, 
something that is physically attained by the proper (small) tilt of the LCoS. We will end up with 
a phase-modulated phase grating [Eq. (13)], like those shown in Fig. 8. In the second row of Fig. 
7 we can see the initial phase map obtained from the LCoS, and the subsequent maps with phase 
corrections obtained from the +1 diffraction order of the phase grating displayed by this. The 
third row shows the PSFs corresponding to these maps. Since an LCoS panel is rectangular, the 

appearance of the PSFs approaches that of ( )2sinc ,
x y

l u l v , where u and v are spatial frequencies 

[Eq. (15)], and xl  and yl are the length and the height of the LCoS panel [32]. 
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Fig. 7.  The LCoS panel aberrations were corrected in three measurement iterations, as shown in the second row. 
Their PSFs appear below, in the third row. A circular pupil contained in the LCoS rectangular aperture is shown in 
the fourth row. The correction within the rectangular aperture of the LCoS reached λ/15, and within the circular 
aperture  λ/33, as shown in row 5. Notice that in both apertures the final Strehl ratio is virtually 1. 

The fourth row of Fig. 7 shows the phase maps for the circular aperture in successive 
iterations. Limiting the LCoS aperture to a circular aperture will, of course, improve the 
correction achieved in each cycle, because we will remove the largest residual deformations, 
which are in the panel edges. Finally, in the fifth row of Fig. 7 we show the peak-to-valley (P-V) 
deformations and Strehl ratios for the successive rectangular (in red) and circular (in blue) phase 
maps, with the P-V deformations given as fractions of the wavelength, 633 nmλ = . Notice that 
these values are well below 14λ , Marechal’s condition for a well corrected optical system [22]. 

Fig. 8 shows our hologram (Fig. 3) after compensation of the panel aberrations. As we 

mentioned above, this was achieved by adding the correction phase ( , )c x yφ  to ( , )x yα , the 

phase of the grating that will display the LCoS [Eq. (8)]. It should be mentioned that, in 
principle, the aberrations of the entire optical system in Fig 6 could be, if necessary, 
compensated in this form. 
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Fig. 8.  The hologram of Fig. 3 after including the phase correction term cφ  to compensate the aberrations 

introduced by the LCoS. 

 

B. Observed super-resolving PSFs 

Fig. 9a and b show two experimental PSFs recorded with a CCD; the first one has been obtained 
with a clear pupil and the second one with the super-resolving pupil. The clear pupil is 
aberration-corrected by the LCoS � . Its output beam travels the same optical path and has the 
same numerical aperture as the complex PhM so that it can be appropriately compared.  

Their central horizontal section of these PSFs are shown in Fig. 10a and b, the first with a gray 
line, and the second with a black one. As expected, the lobe of the second PSF is narrower than 
the first, and the first PSF is brighter than the second.  

 

Fig. 9.  Experimental point spread functions and computed modulation transfer function. a) Airy distribution, b) 
super-resolving PSF obtained with the +1-diffraction order, c) MTF of the Airy distribution, d) MTF with the hybrid 
phase mask  

The Fourier transform of the Figures 9a and b can be seen in Figures 9c-d. The Fourier 
transformation of the PSF corresponds to the modulation transfer function (MTF). MTF lets us 
determine the cutoff frequency of the system @A. The radial average of the MTF is displayed in 
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Fig 10b, where the complex filter MTF (black line) is compared with the MTF of a clear pupil 
(gray line). Note that artifacts beyond the cutoff frequency are due to the FFT algorithm. As 
expected from the PSF, the frequency gain is notorious, and the cut off frequency has been 
incremented. The spatial frequency has been normalized to the clear pupil cutoff frequency. 

 

Fig. 10.  Horizontal central sections in Fig. 9  a) Experimental PSF, b) Radial average of the MTF. 

 

5. CONCLUSIONS 

We described a method to design super-resolving PhMs that requires only one, phase-only, SLM. 
This method allows the generation of CA-PhMs by means of a phase grating displayed in an 
LCoS SLM. We showed that the aberrations introduced by this device can be successfully 

compensated in this grating, with residual aberrations bellow λ/14, the condition that must 
satisfy a well corrected optical system according to Maréchal [22]. However, this can only be 
achieved after an interferometric calibration of the panel flatness of the LCoS, which we did with 
a digital Fizeau interferometer. 

There are improvements, of course, that can be made to this technique of producing super-
resolving masks. Their phase encoding is simple, not so much the amplitude encoding. In the 

case presented here, βmax≤1.8412. When a(x,y)∼1, the mapping of the PhM amplitude to the 
visibility (contrast) of the fringes in the grayscale image I(x,y) that is relayed to the LCoS is 
highly non-linear [Fig. 1]. This drawback can be surmounted if we reduce the maximum phase 

depth of the grating, 2βmax, in the LCoS [Eq. (13)], although this would reduce as well the 
amount of light intended for the super-resolving image. 
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The phase flicker of LCoS SLM devices that appeared as a biting phenomenon when 
superposing two different pupils has been overcome by generating a complex-amplitude phase 
mask in a single phase-only SLM. 
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