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Abstract7

The unsteady aspect of turbulent flow structures generated by a shock-wave

diffraction over double cylindrical wedges, with initial diffracting angle of 75◦,

are numerically investigated by means of two-dimensional high-fidelity numerical

simulation. Different incident-shock-Mach numbers, ranging from transonic to

supersonic regimes, are considered. Unlike previous studies where only the total

vorticity production is evaluated, the current paper offers more insights into the

spatio-temporal behavior of the circulation by evaluating the evolution of the

instantaneous vorticity equation balance. The results show, for the first time,

that the diffusion of the vorticity due to the viscous effects is quite important

compared to the baroclinic term for low Mach numbers regimes, while this

trends is inverted for higher Mach numbers regimes. It is also found that the

stretching of the vorticity due to the compressibility effects plays an important

role in the vorticity production. In terms of pressure impulses, the effect of the

first concave surface on the shock strength has been quantified at both earlier

and final stages of the shock diffraction process. Unlike the overpressure, the

static and the dynamic pressure impulses are shown to be significantly reduced

at the end of the first concave surface.
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Nomenclature10

E total energy per unit mass

e internal energy per unit mass

Ip static-pressure impulse

Ipd dynamic-pressure impulse

Ms incident-shock-Mach number

P normalized overpressure

Pr Prandtl number

p static pressure

R universal gas constant

R concave radius

T temperature

t time

v velocity vector

Greeks

Γ vorticity circulation

γ heat capacity ratio

λ thermal conductivity

µ dynamic viscosity

ρ density

ω local vorticity

ω1 angle of the first wedge

ω2 angle of the second wedge

ωc convection vorticity term

ωt unsteady vorticity term

Abbreviations

BAR baroclinic torque

DFV diffusion of vorticity due to viscosity

IBM immersed-boundary method

I incident shock wave
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LS lambda shock

PV primary vortex

r reflected shock wave

SLI shear-layer instabilities

SS secondary shocks

SV secondary vortex

VSC stretching of vorticity due to compressibility

VSG stretching/tilting of vorticity due to velocity gradients

VTE vorticity transport equation

WENO weighted essentially non-oscillatory

1. Introduction11

The unsteady evolution of vortex rings produced by a shock diffraction un-12

dergoing a sudden expansion area is one of the most fascinating phenomenon13

in high-speed flows. This process was observed many decades ago [1], [2], [3],14

with different levels of qualitative description [4] and numerical modelling [5],15

[6], [7]. For instance, Skews [1] have discussed the behavior of disturbances16

produced in the perturbed region caused by the passage of a shock wave, whose17

Mach number varies from 1.0 to 5.0, through a convex corner. The experimental18

results of this study have shown that the velocities of the contact surface and19

the secondary shock become independent of the corner angles greater than 75◦.20

Sun and Takayama [5] have evaluated numerically the vorticity production in21

a shock-wave diffraction problem over convex corners, with angles varied from22

5◦ to 180◦. The authors proposed an analytical model to evaluate the total23

vorticity production generated by the slipstream. They found that the rate of24

vorticity production is always increasing with the corner angle and the shock25

strength. They also reported that the slipstream is at the origin of the total26

vorticity generation and it can be the more dominating factor in producing vor-27

ticity in compressible flows in comparison to baroclinic effects. In another study,28

Sun and Takayama [8] have investigated the formation of secondary shock waves29
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behind the incident shock wave. Accordingly, the threshold shock-wave Mach30

number was found to be Ms = 1.346 for a gas with γ = 1.4, when neglecting31

viscous effects on the formation of this secondary shock waves.32

Quinn and Kontis [9] have investigated a shock-wave diffraction around a33

172◦ corner at Ms = 1.46 using both numerical simulations and experimental34

visualizations. Their numerical study showed that although the evolution of35

the shear layer was obtained for very fine mesh, some very fine flow structures36

were under predicted. Cai et al. [10] have investigated the effect of back-37

pressure on the shock train location and its structure in a straight isolator. It is38

shown that the structure of the shock train largely depends on the relative Mach39

number and is very sensitive to it. Concerning the average back-pressure, it has40

a great influence on the location of the shock train in the oscillating region,41

while its amplitude has a noticeable effect on the size of this oscillating region.42

Reeves and Skews [11] have investigated both numerically and experimentally43

the unsteady aspects of three-dimensional shock-wave diffraction phenomena.44

They found that the trends of circulation production correlated quite well with45

those obtained from the two-dimensional diffraction case. Furthermore, they46

showed that the rate of vorticity production tends to be constant once the47

incident shock wave had fully diffracted over the surface edge. Finally, the48

shape of the diffracting edge appeared to have no significant impact on the49

results.50

Abate and Shyy [12] studied the dynamics of shock-wave diffraction using the51

vorticity transport equation. They discussed the link between high-strain rates52

resulting from the expansion corner to the solenoidal dissipation rates and the53

stress rates to the dilatational dissipation rates of turbulent kinetic energies. The54

baroclinic torque enhances the vorticity generation in such interaction. Their55

study indicates that both viscous effects and small-scale turbulent dissipation56

are important for the evolution of the primary vortex as well as the small vortices57

generated by the Kelvin-Helmholtz instability. Zhao et al. [13] have investigated58

the shock wave focusing process with shock-turbulence interaction in a parabolic59

cavity with various intensity of shock and vortex strength. Their numerical60
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results show that the net dilatational vorticity is the most dominant part in61

vorticity transport, followed by the baroclinic vorticity and the viscous vorticity62

generation.63

Gnani et al. [4] have used experimental schlieren photography to qualita-64

tively evaluate the development of a shock-wave diffraction around sharp and65

curved splitters. Recently, Chaudhuri and Jacobs [7] performed numerical anal-66

ysis of shock-wave diffraction over a sharp splitter plate. The objective was to67

address a detailed analysis of the flow evolution using the probability density68

functions of various enstrophy equation parameters as well as the invariants of69

the velocity gradient tensor. Their study reveals the mechanism of unwinding70

of vortices and its link with the divergence of the Lamb vector.71

Additionally, Tseng and Yang [6] investigated numerically shock-wave72

diffraction around a convex corner by solving both Euler and Navier-Stokes73

equations. The vorticity production formed during the shock-wave diffraction74

and the subsequent interaction between the reflected shock and the main vortex75

core have been analyzed. Different circulation production rates are observed76

between Euler and Navier-Stokes solutions as a result of the vorticity contribu-77

tion from the boundary layer and the secondary vortex. It was also found that78

the reflection influences the rate of vorticity production, which is found to be79

dependent on the strength of the incident shock wave and the diffracting angle.80

Chaudhuri et al. [14] used an immersed boundary (IB) method to study81

the interaction of the moving shock through an array of cylinder matrix. Their82

analysis confirmed earlier findings of Sun and Takayama [5], where the baroclinic83

production of the vorticity is found to be feeble. Recently, Soni et al. [15] have84

conducted numerical investigations of shock-wave reflection over double-concave85

cylindrical reflectors, where new shock reflection topologies were found.86

The aim of the present study is to further analyze the evolution of the87

instantaneous vorticity production and the flow structure in shock diffraction88

problem.89
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2. Governing equations and numerics90

The compressible Navier-Stokes equations for an ideal gas are given by:91

∂tρ+ div(ρv) = 0 (1)

92
∂t(ρv) + div(ρv ⊗ v) +∇p = ∇τ (2)

93 ∂t(ρE) + div(ρE v) + div(ρv) = ∇(τ v + λ∇T ) (3)

94 p = (γ − 1)ρ e, E =
1

2
|v|2 + e (4)

95 τ = µ

[
∇⊗ v + (∇⊗ v)T − 2

3
(∇ · v)I

]
(5)

where t stands for the time, ρ, v, p, E, T , λ, µ, e are the density, velocity96

vector, pressure, total energy per unit mass, temperature, thermal conductivity,97

dynamic viscosity and internal energy, respectively. The working gas is air with98

γ = 1.4 and Prandtl number Pr = 0.72. The fluid viscosity follows Sutherland’s99

law.100

To simulate the flow field, we used an in-house compressible parallel solver101

equipped with adaptive multi-resolution method [16, 17] for mesh refinement.102

The code uses an immersed-boundary method (IBM) to handle fluid-solid inter-103

action problems [18, 14]. The solid body is embedded into a Cartesian grid and104

tracked using a ray-tracing technique. Inviscid and viscous fluxes are computed105

using a fifth-order weighted essentially non-oscillatory (WENO 5) scheme and a106

fourth-order central difference formula, respectively, while the time is advanced107

using a third-order Runge-Kutta method [19].108

3. Problem set-up109

As in Brahmi et al. [20], a two-dimensional problem of shock diffraction over110

double concave geometry, with constant radius of R = 50 mm and wedge angles111

ω1 = ω2 = 75◦, is considered. As for the computational specifications, the112

boundary conditions were set to inlet and outlet at the left and the right sides113
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of the computational domain, respectively, while the top and the bottom-right114

boundaries are considered as symmetry planes. On the solid surface, no-slip115

boundary conditions are applied. The incident-shock-Mach number was varied116

from 1.6 to 4.5. For all those Mach numbers, the shock is initially located 5117

mm ahead of the first concave surface corner. Rankine-Hugoniot relations are118

used to fix the initial conditions for both left (shocked gas) and right (stagnant119

flow) states at a given Ms. Air is considered as a working fluid and the initial120

stagnant flow is assigned with temperature T0 = 300 K and pressure p0 = 101.3121

kPa. Given the sensitivity of the phenomena to the grid resolution, a grid122

dependency study is conducted in order to determine the grid resolution effect123

on the results. Five different meshes were used for Ms = 1.6, as summarized in124

Table 2.

Grid ∆xmin (µm) ∆ymin (µm) number of points (MP)
G0 95 88 1.83
G1 60 50 5.04
G2 40 40 8.84
G3 30 29 17.3
G4 20 21 33.55

Table 2: Different grid resolutions used for a given incident shock-wave Mach number of
Ms = 1.6 (MP: million points).

125

4. Results and discussion126

Figures 1(a) and 1(b) show the flow structures behind the diffracting shock127

wave for the first and the second concave surfaces, respectively. Shortly after128

the penetration of the shock into the cavity, the expanding flow evolves into a129

complicated system of distorted and secondary shocks with separated regions130

and vortices formation. As shown in Figure 1, an end-wall corner vortex (PV) is131

formed atMs = 1.6 with a rolling-up of eddies that are convected away from the132

concave entrance as the diffraction process evolves. In addition to this important133

primary vortex, a secondary instability (SV) appears along the surface wall. The134

Reynolds number, based on the shocked flow properties (density, speed of sound,135
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(a) (b)

Figure 1: Numerical schlieren pictures for Ms = 1.6 (a): first concave at t = 184 µs (b):
second concave at t = 292µs. PV: Primary vortex, SV: Secondary vortex, LS: Lambda shock,
SLI: Shear layer instabilities, SS: secondary shock (shocklets).

viscosity in the upstream of the shock and the radius of curvature R), is of the136

order of 106.137

4.1. Vorticity production138

In order to investigate the dynamics of the shear-layer formation, the vor-139

ticity production is first analyzed in term of total recirculation Γ as:140

Γ =

∫
s

ω ds =

∫
L

u dl (6)

where the integral contour (path L) is taken along the boundary so that to141

enclose the perturbed region behind the shock wave. The integral contour is142

depicted in Figure 2 by a dashed red line. For better characterization of the143

vorticity production in shock-wave diffraction, the ratio of circulation to time,144

Γ/t, is used. The rate of circulation production is related to the incident shock-145

Mach number Ms, the diffraction angle and the gas properties. For a given gas146

and diffraction angle, the ratio Γ/t can be uniquely determined as a function of147

Ms [5] as:148

Γ

t
= f(Ms) (7)
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Figure 2: Schematic representation of double concave surfaces, − − − integral path L, I:
incident shock wave, r: reflected shock wave.

In this paper, the calculation of the circulation is directly obtained from the149

summation of the vorticity over each individual surface area. In general, the150

calculation of the circulation is performed only in the perturbed region behind151

the shock. However, in this study the total amount of circulation is calculated152

over the entire computational domain since the unperturbed flow regions (uni-153

form flow) provides almost no contribution to the circulation.154
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(a) G0 (b) G1

(c) G2 (d) G3

(e) G4

Figure 3: Numerical schlieren pictures for different grid resolutions at t = 150 µs with Ms =
1.6.
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As it can be seen in Figure 3, the flow topology of the primary vortex changes155

with the mesh resolution, the global variation of the vorticity production (Γ)156

and its rate (Γ/t) are insensitive to the grid resolution (see Figures 4(a) and157

4(b)). Indeed, the circulation Γ increases linearly in time regardless of the grid158

resolution. The results for the rate of vorticity production (Γ/t) are scaled by the159

product R×T0, where R is the universal gas constant divided by the molecular160

weight of air taken as, R = 287 J.Kg−1.K−1 and T0 is the temperature in161

front of the incident shock (T0 = 300 K). Since the rate has the dimension162

of the square of the velocity (m2s−2), one may obtain dimensional results by163

multiplying the dimensionless values by R×T0,164

Γ′

t′
= R× T0

Γ

t
(8)

Note that all the results of the rate of vorticity production, Γ/t, presented in165

this paper are dimensionless values.166
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Figure 4: Time history of (a): circulation (b): rate of circulation production for Ms = 1.6
and different mesh resolutions (− G0, − G1, − G2, − G3, − G4).

The effect of shock strength on the vorticity production is investigated by167

changing Ms using the grid G4. The results are shown in Figures 5(a) and 5(b).168

Basically both quantities increase with Ms. In other words, the strength of169

the main vortex increases at higher values of Mach number, and increase much170

faster for stronger shock waves as reported by Sun and Takayama [5]. The171

vorticity production occurs before the diffraction of the incident shock wave (at172

t = 12 µs for Ms = 2.0) as a result of the boundary-layer formation on the173

solid wall. This demonstrates the role played by viscous effects in forming the174

shock-wave diffraction structure as mentioned by Tseng and Yang [6]. Figure175

5(b) shows the rate of the circulation production. The five curves reach different176

constant values of 1.78, 3.79, 5.72, 11.42 and 18.73 forMs = 1.6, 2.0, 2.5, 3.5 and177

4.5, respectively. Similar trends were observed by Sun and Takayama [5] with178

constant values known as invariants of Euler equations in shock-wave diffraction.179

180
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Figure 5: Time history of (a): circulation (b): rate of circulation production for different
incident-shock-Mach numbers (− Ms = 1.6, − Ms = 2.0, − Ms = 2.5, − Ms = 3.5, −
Ms = 4.5).

Figure 6 represents vorticity maps at different instants (t = 48 µs, 78 µs181

and 108 µs) for Ms = 2.0. As it can be seen, the main vortex and the highly182

disturbed shear layer split when interacting with the secondary shock waves.183

This results in a generation of fine scale turbulent eddies. Note that the pro-184

duction of vorticity is mainly concentrated in this turbulent region compared to185

the compression zone.186

4.2. Vorticity transport equation187

The vorticity transport equation provides further details on the mechanism188

of the vortex dynamics, it can be written as follows:189

Dω

Dt
= (ω · ∇)u︸ ︷︷ ︸

VSG

−ω(∇ · u)︸ ︷︷ ︸
VSC

+
1

ρ2
(∇ρ×∇p)︸ ︷︷ ︸

BAR

+∇×
(
∇ · τ
ρ

)
︸ ︷︷ ︸

DFV

(9)

where the left-hand side represents the material derivative expressed as the190

sum of unsteady, ωt, and convection, ωc, terms. Here, ωt = ∂ω/∂t and ωc =191

U(∂ω/∂x) + V (∂ω/∂y).192

The first term in the right-hand side of Eq. (9) represents the stretching193

or tilting of vorticity due to the flow velocity gradients, a term that is null in194

two-dimensional cases. The second term expresses the stretching of vorticity195
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Figure 6: Vorticity maps for Ms = 2.0. Column-wise (left-to-right): t = 48 µs, 78 µs and
108 µs.

due to flow compressibility. The third contribution represents the baroclinic196

term, which accounts for the changes in the vorticity due to the intersection of197

density and pressure surfaces. The last term represents the diffusion of vorticity198

due to the viscous effects.199

The different expressions appearing in the right-hand side of Eq. (9) are200

shown in Figure 7 (in Row-wise) at different time intervals for Ms = 2.0. As201

one can see, the stretching of the vorticity due to flow compressibility (VSC)202

has the most dominant contribution. Based on the VSC contour, it is clear203

that there exist locally stretched structures in the core region of the vortex due204

to compressibility effect arising from local regions of compression/expansion.205

Additionally the results show the existence of evolving large scale vortices which206

interact with the different shock patterns present in the flow and finally split207

into small-scale vortices.208

Figure 8 shows the temporal evolution of the vorticity transport equation209

(VTE) terms. The stretching of vorticity due to flow compressibility (VSC) is210

almost constant over time independently of Ms, while its magnitude increases211

with Mach number. This contribution represents the effects of expansion on the212

vorticity field and plays a major role in the vorticity dynamics. The baroclinic213

term (BAR) is responsible of the generation of vorticity from unequal accel-214
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Figure 7: Color maps of vorticity terms for Ms = 2.0. Row-wise (top-to-bottom): stretching
of the vorticity due to flow compressibility (VSC), baroclinic (BAR) and diffusion of vorticity
due to the viscous effects (DFV) terms. Column-wise (left-to-right): t = 48 µs, 78 µs and
108 µs.
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eration as a result of nonaligned density and pressure gradients. The lighter215

density fluid is faster accelerated than the high density one, which result in a216

shear-layer formation, that contributes to the generation of vorticity. The dif-217

fusion of vorticity due to the viscous effects (DFV) is essentially enhancing the218

viscous diffusion process on the vorticity distribution. As a result of viscosity,219

the vorticity tends to spread out spatially. Note that the diffusion of vorticity220

due to viscous effects (DFV) is quite important compared to the baroclinic term221

(BAR) forMs ≤ 2.5, while this trends is inverted forMs ≥ 3.5. As for the VSC222

term, the unsteady term, ωt, which describes the rate of change in vorticity due223

to flow unsteadiness, is found to be constant in time regardless of Ms. For the224

convection term, ωc, we also notice that it is almost constant in time for all225

shock-wave Mach numbers, and its magnitude increases at higher values of Ms.226

This term represents the change of vorticity of the moving fluid particles due to227

the motion of the fluid particle as it moves from one point to another. Figure228

9 represents contours plots of ωc for Ms = 2.0 at different instants. As we can229

see, this term is mainly concentrated in the turbulent region as well as in the230

shear layer and in the near wall-region.231
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(a) (b)

(c) (d)

(e)

Figure 8: Time history of normalized vorticity transport equation terms for (a): Ms = 1.6;
(b): Ms = 2.0; (c): Ms = 2.5; (d): Ms = 3.5 and (e): Ms = 4.5 (−: stretching of the vorticity
due to flow compressibility (VSC) term, −: baroclinic (BAR) term, −: diffusion of vorticity
due to the viscous effects (DFV) term, −: convection term (ωc), −: unsteady term (ωt)).
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Figure 9: Color maps showing the convection term of vorticity (ωc) forMs = 2.0. Column-wise
(left-to-right): t = 48 µs, 78 µs and 108 µs.

4.3. Static and dynamic pressure impulses and normalized overpressure232

The effect ofMs on shock strength was investigated by computing the static233

and the dynamic pressure impulses along with the normalized overpressure, all234

defined as:235

Ip =

∫ tf

t0

p dt (10)

236

Ipd =

∫ tf

t0

1

2
ρv2 dt (11)

237

P = (p− p0)/p0 (12)

where p0 is the static pressure of gas at rest, p, ρ and v are the local static238

pressure, density and velocity vector in the shocked region (t0 and tf being the239

initial and the final times). These quantities are calculated at two different240

space locations as shown in Figure 10, with P1(x∗1, y
∗
1) corresponding to the241

beginning of the first concave surface, x∗1 = x1/R = 0.26 and y∗1 = y1/R = 1.6242

and P2(x∗2, y
∗
2) corresponding to the beginning of the second concave surface,243

x∗2 = x2/R = 1.22 and y∗2 = y2/R = 0.86. The results are presented in Figures244

11 and 12, for P1 and P2, respectively.245
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At the upstream location, P1, both static and dynamic pressure impulses246

are linearly increasing with time for all Ms. The passage of the incident wave247

is characterized by a sudden jump in these last two quantities (more visible248

for Ms = 4.5 as seen in Figures 11(a), 11(b)). This linear increase is due to249

the fact that P1 is located at the inlet where no perturbation exists behind the250

shock wave. Concerning the normalized overpressure, one can see in Figure251

11(c) a sudden jump caused by the passage of the incident shock. Afterwards,252

it remains constant, except for Ms = 1.6, where it starts to decrease gradually253

as the shock propagates over the double concave surfaces.254

At the downstream location, P2, the flow behavior is completely different.255

The static pressure impulse is suddenly increased due to the passage of the256

shock. At this early stage of the diffraction process, the increasing rate is257

important. However, after the shock wave leads off the end of the geometry,258

it decreases giving almost constant value (see Figure 12(a)). For the dynamic259

pressure impulse, we observe a sudden increase induced by the passage of the260

shock, after this it remains constant for a certain elapsed time until the arrival261

of the reflected shock and formation of the shocklets which generate a second262

increase due to the gas acceleration. Note that this behavior is more visible for263

Ms = 4.5 and Ms = 3.5 (see Figure 12(b)). The arrival of the incident shock264

wave causes a sudden increase of the normalized overpressure (Figure 12(c)).265

Afterwards, it remains almost constant until the reflected wave (r in Figure266

10(b)) arrives and causes a second increase. Once the reflected shock passed,267

the expanded gas gets driven away and causes a strong decrease. At the last268

stage of the diffraction, we can see a succession of peaks due to the passage of269

the shocklets and the emergence of flow instabilities in this zone. These peaks270

are visible only for high Mach numbers (Ms = 4.5, Ms = 3.5), for which the271

turbulent region is highly perturbed. It is worth noticing that for high Ms the272

flow relaxes until it reaches negative overpressure values, because of the strong273

vortex suction acting on this highly perturbed turbulent zone.274

In order to investigate the effect of the first concave surface on the shock275

strength, the deficit of various parameters mentioned above is calculated. This276
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Figure 10: Numerical schlieren pictures for Ms = 4.5 at t = 69 µs: (a) beginning of the
first concave surface; (b) beginning of the second concave surface; I: incident shock wave; r:
reflected shock wave, P1 and P2 are two probes locations.

deficit is defined as the ratio of the impulses and overpressure calculated at the277

two points: Ip(P2)/Ip(P1), Ipd(P2)/Ipd(P1), P(P2)/P(P1). For static pressure278

impulse, we can see that the deficit is more important for the high Mach num-279

bers because of the highly turbulent region generated behind the strong shock280

wave and the intense vortex suction exerted on the flow (see Figure 13(a)).281

By comparing the static and dynamic pressure impulses deficit (Figures 13(a),282

13(b), respectively) we can see that the deficit in dynamic pressure impulse is283

more important because of the decrease of density and the square of velocity284

together. For the overpressure deficit (Figure 13(c)), the peaks are exceeding285

unit, which means that the overpressure in P2 is greater than in P1 and this is286

mainly caused by the passage of the reflected shock which induces the formation287

of shocklets (small shocks embedded into turbulent region).288
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(a) (b)

(c)

Figure 11: Time history of (a): static pressure impulse, IP (b): dynamic pressure impulse,
IPd and (c): normalized overpressure P, for different Ms at P1 (− Ms = 1.6, − Ms = 2.0, −
Ms = 2.5, − Ms = 3.5, − Ms = 4.5).
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(a) (b)

(c)

Figure 12: Time history of (a): static pressure impulse, IP (b): dynamic pressure impulse,
IPd and (c): normalized overpressure P, for different Ms at P2 (− Ms = 1.6, − Ms = 2.0, −
Ms = 2.5, − Ms = 3.5, − Ms = 4.5).
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(a) (b)

(c)

Figure 13: Time history of (a): static pressure impulse deficit (b): dynamic pressure impulse
deficit and (c): overpressure deficit, for different Ms at P2 (− Ms = 1.6, − Ms = 2.0, −
Ms = 2.5, − Ms = 3.5, − Ms = 4.5).
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5. Accumulation of numerical errors289

Estimating accuracy and errors accumulation is necessary in CFD, especially290

when dealing with high-fidelity numerical simulations. Depending on the spatial291

resolution and on the numerical scheme, a definite error occurs due to numerical292

integration at each time step [21]. According to Smirnov et al. [21], the relative293

integration error for one-dimensional problem is:294

S1 =

(
h

L1

)k+1

(13)

where h is the cell size, L1 is the domain length and k the order of accuracy295

of the numerical scheme. For multi-dimensional problem, the integration errors296

can be summed up as:297

Serr =

3∑
i=1

Si (14)

The maximal allowable number of time steps for solving a given problem could298

be determined by the following formula:299

ηmax = (Smax/Serr)2 (15)

where Smax is the allowable value of the total error, which is presumed to300

be between 1% and 5%. Smirnov et al. [21] have introduced another impor-301

tant measurement of numerical errors suitable for high-performance computing,302

which is the ratio of the maximal allowable number of time steps ηmax to the303

actual number of time steps used to obtain the results η:304

Rs = ηmax/η (16)

According to Smirnov et al. [21], the parameter Rs can characterize the relia-305

bility of the numerical results, i.e. how far below the limit, the simulations were306

finalized. Indirectly, this parameter characterizes the accumulated error. The307

higher is the value of Rs, the lower is the error. On tending Rs to unity, the308
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error tends to a maximal allowable value.309

Table 3 summarizes the results of different grid resolutions and physical time310

in our simulations. As it can be seen, a quite high level of reliability is achieved311

in our case.312

Allowable Grid Physical time Number of Accumulated Allowable number Reliability
error (%) resolution simulated (µs) time steps error of time steps Rs = ηmax/η

5 1793 × 1025 294 4311 9.48 × 10−16 2.78 × 1027 6.45 × 1023

5 2817 × 1793 294 7854 5.84 × 10−17 7.33 × 1029 9.33 × 1025

5 3841 × 2305 294 10307 1.8 × 10−17 7.71 × 1030 7.48 × 1026

5 5633 × 3073 294 14061 6.94 × 10−18 5.19 × 1031 3.69 × 1027

5 7681 × 3585 294 18728 7.14 × 10−19 4.87 × 1033 2.61 × 1029

Table 3: Error estimates.

6. Conclusions313

In this paper, shock-wave diffraction over double cylindrical wedges have314

been numerically investigated by means of two-dimensional high-fidelity numer-315

ical simulation. The objective was to study the flow structure and the vorticity316

formation with regards to the incident-shock-wave Mach number. Different grid317

resolutions were used in order to investigate the mesh sensitivity of the results.318

It was found that although the upstream flow topology (shape of the eddies)319

changes with the grid resolution, the vorticity production and the shock diffrac-320

tion process are quite independent from the grid resolution. In terms of rate321

of vorticity production and circulation, it is shown that the shock strength en-322

hances the vorticity production and the rate of vorticity production increases323

as the incident shock strength increases and remains virtually constant after324

an elapsed time. For the vorticity transport equation, it was found that the325

stretching of vorticity due to flow compressibility plays an important role in the326

vorticity dynamics, for low-Mach numbers regimes (Ms ≤ 2.5). The diffusion of327

the vorticity due to the viscous effects is seen to be quite important compared328

to the baroclinic term, while this trends is inverted for higher Mach numbers329
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regimes (Ms ≥ 3.5). In terms of shock strength, it was found that the effect of330

the first concave surface is effective in decreasing sufficiently the dynamic pres-331

sure impulse (up to 90 % for Ms = 2.5) as well as the static pressure impulse332

(up to 75 % for Ms = 4.5). However for the overpressure deficit, the peaks are333

accentuated by the passage of the reflected shock and the formation of shocklets334

that tend to reduce the overall overpressure deficit.335
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