

Hydroxyl and sulfate radical-based oxidation of RhB dye in UV/H2O2 and UV/persulfate systems: Kinetics, mechanisms, and comparison

Xinxin Ding, Leonardo Gutierrez, Jean-Philippe Croué, Minrui Li, Lijun

Wang, Yuru Wang

▶ To cite this version:

Xinxin Ding, Leonardo Gutierrez, Jean-Philippe Croué, Minrui Li, Lijun Wang, et al.. Hydroxyl and sulfate radical-based oxidation of RhB dye in UV/H2O2 and UV/persulfate systems: Kinetics, mechanisms, and comparison. Chemosphere, 2020, 253, pp.126655. 10.1016/j.chemosphere.2020.126655 . hal-03490270

HAL Id: hal-03490270 https://hal.science/hal-03490270

Submitted on 20 May 2022 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Version of Record: https://www.sciencedirect.com/science/article/pii/S0045653520308481 Manuscript_48ae3eff3572245df5b6dee617876757

1	Hydroxyl and sulfate radical-based oxidation of RhB dye in UV/H2O2 and
2	UV/persulfate systems: kinetics, mechanisms, and comparison
3	
4	
5	Xinxin Ding ^a , Leonardo Gutierrez ^b , Jean-Philippe Croue ^{c*} ,
6 7	Minrui Li ^a , Lijun Wang ^a , Yuru Wang ^a *
8	^a Department of Environmental Science, School of Geography and Tourism, Shaanxi
9	Normal University, Xi'an 710119, China
10	^b Facultad del Mar y Medio Ambiente, Universidad del Pacifico, Ecuador
11	^c Institut de Chimie des Milieux et des Matériaux IC2MP UMR 7285 CNRS,
12	Université de Poitiers, France
13	
14	*: Corresponding authors
15	E-mail address: jean.philippe.croue@univ-poitiers.fr; <u>wangyuru@snnu.edu.cn</u>
16	
17	

18

19 Abstract

20 The degradation kinetics and mechanisms of Rhodamine B (RhB) dye by 'OH and SO4' based 21 advanced oxidation processes were investigated. The 'OH and SO₄' radicals were generated by 22 UV photolysis of hydrogen peroxide and persulfate (i.e., UV/H₂O₂ and UV/PS), respectively. The effects of initial solution pH, RhB concentration, oxidant dosage, Fe²⁺ concentration, and water 23 matrices were examined. The results showed that the degradation of RhB followed 24 pseudo-first-order kinetics in both processes, with the UV/H₂O₂ process exhibiting better 25 26 performance than that of the UV/PS process. Acidic conditions were favorable to the degradation 27 of RhB in both systems. Increasing the oxidant dosage or decreasing the contaminant 28 concentration could enhance the degradation of RhB. Photo-Fenton-like processes accelerated the performance when Fe²⁺ was added into both systems. The removal efficiency of RhB was 29 30 inhibited upon the addition of Humic Substances. The addition of Cl⁻ displayed no significant effect and promoted RhB degradation in UV/H₂O₂ and UV/PS systems, respectively. The presence 31 of NO₃⁻ promoted RhB degradation, while H₂PO₄⁻ and C₂O₄² showed an inhibitory effect on both 32 33 UV/H₂O₂ and UV/PS processes. Radical scavenging tests revealed the dominant role of SO₄. 34 radicals in the UV/PS system. Furthermore, the evolution of low molecular weight organic acids 35 and NH4⁺ during the degradation of RhB in these two processes were compared. Both UV/H₂O₂

and UV/PS systems led to similar formation trends of NH_4^+ and some ring-opening products (e.g.,

formic acid, acetic acid, and oxalic acid), suggesting some analogies in the decay pathways of
RhB by 'OH and SO₄'-induced oxidation processes.

39

40 Keywords: Hydroxyl radical, Sulfate radical, UV/H₂O₂, UV/PS, Rhodamine B

41

42 **1. Introduction**

Dyes are mainly aromatic and heterocyclic compounds with stable structures incorporating 43 color-display and polar groups, widely used in textile, plastic, cosmetics, medicine, food, and 44 45 other industries (GilPavas et al., 2019). Briefly, more than 1.28×10⁶ tons of commercial dyes were produced world-wide in 2018 (Zhou et al., 2019). Remarkably, approximately 5-15% of the dyes 46 47 are released into the environment during their production and dyeing processes; thus, leading to 48 the generation of wastewater with dye concentrations varying from 5 to 1500 mg/L (Dong et al., 49 2010; Kim et al., 2015). These organic pollutants can disrupt photosynthesis, inhibit the growth of 50 aquatic biota, and pose considerable health risks to human skin, eyes, gastrointestinal, and 51 respiratory systems (Dong et al., 2010; Wang and Chu, 2011; Su et al., 2013). Consequently, 52 dye-containing effluents discharged into the environment without proper treatment can have major negative impacts on both aquatic ecosystems and human health. Besides, dyes are generally 53 54 resistant to light, aerobic digestion, and other conventional treatment processes due to their 55 complex structures (Xu and Li, 2010; GilPavas et al., 2019; Masi et al., 2019). Therefore, the 56 development of efficient and economical technologies for the degradation of dye contaminants 57 from wastewater before discharge is of critical importance.

Recently, UV-based Advanced Oxidation Processes (AOPs) have drawn increasing scientific attention for degrading various types of refractory organic pollutants in water (Wang et al., 2017; Nihemaiti et al., 2018; Liu et al., 2020). Particularly, the UV/H₂O₂ process is an attractive option for the production of non-selective and highly reactive 'OH radical ($E_0 = 1.8 - 2.7$ V), which displays a second-order rate constant with numerous contaminants at a near diffusion-controlled

63	rate (k=10 ¹⁰ M ⁻¹ S ⁻¹) (Buxton et al., 1988; Keen and Linden, 2013). Besides, persulfate (PS) has
64	also emerged as an alternative oxidant due to its capacity to generate sulfate radical (SO4*) under
65	UV irradiation (i.e., UV/PS). SO ₄ · is a strong oxidant ($E_0 = 2.5 - 3.1$ V) with an oxidizing ability
66	comparable to 'OH; however, showing higher selectivity and longer half-life than 'OH (Neta et al.,
67	1988; Rao et al., 2019). Compared to H_2O_2 , the advantages of persulfate as a radical
68	precursor include: relative stability in solid-state, high aqueous solubility, and high stability at
69	ambient environments, which facilitate its transport, storage, and usage (Zhang et al., 2014).
70	Therefore, SO4 [•] has also been increasingly tested in the removal of bio-recalcitrant organic
71	pollutants (Zhang et al., 2013; Khan et al., 2017). Both UV/H ₂ O ₂ and UV/PS processes have
72	demonstrated their effectiveness at degrading a wide range of organic pollutants, including
73	antibiotics, iodinated X-rays contrast media, and other PPCPs (Nihemaiti et al., 2018; Zhao et al.,
74	2019; Liu et al., 2020).

75 Rhodamine B (RhB) is a water-soluble xanthene dye mainly used as an additive in food stuffs; however, it was banned in many countries due to its toxicity and carcinogenicity. The toxicity of 76 77 RhB has been well documented in the literature (Nestmann et al., 1979). Nevertheless, RhB is still 78 extensively applied as a colorant in textile dyeing, resulting in the production of large amounts of 79 RhB-containing effluents. Due to its high solubility and color rendering, water containing RhB, 80 even at low concentrations, can significantly impact the quality of surface water and disrupt the 81 photosynthesis of aquatic organisms (Su et al., 2013). Various UV-based AOPs have been investigated for the effectiveness of RhB degradation. Zhang et al. (2020) reported that 82 83 approximately 90% of RhB removal was obtained in a UV enhanced electro-Fenton process where 84 'OH radical was found as the dominant radical species. Chen et al. (2012) revealed the good

degradation efficiency of RhB dye in a SO4⁻-based UV/PS process and evaluated the influence of 85 some factors (e.g., oxidant dose and water matrix) on the degradation kinetics. Previous studies 86 87 indicated that the UV/PS process degraded organics more efficiently in buffered pure water than 88 that of the UV/H_2O_2 process, while the process performance was significantly reduced when 89 applied to wastewater effluent due to the higher sensitivity and selectivity of SO₄⁻⁻ radical toward water matrix and organics compared with 'OH radical (Nihemaiti et al., 2018), suggesting the 90 significant role of water matrix and compound property on the performance of these two 91 92 UV-AOPs. However, to the best of our knowledge, there are no previous studies systematically 93 comparing hydroxyl and sulfate radical-based AOPs for the removal of RhB dye in water. Besides, 94 the decay pathways regarding the aromatic intermediates during the degradation of RhB by 95 hydroxyl and sulfate radical oxidation have been proposed in previous studies (He et al., 2009; Hu 96 et al., 2017; Rasheed et al., 2018). Nevertheless, limited information is available focusing on the 97 evolution of low molecular weight (LMW) carboxylic acids upon the ring-opening of aromatic byproducts of RhB, which are usually more refractory towards further mineralization. 98

99 Therefore, the efficiency and degradation kinetics of UV/H₂O₂ and UV/PS processes to 100 degrade RhB in synthetic wastewater were investigated and compared in this study. The influence 101 of some important experimental parameters (e.g., initial solution pH, oxidant dosage, and the presence of oxidant activator) and solution chemistry (e.g., inorganic ions and dissolved organic 102 103 matter) on the efficiency of these oxidation processes was evaluated. Radical scavenging experiments were conducted to identify the dominant radical species responsible for the RhB 104 105 decay. Furthermore, the evolution of some LMW organic intermediates (e.g., carboxylic acids) and inorganic ions produced upon the degradation of RhB was examined, and the possible 106

degradation mechanism was accordingly proposed. The current investigation will highly assist in
better understanding the oxidation of RhB by UV/H₂O₂ and UV/PS processes for the successful
implementation of these technologies in the treatment of dye-contaminated wastewaters.

110

2. Materials and methods

111 2.1. Chemical reagents

All chemical reagents were of analytical grade and used as received without further 112 purification. Potassium persulfate (k₂S₂O₈, >99%), methanol (CH₃OH, 99.9%), and tert-butanol 113 114 $(C_4H_{10}O, 99\%)$ were purchased from Sigma-Aldrich. Rhodamine B $(C_{28}H_{31}ClN_2O_3)$, hydrogen 115 peroxide (H₂O₂, 30%), nitrobenzene (NB), benzoic acid (BA), sodium thiosulfate (Na₂S₂O₃), 116 potassium chloride (KCl), ferrous sulfate heptahydrate (Fe₂SO₄·7H₂O), sodium oxalate (C₂Na₂O₄, 117 99.8%), potassium dihydrogen phosphate (K₂HPO₄), and sodium nitrate (NaNO₃) were provided 118 by Sinopharm Chemical Reagent Co., Ltd. (China). The humic substances (hydrophobic acid fraction, i.e., DOM adsorbed onto XAD-8[®] resin at acid pH and recovered by caustic desorption) 119 120 used in this study were previously extracted from Suwannee River water (USA). Ultrapure water 121 (conductivity of 18.25 M Ω ·cm) used in the experiments was obtained from the CascadaTM 122 BIO water purification system (Pall Corporation, United Kingdom).

123 2.2. Experimental procedures

The irradiation experiments were performed in quartz tubes under continuous stirring and temperature control (20±2°C) with a photochemical reaction apparatus (BL-GHX-V, Shanghai Bilang Instrument Co., Ltd., China), equipped with a 300 W medium-pressure ultraviolet mercury lamp ($\lambda_{max} = 365$ nm) provided by the same manufacturer as the UV light source. Eight tubular quartz reactors were evenly distributed in a circle centered around the lamp with a radius of 9.5 129 cm. The schematic illustration of the experimental setup and the irradiation spectrum of the light source are provided in Figs. S1 and S2 in the Supplementary Information (SI), respectively. The 130 131 average UV fluence rate (Ep⁰) entering the solution was determined as 2.67 mW/cm² by iodide/iodate chemical actinometry (Bolton et al., 2011). The final applied fluence was 2060 132 133 mJ/cm², unless otherwise stated. The photochemical reactor and temperature control system were 134 turned on at least 20 min in advance to ensure stable conditions at the start of the experiments. 135 The degradation kinetics of RhB in the UV/H_2O_2 or UV/PS process were investigated by 136 sequentially spiking a specific amount of RhB, H₂O₂, or PS stock solution in ultrapure water. The 137 initial pH of the solution was adjusted with sulfuric acid (0.1 M) and sodium hydroxide (0.1 M). 138 No buffer solution was used in this study to avoid potential reactions between the radicals and buffer solution. The reaction was initiated by adding a specific amount of H_2O_2 or PS into the 139 140 aqueous solution containing the probe contaminant while simultaneously subjected to UV irradiation. The reaction volume of the solutions was set at 50 mL. The samples were collected at 141 predetermined time intervals and immediately quenched by adding sodium thiosulfate in excess. 142 143 There is some uncertainty in the literature regarding the effectiveness of sulfur-based reductants 144 (e.g., bisulfite and thiosulfate) as a quencher of H_2O_2 as reported by Wang et al. (2019). 145 Nevertheless, preliminary experiments conducted at pH from 2 to 11 demonstrated the insignificance of H₂O₂ or PS alone for the RhB degradation (Fig. S3). Thus, the potential effect of 146 147 any residual oxidant on the decay result of RhB should be negligible. The collected samples were filtered through a 0.45 µm membrane before analysis with High-Performance Liquid 148 149 Chromatography (HPLC).

150 2.3. Analytical methods

151	The residual concentrations of RhB, NB, and BA were determined using a Dianex UltiMate
152	3000 HPLC system measuring the absorbance at 554, 270, and 230 nm, respectively. The
153	separation was performed on a Pinnacle II C18 column (250 mm \times 4.6 mm with i.d. of 5 $\mu m,$
154	Restek). The mobile phase consisted of 60% acetonitrile and 40% water (V/V), while the flow rate
155	was set at 1.0 mL/min. The separation of LMW organic acids and ammonia was conducted by a
156	Dionex IC-1500 Ion Chromatography interfaced with a Dionex DS6 Conductivity Detector. A
157	Dionex IonPac AS19 column (4 mm \times 250 mm) with its respective guard column (IonPac AG19,
158	4 mm ×50 mm) was used for the separation of LMW organic acids with a KOH gradient elution
159	(conditioning: 5 min at 1 mM; elution: 28 min at 18 mM to 35 mM, rinsing: 5 min at 1 mM) at a
160	flow rate of 1.0 mL/min. For ammonia analysis, a Dionex IonPac CG12A guard column (4 mm ×
161	50 mm) connected to an IonPac CS12A analytical column (4 mm \times 250 mm) was used; while
162	eluted by 20 mM methanesulfonic acid at a flow rate of 1.0 mL/min. The Total Organic Carbon
163	(TOC) content of the samples was determined using a TOC-LCPH analyzer (Shimadzu, Japan)
164	through catalytic combustion oxidation at 680°C and analysis with a non-dispersive infrared
165	detector.

166 **3. Results and discussion**

167 3.1. RhB degradation kinetics in different oxidation systems

The degradation of RhB in different oxidation systems including H₂O₂ alone, PS alone, UV irradiation, UV/H₂O₂, and UV/PS at neutral solution pH was investigated and compared. The degradation of RhB by H₂O₂ or PS alone was negligible, indicating that in the absence of activation these two oxidants are ineffective toward RhB at neutral pH (Fig.1). Under UV irradiation, the removal of RhB reached 45% after 6 minutes of exposure. An enhanced 173 degradation was observed when UV irradiation was conducted in the presence of H₂O₂ or PS due to the expected generation of 'OH and/or SO4[•] radicals. Remarkably, UV/H₂O₂ was more efficient 174 175 than UV/PS for the removal of RhB. Only 2 minutes and 4 minutes of irradiation were necessary to decrease the concentration of RhB by 50% for UV/H₂O₂ and UV/PS process, respectively (Fig. 176 177 1a). After 15 min, approximately 96% and 87% of RhB were removed by the UV/H₂O₂ and UV/PS processes, respectively. The reactions followed pseudo-first-order kinetics ($R^2 > 0.97$) (Fig. 178 1b) The experimental rate constants (k_{obs}) derived from the slope of $\ln(C/C_0)$ versus time were 179 180 0.080, 0.150, and 0.219 min⁻¹ for UV, UV/PS, and UV/ H_2O_2 , respectively. 181 3.2. Effect of initial solution pH on the degradation kinetics 182 The influence of initial solution pH ranging from 2 to 11 on RhB degradation in UV/H_2O_2 and UV/PS systems was investigated (Fig. S4, SI). For all pH conditions, the reaction in the two 183 184 systems followed pseudo-first-order kinetics ($R^2 > 0.98$). The decay rate constant (k_{obs}) of RhB in

- both UV-based AOP systems significantly decreased with increasing pH (i.e., from pH 2 to 7);
- however, k_{obs} remained approximately constant from pH 7 to 11 (Fig. 2).

187 This general pH trend on the degradation of RhB by AOPs was previously observed by others,

188 i.e., UV/H₂O₂ (Daneshvar et al., 2008), UV/S₂O₈²⁻ (Chen et al., 2012), Ozone/H₂O₂ (Bai et al.,

189 2011). The decrease in the process efficiency with increasing pH was also demonstrated for other

190 molecules e.g., ofloxacin, levofloxacin, and thiamphenicol with UV/H₂O₂ or UV/PS (Wang et al.,

191 2017; Liu et al., 2020). All these studies attributed this result, to a large extent, to the higher 192 production of radicals under acidic pH conditions and the scavenging and competing reactions 193 occurring at more alkaline pH. The role of hydroxyl ions in the complex propagation and 194 termination radical reaction mechanisms influencing the stability and reactivity of the produced

9

195 radical species have been well described in the above-listed publications and review articles (Stefan, 196 2017). The competing reactions with the formed by-products and the radical scavenging effect of 197 carbonate species (bicarbonate and carbonate ions) at neutral and alkaline pHs produced from the 198 degradation of the target compound (Criquet and Leitner, 2009) or possibly introduced from 199 enhanced dissolution from atmospheric CO₂ are also of significant importance (Baeza and Knappe, 2011). The impact of carbonate species on the performance of UV/H_2O_2 and UV/PS treatment 200 201 processes for contaminant degradation has been well documented (Wang et al., 2017; Nihemaiti et 202 al., 2018).

203 It is also accepted that the change in molar absorptivity and quantum yield with the pH of the 204 targeted compound can have a significant impact on the pseudo-first-order rate constant (Shen and 205 Lin, 2003). Baeza and Knappe (2011) have noted that the impact of the pH on the UV/H_2O_2 AOP 206 efficiency varied depending on the presence of either the neutral or the charged form (anionic or cationic) of the molecule (i.e., as a function of pKa), which significantly influenced the direct 207 208 photolysis rate constant but had little effect on the hydroxyl radical oxidation rate. RhB is 209 characterized by a pK_a value of 3.1 (Arbeloa and Ojeda, 1982) or 3.7 (Wang et al., 2014). 210 Increasing the pH from 2 to 4 implies a change in the molecular conformation of RhB from its 211 cationic form to its neutral/zwitterion form, a change that can possibly influence the degradation 212 efficiency of both AOPs. The direct photolysis rate of RhB ($k = 0.080 \text{ min}^{-1}$ at pH 7), which 213 contributes to a large part of the degradation of the molecule, should not differ above pH 4. No 214 significant change of the k_{obs} was noted from pH 7 to 11, which suggests a relatively constant 215 contribution of the radical species to the degradation of RhB.

216	Results depicted in Fig.2 showed similar k_{obs} of RhB for the two AOPs at acid pH (pH<7) and
217	high alkaline pH (pH 11). This similarity was not observed in the previous referred studies. At acid
218	pH, 'OH and SO4- radicals are predominant in the UV/H2O2 and UV/PS treatment processes,
219	respectively. At very high pH 11, the reaction between SO4 and OH ⁻ becomes significant,
220	converting most of SO ₄ ⁻ radicals to 'OH radicals (Fang et al., 2012). At pH 11, the RhB solution
221	was subjected to 'OH radical attack only in both AOP conditions. At a solution pH ranging from 7
222	to 9, SO4 ⁻ and 'OH radicals were simultaneously present in the system; for this pH condition the
223	pseudo-first-order rate constant determined under UV/H2O2 treatment was systematically higher
224	than the one obtained for the UV/PS process. The nature and/or the relative abundance of the
225	formed by-products in this pH range may differ from the two AOPs and control the degradation
226	rate of RhB.

227 3.3. Effect of the initial RhB concentration and oxidant dose

The degradation efficiency of RhB at pH 7 decreased with increasing initial RhB 228 concentration in both UV/H₂O₂ and UV/PS systems after 15 min reaction time (Fig.3a). At 229 230 concentrations of 2.5, 5, 10, and 20 μ M, the degradation efficiencies in the UV/H₂O₂ system were 231 98.8%, 98.7%, 95.6%, and 65.3%; and 100%, 98.3%, 86.7%, and 59.0% in the UV/PS system, respectively. In the UV/H₂O₂ system, the pseudo-first-order reaction constant k_{obs} (R² >0.98) 232 gradually decreased from 0.555 to 0.106 min⁻¹ as the RhB concentration increased from 2.5 to 20 233 μ M; while in the UV/PS system, the k_{obs} decreased from 0.841 to 0.085 min⁻¹, respectively. The 234 235 decrease of k_{obs} with increasing RhB concentration can be explained as follows. Firstly, RhB exhibits two main absorption peaks at 259 nm and 554 nm. The absorption of 236

237 RhB at the UV region can hinder the efficiency of the UV-based AOPs by reducing the amount of

238	applied fluence. In this study, an increase in RhB concentration from 2.5 to 20 μ M led to an
239	increase of UV absorbance at 254 and 365 nm from 0.165 to 0.497 and 0.066 to 0.163,
240	respectively, which significantly enhanced its inner filter effect and resulted in a decrease in the
241	corresponding applied fluence by 38.9% and 15.1%, respectively. Consequently, the available UV
242	fluence for activating H ₂ O ₂ and PS for 'OH and SO ₄ ⁻ production was remarkably reduced; thus,
243	decreasing the amount of 'OH and/or SO4' available to react with the target compound. Secondly,
244	the byproducts generated in solution at high RhB dose also compete with their mother compound
245	for 'OH and SO ₄ ' ⁻ consumption and in turn decrease the overall RhB decay (Wang and Chu, 2011)
246	These results are consistent with previous observations by Rehman et al. (2018) and Isari et al.
247	(2018), indicating that the initial concentration of the contaminant is an important
248	factor affecting its degradation rate.
249	As the precursor of active radicals, the concentrations of H_2O_2 and PS play a decisive role in

the overall degradation efficiency of the UV/H2O2 and UV/PS processes (Fig. S5, SI). 250 Experimental results showed that increasing the H_2O_2 concentration from 10 to 200 μ M, led to a 251 252 considerable enhancement in the removal of RhB in the UV/H₂O₂ system (i.e., from 63% to 253 almost 99% after 10 min treatment), resulting in a significant increase in the corresponding decay rate constant (i.e., from 0.101 to 0.408 min⁻¹ in Fig. 3b). Similar results were obtained with the 254 UV/PS system. However, a large excess of H₂O₂ might induce enhanced scavenging effect by 255 reacting with 'OH to produce less reactive species (conditions not studied in the current research), 256 257 which in turn would decrease the degradation rate of the target contaminant (Eqs. 1 and 2) 258 (Christensen et al., 1982; Pouran et al., 2015; Wang et al., 2017; Tian et al., 2019). Similarly, an 259 over-dosage of PS in the system can also inhibit the process efficiency because the side reactions between PS and the generated SO_4^{+} OH radicals to generate $S_2O_8^{+}$ (Eqs. 3 and 4) become more substantial, while $S_2O_8^{+}$ is less reactive than SO_4^{+} ; thus, inducing a quenching effect (Liang and

262 Su, 2009).

$$H_2O_2 + O_1 \rightarrow HO_2 + H_2O \qquad k = 2.7 \times 10^7 M^{-1}S^{-1}$$
 (1)

$$HO_2 + OH \rightarrow O_2 + H_2O$$
 $k = 6.6 \times 10^9 \,M^{-1} S^{-1}$ (2)

$$SO_4^{\bullet-} + S_2O_8^{2-} \rightarrow S_2O_8^{\bullet-} + SO_4^{2-}$$
 $k = 6.1 \times 10^5 \text{ M}^{-1}\text{S}^{-1}$ (3)

$$^{\circ}\text{OH} + \text{S}_2\text{O}_8^{2-} \rightarrow \text{S}_2\text{O}_8^{--} + \text{OH}^{--}$$
 $k = 1.2 \times 10^7 \,\text{M}^{-1}\text{S}^{-1}$ (4)

263 3.4. The multi-role of Fe^{2+} as an oxidant activator

The influence of Fe²⁺ as a transition metal activator of H₂O₂ and PS on the degradation of 264 RhB in H₂O₂, PS, UV/H₂O₂, and UV/PS systems was investigated (Fig. S6, SI). The initial 265 solution pH was adjusted as 3 to avoid the oxidation of Fe²⁺ into Fe³⁺ and its subsequent 266 precipitation. The calculated k_{obs} increased with increasing Fe²⁺ concentration for all conditions 267 studied (Fig. 4). The addition of 100 μ M Fe²⁺ as the activator of H₂O₂ (i.e., Fenton reagent) and 268 PS (i.e., Fenton-like reagent), increased the k_{obs} from 0 to 0.215 min⁻¹ and 0.072 min⁻¹, respectively. 269 270 The efficiency of Fenton and Fenton-like reagents for the degradation of organic contaminants has been previously well described in the literature (Chamarro et al., 2001; Xu and Li, 2010). 271 In the UV/H₂O₂ system, the addition of 100 μ M Fe²⁺ (i.e., causing the formation of a 272 photo-Fenton system) led to an increase in the removal of RhB from 78.1% to 99.4% in 3 min; 273 whereby the decay rate constant significantly increased by 4-fold (i.e., from 0.421 to 1.699 min⁻¹). 274

- 275 Compared to the UV/H_2O_2 process, the substantial improvement in the process efficiency as a
- result of the formation photo-Fenton system can be attributed to the additional production of 'OH
- 277 radicals in two ways. One way involves the favorable 'OH radical generation by the Fe^{2+} -activated

decomposition of H₂O₂ (Eq. 5). Another way providing an additional formation of 'OH radicals is 278 due to the photoreduction of hydroxylated Fe^{3+} ions or ferrihydroxalate (Fe(OH)²⁺) (Eq. 6), which 279 can simultaneously regenerate Fe²⁺ ions and in turn further promote the process performance 280 (Pouran et al., 2015). For the UV/PS system, when the concentration of Fe^{2+} in solution was 281 282 increased to 100 μ M, the target pollutant was almost completely degraded (>99%) within 3 min, while the RhB removal in the UV/PS process without Fe²⁺ ions was only 71%. Accordingly, 283 the decay rate constant k_{obs} significantly increased from 0.366 to 1.617 min⁻¹ as dosing Fe²⁺ ions 284 from 0 to 100 μ M into the system. This result indicated that the addition of Fe²⁺ to the 285 286 UV/PS system remarkably enhanced the degradation efficiency of contaminants by developing a Photo-Fenton-like oxidation system. Briefly, Fe^{2+} reacted with $S_2O_8^{2-}$ to produce more SO_4^{-} in 287 the UV/PS system (Eq. 7) (Liang et al., 2008). Subsequently, the formed Fe³⁺ ions led to the 288 289 generation of Fe(OH)²⁺ which further photolyzed into 'OH radicals and Fe²⁺ ions; thus, accelerating the degradation of RhB (Liang et al., 2008). Compared to the 290 291 traditional Fenton UV reaction or the activated H_2O_2 or PS system, 292 the Photo-Fenton-like oxidation system could significantly improve the degradation efficiency of 293 pollutants.

$$Fe^{2+} + H_2O_2 + hv \rightarrow Fe^{3+} + OH + HO$$
(5)

$$Fe(OH)^{2+} + hv \rightarrow Fe^{2+} + OH \qquad \lambda < 580 \text{ nm}$$
(6)

$$Fe^{2+} + S_2O_8^{2-} \rightarrow SO_4^{2-} + Fe^{3+} + SO_4^{-}$$
 $k = 2.0 \times 10^1 \, M^{-1} S^{-1}$ (7)

294 *3.5.* Effect of the water matrix on the degradation of RhB

295 Cl^- , $H_2PO_4^-$, NO_3^- , and $C_2O_4^{2-}$ are ubiquitously present in natural water and wastewaters. They 296 can exert varying influence on the UV-based AOPs by either acting as a radical scavenger or

297	inducing photochemical effect. Thus, the RhB degradation in the presence of Cl ⁻ , H ₂ PO ₄ ⁻ , C ₂ O ₄ ²⁻ ,
298	or NO ₃ ⁻ in both UV/H ₂ O ₂ and UV/PS systems was investigated and compared (Fig. 5a-c). The
299	concentration of chloride in natural water systems varies from around 1 to several mM. In some
300	surface waters, it may reach > 20 mM (Magazinovic et al., 2004). Accordingly, 10 mM chloride
301	was selected to investigate the effect of chloride on the process performance, while the impact of
302	other ions was conducted under the same conditions for comparison. The addition of
303	Cl ⁻ exerted negligible impact on the UV/H ₂ O ₂ system, as predicted from by Eqs. 8 and 9 (Atinault
304	et al., 2008). There were some ClHO ⁻ formed by the reaction of Cl ⁻ and 'OH; however,
305	subsequently transformed back to 'OH. Thus, the whole system was relatively stable. The addition
306	of Cl ⁻ slightly accelerated the oxidation of RhB in the UV/PS system. A similar observation was
307	reported by Huang et al. (2017), who showed that above 5 mM, chloride ions improved the
308	degradation of RhB in a sulfate radical-based oxidation system. Nevertheless, an inhibitory effect
309	at a lower chloride dosage of 0-5 mM was observed. Generally, the presence of chloride ions
310	induces dual impact depending on the Cl ⁻ concentration and the type of substrate. A low level, Cl ⁻
311	mainly leads to a scavenging effect by reacting with SO4 [•] to form less reactive chlorine radicals
312	(e.g., Cl [•]). Interestingly, the enhanced formation of reactive chlorine species (e.g., Cl ₂ ^{•-} and HClO)
313	at higher chloride dosage can compensate the consumption of SO_4^{\bullet} and even increase the process
314	efficiency. When $H_2PO_4^-$ and $C_2O_4^{2-}$ were introduced into the solution, the degradation of RhB
315	was negatively affected in both systems. This observation could be attributed to the formation of
316	•H ₂ PO ₄ and •C ₂ O ₄ -, which showed a relatively weak reactivity towards contaminants and a certain
317	quenching effect on 'OH and SO4' radicals (Grgic et al., 2007; Xu and Li, 2010). Specifically, the
318	reactivity of 'OH and SO ₄ with $H_2PO_4^{}$ was 2.0×10 ⁴ and 7.2×10 ⁴ M ⁻¹ s ⁻¹ , respectively, while their

319	respective reaction rate constants with $C_2O_4^{2-}$ were $(5.3\pm0.3)\times10^6$ and $(1.3\pm0.1)\times10^7$ M ⁻¹ s ⁻¹ (Getoff
320	et al., 1971; Neta et al., 1988; Grgic et al., 2007; Grebel et al., 2010). Thus, the performance of
321	both UV/H ₂ O ₂ and UV/PS systems was significantly reduced by the addition of $C_2O_4^-$ ions
322	compared to that of $H_2PO_4^-$ ions. Meanwhile, $C_2O_4^-$ exhibited a stronger inhibition for the UV/PS
323	process than that of the UV/H_2O_2 process due to its higher reactivity towards sulfate radicals. RhB
324	removal efficiency was substantially increased in the presence of NO_3^- ions and the observed rate
325	constant of RhB decay in the UV/H ₂ O ₂ and UV/PS systems was 1.6 and 2.2-fold of that control
326	tests (Fig. 5c), respectively. This significant performance enhancement resulted from the
327	formation of additional reactive species via the NO ₃ ⁻ photolysis (Eqs. 10-12). The main pathway
328	of UV irradiation of NO_3^- ions yields hydroxyl radicals which benefit the process efficiency for
329	the UV-based AOPs (Shankar et al., 2007; Boucheloukh et al., 2012). Other studies have also
330	reported the promoting effect of NO ₃ ⁻ ions on the UV-based systems (Rao et al., 2016). However,
331	NO_2^- formation by UV irradiation of NO_3^- might be of concern for nitrate-rich waters in the
332	present of DOM (Semitsoglou-Tsiapou et al., 2016).

$$Cl^{-} + OH \rightarrow ClHO^{-}$$
 $k = 4.3 \times 10^9 \text{ M}^{-1}\text{S}^{-1}$ (8)

ClHO^{•-} \to Cl⁻ + °OH $k = 6.1 \times 10^9 \text{ M}^{-1} \text{S}^{-1}$ (9)

$$NO_3^- + hv \to [NO_3^-]^* \to OONO^-$$
(10)

$$[NO_{3}^{-}]^{*} \to NO_{2}^{-} + O(^{3}p)$$
(11)

$$[NO_{3}^{\bullet}]^{*} \rightarrow NO_{2}^{\bullet} + O^{\bullet} \xrightarrow{-\underline{H}_{2}O} \rightarrow NO_{2}^{\bullet} + {}^{\bullet}OH + OH^{\bullet}$$
(12)

Dissolved Organic Matter (DOM), such as Humic Substances (HS), is known to affect the
behavior of organic pollutants in the environment and engineering processes. It can induce a
significant influence on the performance of UV-based AOPs process by playing multiple roles.

336 The presence of highly reactive aromatic moieties within the DOM decreases the effective UV 337 fluence by acting as UV inner filter and consuming radical species (e.g., the rate constants of 338 $k_{\text{OH/NOM}}$ and k_{SO4} , where k_{NOM} are 2.23×10^8 and 6.0×10^6 M⁻¹s⁻¹, respectively) (Westerhoff et al., 2007; 339 Zhang et al., 2019); thus, ultimately inhibiting the degradation of contaminants. Therefore, 340 RhB degradation in UV/H_2O_2 and UV/PS systems was investigated in the presence of the hydrophobic acid fraction isolated from the Suwannee River (HPOA-SWR). Fig. 5d illustrates the 341 pseudo-first-order kinetics of the reaction. The presence of HPOA-SWR significantly decreased 342 the k_{obs} of RhB decay in the two systems, displaying an exponential decrease in k_{obs} 343 344 with increasing HPOA-SWR concentration. Specifically, when the concentration of DOM increased from 0 to 10 mg-C/L, the k_{obs} decreased by ~73% in both systems, and the 345 removal of RhB decreased from 95.6% to 54% and from 86.7% to 46% in UV/H_2O_2 and 346 347 UV/PS systems, respectively. The current experimental results demonstrated that the inhibitory effect of background DOM in the water matrix should be of special concern for the UV-based 348 AOPs. 349

350 *3.6. Predominant radicals in the oxidation systems*

As common free radical scavengers, methanol (MeOH) can react with both 'OH and SO₄. radicals at high rate constants ($k_{\cdot OH/MeOH} = 9.7 \times 10^8 \text{ M}^{-1} \text{s}^{-1}$ and $k_{\text{SO4} \cdot ./\text{MeOH}} = 1.1 \times 10^7 \text{ M}^{-1} \text{s}^{-1}$) (Buxton et al., 1988; Neta et al., 1988); thus, effectively quenching these two radicals. Tert-butyl alcohol (TBA) exhibited a higher reaction rate with 'OH ($k_{\cdot OH/TBA} = (3.8 \cdot 7.6) \times 10^8 \text{ M}^{-1} \text{S}^{-1}$), which was considerably higher than that with SO₄. ($k_{\text{SO4} \cdot ./\text{TBA}} = (4.0 \cdot 9.1) \times 10^5 \text{ M}^{-1} \text{S}^{-1}$) (Anipsitakis and Dionysiou, 2004). Consequently, for processes involving the contribution of both 'OH and SO₄. radicals, TBA could selectively capture 'OH to inhibit the oxidation reaction and thereby the

specific role of 'OH and SO4' can be distinguished based on the different decay efficiencies. In the 358 359 UV/PS process, two main reactive radicals were generated: SO4⁻⁻ and OH, both participating in 360 the reaction. To identify the predominant radicals in the UV/PS system, MeOH was separately added to the solution at a ratio of 3000:1 and 1000:1 to oxidants, respectively. A similar 361 362 approach was conducted for TBA. Fig. 6 illustrates the comparative decay of the target contaminant with and without radical scavengers in UV/H₂O₂ and UV/PS systems. 363

Experimental results showed that both TBA and MeOH were effective 'OH scavengers. 364 365 However, MeOH exhibited a higher scavenging capacity of radicals than TBA; thus, playing a 366 more important role in the inhibition of RhB decay. The degradation of RhB in the UV/H₂O₂ process-significantly decreased from 96% to 17% and 46% after adding 50 mM 367 MeOH and TBA (Fig. 6a), respectively. Increasing the concentration of TBA to 150 mM further 368 369 reduced the process efficiency by approximately 10%, while the addition of 150 mM MeOH led to insignificant decrease in the RhB removal compared with that of 50 mM MeOH, suggesting that 370 371 'OH radicals generated in the UV/H₂O₂ process were almost completely quenched by 50 mM 372 MeOH. Radical scavenging experiments in the UV/H₂O₂ process indicated that 'OH radicals contributed to almost 82% of RhB decay. In the UV/PS process, the addition of 50 mM 373 374 MeOH and TBA inhibited the process efficiency by 78% and 35.6%, respectively (Fig. 6b). The remarkable difference between these two quenchers in the inhibitory effect on the RhB removal 375 376 suggested that both SO4[•] and 'OH radicals were involved in the degradation of RhB. Moreover, the considerably more pronounced inhibition upon the addition of MeOH indicated the 377 predominant role of SO4⁻ radicals in the UV/PS process. When the molar ratio of MeOH or 378 TBA to PS increased from 1000:1 to 3000:1, the change in the removal of RhB was negligible. 379

This result confirmed that the system had relatively lower production of 'OH and the low concentration of quencher was sufficient. Based on the quenching experimental results, the contribution of $SO_4^{\bullet, \bullet}$, 'OH, and direct photolysis to the degradation of RhB in the UV/PS process was determined as 40%, 31%, and 16%, respectively. Moreover, this comparison found that the two quenchers displayed a stronger inhibitory impact on the UV/H₂O₂ system, indicating a higher yield of 'OH in this system.

To further investigate the production of reactive species in UV/H₂O₂ and UV/PS systems, NB 386 387 and BA were used as radical probes. NB could selectively react with 'OH following a second 388 order rate constant of 3.9×10⁹ M⁻¹S⁻¹, while BA reacts with both 'OH and SO₄.' with second order rate constants of 5.9×10⁹ and 1.2×10⁹ M⁻¹S⁻¹, respectively (Guan et al., 2011). The detailed 389 390 calculation of 'OH and SO4.- can be found in Text S1. The degradation of NB and BA in the tests 391 followed pseudo-first-order kinetics (R² >0.99) (Fig. 6c and 6d). Hence, the steady-state concentration of 'OH was calculated as 4.04×10^{-13} and 2.73×10^{-13} M in UV/H₂O₂ and UV/PS 392 systems, respectively. The concentration of SO_4^{-} in the UV/PS system was 7.34×10^{-13} M. These 393 394 results confirmed the predominant roles of 'OH and SO4' in UV/H2O2 and UV/PS processes, 395 respectively.

396 *3.7. Intermediate identification and plausible mechanisms*

To explore the mechanism of RhB degradation in the UV/H₂O₂ and UV/PS processes, the initial concentration of oxidants and RhB was increased to a relatively higher concentration of 1 mM and 0.2 mM, respectively. Simultaneously, the TOC removal and the production of some RhB decomposition intermediates (e.g., low molecular weight organic acids) were recorded by TOC analyzer and IC (Fig. 7). After 4 h of treatment, the degradation efficiencies of the RhB in

both UV/H₂O₂ and UV/PS processes were almost 100% and the TOC removal was 50% and 60%, 402 403 respectively. During the degradation/decolorization of the RhB in both processes, a rapid 404 depletion in the two characteristic absorbance peaks (i.e., 259 nm at UV region and 554 nm at the 405 visible light region) of the RhB was observed (spectra shown in Fig. S7, SI), which corresponded 406 to the destruction of aromatic and the chromophore structures (i.e., C=N and C=O groups) (Jiang et al., 2018), respectively. Meanwhile, five degradation intermediates were identified including 407 one inorganic ion (i.e., NH4⁺) and four LMW organic acids, i.e., formate (HCOO⁻), acetate 408 409 (CH_3COO^-) , oxalate $(C_2O_4^{2-})$, and lactate $(C_3H_5O_3^-)$. These small organic acids generally resulted 410 from the subsequent oxidation of longer-chain carboxylic acids, such as maleic and fumaric acids, 411 upon the benzene ring opening. Therefore, the degradation of RhB could be attributed to the 412 destruction of the conjugated groups and the N-de-ethylation upon attack by reactive radical 413 species like SO4. and 'OH, causing the generation of some carboxylic acids by opening the benzene rings, where the organic nitrogen could be oxidized to form NH₄⁺ after the N-position 414 415 de-ethylation in the molecules.

416 A first formation and then decay curve was observed for lactic acid (i.e., $C_3H_5O_3$) in both 417 UV/H_2O_2 and UV/PS processes. The generation of $C_3H_5O_3^-$ rapidly reached a maximum of 418 40.6 μ M at 5 min in the UV/PS system, and then decreased. However, the yield of C₃H₅O₃⁻ in the UV/H₂O₂ process was significantly lower with a peak concentration of 11.7 µM after 2 h. The 419 420 amount of all other small carboxylic acids showed an increasing formation trend as a function of reaction time in both processes. Specifically, $C_3H_5O_3^-$ was one of the intermediates formed before 421 RhB was mineralized into HCOO⁻ and CH₃COO⁻ (smaller molecular weight). The subsequent 422 decomposition of these intermediates upon further attack by radicals lead to a significant 423

accumulation of HCOO⁻ and CH₃COO⁻ in both UV/H₂O₂ and UV/PS processes (Fig. 7). By 424 comparison, the yield of HCOO⁻ and CH₃COO⁻ in the UV/PS system was approximately 1.5-fold 425 426 higher than that in the UV/H_2O_2 system. Meanwhile, a gradual accumulation of NH_4^+ ions was 427 recorded in both systems due to the oxidation of the N-de-ethylation. As subsequent oxidation 428 took place, NH_4^+ ions can be further converted into NO_3^- ions which were not detected in the current study. The buildup of NH_4^+ ions after 4 h reached 26.3 and 52.8 μ M in UV/H₂O₂ and 429 UV/PS processes, respectively. The relatively higher transformation efficiency and more 430 431 production of end products in the UV/PS process indicated that at higher concentrations of both 432 contaminants and oxidants, the UV/PS process displayed a better performance and oxidability for 433 the RhB transformation.

434 **4.** Conclusions

In this study, UV light was used to activate H_2O_2 and PS to degrade the RhB dye in aqueous solution through the formation of 'OH and SO_4 ' radicals; whereby, the removal efficiency of RhB in the two systems and under different conditions were compared. The results showed that:

438 (1) Both UV/H_2O_2 and UV/PS processes displayed a good performance on the degradation of 439 RhB, and the decay followed pseudo-first-order kinetics. The removal of RhB decreased with 440 increasing pH, where the optimum pH value was 2 in both systems. In a certain range, the degradation efficiency increased with increasing oxidant concentration and decreasing initial 441 concentration of RhB. The formation of photo-Fenton and photo-Fenton-like systems by 442 adding Fe²⁺ facilitated the oxidation performance. HS remarkably suppressed the process 443 efficiency by acting as UV inner filter and radical sink. The addition of Cl⁻ had no significant 444 impact on the UV/H_2O_2 process; however, it slightly promoted the degradation in 445

the UV/PS system. The presence of NO_3^- substantially facilitated the oxidation of RhB in both processes, while $H_2PO_4^-$ and $C_2O_4^{2-}$ showed the opposite effect.

448 (2) Suppression tests by adding MeOH and TBA as radical scavengers and competition 449 kinetic tests by using NB and BA as relevant radical probes confirmed the dominant role of SO_4^{\bullet} 450 radicals in the UV/PS process. The steady-state concentration of 'OH was calculated as 4.04×10^{-13} 451 and 2.73×10^{-13} M in UV/H₂O₂ and UV/PS systems, respectively, while the yield of SO₄[•] in the 452 UV/PS system was 7.34×10^{-13} M in the presence of 1 µM radical probes, 10 µM RhB, and 50 µM 453 oxidants at pH 7 in aqueous solution.

(3) The UV/PS process led to a relative higher TOC removal compared to that of the
UV/H₂O₂ process in the current study. The transformation of RhB gave rise to the accumulation
of LMW carboxylic acids (e.g., formic acid, acetic acid, and oxalic acid) and the formation of
inorganic ions (i.e., NH₄⁺). Accordingly, the degradation of RhB could be attributed to the opening
of the benzene rings and the oxidation of the organic nitrogen upon attack by SO₄⁺⁻ and 'OH
radical species, resulting in the generation of LMW carboxylic acids and NH₄⁺ as transformation
products.

461 Acknowledgments

The research reported in this work was supported by the National Natural Science Foundation of China (No.51508317), the Fundamental Research Funds for the Central Universities (GK201802108), China Postdoctoral Science Foundation (No.2016M602762), and the Special Financial Grant from the Shaanxi Postdoctoral Science Foundation (No.2017BSHTDZZ09).

466

467 **References**

- Anipsitakis, G.P., Dionysiou, D.D., 2004. Radical generation by the interaction of transition metals
 with common oxidants. Environ. Sci. Technol. 38, 3705-3712.
- 470 Arbeloa, I.L., Ojeda, P.R., 1982. Dimer states of Rhodamine B. Chem. Phys. Lett. 87, 556-560.
- Atinault, E., De Waele, V., Schmidhammer, U., Fattahi, M., Mostafavi, M., 2008. Scavenging of es⁻ and
 OH⁻ radicals in concentrated HCl and NaCl aqueous solutions. Chem. Phys. Lett. 460, 461-465.
- Baeza, C., Knappe, D.R.U., 2011. Transformation kinetics of biochemically active compounds in
 low-pressure UV Photolysis and UV/H2O2 advanced oxidation processes. Water Res. 45,
 4531-4543.
- Bai, C.P., Xiong, X.F., Gong, W.Q., Feng, D.X., Xian, M., Ge, Z.X., Xu, N., 2011. Removal of
 rhodamine B by ozone-based advanced oxidation process. Desalination 278, 84-90.
- Bolton, J.R., Stefan, M.I., Shaw, P.-S., Lykke, K.R., 2011. Determination of the quantum yields of the
 potassium ferrioxalate and potassium iodide-iodate actinometers and a method for the calibration
 of radiometer detectors. J. Photoch. Photobio. A 222, 166-169.
- Boucheloukh, H., Sehili, T., Kouachi, N., Djebbar, K., 2012. Kinetic and analytical study of the
 photo-induced degradation of monuron by nitrates and nitrites under irradiation or in the dark.
 Photoch. Photobio. Sci. 11, 1339-1345.
- 484 Buxton, G.V., Clive L, G., W, P.H., Alberta B, R., 1988. Critical Review of rate constants for reactions
- 485 of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/·O⁻ in Aqueous Solution. J.
- 486 Phys. Chem. Ref. Data 17, 513-886.
- 487 Chamarro, E., Marco, A., Esplugas, S., 2001. Use of Fenton reagent to improve organic chemical
 488 biodegradability. Water Res. 35, 1047-1051.
- Chen, X., Xue, Z., Yao, Y., Wang, W., Zhu, F., Hong, C., 2012. Oxidation Degradation of Rhodamine B
 in Aqueous by UV/S2O82- Treatment System. International Journal of Photoenergy, 1-5.
- 491 Christensen, H., Sehested, K., Corfitzen, H., 1982. Reactions of hydroxyl radicals with hydrogen
 492 peroxide at ambient and elevated temperatures. J. Phys. Chem. 86, 1588-1590.
- 493 Criquet, J., Leitner, N.K.V., 2009. Degradation of acetic acid with sulfate radical generated by
 494 persulfate ions photolysis. Chemosphere 77, 194-200.
- 495 Daneshvar, N., Behnajady, M.A., Mohammadi, M.K.A., Dorraji, M.S.S., 2008. UV/H₂O₂ treatment of
 496 Rhodamine B in aqueous solution: Influence of operational parameters and kinetic modeling.
 497 Desalination 230, 16-26.
- 498 Dong, W.Y., Lee, C.W., Lu, X.C., Sun, Y.J., Hua, W.M., Zhuang, G.S., Zhang, S.C., Chen, J.M., Hou,
 499 H.Q., Zhao, D.Y., 2010. Synchronous role of coupled adsorption and photocatalytic oxidation on
 500 ordered mesoporous anatase TiO₂-SiO₂ nanocomposites generating excellent degradation activity
 501 of RhB dye. Appl. Catal. B Environ. 95, 197-207.
- Fang, G.-D., Dionysiou, D.D., Wang, Y., Al-Abed, S.R., Zhou, D.-M., 2012. Sulfate radical-based
 degradation of polychlorinated biphenyls: Effects of chloride ion and reaction kinetics. J. Hazard
 Mater. 227, 394-401.
- Getoff, N., F. Schworer, V.M. Markovic, K. Sehested, Nielsen, S.O., 1971. Pulse radiolysis of oxalic
 acid and oxalates. J. Phys. Chem. 75, 749-755.

- 507GilPavas, E., Dobrosz-Gomez, I., Gomez-Garcia, M.-A., 2019. Optimization and toxicity assessment of508a combined electrocoagulation, $H_2O_2/Fe^{2+}/UV$ and activated carbon adsorption for textile509wastewater treatment. Sci. Total Environ. 651, 551-560.
- 510 Grebel, J.E., Pignatello, J.J., Mitch, W.A., 2010. Effect of Halide Ions and Carbonates on Organic
 511 Contaminant Degradation by Hydroxyl Radical-Based Advanced Oxidation Processes in Saline
 512 Waters. Environ. Sci. Technol. 44, 6822-6828.
- 513 Grgic, I., Podkrajsek, B., Barzaghi, P., Herrmann, H., 2007. Scavenging of SO₄⁻ radical anions by
 514 mono- and dicarboxylic acids in the Mn(II)-catalyzed S(IV) oxidation in aqueous solution. Atmos.
 515 Environ. 41, 9187-9194.
- Guan, Y.-H., Ma, J., Li, X.-C., Fang, J.-Y., Chen, L.-W., 2011. Influence of pH on the Formation of
 Sulfate and Hydroxyl Radicals in the UV/Peroxymonosulfate System. Environ. Sci. Technol. 45,
 9308-9314.
- He, Z., Sun, C., Yang, S., Ding, Y., He, H., Wang, Z., 2009. Photocatalytic degradation of rhodamine B
 by Bi2WO6 with electron accepting agent under microwave irradiation: Mechanism and pathway.
 J. Hazard Mater. 162, 1477-1486.
- Hu, L., Deng, G., Lu, W., Lu, Y., Zhang, Y., 2017. Peroxymonosulfate activation by
 Mn₃O₄/metal-organic framework for degradation of refractory aqueous organic pollutant
 rhodamine B. Chinese Journal of Catalysis 38, 1360-1372.
- Huang, Y., Wang, Z., Liu, Q., Wang, X., Yuan, Z., Liu, J., 2017. Effects of chloride on PMS-based
 pollutant degradation: A substantial discrepancy between dyes and their common decomposition
 intermediate (phthalic acid). Chemosphere 187, 338-346.
- Isari, A.A., Payan, A., Fattahi, M., Jorfi, S., Kakavandi, B., 2018. Photocatalytic degradation of
 rhodamine B and real textile wastewater using Fe-doped TiO₂ anchored on reduced graphene
 oxide (Fe-TiO₂/rGO): Characterization and feasibility, mechanism and pathway studies. Appl.
 Surf. Sci. 462, 549-564.
- Jiang, L., Zhang, Y., Zhou, M., Liang, L., Li, K., 2018. Oxidation of Rhodamine B by persulfate
 activated with porous carbon aerogel through a non-radical mechanism. J. Hazard Mater. 358,
 534 53-61.
- Keen, O.S., Linden, K.G., 2013. Degradation of Antibiotic Activity during UV/H₂O₂ Advanced
 Oxidation and Photolysis in Wastewater Effluent. Environ. Sci. Technol. 47, 13020-13030.
- 537 Khan, S., He, X., Khan, J.A., Khan, H.M., Boccelli, D.L., Dionysiou, D.D., 2017. Kinetics and
 538 mechanism of sulfate radical- and hydroxyl radical-induced degradation of highly chlorinated
 539 pesticide lindane in UV/peroxymonosulfate system. Chem. Eng. J. 318, 135-142.
- 540 Kim, M.H., Hwang, C.-H., Bin Kang, S., Kim, S., Park, S.W., Yun, Y.-S., Won, S.W., 2015. Removal of
 541 hydrolyzed Reactive Black 5 from aqueous solution using a polyethylenimine-polyvinyl chloride
 542 composite fiber. Chem. Eng. J. 280, 18-25.
- Liang, C., Su, H.-W., 2009. Identification of Sulfate and Hydroxyl Radicals in Thermally Activated
 Persulfate. Ind. Eng. Chem. Res. 48, 5558-5562.
- Liang, C.J., Lee, I.L., Hsu, I.Y., Liang, C.P., Lin, Y.L., 2008. Persulfate oxidation of trichloroethylene
 with and without iron activation in porous media. Chemosphere 70, 426-435.
- Liu, X., Liu, Y., Lu, S., Wang, Z., Wang, Y., Zhang, G., Guo, X., Guo, W., Zhang, T., Xi, B., 2020.
 Degradation difference of ofloxacin and levofloxacin by UV/H₂O₂ and UV/PS (persulfate):
 Efficiency, factors and mechanism. Chem. Eng. J. 385.

- Magazinovic, R.S., Nicholson, B.C., Mulcahy, D.E., Davey, D.E., 2004. Bromide levels in natural
 waters: its relationship to levels of both chloride and total dissolved solids and the implications for
 water treatment. Chemosphere 57, 329-335.
- Masi, F., Rizzo, A., Bresciani, R., Martinuzzi, N., Wallace, S.D., Van Oirschot, D., Macor, F., Rossini,
 T., Fornaroli, R., Mezzanotte, V., 2019. Lessons learnt from a pilot study on residual dye removal
 by an aerated treatment wetland. Sci. Total Environ. 648, 144-152.
- Nestmann, E.R., Douglas, G.R., Matula, T.I., Grant, C.E., Kowbel, D.J., 1979. Mutagenic activity of
 rhodamine dyes and their impurities as detected by mutation induction in Salmonella and DNA
 damage in Chinese hamster ovary cells. Cancer Res. 39, 4412-4417.
- Neta, P., Huie, R.E., Ross, A.B., 1988. Rate constants for reactions of inorganic radicals in aqueous
 solution. J. Phys. Chem. Ref. Data 17, 1027-1284.
- Nihemaiti, M., Miklos, D.B., Huebner, U., Linden, K.G., Drewes, J.E., Croue, J.-P., 2018. Removal of
 trace organic chemicals in wastewater effluent by UV/H₂O₂ and UV/PDS. Water Res. 145,
 487-497.
- Pouran, S.R., Aziz, A.R.A., Daud, W.M.A.W., 2015. Review on the main advances in photo-Fenton
 oxidation system for recalcitrant wastewaters. J. Ind. Eng. Chem. 21, 53-69.
- Rao, Y., Han, F., Chen, Q., Wang, D., Xue, D., Wang, H., Pu, S., 2019. Efficient degradation of
 diclofenac by LaFeO3-Catalyzed peroxymonosulfate oxidation-kinetics and toxicity assessment.
 Chemosphere 218, 299-307.
- Rao, Y.F., Xue, D., Pan, H.M., Feng, J.T., Li, Y.J., 2016. Degradation of ibuprofen by a synergistic
 UV/Fe(III)/Oxone process. Chem. Eng. J. 283, 65-75.
- 571 Rasheed, T., Bilal, M., Iqbal, H.M.N., Shah, S.Z.H., Hu, H., Zhang, X., Zhou, Y., 2018.
 572 TiO₂/UV-assisted rhodamine B degradation: putative pathway and identification of intermediates
 573 by UPLC/MS. Environmental Technology 39, 1533-1543.
- 574 Rehman, F., Sayed, M., Khan, J.A., Shah, N.S., Khan, H.M., Dionysiou, D.D., 2018. Oxidative removal
 575 of brilliant green by UV/S₂O₈²⁻, UV/HSO₅⁻ and UV/H₂O₂ processes in aqueous media: A
 576 comparative study. J. Hazard Mater. 357, 506-514.
- Semitsoglou-Tsiapou, S., Mous, A., Templeton, M.R., Graham, N.J.D., Leal, L.H., Kruithof, J.C., 2016.
 The role of natural organic matter in nitrite formation by LP-UV/H₂O₂ treatment of nitrate-rich
 water. Water Res. 106, 312-319.
- Shankar, M.V., Nelieu, S., Kerhoas, L., Einhorn, J., 2007. Photo-induced degradation of diuron in
 aqueous solution by nitrites and nitrates: Kinetics and pathways. Chemosphere 66, 767-774.
- Shen, Y.-S., Lin, C.-C., 2003. The effect of pH on the decomposition of hydrophenols in aqueous
 solutions by ultraviolet direct photolysis and the ultraviolet-hydrogen peroxide process. Water
 environment research : a research publication of the Water Environment Federation 75, 54-60.
- 585 Stefan, M.I., 2017. Advanced Oxidation Processes for Water Treatment: Fundamentals and
 586 Applications. IWA Publishing.
- Su, S.N., Guo, W.L., Leng, Y.Q., Yi, C.L., Ma, Z.M., 2013. Heterogeneous activation of Oxone by
 CoxFe₃⁻xO₄ nanocatalysts for degradation of rhodamine B. J. Hazard Mater. 244, 736-742.
- Tian, F.-X., Ma, S.-X., Xu, B., Hu, X.-J., Xing, H.-B., Liu, J., Wang, J., Li, Y.-Y., Wang, B., Jiang, X.,
 2019. Photochemical degradation of iodate by UV/H₂O₂ process: Kinetics, parameters and
 enhanced formation of iodo-trihalomethanes during chloramination. Chemosphere 221, 292-300.
- 592 Wang, C., Hofmann, M., Safari, A., Viole, I., Andrews, S., Hofmann, R., 2019. Chlorine is preferred
- 593 over bisulfite for H_2O_2 quenching following UV-AOP drinking water treatment. Water Res. 165.

- Wang, F.G., Wang, W.J., Yuan, S.J., Wang, W., Hu, Z.H., 2017. Comparison of UV/H₂O₂ and UV/PS
 processes for the degradation of thiamphenicol in aqueous solution. J. Photoch. Photobio. A 348,
 79-88.
- Wang, P., Cheng, M., Zhang, Z., 2014. On different photodecomposition behaviors of rhodamine B on
 laponite and montmorillonite clay under visible light irradiation. Journal of Saudi Chemical
 Society 18, 308-316.
- Wang, Y.R., Chu, W., 2011. Degradation of a xanthene dye by Fe(II)-mediated activation of Oxone
 process. J. Hazard Mater. 186, 1455-1461.
- Westerhoff, P., Mezyk, S.P., Cooper, W.J., Minakata, D., 2007. Electron pulse radiolysis determination
 of hydroxyl radical rate constants with Suwannee river fulvic acid and other dissolved organic
 matter isolates. Environ. Sci. Technol. 41, 4640-4646.
- Xu, X.-R., Li, X.-Z., 2010. Degradation of azo dye Orange G in aqueous solutions by persulfate with
 ferrous ion. Sep. Purif. Technol. 72, 105-111.
- 607 Zhang, T., Chen, Y., Wang, Y., Le Roux, J., Yang, Y., Croue, J.-P., 2014. Efficient Peroxydisulfate
 608 Activation Process Not Relying on Sulfate Radical Generation for Water Pollutant Degradation.
 609 Environ. Sci. Technol. 48, 5868-5875.
- 610 Zhang, T., Zhu, H., Croue, J.-P., 2013. Production of Sulfate Radical from Peroxymonosulfate Induced
 611 by a Magnetically Separable CuFe₂O₄ Spinel in Water: Efficiency, Stability, and Mechanism.
 612 Environ. Sci. Technol. 47, 2784-2791.
- Chang, Y., Luo, G., Wang, Q., Zhang, Y., Zhou, M., 2020. Kinetic study of the degradation of
 rhodamine B using a flow-through UV/electro-Fenton process with the presence of
 ethylenediaminetetraacetic acid. Chemosphere 240.
- 616 Zhang, Y., Xiao, Y., Zhong, Y., Lim, T.-T., 2019. Comparison of amoxicillin photodegradation in the
 617 UV/H₂O₂ and UV/persulfate systems: Reaction kinetics, degradation pathways, and antibacterial
 618 activity. Chem. Eng. J. 372, 420-428.
- 619 Zhao, X., Jiang, J., Pang, S., Guan, C., Li, J., Wang, Z., Ma, J., Luo, C., 2019. Degradation of
 620 iopamidol by three UV-based oxidation processes: Kinetics, pathways, and formation of iodinated
 621 disinfection byproducts. Chemosphere 221, 270-277.
- Zhou, X., Zhou, Y., Liu, J., Song, S., Sun, J., Zhu, G., Gong, H., Wang, L., Wu, C., Li, M., 2019. Study
 on the pollution characteristics and emission factors of PCDD/Fs from disperse dye production in
 China. Chemosphere 228, 328-334.

625

Fig. 1. (a) Relative degradation, and (b) pseudo-first-order kinetics of RhB in different oxidation

systems. ([RhB]₀ = 10
$$\mu$$
M, [H₂O₂]₀ = [PS]₀ = 50 μ M, pH = 7)

Fig. 2. Pseudo-first-order rate constant of RhB degradation under different initial solution pH in

UV/H₂O₂ and UV/PS systems. ([RhB]₀ = 10 μ M, [H₂O₂]₀ = [PS]₀ = 50 μ M, pH = 7)

Fig. 3. RhB removal in UV/H₂O₂ and UV/PS systems under various (a) initial RhB concentration and (b)

varying oxidant dose. ($[H_2O_2]_0 = [PS]_0 = 50 \ \mu M, \ pH = 7$)

Fig. 4. Comparison of the pseudo-first-order rate constant (k_{obs}) of RhB degradation in different oxidation systems in the presence of Fe²⁺ as a transition metal activator. ([RhB]₀ = 10 μ M, [H₂O₂]₀ =

 $[PS]_0 = 50 \ \mu M, \ pH = 3)$

Fig. 5. Effect of different anions on the degradation of RhB in (a) UV/H₂O₂ and (b) UV/PS systems and the pseudo-first-order rate constants of RhB degradation in the presence of different anions (c) and varying concentrations of HPOA-SWR (d). ([RhB]₀ = 10 μ M, [H₂O₂]₀ = [PS]₀ = 50 μ M, [Cl⁻]₀ =

$$[H_2PO_4^-]_0 = [C_2O_4^{2-}]_0 = [NO_3^-]_0 = 10 \text{ mM, pH=7})$$

Fig. 6. The degradation of RhB in the presence of TBA or MeOH in (a) UV/H₂O₂ and (b) UV/PS systems, and the reaction kinetics of NB and BA degradation in the presence of 10 μ M RhB in (c) UV/H₂O₂ and (d) UV/PS systems. ([RhB]₀ = 10 μ M, [H₂O₂]₀ = [PS]₀ = 50 μ M, [NB]₀ = [BA]₀ = 1 μ M,

 $\mathrm{pH}=7)$

Fig. 7. Degradation and transformation of RhB and the subsequent formation of small molecular acids and NH_4^+ in (a) UV/H_2O_2 and (b) UV/PS systems. ([RhB]₀ = 0.2 mM, [H₂O₂]₀ = [PS]₀ = 1 mM, pH = 7)

Graphical Abstract

