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Abstract 

Since the early 1990s, considerable efforts have been made in researching and applying 

approaches for faults detection and diagnosis in chemical processes. The occurrence of 

chemical accidental events due to thermal runaways have serious consequences for the 

human, environmental and economic and encourage these efforts. This is the main motivation 

for this paper that details a fault detection and diagnosis approach for exothermic reactions. 

The proposed approach is based on the temperature measurements. It compares the collected 

measurements with a reference behaviour for early thermal runaway detection. Once a fault is 

detected, characteristic features are extracted from the successive measurements collected 

within a time window. The fault isolation is based on a classification of these features with 

respect to several faulty modes. The studied faults are the most responsible for thermal 

runaway events. A multiset of linear classifiers and binary decision diagrams indexed with 

respect to the time are used for that purpose. The synthesis of peroxyformic acid in a batch 

reactor is considered to validate the proposed method by numerical simulations and 

experiments. The performance of the proposed method is carried out in a systematic way in 

order to evaluate its robustness and efficiency. 

Keywords: Fault detection; fault isolation; thresholds; parameters characteristics; batch 

reactor; thermal runaway. 

1. Introduction

Since the last decades, a growing demand for reliability and safety of chemical processes has 

been requested (Francis and Bekera, 2014; Jain et al., 2019, 2018). This requirement results 

from the progressive development of the chemical industries making the systems more and 
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more complex to control and the increasing number of chemical accidental events leaving 

serious consequences for the humans, the environment and the economy. In many chemical 

industrial sectors, in particular in the fine chemical industries, most synthetic reactions are 

exothermic. The major problem with these reactions is the loss of temperature control in the 

case of malfunctions. In this situation, a thermal runaway event can occur (Westerterp and 

Molga, 2006). According to a study conducted by our group (Dakkoune et al., 2018a; 

Dakkoune et al., 2019), 25% of chemical events in France are due to thermal runaways. 

Balasubramanian and Louvar (2002) has also proved that 26% of the chemical events in the 

United States are due to the same phenomena. 

Thermal runaways is a phenomenon that takes place during an exothermic reaction. The 

reaction produces heat that contributes to the increase in temperature and accelerates the 

speed of the reaction. Then again, this will lead to a higher production of heat that in turn 

causes a further increase in the temperature of the reaction, and so on. As long as the heat 

released by the reaction is less than the heat released by the reactor cooling system, the 

chemical system is considered to be controlled. In the case where the heat dissipated is less 

than the heat given by the reaction, this can lead to a thermal runaway; this mechanism has 

been described by different authors (Semenov, 1928; Stoessel, 2008). This phenomenon can 

happen also when the temperature of the reaction medium exceeds a certain threshold, 

secondary reactions can be triggered, in particular the decomposition reactions which are 

generally exothermic. Consequently, the cooling system can become undersized in relation to 

these secondary reactions. For this reason, it is necessary to monitor the temperature profile of 

the reaction medium in order to maintain the system below this threshold (Vernieres-Hassimi 

et al., 2015). 

Industrial demand requires working under operating conditions in a safe zone of the reactor. 

However, the reactor is never sheltered from a technical failure or human error, which may 

lead to operation in an unsafe area for the reactor. The method proposed in this article allows 

to detect a malfunction and to isolate the fault in order to have a better understanding of the 

thermal runaway situations. It is the first step either to stop the installation or to correct the 

error if it is technically possible. 

In this context, maintaining safe operating conditions for chemical reactors is a primordial 

necessity. From the beginning of the 1990s, the research effort intensified to focus on 

monitoring approaches (Miljković, 2011). The purpose was to ensure and maintain a reliable 
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level of safety in chemical reactors, to minimize the risk of thermal runaways and prevent 

abnormal faults progression. The purpose of monitoring is to alert and inform the user of the 

appearance of faults so that they can react as quickly as possible. The monitoring is divided 

into two complementary functions: 

• Fault detection that generates alarms in order to signal the occurrence of the faults. 

• Fault diagnosis that identifies the nature of the detected faults. This function includes 

the isolation step that determine the most probable fault among a set of fault 

candidates. 

Fault detection and diagnosis can be carried out with different methods that have some 

common characteristics. On one hand, the detection is performed by comparing the output 

signals of the system under normal and abnormal conditions in order to generate residuals. 

The evaluation of these residuals is performed thanks to thresholds and decision functions 

(Frank and Ding, 1997). On the other hand, the fault diagnosis is based on an extraction of 

characteristic features from the sensor measurements. These features are used to classify the 

signals into a set of predetermined classes. 

In this present work, a fault detection and diagnosis method was developed for exothermic 

reactions that may experience thermal runaway events due to some faults that result mainly 

from operator errors (Dakkoune et al., 2018a; Dakkoune et al., 2019; Saada et al., 2015). The 

particular reaction that leads to the synthesis of peroxyformic acid from formic acid and 

hydrogen peroxide is studied. Six classes of fault were considered related on one hand to 

unacceptable errors in the initial conditions and on the other hand to the presence of 

impurities or to failures of the stirrer or heat transfer system. The detection method compares 

the actual temperature measurements with a reference behaviour obtained with a precise 

model of the reaction. A double dynamical threshold is introduced for that purpose.  

The innovation of the proposed approach lies on several aspects. Indeed, the approach is 

characterized by its generality, it can adapt to simple or complex chemical systems that may 

be linear or nonlinear. This functionality is found in few approaches like the Parity approach 

space and Fuzzy logic. The ease of processing and interpreting system data and the simplicity 

of the application are also a strong point of this approach. In addition, the proposed approach 

is well suited to any fault, as long as this fault affects the thermal behavior of the reaction. In 

fact, monitoring by a unique measured signal (here the reaction temperature) is sufficient to 

carry out online fault detection and diagnosis and in real time. On the other side, the 
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originality of the proposed approach relies also on the use of dynamic thresholds to carry out 

rapid fault detection, as well as the use of several statistical characteristics to separate the 

collected measurements for diagnosis issue. 

In particular, this model includes an additional decomposition mode that explains the 

temperature variation due the presence of impurities as copper sulfate (Vernières-Hassimi et 

al., 2017). The model also explained the effects of the stirrer and of the heat transfer flow. 

Then, the isolation is obtained according to a classification method of the essential features 

extracted from the temperature variation within a sliding window. This classification 

combines linear separators and binary decision diagrams that are useful to isolate the six 

possible faults. The innovation of the approach is to use off-line the numerical model to 

emulate each fault at different times and to design a database of degraded behaviours. The set 

of linear separators and binary decision diagrams, indexed by time, is computed from this 

database.   

The paper is organized as follows. Section 2 is about the state of the art. Section 3 describes 

the considered reaction and the experimental device. Section 4 is about the data pre-

processing. Then, Section 5 describes the main contributions and details the detection and 

diagnosis method. Section 6 is about the numerical and experimental results. Section 7 gives 

the conclusions and perspectives of the study. 

2. Literature survey 

There exists huge amount of contributions about fault detections and diagnosis and also many 

ways to present these different methods. One can for example, separate the approaches in 

model-based, data-based and knowledge-based approaches. 

 
First, model-based approaches are based on the design of residual signals that are near zero in 

the normal case and significantly different from zero in abnormal situations (Frank, 

1990(Gertler and Singer, 1990). Parity space use projections of the measurements in an 

adequate subspace (Kabbaj et al., 2009; Gertler and Singer, 1990). State observers aim to 

reconstruct the system state in order to evaluate the difference between the measured outputs 

and their estimates (Benkouider et al., 2009; Frank, 1990; Pierri et al., 2008). Parameter 

estimation methods track some parameters of interest with identification approaches (Fadda et 

al., 2019; Isermann, 2006; Kabbaj et al., 2009). Qualitative methods also exist mainly based 

on cause-and-effect diagrams (Olivier-Maget et al., 2009).  
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Then, data-based approaches are based on process measurements or history. Control charts 

and tests for change detection have been used from more than 50 years in many application 

domains (Basseville and Nikiforov, 1993). In particular X control chart is popular in chemical 

engineering for a long time (Bryce et al., 1997). Note that the EWMA control chart 

introduced by Roberts (1959), the CUSUM control chart proposed by Page (1954) or more 

recently the non-central chi-square chart proposed by Costa and Rahim (2006) can also be 

used. Principal component analysis (PCA) is another data-based approach that detects the 

presence of a fault by measuring the effect of this fault in the correlation between the 

variables (Alcala et al., 2012; Bin Shams et al., 2011; Du and Du, 2018; Lee et al., 2004; 

Miljković, 2011). In the case of nonlinear systems - the case of most chemical reactions - an 

extension of the Kernel PCA method (KPCA) can be used (Fezai et al., 2018; Harkat et al., 

2019; Jia et al., 2000). Neural networks are another tool used for detection and isolation 

(Othman et al., 2012; Zhao, 2018), (Benkouider et al., 2012; Zhang, 2008).  

 

Finally, knowledge-based methods include expert systems that take the best decision by 

expert domain operators, according to the knowledge obtained from the history in the field 

(Cilliers, 2013; Di Maio et al., 2018; Rich et al., 1989). The extraction, representation, and 

coding of the knowledge lead to the faults isolation (Quantrille and Liu, 2012; Ramesh et al., 

1992). Fuzzy logic is another tool for integrating knowledge into algorithms, in order to 

compute decisions about the possible occurrence of faults (Ammiche et al., 2018; Ballesteros-

Moncada et al., 2015; Kohcielny, 1999). Finally, qualitative trend analysis represents the 

trend of signals in normal and abnormal cases, in order to get a global vision on the process 

behaviour and to distinguish anomalies (Thürlimann and Villez, 2017; Zhou and Ye, 2016). 

 

When focusing on thermal runaway, one should first notice that this issue may appear in a 

large variety of reactions, in particular in many battery systems due to the stress, posing a 

major threat to the overall safety of such systems (Liao et al., 2019). Thermal runaway mainly 

occurs due to the domino effect (Feng et al., 2016; Lamb et al., 2015; Ouyang et al., 2018; 

Smith et al., 2010; Walker et al., 2019). There exist basically three types of thermal runaway 

monitoring and detection schemes: using the terminal voltage and the surface temperature 

(Liu et al., 2019; Misyris et al., 2019; Xiong et al., 2018); using the internal temperature 

(Fortier et al., 2017; Ganguli et al., 2017; Raghavan et al., 2017; Raijmakers et al., 2019), 

tracking the characteristic vent gas component during thermal runaway (Fernandes et al., 

2018; Koch et al., 2018). 
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Thermal runaway may appear also in other chemical industries and several criteria for 

predicting the thermal runaway onset in batch and semi-batch reactors have been suggested 

for such issues. Semenov criterion (Semenov, 1928) allows the thermal runaway prediction 

based on the thermal power produced and evacuated by the system. According to this 

criterion, a detection of the runaway limit is reached when the reaction power becomes 

dominant. However, this criterion does not take into account reagents consumption during the 

reaction.  

 

To overcome this limit, other criteria based on the second derivative of the reaction 

temperature over time (Adler and Enig, 1964) and the second derivative of the reaction 

temperature over its conversion (Bowes, 1984) have been developed. In these cases, thermal 

runaway occurs when one of these dimensionless derivatives becomes positive before the 

temperature hotspot. However, these criteria do not give any measure of thermal runaway 

intensity. 

 

For this reason, other criteria are developed as the Hub and Jones (1986) criterion, which 

indicates that the runaway occurs when the first and second derivatives of the reactor 

temperature are both positive. The divergence criterion of Strozzi and Zaldívar (1994) shows 

that if the system of differential equations that describes the process presents a positive 

divergence at a certain point on the temperature profile, the process works in runaway 

conditions. These criteria do not require any detailed information on the process but on the 

other hand, these criteria are highly sensitive to the presence of noise. 

 

More recently, Strozzi et al. (1999) have developed a new method based on the extraction of 

information on the behavior of the reactor by phase-space reconstruction, using the time delay 

embedding of the temperature measurements. Detection is based on dramatic changes in the 

behavior of space-phase trajectories. Based on the work of Strozzi et al. (1999), Bosch et al. 

(2004) used pressure measurements instead of temperature. The results show that the pressure 

provided early detection of runaway initiation. However, temperature leads to an earlier 

detection. Marco et al. (1997) have also tested monitoring of the gas phase composition using 

mass spectrometry. The results found show earlier detection compared to methods based on 

temperature measurements. These studies show that fault detection and diagnosis can be 

carried out with several parameters, like pressure, temperature, concentration, etc. However, 

the detection rapidity depends on the measured parameter, in fact, the concentration 
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measurement allowed to achieve the fastest detection of thermal runaway, followed by 

temperature and finally pressure. However, the concentration measurement in real time is 

more complicated and more expensive; therefore, most of the detection methods are based on 

the temperature measurement of the reaction medium. 

 

In their article, Subramanian et al. (2014) proposed a method based on statistical learning 

theory to estimate the reactor heat release under normal and defective conditions. The faults 

detection is carried out according to the residue obtained and the faults classification is carried 

out from the extracted image characteristics. Benkouider et al. (2012) have proposed another 

method based on the reaction model, and the use of extended Kalman filter to estimate the 

reactor state through the overall heat transfer coefficient. Fault detection is based on the 

statistical test and fault diagnosis is based on a probabilistic neural network classifier. 

 

In this work, the maximum reaction temperature (Tmax) was our criterion for the development 

of the detection and diagnosis method. The maximum temperature variation in an exothermic 

reaction is a key parameter in the safety of chemical reactors (Chetouani et al., 2003; 

Vernières-Hassimi et al., 2015), because when this temperature exceeds a specific limit, 

dangerous decomposition reactions can be triggered. The maximum reaction temperature can 

be modified in the presence of defects. Monitoring of this parameter resulting from the 

exothermicity of the chemical reaction makes it possible to avoid the occurrence of runaway 

reactions (Vernières-Hassimi et al., 2012). Indeed, the proposed approach can be overcome 

several limits cited above. In addition to its ability to adapt to any chemical system and any 

defect with ease of processing and interpretation of system data. 

 

3. Problem statement 

The considered problem is to detect and isolate faults that may occur during exothermic 

reactions in a batch reactor RC1 under isoperibolic conditions. A new method that combines a 

data-based approach and a numerical model of the reaction will be used for this purpose. 

3.1. Experimental device 

The experimental device is composed by the calorimeter reactor RC1 (Figure 1). The RC1 

calorimeter is an automated reactor used to measure thermal profiles during a chemical 

reaction. The main installation includes a jacketed reactor equipped with an agitator shaft, a 
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temperature probe, a calibration probe in order to measure the overall heat exchange 

coefficient, and a condenser that avoids the evaporation of liquid phase compounds. The 

reactor is operating in batch mode. 

The stirred tank is made of glass with a capacity of two liters and equipped with a glass 

jacket. A rapid passage of the heat transfer fluid (the silicone oil 47 V 20) with a fixed flow 

rate of 1.33 kg.s-1 allows to keep an uniform temperature in the double jacket. The mechanical 

stirrer has a variable speed from 30 to 850 rpm. The sensor measures every two seconds the 

temperature of the reaction Tr and the temperature of the heat transfer fluid Tj thanks to 

platinum probes Pt100. The installation is connected with the WinRC NT software for online 

data acquisition. 

 

 

Figure 1. Schematic representation of the RC1 pilot reactor. 

 

3.2. Perhydrolysis of formic acid reaction 

Peroxyformic acid (PFA) is a strong oxidant that respects the environment thanks to its green 

synthesis (Filippis et al., 2009). PFA is used in many chemical treatments as bleaching (Sun et 

al., 2011) or epoxidation of unsaturated oils to produce biofuels (Campanella et al., 2008; 

Wang et al., 1997). It is also a disinfectant and food preservative used in the medical and food 

industries (Sun et al., 2011). However, a safety assessment showed that PFA synthesis 

presents a risk of class 5 (high risk) according to the Stoessel classification (Leveneur et al., 

2012). The unstable state of PFA makes it unsafe and able to trigger immediately a 
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decomposition reaction in the case of loss control of the reaction (Stoessel, 2008) that may 

result in a thermal runaway. This motivates our study about early detection and fault diagnosis 

for PFA synthesis. 

More precisely, the synthesis of PFA from formic acid (FA) and hydrogen peroxide (HP) is 

studied by RC1 reactor in a batch mode and under isoperibolic mode of temperature (Zheng et 

al. 2016). The reaction is controlled by the heating / cooling system. A titration method is 

applied to determine the initial concentration of reagents. A standard solution of ammonium 

cerium sulfate (0.1 mol.L-1) and a standard solution of sodium hydroxide (0.4 mol.L-1) are 

used as a titrant to determine the initial concentration of hydrogen peroxide and formic acid 

respectively. The normal operating conditions of this reaction are given in Table 1. 

 

Table 1. Normal operating conditions of the reaction at initial time  

System Parameter Symbol Value Unit 

Sample volume Vr 1.2 L 

Initial concentration of formic acid [FA] 2.5 mol.L-1 

Initial concentration of hydrogen peroxide [HP] 2.8 mol.L-1 

Initial temperature of reaction rT  70 °C 

Temperature of the heat transfer fluid  Tj 70 °C 

Stirring rate Ntr 400 rpm 

 

The whole reaction is composed by the perhydrolysis of FA, the two ways of decomposition 

of PFA and the decomposition of HP according to Figure 2. The heat increases due to these 

reactions. 
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Figure 2. Simplified mechanism for the perhydrolysis of formic acid reaction. 

 

3.3. Kinetics, mass and energy balances 

 

The kinetic equations are detailed for each reaction of the system (Figure 2). Let us first 

define k0,y as the pre-exponential factor and Ea,y as the activation energy of the reaction y for y 

∈ {perh, decomp1, decomp2, spont, cat}. R is a gaz constant, Tr is the reaction temperature 

and Tref is the reference temperature. 
C

FADK  is the association parameter of formic acid and KC 

is the equilibrium parameter of the perhydrolysis reaction. [x] denotes the concentration of the 

chemical compound x ∈ {HCOOH, H2O2, HCOOH, H2O}.  

A first reaction results from the perhydrolysis of formic acid reaction, Eq. (1) (Zheng et al., 

2016). 

          
{ {

perhk

2 2 2

formic acid peroxyformic acidhydrogen peroxide water

HCOOH + H O HCOOOH + H O→← 14243 14243                            (1) 

 

The kinetic expression of this reaction is given by Eq. (2):  

 

 [ ][ ] [ ][ ],

0, 2 2 2

2

- 1 1 1
exp - -

a perh C

perh perh FAD C

r ref

E HCOOH
R k K HCOOH H O HCOOOH H O

R T T H O

    =        Κ   

   (2) 

 

where
C

FADK is the parameter of association of the formic acid and KC the equilibrium 

parameter of the perhydrolysis reaction. 
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The second reaction results from the decomposition of peroxyformic acid into CO2 and H2O, 

Eq. (3). 

  { {
decomp.1k

2 2

peroxyformic acid carbon dioxide water

HCOOOH CO + H O→14243                                            (3) 

 

The kinetic expression of this reaction is given in Eq. (4):  

 

[ ], 1

1 0, 1

- 1 1
exp -

a decomp

decomp decomp

r ref

E
R k HCOOOH

R T T

  
=     

  
                                   (4) 

 

The third reaction results from the decomposition of peroxyformic acid into formic acid and 

oxygen, Eq. (5). 

 

{
decomp.2k

2

peroxyformic acid formic acid oxygen

1
HCOOOH HCOOH + O

2
→14243 14243                                (5) 

 

The kinetic expression of this reaction is given in Eq. (6): 

[ ], 2

2 0, 2

- 1 1
exp -

a decomp

decomp decomp

r ref

E
R k HCOOOH

R T T

  
=     

  

                           (6) 

The fourth reaction results from the decomposition of hydrogen peroxide into water and 

oxygen, Eq. (7). Hydrogen peroxide also decomposes spontaneously under the effect of the 

heat. The kinetics of the reaction and the reaction mechanism was developed by Vernières-

Hassimi et al. (2017).  

 { { {
spontk

2 2 2 2

hydrogen peroxyde water oxygen

1
H O H O + O

2
→                                        (7) 

The kinetic expression of this reaction is given in Eq. (8): 

[ ],

0, 2 2

- 1 1
exp -

a spont

spont spont

r ref

E
R k H O

R T T

  
=     

  
                                 (8) 
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Table 2. Values of kinetic and thermodynamic parameters for Tref  = 67 °C (Eq. (2), Eq. (4) 

and Eq. (6)) (Zheng et al., 2016), and for Tref  = 140 °C (Eq. (8)) (Vernières-Hassimi et al., 

2017).  

Kinetic and thermodynamic parameters Value Unit 

k0,perh  0.15 L.mol-1.s-1 

Ea,perh   150000 J.mol-1 

∆Hr,perh   - 5580 J.mol-1 

k0,decomp1  0.001 s-1 

Ea,decomp1   20000 J.mol-1 

∆Hr,decomp1   - 359000 J.mol-1 

k0,decomp2  0.0009 s-1 

Ea,decomp2   20200 J.mol-1 

∆Hr,decomp2   - 163000 J.mol-1 

k0,spont  0.0000924 s-1 

Ea,spont   150000 J.mol-1 

∆Hr ,spont  - 98000 J.mol-1 

 

The mass balance for FA, HP, PFA and H2O in a batch reactor are represented by Eq. (9): 

           

2 2 2

2 2 1

3 1 3

- ; -  -

- - ;  

HCOOH HCOOOH
perh decomp perh decomp decomp

H O H O

perh decomp perh decomp decomp

dC dC
R R R R R

dt dt

dC dC
R R R R R

dt dt

= + =

= = + +
              (9) 

The energy balance in the batch reactor is expressed by Eq. (10): 

( ),

1
.( - ) - . . -r

j r r r y r loss

r Pr

dT
UA T T R H V q

dt m C
= ∆∑
∑

                               (10)   

where mr is the initial mass of the reaction mixture. CPr is the heat capacity of the reaction 

mixture. U is the overall heat-transfer coefficient. A is the heat transfer area. Tj is the heat 

carrier temperature circulating in the reactor jacket. Rr is the reaction rate. ∆Hr,y is the 

enthalpy of the reaction y. Vr is the volume of the reaction mixture. lossq is the heat loss due to 

evaporation. 

According to Ubrich et al., (2001), the heat losses in the reaction are mainly due to the 

evaporation of the reaction mixture and the heat exchanges with the jacket. It is assumed that 

heat losses are proportional to the total vapor pressure, Eq. (11). 
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loss j jq x Pβ= ∑                                                            (11) 

where β is a constant, xj is the molar fraction of component j and Pj is the vapor pressure of 

component j. According to Zheng et al. (2016), the β coefficient was fixed at 34.54 J/MPa, 

and the vapor pressure can be estimated using the Clausius - Clapeyron equation. 

1 2

1 2

1 1
( ) ( )exp -VH

P T P T
R T T

  ∆=    
  

                                        (12) 

where ∆HV is the heat of vaporization, P(T1) and P(T2) are the vapour pressures at 

temperatures T1 and T2 respectively. Since water and formic acid are the most volatile 

compounds, only their evaporation has been taken into account.  

 

3.4. Numerical model 

 

The previous model is used to simulate the thermal behaviour of the system. The numerical 

simulation and the experimental measurements of the temperature variations in batch reactor 

are reported in Figures 3 and 4 under normal operating conditions (Table 1). For the sake of 

clarity, all the numerical points have been presented on Figures 3 and 4 (curves), however, 

only a few experimental points have been chosen to be recognized on Figures 3 and 4 (x-plot). 

Note that the temperature reaches a maximal value after 35 min under normal operating 

conditions and then starts to decrease. The results in Figure 4 show a correct estimate of the 

experimental thermal behavior of the reaction by the numerical model during the first phase 

of the reactions (i.e. within time interval [0, 35min]). It should be noted that this first phase of 

the reaction which is used for the detection of faults. This maximal value will be used next in 

order to define dynamical detection thresholds.  
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Figure 3. Simulated and experimental mixture temperature (Tr) profiles  

 

Figure 4. Mixture temperature (Tr) profiles within time interval [0, 35min]. 

3.5. Defects  

Faults may affect the parameters of normal operating conditions. The dysfunctional scenarios 

selected in this study are based on operator errors (Dakkoune et al., 2018a; Saada et al., 2015). 

They are the most frequent in the chemical industry and may lead to thermal runaway 

scenarios.  

Six classes of faults were considered in this work. These faults are divided into two types 

(Table 3): 

� Type 0 faults are related to the reagent initial concentration and to the possible 

presence of impurities. They occur only at initial time.  
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� Type 1 faults may occur at any time because they are related to the actuators used to 

keep the system under control. These faults can occur in the initial time of reaction 

because of operating conditions or during the reaction due to changes in process 

measurements by control systems or technical defect. 

 

Table 3. Description of the considered faults. 

Fault 

type 

Fault 

Number 
Symbol Description 

0 

F1 δFA Increase in the initial concentration of formic acid. 

F2 δHP 
Increase in the initial concentration of hydrogen 

peroxide. 

F3 δCu Presence of impurities (metals such as copper sulfate). 

1 

F4 δTj Increase in the temperature of the heat transfer fluid. 

F5 δNtr Decrease in the stirring rate. 

F6 δQm Decrease in the flow of heat transfer fluid. 

 

 

Faults 1 and 2 represent an increase in the initial concentrations of reagents (formic acid and 

hydrogen peroxide) caused by the operator in the preparation step. The presence of these two 

faults in the reaction system with the magnitude shown in Table 6, has an effects on the 

thermal behavior of the reactor. An increase in the initial concentrations of the reagents 

generates an increase in the speed of the reactions. The heat balance expressed as a function 

of the thermal power released by the reaction (Eq. (10)) will lead to an increase in the 

maximum temperature of the reaction. 

Fault 3 may appear in the case of the presence of small amounts of impurities (as copper 

sulfate, for example) due to insufficient cleaning of the reactor when the reactor is reused 

after another reaction, 7% of thermal runaways events in France are caused by the impurities 

remaining in reactors (Dakkoune et al., 2019). The presence of the copper sulfate (even in 

ppm quantities, see Table 6) may accelerate the kinetics of the decomposition of hydrogen 

peroxide in low temperature ranges. In this case, the kinetic expression of reaction Eq. (8) 

should be replaced by Eqs. (13) and (14). The kinetic equation of the HP decomposition 

catalyzed by the Cu2+ ions (Eq. (14)) becomes more complex (Perez-Benito, 2001). The heat 

balance (Eq. (10)) that is expressed as a function of the different kinetic equations will in turn 

cause an increase in the maximum temperature reached, according to Eq. (14) and Table 4 

(Vernières-Hassimi et al., 2017). 
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3decomp spont CatR R R= +                                                    (13) 
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0, 2 2 0, 2 2

- -1 1 1 1
2 exp - 2 exp -a A a B

Cat A B

r ref r ref

E E
R k Cu H O k Cu H O
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+ +
      

   = +               
      

       (14)  

 

Table 4. Values of kinetic and thermodynamic parameters of Eq. (14) with Tref =140°C 

(Vernières-Hassimi et al., 2017). 

Kinetic and thermodynamic parameters Value Unit 

k0,A  
0.0163 L2.mol-2.s-1 

Ea,A   
162000 J.mol-1 

k0,B  
0.0035 L2.mol-2.s-1 

Ea,B   
69700 J.mol-1 

∆Hr,cat 
- 93200 J.mol-1 

 

Fault 4 represents an increase of the temperature of the heat transfer fluid from a faults 

magnitude shown in Table 6, due to a non-compliance with safety instructions by the 

operator. The non-compliance in this case is manifested by an overshoot of the nominal jacket 

temperature, which is fixed in the safety procedures equal to 70 ° C. This fault acts on the heat 

exchanged through the reactor jacket. Thereafter, the heat balance (Eq. (10)) will increase the 

reaction temperature. 

 Faults 5 and 6 cause a significant change in the overall heat exchange coefficient U due to a 

decrease in the stirring rate δNtr or in the flow of the heat transfer fluid δQm, from a faults 

magnitude shown in Table 6. The explicit impact of δNtr and δQm is not detailed in this paper 

but can be found in (Dream, 1999, Trambouze and Euzen, 2002). The presence of these faults 

acts directly on the quantity of heat exchanged with the reactor, and consequently on the 

thermal balance of reaction expressed according to Eq. (10). 

The described faults have been simulated and validated experimentally. Figure 5 represents 

the experimental validation and the numerical simulations of the temperature reaction 

variation under normal and abnormal conditions after filtered by Kalman filter (except fault 

δQm that was not validated for safety reasons). In the next section, a fault detection and 

diagnosis approach is proposed through the online acquisition of the temperature 

measurements. 
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Figure 5. Experimental validation and numerical simulations of the temperature reaction 

variation under normal and abnormal conditions. 
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4. Data pre-processing 

4.1. Sensoring 

The variation of temperature Tr in a exothermic reaction is a key parameter for the safety of 

chemical reactors (Vernieres-Hassimi et al., 2015). Indeed, the maximum temperature of the 

reaction changes if faults infect the reactions leading to the occurrence of secondary reactions. 

The monitoring of Tr may avoid thermal runaways as long as the abnormal temperature 

variations are early detected. The RC1 reactor is equipped with a Pt100 sensor that measures 

the temperature every two seconds with a tolerance of 0.08 °C. In Pt100 sensor, the 

measurement is based on the variation of the resistance of platinum under the influence of the 

temperature. This sensor is the most frequently used for industrial applications, because of its 

advantages such as a wide temperature range from -200 °C up to 850 °C and a high precision 

and sensitivity. 

4.2. Noise reduction   

First, a Kalman filter is used to reduce the measurement noise. The efficiency of Kalman filter 

has been proved in numerous industrial applications (Jazwinski, 1970, Gelb, 1974). The 

Kalman filter is a recursive estimator that estimates the current state of the system from a 

single estimate of the previous state and the current measurements. In the case of linear 

systems, the Kalman filter relies on a two-step process: prediction and scraping. The scraping 

corrects the prediction of the system state by considering the estimate of the previous state. 

For more details, one can refer to (Chen and Chui, 1991). 

4.3. Margin of tolerance MT and memory parameter n 

In the first minutes of the reaction, abnormal and normal behaviours are close. Because of the 

residual noise, false alarms may occur during this period. To overcome this problem, two 

parameters are introduced: 

� The margin of tolerance MT eliminates false alarms at the beginning of the reaction by 

ignoring all suspect variations with magnitude less than MT . 

� The memory parameter n also contributes to eliminate some false alarms. An alarm is 

only triggered when Tr exceeds the detection threshold for n consecutive acquisitions. 

Based on our previous study on the same system (Dakkoune et al., 2018b), it was proved that 

MT and n parameters have a major influence on the detection performance. Selecting MT = 

0.05 and n = 10 significantly reduces the false alarm rate, keeping reasonable values of the 

detection delay and non-detection rate. 
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4.4. Features extraction 

Values of Tr are collected within a time window W. Then, first and second derivatives of Tr 

are computed are and several statistical features are extracted (Table 5). 

 

Table 5. The three types of statistical features. 

Types of statistical features 

Position measurements Dispersion measurements Shape measurements 

Mean 

Mode 

Median 

Variance 

Covariance 

Standard deviation 

Skewness 

Kurtosis 

 

From an exhaustive study on these statistical characteristics based on the principal component 

analysis, the variance and skewness of the temperature have been proved to be the most 

representative parameters for faults detection and diagnosis (according to the considered 

faults) (Dakkoune et al., 2018b). 

 

5. Detection and diagnosis method 

5.1. Safe, dangerous and critical modes 

For detection issues, the temperature profile will be divided in several areas. The detection 

method is based on the computation of two dynamical thresholds DLimit(t) and SLimit(t) that will 

be detailed below (Figure 6). In addition, a static threshold S80 is used for emergency stop 

(Figure 6). From these thresholds, three areas can be distinguished and the detection is 

performed by comparing the online temperature measurements with the dynamical threshold 

DLimit(t) and SLimit(t). In order to limit the influence of noise, the measured temperature Tr(t) is 

first filtered by using a Kalman Filter. f(Tr(t)) refers to as the filtered temperature at time t. 

� Green area: the reaction is in a safe mode when f(Tr(t)) is lower than the dynamical 

threshold DLimit(t). The temperature variations in the green area are assumed to be due 

to the reaction, the measurement noise and the acceptable disturbances. 

� Orange area: the reaction is in a dangerous mode when f(Tr(t)) is between the two 

thresholds DLimit(t) and SLimit(t). The temperature variations are assumed to be due to a 

fault and an alarm is generated as soon as f(Tr(t)) exceeds DLimit(t) for n successive 

measurements points. 
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� Red area: the reaction is in a critical mode when f(Tr(t)) is between the dynamical 

threshold SLimit(t) and static threshold S80. A second alarm is generated as soon as 

f(Tr(t)) exceeds SLimit(t). 

In addition, the reaction emergency stops if f(Tr(t)) exceeds the static threshold S80 which 

is set at 80 °C in order to avoid a runaway reaction due to the thermal decomposition of 

HP because the decomposition of HP can occur at a temperature higher than 90 ° C (Di 

Serio et al., 2017). 

 

Figure 6. Dynamical thresholds DLimit(t) and SLimit(t) and static threshold S80. 

5.2. Decision functions 

The decision function for the first alarm is described in Eq (15) and Figure 7. 

( ) ( ) ( ) { }
( )

1

1

  1 if ( )   for 1, 1,

  0 otherwise

r Limit
D t f T k D k k t n t t

D t

= > ∈ − + … −

=
          (15)  

In order to avoid false alarms, D(t) = 1 only if the filtered temperature is larger than DLimit(t) 

for the n successive points k ∈ {t-n+1,…t-1,t} where n = 10; D(t) = 0, otherwise. The decision 

function for the second alarm is described in Eq (16). 

( ) ( ) ( )
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Figure 7. Detection thresholds (top) and decision function (bottom) when a fault occurs 

5.3. Detection thresholds computation 

The dynamical thresholds DLimit(t) and SLimit(t) have been computed according to the three 

following principles: 

1. An increase of initial concentration of the reagents FA or HP or the presence of 

impurities accelerates the temperature increase and also increases the maximum value 

of the temperature reached during the reaction.  

2. Sensor noises are taken into consideration and a tolerance margin MT = 0.1 °C is used 

in order to avoid false alarms due to sensor noises. 

3. Only permanent faults are taken into consideration. Multiple faults and intermittent 

faults are not considered in this work. 

The dynamical thresholds Dlimit(t) and Slimit(t) are defined according to Eq. (17) and Eq. (18). 

( ) ( ) ( ) ( ) ( )( )( )
1 1 1 1 11( ) ( ,max min , , , ( ),) ,Limit FA HP Cu Tj Ntr Qm Nominal TD t T t T t T t T t T t T t T t M= +   (17) 

( ) ( ) ( ) ( ) ( )( )( )
2 2 2 2 2 2

max min , ,  , ,( ) ( ) (, 5.),Limit FA HP Cu Tj Ntr Qm Nominal TS t T t T t T t T t T t T t T t M= +      (18) 

where TNominal(t) is the reaction temperature profile under the nominal conditions and Tx1(t) 

(resp. Tx2(t)) represents the temperature reaction profile in presence of a fault of class x and of 

magnitude δx1 (resp. δx2) detailed in Table 6. The magnitude δx1 (resp. δx2) is estimated (by 

simulation) such that the maximum value of the temperature reached during the reaction does 

not exceed 79°C (resp. 80°C). 
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In the considered reaction, the security temperature threshold is 80 °C because hydrogen 

peroxide can decompose at this temperature. With regard to this threshold, a confidence 

margin of 2 °C has been set. Within this margin, two dynamical detection thresholds have 

been calculated based on MT and also takes into account the errors linked to the operating 

conditions (the concentration of the reagents FA, HP and Cu, the jacket temperature Tj, etc.) 

and the errors of measurement and modeling. Indeed, the use of “min” operator in Eq. (17) 

and Eq. (18) reduces the rate of non-detection (by considering the most critical fault at each 

time sample).  The use of “max” operator with the nominal temperature TNominal(t) plus the 

marge of tolerance reduces the rate of false alarms.  

 

Table 6. Faults magnitude used to define the dynamical thresholds DLimit(t) and SLimit(t). 

δx δFA  δHP  δCu  δTj  δNtr  δQm  

Unit mol.L-1 mol.L-1 mol.L-1 °C rpm kg.s-1 

DLimit(t) 0.24 0.26 0.02 0.8 -280 -0.66 

SLimit(t) 0.46 0.53 0.08 1.7 -360 -0.91 

 

5.4. Diagnosis approach 

Fault isolation consists to establish a diagnosis by identifying the most probable fault among a 

set of fault candidates. The isolation uses (i) temperature measurements collected within the 

time window W of size K opened at detection time; (ii) a multiset of linear classifiers and 

binary decision diagrams (BDD) indexed by the time. Each element of this multiset is 

composed by a set of classifiers structured according to a partial order that is defined in the 

BDD. The features extracted from the collected measurements within W are ranked according 

to the nearest (in time) set of classifiers. Figure 8 illustrates the main chart of the fault 

isolation method.  
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Figure 8. Main chart of the fault isolation method. 

 

As soon as a fault is detected at time p, an acquisition window W is opened to collect the K 

successive measurements of the temperature W = {T(p), T (p + 1), ... T (p + K)}. The W 

windows are structured in the database as a function of time (Figure 8-A). The size of the 

window W is limited by K and by the second threshold SLimit(t). Statistical features (Table 5) 

will be extracted from the measurements collected within the time window W. The features 

obtained will be used to perform the fault isolation (Figure 8-B) by using a hierarchical 

classification method that requires multisets of linear classifiers and binary decision diagrams 

from a database indexed with the time (the multisets of linear classifiers and binary decision 

diagrams have been obtained based on simulations under normal and abnormal conditions 

when faults occur at different times). Depending on the detection time, the multiset of linear 

classifiers and the binary decision diagram computed for the nearest time will be used. The 

linear separators of Ho and Kashyap are used to separate and define the location areas of each 

Windows W Linear classifiers 

Fault isolation Fault classification 
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fault (Figures 8-C and 8-D). The set of classifiers is structured by the corresponding BDD. 

The value of parameter K is chosen equal to 300s in order to separate properly the faults. 

5.5. Linear classifiers 

Linear classifiers are used to linearly separate the extracted features according to the set of 

fault candidates (Figure 9). According to numerous simulations and experiments, the 

considered faults are linearly separable in the space of extracted parameters. The main 

advantages to use linear classifiers, compared to non-linear ones (Barakat et. Al., 2011) is 

their simplicity. For this purpose, the usual Ho and Kashyap method (Cornuéjols et al., 2018)  

was iteratively applied to separate 7 classes of data: the nominal class and the 6 faulty modes 

(Table 3).  

 

 

Figure 9.  Example of linear separator.  

 

The Ho and Kashyap method is an iterative algorithm that determines if two sets of points are 

linearly separable, by calculating a sequence of values At and Bt from an arbitrary vector B0, 

Eq. (19). 

                    T T

t tA B M
+=                                            (19) 

where   T

tA is the parameter vector of a linear separator and 
T

tB is a vector whose 

coordinates are positive. M is the matrix grouping the data to be separated and 

( ) 1
T T

M M MM
−+ =  is the inverse pseudo of M. 

Subsequently, the criterion ( )
21

,   -  
2

T T

t t t tJ A B A M B=   must be minimized by calculating 

the gradient ( ),  
Bt t t

J A B∇ of ( ),
t t

J A B  with respect to tB, Eq. (20). 
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( ) ( ),      T T

Bt t t t tJ A B A M B∇ = − −                                            (20) 

and deducting a value 1tB+ such that ( ) ( )1,   ,
t t t t

J A B J A B+ ≤ , Eq. (21). 

1        T T T T

t t t tB B A M Bα+ +   = −                                        (21) 

where α is a positive coefficient that adjusts the convergence speed of the algorithm. This 

procedure converges to a null value of J when the two classes are separable, otherwise it 

converges to a positive value. The stopping criterion can be ( ) ( )1 1 , ,
t t t t

J A B J A B+ +≈  or 

.maxt t≥  To extend the linear discrimination to 3 or more classes (as it is the case in our 

application), one use a multi-step hierarchical strategy encoded in a BDD that calculates at 

each step the linear separator that separates as well as possible the data in two sub-groups of 

classes. 

 

5.6. Binary decision diagrams (BDD) 

In order to perform the classification in an efficient way, BDD have been used to define 

partial orders within each set of classifiers. A BDD is a tree that represents the connectivity in 

the dataset in a compact form. A BDD has a single initial node with two successors (i.e. the 

first linear classifier to be applied) that separates the set of data into two subgroups. Then it 

has several intermediate nodes, each one with two successors that refine the classification by 

introducing more subgroups. Finally, it has a set of final nodes without any successor that 

represent the classes of faults. Each non-terminal node has two successors, one with a bow 

marked 1 for “true” and the other with a bow marked 0 for “false”. For example, the BDD in 

Figure 10 separates the 6 classes of faults {δFA, δHP, δCu, δTj, δNtr, δQm } in a 4 steps 

approach. First the groups of faults {δFA, δHP, δCu, δTj } and {δNtr, δQm } are separated. 

Second, {δFA, δHP, δCu, δTj } is refined in {δTj} and a subgroup {δFA, δHP, δCu} and 

{δNtr, δQm } is refined in {δNtr}, {δQm}. Third, {δFA, δHP, δCu} is refined in {δCu } and a 

subgroup {δFA, δHP}. Finally, {δFA, δHP} is separated in the two classes of faults {δFA} 

and {δHP}. At each step, a unique linear separator is used to separate as well as possible the 

data in two sub-groups of classes. 

 
  



26 

 

 

 

 

Figure 10. Example of BDD for faults classification. 

6. Results and discussion 

The proposed detection and diagnosis method has been validated on a set of 210 simulations. 

These simulations contain scenarios where the six faults previously described occur randomly 

and also healthy scenarios. A random signal of magnitude 0.1 ° C has been added in order to 

take into account the measurement noise. The value of the tolerance temperature margin is MT 

= 0.1°C and the memory parameter is n = 10. The size of the time window is usually K = 300s 

whereas the position p depends on the detection time.  

6.1. Fault detection  

In order to evaluate the performance of the detection method, three indicators are introduced. 

• Non-detection rate (RND) is the ratio between the number of undetected faults and the 

number of faults encountered by the system.  

• False alarm rate (RFA) is the ratio between the number of false alarms and the number 

of alarms. 

• Average detection delay (ADD) is the delay between the occurrence of a fault and the 

detection time. 
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The results obtained with simulated data lead to RFA = 0 and RND = 0. ADD are reported in 

Table 7. 

 

Table 7. Average detection time for the six classes of faults 

Fault δFA δHP δCu δTj δNtr δQm 

ADD 64 s 80 s 40 s 29 s 354 s 290 s 

 

Early detection is ensured for the faults δFA and δHP affecting the concentration of reagents, 

the presence of impurities δCu and the increase in cooling temperature system δTj. However, 

a larger detection delay is observed for stirring rate fault δNtr and the fault in the flow of heat 

transfer fluid δQm. The weak influence of these two last faults on the reaction system appears 

especially at the beginning of the reaction when the temperatures Tj and Tr are close. Despite 

this difficulty, the detection delay remains reasonable compared to the average time to reach 

the maximum temperature of the reaction (35 min). In particular, the residual time is enough 

to correct the deviation using online control methods (Vernières-Hassimi and Leveneur, 

2015), or setting up preventive actions and security barriers (Misuri et al., 2018). 

6.2. Fault diagnosis  

The performance of the diagnosis method is evaluated by computing the confusion matrices 

for a set of 260 simulations (Tables 8, 9 and 10). The rows of the confusion matrix represent 

the actual membership classes (y) of the data and the columns (x) represent the decisions 

returned by the classification system. Consequently, the cell C (y, x) gives the percentage of 

data in class y that are ranked as x by the system. 

The diagnosis of early detected faults concerns the faults of type 0 (F1, F2, F3) (i.e. δFA, 

δHP, δCu) and also the faults of type 1 (F4, F5, F6) (i.e. δTj, δNtr, δQm) when these faults 

early occur. Figure 11 shows (i) the BDD used to perform the classification; (ii) the set of 

linear classifiers computed when measurements are collected within the window W = [30s: 

330s]; (iii) the characteristic points obtained for the considered series of simulations.  
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Figure 11. Faults diagnosis for time window W =  [30s : 330s]. 

In the case of diagnosis of early detected faults, four linear classifiers were used to separate 

the faults F1 to F4 from each other and also to separate them from the group {F0, F5 and F6}, 

where F0 stands for the nominal fault free situation. Table 8 represents the confusion matrix 

of the obtained results for the faults F1 to F4. 

Table 8. Confusion matrix for early detected faults δFA, δHP, δCu, δTj with W =  [30s : 330s] 

 δFA δHP δCu δTj {δNtr, δQm, Nominal} 

δFA (41 simulations) 40 0 1 0 0 

δHP (41 simulations) 1 40 0 0 0 

δCu (41 simulations) 0 0 40 1 0 

δTj (41 simulations) 0 0 0 41 0 

{δNtr, δQm, Nominal}  

(96 simulations) 

0 0 0 0 96 

 

The performance of this classifier shows that 40 faults of δFA, δHP and δCu out of 41 faults 

are correctly isolated. A few decisions are wrong but these classification errors car be 

corrected by increasing the size of the window W. Note that the faults δNtr and δQm cannot be 

isolated with this diagnoser when they early occur. To isolate these faults, it is necessary to 

move the measurement window W =  [150s : 450s]. Figure 12 shows the classification results 

for this new window 
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Figure 12. Faults diagnosis for time window W =  [150s : 450s]. 

In this time window, three linear classifiers were used to separate the faults F0, F4, F5 and F6. 

In our set of simulations, the performance is shown in Table 9, but one should take care that 

the relative close position of the different groups of data {δNtr, δQm Nominal} prevents the 

use of this diagnoser if the magnitude of noise increases. 

Table 9. Confusion matrix for early detected faults δNtr, δQm, δTj with W =  [150s : 450s] 

 Nominal δTj δNtr δQm 

Nominal (28 simulations) 28 0 0 0 

δTj  (41 simulations) 0 41 0 0 

δNtr  (20 simulations) 0 0 20 0 

δQm  (48 simulations) 0 0 0 48 

 

 

The faults δNtr, δQm and δTj may occur at any time and in particular late after the starting of 

the reaction. The time when the faults occur changes the characteristics of the group of data in 

plan (variance, skewness). For this reason, it becomes necessary to use a multiset of linear 

classifiers and BDD where the classifiers and BDD are indexed by the time. As an example, 

Figure 13 shows the classification of faults for the time window W =  [450s : 750s]. 
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Figure 13. Faults diagnosis for time window W =  [450s : 750s].  

 

Also in this case, three linear classifiers were used to separate the fault F0, F4, F5 and F6. the 

performance for the considered set of simulations  is shown in Table 10.  

 

Table 10. Confusion matrix for late detected faults δNtr, δQm and δTj with W =  [450s : 750s] 

 Nominal δTj δNtr δQm 

Nominal (28 simulations) 28 0 0 0 

δTj  (41 simulations) 0 41 0 0 

δNtr  (20 simulations) 0 0 20 0 

δQm  (48 simulations) 0 0 0 48 

 

In general, for the diagnosis of early detected faults (initial windows time), four linear 

classifiers were used to separate the different faults. For the others time windows three linear 

classifiers were used for each windows. 

6.3. Experimental validation 

Experimental validations of the proposed faults detection and diagnosis method are also 

performed. A set of 27 experiments under abnormal conditions are carried out in the RC1 

batch reactor. Table 10 shows the results. Note that fault F6 (i.e. δQm) could not be tested for 

safety reasons. The detection results for the faults δFA, δHP, δCu and δTj were as good as 

expected. The detection delay varies between 24s and 126s. The fault δNtr was also detected 

but an important delay should be noticed when the stirring rate decreases from 400 rpm to 100 
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or 50 rpm. When the stirring rate decreases from 400 to 200 rpm, then the fault δNtr becomes 

undetectable because of the relative weak sensitivity of the overall heat exchange coefficient 

with respect to the variation of the stirring rate (Figure 14). Overall, the performance of the 

fault detection method is RND = 11%, RFA = 0% and ADD = 111s for experimental data.  

 

 

Figure 14. Sensitivity of the heat exchange coefficient with respect to the stirring rate. 

 

The diagnosis results are also presented in Table 11. Each detected fault was well classified, 

excepted the undetected fault δNtr. By calculating the classification rate for the 27 

experiments, a classification rate of 89% was found. Note that the performance reported in 

Section 6.3 reflects only the experimental validation and that this performance is not as good 

as the performance obtained with simulation data and reported in the previous section. 
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Table 11.  Faults detection and diagnosis results for experimental data (X means the fault is 

not detected; ∞ means that the abnormal temperature profile does not reach the thresholds) 
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F1 δFA 2.5 mol.L-1 

3.01 mol.L-1 

Initial 

106 FA [30s 330s] 136 1230 

3.51 mol.L-1 46 FA [30s 330s] 96 766 

4.08 mol.L-1 76 FA [30s 330s] 50 546 

F2 δHP 2.8 mol.L-1 

3.52 mol.L-1 

Initial 

126    HP [30s 330s] 144 1090 

4.05 mol.L-1 74    HP [30s 330s] 104 774 

4.55 mol.L-1 56   HP [30s 330s] 86 620 

F3 δCu 0 mol.L-1 

0.01 mol.L-1 

Initial 

42 Cu [30s 330s] 160 1360 

0.03 mol.L-1 52 Cu [30s 330s] 92 904 

0.06 mol.L-1 38 Cu [30s 330s] 84 838 

F4 δTj 70 °C 

72 °C 

Initial 24 Tj [30s 330s] 126          1276 

300 66 Tj [350s 650s] 112 1118 

600 94 Tj [650s 950s] 26 714 

74 °C 

Initial 38    Tj [30s 330s] 62 834 

300 56         Tj [350s 650s] 52 666 

600 70    Tj [650s 950s] 20 530 

76 °C 

Initial 42     Tj [30s 330s] 42 686 

300 64    Tj [350s 650s] 36 589 

600 64   Tj [650s 950s] 16 376 

F5 δNtr 400 rpm 

200 rpm 

Initial X X X X X 

300 X X X X X 

600 X X X X X 

100 rpm 

Initial 324    Ntr [350s 650s] 2278 ∞ 

300 166    Ntr [450s 750s] ∞ ∞ 

600 370 Ntr [950s 1250s] ∞ ∞ 

50 rpm 

Initial 396   Ntr [350s 650s] 1922 ∞ 

300 180     Ntr [450s 750s] 496 ∞ 

600 394    Ntr [950s 1250s] 1382 ∞ 
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7. Conclusions 

The purpose of this paper was to propose an online fault detection and diagnosis approach in 

order to prevent thermal runaway reactions. A set of six different faults classes due to 

operator errors has been considered. The method was validated by simulation and experiments 

for an exothermic reaction of perhydrolysis of formic acid in a batch reactor.  

The main advantages of the proposed method can be summed up. An early and robust faults 

detection was performed thanks the use of a double dynamical threshold. Detection 

performance has been proved excepted for the degraded modes of the agitator that affect 

weakly and slowly the reaction. An efficient diagnosis schema was also proposed based on 

the combined use of a multiset of classifiers and BDD that are both indexed by the time. The 

detection time was used to select properly the set of adequate classifiers. These classifiers 

have proved a high isolability rate (excepted for faults affecting the agitator).  

The main limitation of the proposed approach lies on the necessity to use an accurate model 

of the considered reaction. Such a model is mandatory not only to generate the expected 

temperature variation but also to emulate the effects of the considered faults in order to design 

the set of linear classifiers and BDD used for isolation issues.  

Our further works are to adapt the proposed approach for semi-batch and open reactors, in 

order to address practical detection and diagnosis problems in industrial environment.  
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