

Hydroxyl and sulfate radical-based oxidation of RhB dye in UV/H2O2 and UV/persulfate systems: Kinetics, mechanisms, and comparison

Xinxin Ding, Leonardo Gutierrez, Jean-Philippe Croué, Minrui Li, Lijun Wang, Yuru Wang

▶ To cite this version:

Xinxin Ding, Leonardo Gutierrez, Jean-Philippe Croué, Minrui Li, Lijun Wang, et al.. Hydroxyl and sulfate radical-based oxidation of RhB dye in UV/H2O2 and UV/persulfate systems: Kinetics, mechanisms, and comparison. Chemosphere, 2020, 253, pp.126655. 10.1016/j.chemosphere.2020.126655. hal-03490270

HAL Id: hal-03490270

https://hal.science/hal-03490270

Submitted on 20 May 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Hydroxyl and sulfate radical-based oxidation of RhB dye in UV/H2O2 and 1 UV/persulfate systems: kinetics, mechanisms, and comparison 2 3 4 Xinxin Ding ^a, Leonardo Gutierrez ^b, Jean-Philippe Croue ^{c*}, 5 6 Minrui Li a, Lijun Wang a, Yuru Wang a* 7 ^a Department of Environmental Science, School of Geography and Tourism, Shaanxi 8 Normal University, Xi'an 710119, China 9 ^b Facultad del Mar y Medio Ambiente, Universidad del Pacifico, Ecuador 10 ^c Institut de Chimie des Milieux et des Matériaux IC2MP UMR 7285 CNRS, 11 Université de Poitiers, France 12 13 *: Corresponding authors 14 E-mail address: jean.philippe.croue@univ-poitiers.fr; wangyuru@snnu.edu.cn 15 16 17 18

Abstract

The degradation kinetics and mechanisms of Rhodamine B (RhB) dye by *OH and SO4* based
advanced oxidation processes were investigated. The *OH and \$O ₄ * radicals were generated by
UV photolysis of hydrogen peroxide and persulfate (i.e., UV/H ₂ O ₂ and UV/PS), respectively. The
effects of initial solution pH, RhB concentration, oxidant dosage, Fe2+ concentration, and water
matrices were examined. The results showed that the degradation of RhB followed
pseudo-first-order kinetics in both processes, with the UV/H ₂ O ₂ process exhibiting better
performance than that of the UV/PS process. Acidic conditions were favorable to the degradation
of RhB in both systems. Increasing the oxidant dosage or decreasing the contaminant
concentration could enhance the degradation of RhB. Photo-Fenton-like processes accelerated the
performance when Fe2+ was added into both systems. The removal efficiency of RhB was
inhibited upon the addition of Humic Substances. The addition of Cl- displayed no significant
effect and promoted RhB degradation in UV/H_2O_2 and UV/PS systems, respectively. The presence
of NO_3^- promoted RhB degradation, while $H_2PO_4^-$ and $C_2O_4^{2^-}$ showed an inhibitory effect on both
UV/H ₂ O ₂ and UV/PS processes. Radical scavenging tests revealed the dominant role of SO ₄ *-
radicals in the UV/PS system. Furthermore, the evolution of low molecular weight organic acids
and NH_4^+ during the degradation of RhB in these two processes were compared. Both UV/H_2O_2
and UV/PS systems led to similar formation trends of $\mathrm{NH_{4}^{+}}$ and some ring-opening products (e.g.,
formic acid, acetic acid, and oxalic acid), suggesting some analogies in the decay pathways of
RhR by *OH and \$0.4*-induced oxidation processes

 $\textbf{Keywords:} \ \text{Hydroxyl radical, Sulfate radical, UV/H}_2O_2, \text{UV/PS, Rhodamine B}$

1. Introduction

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

Dyes are mainly aromatic and heterocyclic compounds with stable structures incorporating color-display and polar groups, widely used in textile, plastic, cosmetics, medicine, food, and other industries (GilPavas et al., 2019). Briefly, more than 1.28×106 tons of commercial dyes were produced world-wide in 2018 (Zhou et al., 2019). Remarkably, approximately 5-15% of the dyes are released into the environment during their production and dyeing processes; thus, leading to the generation of wastewater with dye concentrations varying from 5 to 1500 mg/L (Dong et al., 2010; Kim et al., 2015). These organic pollutants can disrupt photosynthesis, inhibit the growth of aquatic biota, and pose considerable health risks to human skin, eyes, gastrointestinal, and respiratory systems (Dong et al., 2010; Wang and Chu, 2011; Su et al., 2013). Consequently, dye-containing effluents discharged into the environment without proper treatment can have major negative impacts on both aquatic ecosystems and human health. Besides, dyes are generally resistant to light, aerobic digestion, and other conventional treatment processes due to their complex structures (Xu and Li, 2010; GilPavas et al., 2019; Masi et al., 2019). Therefore, the development of efficient and economical technologies for the degradation of dye contaminants from wastewater before discharge is of critical importance. Recently, UV-based Advanced Oxidation Processes (AOPs) have drawn increasing scientific attention for degrading various types of refractory organic pollutants in water (Wang et al., 2017; Nihemaiti et al., 2018; Liu et al., 2020). Particularly, the UV/H₂O₂ process is an attractive option for the production of non-selective and highly reactive 'OH radical ($E_0 = 1.8 - 2.7 \text{ V}$), which displays a second-order rate constant with numerous contaminants at a near diffusion-controlled rate (k=10¹⁰ M⁻¹S⁻¹) (Buxton et al., 1988; Keen and Linden, 2013). Besides, persulfate (PS) has also emerged as an alternative oxidant due to its capacity to generate sulfate radical (SO4*) under UV irradiation (i.e., UV/PS). SO_4 is a strong oxidant (E₀ = 2.5 - 3.1 V) with an oxidizing ability comparable to 'OH; however, showing higher selectivity and longer half-life than 'OH (Neta et al., 1988; Rao et al., 2019). Compared to H₂O₂, the advantages of persulfate as a radical precursor include: relative stability in solid-state, high aqueous solubility, and high stability at ambient environments, which facilitate its transport, storage, and usage (Zhang et al., 2014). Therefore, SO₄ has also been increasingly tested in the removal of bio-recalcitrant organic pollutants (Zhang et al., 2013; Khan et al., 2017). Both UV/H₂O₂ and UV/PS processes have demonstrated their effectiveness at degrading a wide range of organic pollutants, including antibiotics, iodinated X-rays contrast media, and other PPCPs (Nihemaiti et al., 2018; Zhao et al., 2019; Liu et al., 2020). Rhodamine B (RhB) is a water-soluble xanthene dye mainly used as an additive in food stuffs; however, it was banned in many countries due to its toxicity and carcinogenicity. The toxicity of RhB has been well documented in the literature (Nestmann et al., 1979). Nevertheless, RhB is still extensively applied as a colorant in textile dyeing, resulting in the production of large amounts of RhB-containing effluents. Due to its high solubility and color rendering, water containing RhB, even at low concentrations, can significantly impact the quality of surface water and disrupt the photosynthesis of aquatic organisms (Su et al., 2013). Various UV-based AOPs have been investigated for the effectiveness of RhB degradation. Zhang et al. (2020) reported that approximately 90% of RhB removal was obtained in a UV enhanced electro-Fenton process where 'OH radical was found as the dominant radical species. Chen et al. (2012) revealed the good

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

degradation efficiency of RhB dye in a SO₄*-based UV/PS process and evaluated the influence of some factors (e.g., oxidant dose and water matrix) on the degradation kinetics. Previous studies indicated that the UV/PS process degraded organics more efficiently in buffered pure water than that of the UV/H₂O₂ process, while the process performance was significantly reduced when applied to wastewater effluent due to the higher sensitivity and selectivity of SO₄* radical toward water matrix and organics compared with *OH radical (Nihemaiti et al., 2018), suggesting the significant role of water matrix and compound property on the performance of these two UV-AOPs. However, to the best of our knowledge, there are no previous studies systematically comparing hydroxyl and sulfate radical-based AOPs for the removal of RhB dye in water. Besides, the decay pathways regarding the aromatic intermediates during the degradation of RhB by hydroxyl and sulfate radical oxidation have been proposed in previous studies (He et al., 2009; Hu et al., 2017; Rasheed et al., 2018). Nevertheless, limited information is available focusing on the evolution of low molecular weight (LMW) carboxylic acids upon the ring-opening of aromatic byproducts of RhB, which are usually more refractory towards further mineralization.

Therefore, the efficiency and degradation kinetics of UV/H₂O₂ and UV/PS processes to degrade RhB in synthetic wastewater were investigated and compared in this study. The influence of some important experimental parameters (e.g., initial solution pH, oxidant dosage, and the presence of oxidant activator) and solution chemistry (e.g., inorganic ions and dissolved organic matter) on the efficiency of these oxidation processes was evaluated. Radical scavenging experiments were conducted to identify the dominant radical species responsible for the RhB decay. Furthermore, the evolution of some LMW organic intermediates (e.g., carboxylic acids) and inorganic ions produced upon the degradation of RhB was examined, and the possible

degradation mechanism was accordingly proposed. The current investigation will highly assist in better understanding the oxidation of RhB by UV/H₂O₂ and UV/PS processes for the successful implementation of these technologies in the treatment of dye-contaminated wastewaters.

2. Materials and methods

2.1. Chemical reagents

All chemical reagents were of analytical grade and used as received without further purification. Potassium persulfate ($k_2S_2O_8$, >99%), methanol (CH₃OH, 99.9%), and tert-butanol (C₄H₁₀O, 99%) were purchased from Sigma-Aldrich. Rhodamine B (C₂₈H₃₁CIN₂O₃), hydrogen peroxide (H₂O₂, 30%), nitrobenzene (NB), benzoic acid (BA), sodium thiosulfate (Na₂S₂O₃), potassium chloride (KCl), ferrous sulfate heptahydrate (Fe₂SO₄·7H₂O), sodium oxalate (C₂Na₂O₄, 99.8%), potassium dihydrogen phosphate (K₂HPO₄), and sodium nitrate (NaNO₃) were provided by Sinopharm Chemical Reagent Co., Ltd. (China). The humic substances (hydrophobic acid fraction, i.e., DOM adsorbed onto XAD-8® resin at acid pH and recovered by caustic desorption) used in this study were previously extracted from Suwannee River water (USA). Ultrapure water (conductivity of 18.25 M Ω ·cm) used in the experiments was obtained from the CascadaTM BIO water purification system (Pall Corporation, United Kingdom).

2.2. Experimental procedures

The irradiation experiments were performed in quartz tubes under continuous stirring and temperature control (20±2°C) with a photochemical reaction apparatus (BL-GHX-V, Shanghai Bilang Instrument Co., Ltd., China), equipped with a 300 W medium-pressure ultraviolet mercury lamp (λ_{max} = 365 nm) provided by the same manufacturer as the UV light source. Eight tubular quartz reactors were evenly distributed in a circle centered around the lamp with a radius of 9.5

cm. The schematic illustration of the experimental setup and the irradiation spectrum of the light source are provided in Figs. S1 and S2 in the Supplementary Information (SI), respectively. The average UV fluence rate (Ep⁰) entering the solution was determined as 2.67 mW/cm² by iodide/iodate chemical actinometry (Bolton et al., 2011). The final applied fluence was 2060 mJ/cm², unless otherwise stated. The photochemical reactor and temperature control system were turned on at least 20 min in advance to ensure stable conditions at the start of the experiments.

The degradation kinetics of RhB in the UV/H₂O₂ or UV/PS process were investigated by sequentially spiking a specific amount of RhB, H₂O₂, or PS stock solution in ultrapure water. The initial pH of the solution was adjusted with sulfuric acid (0.1 M) and sodium hydroxide (0.1 M). No buffer solution was used in this study to avoid potential reactions between the radicals and buffer solution. The reaction was initiated by adding a specific amount of H₂O₂ or PS into the aqueous solution containing the probe contaminant while simultaneously subjected to UV irradiation. The reaction volume of the solutions was set at 50 mL. The samples were collected at predetermined time intervals and immediately quenched by adding sodium thiosulfate in excess. There is some uncertainty in the literature regarding the effectiveness of sulfur-based reductants (e.g., bisulfite and thiosulfate) as a quencher of H_2O_2 as reported by Wang et al. (2019). Nevertheless, preliminary experiments conducted at pH from 2 to 11 demonstrated the insignificance of H₂O₂ or PS alone for the RhB degradation (Fig. S3). Thus, the potential effect of any residual oxidant on the decay result of RhB should be negligible. The collected samples were filtered through a 0.45 µm membrane before analysis with High-Performance Liquid Chromatography (HPLC).

2.3. Analytical methods

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

The residual concentrations of RhB, NB, and BA were determined using a Dianex UltiMate 3000 HPLC system measuring the absorbance at 554, 270, and 230 nm, respectively. The separation was performed on a Pinnacle II C18 column (250 mm × 4.6 mm with i.d. of 5 μm, Restek). The mobile phase consisted of 60% acetonitrile and 40% water (V/V), while the flow rate was set at 1.0 mL/min. The separation of LMW organic acids and ammonia was conducted by a Dionex IC-1500 Ion Chromatography interfaced with a Dionex DS6 Conductivity Detector. A Dionex IonPac AS19 column (4 mm × 250 mm) with its respective guard column (IonPac AG19, 4 mm ×50 mm) was used for the separation of LMW organic acids with a KOH gradient elution (conditioning: 5 min at 1 mM; elution: 28 min at 18 mM to 35 mM, rinsing: 5 min at 1 mM) at a flow rate of 1.0 mL/min. For ammonia analysis, a Dionex IonPac CG12A guard column (4 mm × 50 mm) connected to an IonPac CS12A analytical column (4 mm × 250 mm) was used; while eluted by 20 mM methanesulfonic acid at a flow rate of 1.0 mL/min. The Total Organic Carbon (TOC) content of the samples was determined using a TOC-LCPH analyzer (Shimadzu, Japan) through catalytic combustion oxidation at 680°C and analysis with a non-dispersive infrared detector.

3. Results and discussion

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

168

169

170

171

172

3.1. RhB degradation kinetics in different oxidation systems

The degradation of RhB in different oxidation systems including H₂O₂ alone, PS alone, UV irradiation, UV/H₂O₂, and UV/PS at neutral solution pH was investigated and compared. The degradation of RhB by H₂O₂ or PS alone was negligible, indicating that in the absence of activation these two oxidants are ineffective toward RhB at neutral pH (Fig.1). Under UV irradiation, the removal of RhB reached 45% after 6 minutes of exposure. An enhanced

to the expected generation of 'OH and/or SO₄' radicals. Remarkably, UV/H₂O₂ was more efficient than UV/PS for the removal of RhB. Only 2 minutes and 4 minutes of irradiation were necessary to decrease the concentration of RhB by 50% for UV/H₂O₂ and UV/PS process, respectively (Fig. 1a). After 15 min, approximately 96% and 87% of RhB were removed by the UV/H₂O₂ and UV/PS processes, respectively. The reactions followed pseudo-first-order kinetics (R²>0.97) (Fig. 1b) The experimental rate constants (k_{obs}) derived from the slope of $ln(C/C_0)$ versus time were 0.080, 0.150, and 0.219 min⁻¹ for UV, UV/PS, and UV/H₂O₂, respectively. 3.2. Effect of initial solution pH on the degradation kinetics The influence of initial solution pH ranging from 2 to 11 on RhB degradation in UV/H₂O₂ and UV/PS systems was investigated (Fig. S4, SI). For all pH conditions, the reaction in the two systems followed pseudo-first-order kinetics ($R^2 > 0.98$). The decay rate constant (k_{obs}) of RhB in both UV-based AOP systems significantly decreased with increasing pH (i.e., from pH 2 to 7); however, k_{obs} remained approximately constant from pH 7 to 11 (Fig. 2). This general pH trend on the degradation of RhB by AOPs was previously observed by others, i.e., UV/H₂O₂ (Daneshvar et al., 2008), UV/S₂O₈²⁻ (Chen et al., 2012), Ozone/H₂O₂ (Bai et al., 2011). The decrease in the process efficiency with increasing pH was also demonstrated for other molecules e.g., ofloxacin, levofloxacin, and thiamphenicol with UV/H₂O₂ or UV/PS (Wang et al., 2017; Liu et al., 2020). All these studies attributed this result, to a large extent, to the higher production of radicals under acidic pH conditions and the scavenging and competing reactions occurring at more alkaline pH. The role of hydroxyl ions in the complex propagation and

degradation was observed when UV irradiation was conducted in the presence of H₂O₂ or PS due

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

termination radical reaction mechanisms influencing the stability and reactivity of the produced

radical species have been well described in the above-listed publications and review articles (Stefan, 2017). The competing reactions with the formed by-products and the radical scavenging effect of carbonate species (bicarbonate and carbonate ions) at neutral and alkaline pHs produced from the degradation of the target compound (Criquet and Leitner, 2009) or possibly introduced from enhanced dissolution from atmospheric CO₂ are also of significant importance (Baeza and Knappe, 2011). The impact of carbonate species on the performance of UV/H₂O₂ and UV/PS treatment processes for contaminant degradation has been well documented (Wang et al., 2017; Nihemaiti et al., 2018).

It is also accepted that the change in molar absorptivity and quantum yield with the pH of the targeted compound can have a significant impact on the pseudo-first-order rate constant (Shen and Lin, 2003). Baeza and Knappe (2011) have noted that the impact of the pH on the UV/ H_2O_2 AOP efficiency varied depending on the presence of either the neutral or the charged form (anionic or cationic) of the molecule (i.e., as a function of pK_a), which significantly influenced the direct photolysis rate constant but had little effect on the hydroxyl radical oxidation rate. RhB is characterized by a pK_a value of 3.1 (Arbeloa and Ojeda, 1982) or 3.7 (Wang et al., 2014). Increasing the pH from 2 to 4 implies a change in the molecular conformation of RhB from its cationic form to its neutral/zwitterion form, a change that can possibly influence the degradation efficiency of both AOPs. The direct photolysis rate of RhB (k = 0.080 min⁻¹ at pH 7), which contributes to a large part of the degradation of the molecule, should not differ above pH 4. No significant change of the k_{obs} was noted from pH 7 to 11, which suggests a relatively constant contribution of the radical species to the degradation of RhB.

Results depicted in Fig.2 showed similar k_{obs} of RhB for the two AOPs at acid pH (pH<7) and high alkaline pH (pH 11). This similarity was not observed in the previous referred studies. At acid pH, 'OH and SO₄- radicals are predominant in the UV/H₂O₂ and UV/PS treatment processes, respectively. At very high pH 11, the reaction between SO₄- and OH becomes significant, converting most of SO₄- radicals to 'OH radicals (Fang et al., 2012). At pH 11, the RhB solution was subjected to 'OH radical attack only in both AOP conditions. At a solution pH ranging from 7 to 9, SO₄- and 'OH radicals were simultaneously present in the system; for this pH condition the pseudo-first-order rate constant determined under UV/H₂O₂ treatment was systematically higher than the one obtained for the UV/PS process. The nature and/or the relative abundance of the formed by-products in this pH range may differ from the two AOPs and control the degradation rate of RhB.

3.3. Effect of the initial RhB concentration and oxidant dose

The degradation efficiency of RhB at pH 7 decreased with increasing initial RhB concentration in both UV/H₂O₂ and UV/PS systems after 15 min reaction time (Fig.3a). At concentrations of 2.5, 5, 10, and 20 μ M, the degradation efficiencies in the UV/H₂O₂ system were 98.8%, 98.7%, 95.6%, and 65.3%; and 100%, 98.3%, 86.7%, and 59.0% in the UV/PS system, respectively. In the UV/H₂O₂ system, the pseudo-first-order reaction constant $k_{\rm obs}$ (R² >0.98) gradually decreased from 0.555 to 0.106 min⁻¹ as the RhB concentration increased from 2.5 to 20 μ M; while in the UV/PS system, the $k_{\rm obs}$ decreased from 0.841 to 0.085 min⁻¹, respectively. The decrease of $k_{\rm obs}$ with increasing RhB concentration can be explained as follows.

Firstly, RhB exhibits two main absorption peaks at 259 nm and 554 nm. The absorption of RhB at the UV region can hinder the efficiency of the UV-based AOPs by reducing the amount of

applied fluence. In this study, an increase in RhB concentration from 2.5 to 20 µM led to an increase of UV absorbance at 254 and 365 nm from 0.165 to 0.497 and 0.066 to 0.163, respectively, which significantly enhanced its inner filter effect and resulted in a decrease in the corresponding applied fluence by 38.9% and 15.1%, respectively. Consequently, the available UV fluence for activating H₂O₂ and PS for 'OH and SO₄' production was remarkably reduced; thus, decreasing the amount of 'OH and/or SO₄' available to react with the target compound. Secondly, the byproducts generated in solution at high RhB dose also compete with their mother compound for 'OH and SO₄' consumption and in turn decrease the overall RhB decay (Wang and Chu, 2011). These results are consistent with previous observations by Rehman et al. (2018) and Isari et al. (2018), indicating that the initial concentration of the contaminant is an important factor affecting its degradation rate. As the precursor of active radicals, the concentrations of H₂O₂ and PS play a decisive role in the overall degradation efficiency of the UV/H₂O₂ and UV/PS processes (Fig. S5, SI). Experimental results showed that increasing the H₂O₂ concentration from 10 to 200 μM, led to a considerable enhancement in the removal of RhB in the UV/H₂O₂ system (i.e., from 63% to almost 99% after 10 min treatment), resulting in a significant increase in the corresponding decay rate constant (i.e., from 0.101 to 0.408 min⁻¹ in Fig. 3b). Similar results were obtained with the UV/PS system. However, a large excess of H₂O₂ might induce enhanced scavenging effect by reacting with 'OH to produce less reactive species (conditions not studied in the current research), which in turn would decrease the degradation rate of the target contaminant (Eqs. 1 and 2) (Christensen et al., 1982; Pouran et al., 2015; Wang et al., 2017; Tian et al., 2019). Similarly, an over-dosage of PS in the system can also inhibit the process efficiency because the side reactions

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

between PS and the generated SO₄*/*OH radicals to generate S₂O₈* (Eqs. 3 and 4) become more substantial, while S₂O₈* is less reactive than SO₄*; thus, inducing a quenching effect (Liang and Su, 2009).

$$H_2O_2 + OH \rightarrow HO_2 + H_2O$$
 $k = 2.7 \times 10^7 M^{-1} S^{-1}$ (1)

$$HO_2 \cdot + \cdot OH \rightarrow O_2 + H_2O$$
 $k = 6.6 \times 10^9 \,\mathrm{M}^{-1} \mathrm{S}^{-1}$ (2)

$$SO_4^{-} + S_2O_8^{2-} \rightarrow S_2O_8^{-} + SO_4^{2-}$$
 $k = 6.1 \times 10^5 \,\mathrm{M}^{-1}\mathrm{S}^{-1}$ (3)

$${}^{\bullet}\text{OH} + \text{S}_2\text{O}_8^{2-} \rightarrow \text{S}_2\text{O}_8^{\bullet-} + \text{OH}^ k = 1.2 \times 10^7 \,\text{M}^{-1}\text{S}^{-1}$$
 (4)

263 3.4. The multi-role of Fe^{2+} as an oxidant activator

The influence of Fe²⁺ as a transition metal activator of H₂O₂ and PS on the degradation of RhB in H₂O₂, PS, UV/H₂O₂, and UV/PS systems was investigated (Fig. S6, SI). The initial solution pH was adjusted as 3 to avoid the oxidation of Fe²⁺ into Fe³⁺ and its subsequent precipitation. The calculated k_{obs} increased with increasing Fe²⁺ concentration for all conditions studied (Fig. 4). The addition of 100 μM Fe²⁺ as the activator of H₂O₂ (i.e., Fenton reagent) and PS (i.e., Fenton-like reagent), increased the k_{obs} from 0 to 0.215 min⁻¹ and 0.072 min⁻¹, respectively. The efficiency of Fenton and Fenton-like reagents for the degradation of organic contaminants has been previously well described in the literature (Chamarro et al., 2001; Xu and Li, 2010).

In the UV/H₂O₂ system, the addition of 100 μM Fe²⁺ (i.e., causing the formation of a photo-Fenton system) led to an increase in the removal of RhB from 78.1% to 99.4% in 3 min; whereby the decay rate constant significantly increased by 4-fold (i.e., from 0.421 to 1.699 min⁻¹). Compared to the UV/H₂O₂ process, the substantial improvement in the process efficiency as a result of the formation photo-Fenton system can be attributed to the additional production of 'OH radicals in two ways. One way involves the favorable 'OH radical generation by the Fe²⁺-activated

decomposition of H₂O₂ (Eq. 5). Another way providing an additional formation of 'OH radicals is due to the photoreduction of hydroxylated Fe³⁺ ions or ferrihydroxalate (Fe(OH)²⁺) (Eq. 6), which can simultaneously regenerate Fe²⁺ ions and in turn further promote the process performance (Pouran et al., 2015). For the UV/PS system, when the concentration of Fe²⁺ in solution was increased to 100 µM, the target pollutant was almost completely degraded (>99%) within 3 min, while the RhB removal in the UV/PS process without Fe²⁺ ions was only 71%. Accordingly, the decay rate constant $k_{\rm obs}$ significantly increased from 0.366 to 1.617 min⁻¹ as dosing Fe²⁺ ions from 0 to 100 µM into the system. This result indicated that the addition of Fe²⁺ to the UV/PS system remarkably enhanced the degradation efficiency of contaminants by developing a Photo-Fenton-like oxidation system. Briefly, Fe²⁺ reacted with S₂O₈²⁻ to produce more SO₄. in the UV/PS system (Eq. 7) (Liang et al., 2008). Subsequently, the formed Fe³⁺ ions led to the generation of Fe(OH)²⁺ which further photolyzed into 'OH radicals and Fe²⁺ ions; thus, accelerating the degradation of RhB (Liang et al., 2008). Compared to the traditional Fenton reaction UV activated or the H_2O_2 PS system, the Photo-Fenton-like oxidation system could significantly improve the degradation efficiency of pollutants.

$$Fe^{2+} + H_2O_2 + hv \rightarrow Fe^{3+} + {}^{\bullet}OH + HO^{-}$$
 (5)

$$Fe(OH)^{2+} + hv \rightarrow Fe^{2+} + {}^{\bullet}OH$$
 $\lambda < 580 \text{ nm}$ (6)

$$Fe^{2+} + S_2O_8^{2-} \rightarrow SO_4^{2-} + Fe^{3+} + SO_4^{--}$$
 $k = 2.0 \times 10^1 \,\mathrm{M}^{-1}\mathrm{S}^{-1}$ (7)

294 3.5. Effect of the water matrix on the degradation of RhB

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

295

296

Cl⁻, H₂PO₄⁻, NO₃⁻, and C₂O₄²- are ubiquitously present in natural water and wastewaters. They can exert varying influence on the UV-based AOPs by either acting as a radical scavenger or

inducing photochemical effect. Thus, the RhB degradation in the presence of Cl⁻, H₂PO₄⁻, C₂O₄²-, or NO₃ in both UV/H₂O₂ and UV/PS systems was investigated and compared (Fig. 5a-c). The concentration of chloride in natural water systems varies from around 1 to several mM. In some surface waters, it may reach > 20 mM (Magazinovic et al., 2004). Accordingly, 10 mM chloride was selected to investigate the effect of chloride on the process performance, while the impact of other ions was conducted under the same conditions for comparison. The addition of Cl exerted negligible impact on the UV/H₂O₂ system, as predicted from by Eqs. 8 and 9 (Atinault et al., 2008). There were some ClHO* formed by the reaction of Cl and OH; however, subsequently transformed back to 'OH. Thus, the whole system was relatively stable. The addition of Cl⁻ slightly accelerated the oxidation of RhB in the UV/PS system. A similar observation was reported by Huang et al. (2017), who showed that above 5 mM, chloride ions improved the degradation of RhB in a sulfate radical-based oxidation system. Nevertheless, an inhibitory effect at a lower chloride dosage of 0-5 mM was observed. Generally, the presence of chloride ions induces dual impact depending on the Cl⁻ concentration and the type of substrate. A low level, Cl⁻ mainly leads to a scavenging effect by reacting with SO₄* to form less reactive chlorine radicals (e.g., Cl*). Interestingly, the enhanced formation of reactive chlorine species (e.g., Cl₂* and HClO) at higher chloride dosage can compensate the consumption of SO₄. and even increase the process efficiency. When H₂PO₄ and C₂O₄² were introduced into the solution, the degradation of RhB was negatively affected in both systems. This observation could be attributed to the formation of 'H₂PO₄ and 'C₂O₄-, which showed a relatively weak reactivity towards contaminants and a certain quenching effect on 'OH and SO₄' radicals (Grgic et al., 2007; Xu and Li, 2010). Specifically, the reactivity of OH and SO₄- with H₂PO₄- was 2.0×10⁴ and 7.2×10⁴ M⁻¹s⁻¹, respectively, while their

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

respective reaction rate constants with C₂O₄²⁻ were (5.3±0.3)×10⁶ and (1.3±0.1)×10⁷ M⁻¹s⁻¹ (Getoff et al., 1971; Neta et al., 1988; Grgic et al., 2007; Grebel et al., 2010). Thus, the performance of both UV/H₂O₂ and UV/PS systems was significantly reduced by the addition of C₂O₄⁻ ions compared to that of H₂PO₄⁻ ions. Meanwhile, C₂O₄⁻ exhibited a stronger inhibition for the UV/PS process than that of the UV/H₂O₂ process due to its higher reactivity towards sulfate radicals. RhB removal efficiency was substantially increased in the presence of NO₃⁻ ions and the observed rate constant of RhB decay in the UV/H₂O₂ and UV/PS systems was 1.6 and 2.2-fold of that control tests (Fig. 5c), respectively. This significant performance enhancement resulted from the formation of additional reactive species via the NO₃⁻ photolysis (Eqs. 10-12). The main pathway of UV irradiation of NO₃⁻ ions yields hydroxyl radicals which benefit the process efficiency for the UV-based AOPs (Shankar et al., 2007; Boucheloukh et al., 2012). Other studies have also reported the promoting effect of NO₃⁻ ions on the UV-based systems (Rao et al., 2016). However, NO₂⁻ formation by UV irradiation of NO₃⁻ might be of concern for nitrate-rich waters in the present of DOM (Semitsoglou-Tsiapou et al., 2016).

$$Cl^{-} + {}^{\bullet}OH \rightarrow CIHO^{\bullet}$$
 (8)

$$CIHO^{-} \to Cl^{-} + OH$$
 $k = 6.1 \times 10^{9} M^{-1}S^{-1}$ (9)

$$NO_3^- + hv \rightarrow [NO_3^-]^* \rightarrow OONO^-$$
 (10)

$$[NO_3^-]^* \to NO_2^- + O(^3p)$$
 (11)

$$[NO_3^-]^* \to NO_2^{\bullet} + O^{\bullet} - \frac{H^2O}{} \to NO_2^{\bullet} + {}^{\bullet}OH + OH^-$$
 (12)

Dissolved Organic Matter (DOM), such as Humic Substances (HS), is known to affect the behavior of organic pollutants in the environment and engineering processes. It can induce a significant influence on the performance of UV-based AOPs process by playing multiple roles.

The presence of highly reactive aromatic moieties within the DOM decreases the effective UV fluence by acting as UV inner filter and consuming radical species (e.g., the rate constants of $k^{\bullet}_{\text{OH/NOM}}$ and $k_{\text{SO4}}^{\bullet}_{\text{NOM}}$ are 2.23×10⁸ and 6.0×10⁶ M⁻¹s⁻¹, respectively) (Westerhoff et al., 2007; Zhang et al., 2019); thus, ultimately inhibiting the degradation of contaminants. Therefore, RhB degradation in UV/H₂O₂ and UV/PS systems was investigated in the presence of the hydrophobic acid fraction isolated from the Suwannee River (HPOA-SWR). Fig. 5d illustrates the pseudo-first-order kinetics of the reaction. The presence of HPOA-SWR significantly decreased the $k_{\rm obs}$ of RhB decay in the two systems, displaying an exponential decrease in $k_{\rm obs}$ with increasing HPOA-SWR concentration. Specifically, when the concentration of DOM increased from 0 to 10 mg-C/L, the $k_{\rm obs}$ decreased by ~73% in both systems, and the removal of RhB decreased from 95.6% to 54% and from 86.7% to 46% in UV/H₂O₂ and UV/PS systems, respectively. The current experimental results demonstrated that the inhibitory effect of background DOM in the water matrix should be of special concern for the UV-based AOPs.

3.6. Predominant radicals in the oxidation systems

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

As common free radical scavengers, methanol (MeOH) can react with both 'OH and SO₄-radicals at high rate constants (k-OH/MeOH = $9.7 \times 10^8 \,\mathrm{M}^{-1}\mathrm{s}^{-1}$ and $k_{\mathrm{SO4}\text{--/MeOH}} = 1.1 \times 10^7 \,\mathrm{M}^{-1}\mathrm{s}^{-1}$) (Buxton et al., 1988; Neta et al., 1988); thus, effectively quenching these two radicals. Tert-butyl alcohol (TBA) exhibited a higher reaction rate with 'OH (k-OH/TBA = $(3.8-7.6)\times 10^8 \,\mathrm{M}^{-1}\mathrm{S}^{-1}$), which was considerably higher than that with SO₄- $(k_{\mathrm{SO4}\text{---/TBA}} = (4.0-9.1)\times 10^5 \,\mathrm{M}^{-1}\mathrm{S}^{-1}$) (Anipsitakis and Dionysiou, 2004). Consequently, for processes involving the contribution of both 'OH and SO₄-radicals, TBA could selectively capture 'OH to inhibit the oxidation reaction and thereby the

specific role of 'OH and SO₄' can be distinguished based on the different decay efficiencies. In the UV/PS process, two main reactive radicals were generated: SO₄' and 'OH, both participating in the reaction. To identify the predominant radicals in the UV/PS system, MeOH was separately added to the solution at a ratio of 3000:1 and 1000:1 to oxidants, respectively. A similar approach was conducted for TBA. Fig. 6 illustrates the comparative decay of the target contaminant with and without radical scavengers in UV/H₂O₂ and UV/PS systems.

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

Experimental results showed that both TBA and MeOH were effective 'OH scavengers. However, MeOH exhibited a higher scavenging capacity of radicals than TBA; thus, playing a more important role in the inhibition of RhB decay. The degradation of RhB in the UV/H₂O₂ process-significantly decreased from 96% to 17% and 46% after adding 50 mM MeOH and TBA (Fig. 6a), respectively. Increasing the concentration of TBA to 150 mM further reduced the process efficiency by approximately 10%, while the addition of 150 mM MeOH led to insignificant decrease in the RhB removal compared with that of 50 mM MeOH, suggesting that *OH radicals generated in the UV/H₂O₂ process were almost completely quenched by 50 mM MeOH. Radical scavenging experiments in the UV/H₂O₂ process indicated that 'OH radicals contributed to almost 82% of RhB decay. In the UV/PS process, the addition of 50 mM MeOH and TBA inhibited the process efficiency by 78% and 35.6%, respectively (Fig. 6b). The remarkable difference between these two quenchers in the inhibitory effect on the RhB removal suggested that both SO₄ and OH radicals were involved in the degradation of RhB. Moreover, the considerably more pronounced inhibition upon the addition of MeOH indicated the predominant role of SO₄ radicals in the UV/PS process. When the molar ratio of MeOH or TBA to PS increased from 1000:1 to 3000:1, the change in the removal of RhB was negligible. This result confirmed that the system had relatively lower production of 'OH and the low concentration of quencher was sufficient. Based on the quenching experimental results, the contribution of SO₄-, 'OH, and direct photolysis to the degradation of RhB in the UV/PS process was determined as 40%, 31%, and 16%, respectively. Moreover, this comparison found that the two quenchers displayed a stronger inhibitory impact on the UV/H₂O₂ system, indicating a higher yield of 'OH in this system.

To further investigate the production of reactive species in UV/H₂O₂ and UV/PS systems, NB and BA were used as radical probes. NB could selectively react with 'OH following a second order rate constant of 3.9×10⁹ M⁻¹S⁻¹, while BA reacts with both 'OH and SO₄' with second order rate constants of 5.9×10⁹ and 1.2×10⁹ M⁻¹S⁻¹, respectively (Guan et al., 2011). The detailed calculation of 'OH and SO₄' can be found in Text S1. The degradation of NB and BA in the tests followed pseudo-first-order kinetics (R² >0.99) (Fig. 6c and 6d). Hence, the steady-state concentration of 'OH was calculated as 4.04×10⁻¹³ and 2.73×10⁻¹³ M in UV/H₂O₂ and UV/PS systems, respectively. The concentration of SO₄' in the UV/PS system was 7.34×10⁻¹³ M. These results confirmed the predominant roles of 'OH and SO₄' in UV/H₂O₂ and UV/PS processes, respectively.

3.7. Intermediate identification and plausible mechanisms

To explore the mechanism of RhB degradation in the UV/H₂O₂ and UV/PS processes, the initial concentration of oxidants and RhB was increased to a relatively higher concentration of 1 mM and 0.2 mM, respectively. Simultaneously, the TOC removal and the production of some RhB decomposition intermediates (e.g., low molecular weight organic acids) were recorded by TOC analyzer and IC (Fig. 7). After 4 h of treatment, the degradation efficiencies of the RhB in

both UV/H₂O₂ and UV/PS processes were almost 100% and the TOC removal was 50% and 60%, respectively. During the degradation/decolorization of the RhB in both processes, a rapid depletion in the two characteristic absorbance peaks (i.e., 259 nm at UV region and 554 nm at the visible light region) of the RhB was observed (spectra shown in Fig. S7, SI), which corresponded to the destruction of aromatic and the chromophore structures (i.e., C=N and C=O groups) (Jiang et al., 2018), respectively. Meanwhile, five degradation intermediates were identified including one inorganic ion (i.e., NH₄+) and four LMW organic acids, i.e., formate (HCOO-), acetate (CH_3COO^-) , oxalate $(C_2O_4^{2-})$, and lactate $(C_3H_5O_3^-)$. These small organic acids generally resulted from the subsequent oxidation of longer-chain carboxylic acids, such as maleic and fumaric acids, upon the benzene ring opening. Therefore, the degradation of RhB could be attributed to the destruction of the conjugated groups and the N-de-ethylation upon attack by reactive radical species like SO₄ and OH, causing the generation of some carboxylic acids by opening the benzene rings, where the organic nitrogen could be oxidized to form NH₄⁺ after the N-position de-ethylation in the molecules. A first formation and then decay curve was observed for lactic acid (i.e., C₃H₅O₃-) in both

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

A first formation and then decay curve was observed for lactic acid (i.e., C₃H₅O₃⁻) in both UV/H₂O₂ and UV/PS processes. The generation of C₃H₅O₃⁻ rapidly reached a maximum of 40.6 μM at 5 min in the UV/PS system, and then decreased. However, the yield of C₃H₅O₃⁻ in the UV/H₂O₂ process was significantly lower with a peak concentration of 11.7 μM after 2 h. The amount of all other small carboxylic acids showed an increasing formation trend as a function of reaction time in both processes. Specifically, C₃H₅O₃⁻ was one of the intermediates formed before RhB was mineralized into HCOO⁻ and CH₃COO⁻ (smaller molecular weight). The subsequent decomposition of these intermediates upon further attack by radicals lead to a significant

accumulation of HCOO⁻ and CH₃COO⁻ in both UV/H₂O₂ and UV/PS processes (Fig. 7). By comparison, the yield of HCOO⁻ and CH₃COO⁻ in the UV/PS system was approximately 1.5-fold higher than that in the UV/H₂O₂ system. Meanwhile, a gradual accumulation of NH₄⁺ ions was recorded in both systems due to the oxidation of the N-de-ethylation. As subsequent oxidation took place, NH₄⁺ ions can be further converted into NO₃⁻ ions which were not detected in the current study. The buildup of NH₄⁺ ions after 4 h reached 26.3 and 52.8 μM in UV/H₂O₂ and UV/PS processes, respectively. The relatively higher transformation efficiency and more production of end products in the UV/PS process indicated that at higher concentrations of both contaminants and oxidants, the UV/PS process displayed a better performance and oxidability for the RhB transformation.

4. Conclusions

In this study, UV light was used to activate H₂O₂ and PS to degrade the RhB dye in aqueous solution through the formation of 'OH and SO4' radicals; whereby, the removal efficiency of RhB in the two systems and under different conditions were compared. The results showed that: (1) Both UV/H₂O₂ and UV/PS processes displayed a good performance on the degradation of RhB, and the decay followed pseudo-first-order kinetics. The removal of RhB decreased with increasing pH, where the optimum pH value was 2 in both systems. In a certain range, the degradation efficiency increased with increasing oxidant concentration and decreasing initial concentration of RhB. The formation of photo-Fenton and photo-Fenton-like systems by adding Fe²⁺ facilitated the oxidation performance. HS remarkably suppressed the process efficiency by acting as UV inner filter and radical sink. The addition of Cl- had no significant impact on the UV/H₂O₂ process; however, it slightly promoted the degradation in

the UV/PS system. The presence of NO_3^- substantially facilitated the oxidation of RhB in both processes, while $H_2PO_4^-$ and $C_2O_4^{2-}$ showed the opposite effect.

- (2) Suppression tests by adding MeOH and TBA as radical scavengers and competition kinetic tests by using NB and BA as relevant radical probes confirmed the dominant role of SO_4 -radicals in the UV/PS process. The steady-state concentration of 'OH was calculated as 4.04×10^{-13} and 2.73×10^{-13} M in UV/H₂O₂ and UV/PS systems, respectively, while the yield of SO_4 in the UV/PS system was 7.34×10^{-13} M in the presence of 1 μ M radical probes, 10 μ M RhB, and 50 μ M oxidants at pH 7 in aqueous solution.
- (3) The UV/PS process led to a relative higher TOC removal compared to that of the UV/H₂O₂ process in the current study. The transformation of RhB gave rise to the accumulation of LMW carboxylic acids (e.g., formic acid, acetic acid, and oxalic acid) and the formation of inorganic ions (i.e., NH₄+). Accordingly, the degradation of RhB could be attributed to the opening of the benzene rings and the oxidation of the organic nitrogen upon attack by SO₄- and OH radical species, resulting in the generation of LMW carboxylic acids and NH₄+ as transformation products.

Acknowledgments

The research reported in this work was supported by the National Natural Science Foundation of China (No.51508317), the Fundamental Research Funds for the Central Universities (GK201802108), China Postdoctoral Science Foundation (No.2016M602762), and the Special Financial Grant from the Shaanxi Postdoctoral Science Foundation (No.2017BSHTDZZ09).

References

- Anipsitakis, G.P., Dionysiou, D.D., 2004. Radical generation by the interaction of transition metals with common oxidants. Environ. Sci. Technol. 38, 3705-3712.
- 470 Arbeloa, I.L., Ojeda, P.R., 1982. Dimer states of Rhodamine B. Chem. Phys. Lett. 87, 556-560.
- Atinault, E., De Waele, V., Schmidhammer, U., Fattahi, M., Mostafavi, M., 2008. Scavenging of es and
- 472 OH· radicals in concentrated HCl and NaCl aqueous solutions. Chem. Phys. Lett. 460, 461-465.
- Baeza, C., Knappe, D.R.U., 2011. Transformation kinetics of biochemically active compounds in
- low-pressure UV Photolysis and UV/H2O2 advanced oxidation processes. Water Res. 45,
- 475 4531-4543.
- Bai, C.P., Xiong, X.F., Gong, W.Q., Feng, D.X., Xian, M., Ge, Z.X., Xu, N., 2011. Removal of rhodamine B by ozone-based advanced oxidation process. Desalination 278, 84-90.
- Bolton, J.R., Stefan, M.I., Shaw, P.-S., Lykke, K.R., 2011. Determination of the quantum yields of the
- potassium ferrioxalate and potassium iodide-iodate actinometers and a method for the calibration
- of radiometer detectors. J. Photoch. Photobio. A 222, 166-169.
- 481 Boucheloukh, H., Sehili, T., Kouachi, N., Djebbar, K., 2012. Kinetic and analytical study of the
- photo-induced degradation of monuron by nitrates and nitrites under irradiation or in the dark.
- 483 Photoch. Photobio. Sci. 11, 1339-1345.
- Buxton, G.V., Clive L, G., W, P.H., Alberta B, R., 1988. Critical Review of rate constants for reactions
- 485 of hydrated electrons, hydrogen atoms and hydroxyl radicals (OH/O⁻ in Aqueous Solution. J.
- 486 Phys. Chem. Ref. Data 17, 513-886.
- Chamarro, E., Marco, A., Esplugas, S., 2001. Use of Fenton reagent to improve organic chemical biodegradability. Water Res. 35, 1047-1051.
- Chen, X., Xue, Z., Yao, Y., Wang, W., Zhu, F., Hong, C., 2012. Oxidation Degradation of Rhodamine B in Aqueous by UV/S2O82- Treatment System. International Journal of Photoenergy, 1-5.
- 491 Christensen, H., Sehested, K., Corfitzen, H., 1982. Reactions of hydroxyl radicals with hydrogen peroxide at ambient and elevated temperatures. J. Phys. Chem. 86, 1588-1590.
- 493 Criquet, J., Leitner, N.K.V., 2009. Degradation of acetic acid with sulfate radical generated by persulfate ions photolysis. Chemosphere 77, 194-200.
- Daneshvar, N., Behnajady, M.A., Mohammadi, M.K.A., Dorraji, M.S.S., 2008. UV/H₂O₂ treatment of
- Rhodamine B in aqueous solution: Influence of operational parameters and kinetic modeling.
- 497 Desalination 230, 16-26.
- 498 Dong, W.Y., Lee, C.W., Lu, X.C., Sun, Y.J., Hua, W.M., Zhuang, G.S., Zhang, S.C., Chen, J.M., Hou,
- 499 H.Q., Zhao, D.Y., 2010. Synchronous role of coupled adsorption and photocatalytic oxidation on
- ordered mesoporous anatase TiO_2 - SiO_2 nanocomposites generating excellent degradation activity
- of RhB dye. Appl. Catal. B Environ. 95, 197-207.
- 502 Fang, G.-D., Dionysiou, D.D., Wang, Y., Al-Abed, S.R., Zhou, D.-M., 2012. Sulfate radical-based
- degradation of polychlorinated biphenyls: Effects of chloride ion and reaction kinetics. J. Hazard
- 504 Mater. 227, 394-401.
- Getoff, N., F. Schworer, V.M. Markovic, K. Sehested, Nielsen, S.O., 1971. Pulse radiolysis of oxalic
- acid and oxalates. J. Phys. Chem. 75, 749-755.

- 507 GilPavas, E., Dobrosz-Gomez, I., Gomez-Garcia, M.-A., 2019. Optimization and toxicity assessment of
- a combined electrocoagulation, H₂O₂/Fe²⁺/UV and activated carbon adsorption for textile
- wastewater treatment. Sci. Total Environ. 651, 551-560.
- 510 Grebel, J.E., Pignatello, J.J., Mitch, W.A., 2010. Effect of Halide Ions and Carbonates on Organic
- 511 Contaminant Degradation by Hydroxyl Radical-Based Advanced Oxidation Processes in Saline
- 512 Waters. Environ. Sci. Technol. 44, 6822-6828.
- 513 Grgic, I., Podkrajsek, B., Barzaghi, P., Herrmann, H., 2007. Scavenging of SO₄- radical anions by
- 514 mono- and dicarboxylic acids in the Mn(II)-catalyzed S(IV) oxidation in aqueous solution. Atmos.
- 515 Environ. 41, 9187-9194.
- 516 Guan, Y.-H., Ma, J., Li, X.-C., Fang, J.-Y., Chen, L.-W., 2011. Influence of pH on the Formation of
- Sulfate and Hydroxyl Radicals in the UV/Peroxymonosulfate System. Environ. Sci. Technol. 45,
- **518** 9308-9314.
- He, Z., Sun, C., Yang, S., Ding, Y., He, H., Wang, Z., 2009. Photocatalytic degradation of rhodamine B
- by Bi2WO6 with electron accepting agent under microwave irradiation: Mechanism and pathway.
- 521 J. Hazard Mater. 162, 1477-1486.
- 522 Hu, L., Deng, G., Lu, W., Lu, Y., Zhang, Y., 2017. Peroxymonosulfate activation by
- 523 Mn₃O₄/metal-organic framework for degradation of refractory aqueous organic pollutant
- rhodamine B. Chinese Journal of Catalysis 38, 1360-1372.
- Huang, Y., Wang, Z., Liu, Q., Wang, X., Yuan, Z., Liu, J., 2017. Effects of chloride on PMS-based
- pollutant degradation: A substantial discrepancy between dyes and their common decomposition
- intermediate (phthalic acid). Chemosphere 187, 338-346.
- 528 Isari, A.A., Payan, A., Fattahi, M., Jorfi, S., Kakavandi, B., 2018. Photocatalytic degradation of
- rhodamine B and real textile wastewater using Fe-doped TiO2 anchored on reduced graphene
- oxide (Fe-TiO₂/rGO): Characterization and feasibility, mechanism and pathway studies. Appl.
- 531 Surf. Sci. 462, 549-564.
- Jiang, L., Zhang, Y., Zhou, M., Liang, L., Li, K., 2018. Oxidation of Rhodamine B by persulfate
- activated with porous carbon aerogel through a non-radical mechanism. J. Hazard Mater. 358,
- 534 53-61.
- 535 Keen, O.S., Linden, K.G., 2013. Degradation of Antibiotic Activity during UV/H₂O₂ Advanced
- Oxidation and Photolysis in Wastewater Effluent. Environ. Sci. Technol. 47, 13020-13030.
- 537 Khan, S., He, X., Khan, J.A., Khan, H.M., Boccelli, D.L., Dionysiou, D.D., 2017. Kinetics and
- mechanism of sulfate radical- and hydroxyl radical-induced degradation of highly chlorinated
- pesticide lindane in UV/peroxymonosulfate system. Chem. Eng. J. 318, 135-142.
- 540 Kim, M.H., Hwang, C.-H., Bin Kang, S., Kim, S., Park, S.W., Yun, Y.-S., Won, S.W., 2015. Removal of
- hydrolyzed Reactive Black 5 from aqueous solution using a polyethylenimine-polyvinyl chloride
- 542 composite fiber. Chem. Eng. J. 280, 18-25.
- 543 Liang, C., Su, H.-W., 2009. Identification of Sulfate and Hydroxyl Radicals in Thermally Activated
- Persulfate. Ind. Eng. Chem. Res. 48, 5558-5562.
- Liang, C.J., Lee, I.L., Hsu, I.Y., Liang, C.P., Lin, Y.L., 2008. Persulfate oxidation of trichloroethylene
- with and without iron activation in porous media. Chemosphere 70, 426-435.
- 547 Liu, X., Liu, Y., Lu, S., Wang, Z., Wang, Y., Zhang, G., Guo, X., Guo, W., Zhang, T., Xi, B., 2020.
- Degradation difference of ofloxacin and levofloxacin by UV/H₂O₂ and UV/PS (persulfate):
- Efficiency, factors and mechanism. Chem. Eng. J. 385.

- 550 Magazinovic, R.S., Nicholson, B.C., Mulcahy, D.E., Davey, D.E., 2004. Bromide levels in natural
- waters: its relationship to levels of both chloride and total dissolved solids and the implications for
- water treatment. Chemosphere 57, 329-335.
- Masi, F., Rizzo, A., Bresciani, R., Martinuzzi, N., Wallace, S.D., Van Oirschot, D., Macor, F., Rossini,
- T., Fornaroli, R., Mezzanotte, V., 2019. Lessons learnt from a pilot study on residual dye removal
- by an aerated treatment wetland. Sci. Total Environ. 648, 144-152.
- Nestmann, E.R., Douglas, G.R., Matula, T.I., Grant, C.E., Kowbel, D.J., 1979. Mutagenic activity of
- rhodamine dyes and their impurities as detected by mutation induction in Salmonella and DNA
- damage in Chinese hamster ovary cells. Cancer Res. 39, 4412-4417.
- Neta, P., Huie, R.E., Ross, A.B., 1988. Rate constants for reactions of inorganic radicals in aqueous
- solution. J. Phys. Chem. Ref. Data 17, 1027-1284.
- Nihemaiti, M., Miklos, D.B., Huebner, U., Linden, K.G., Drewes, J.E., Croue, J.-P., 2018. Removal of
- trace organic chemicals in wastewater effluent by UV/H₂O₂ and UV/PDS. Water Res. 145,
- 563 487-497.
- Pouran, S.R., Aziz, A.R.A., Daud, W.M.A.W., 2015. Review on the main advances in photo-Fenton
- oxidation system for recalcitrant wastewaters. J. Ind. Eng. Chem. 21, 53-69.
- Rao, Y., Han, F., Chen, Q., Wang, D., Xue, D., Wang, H., Pu, S., 2019. Efficient degradation of
- diclofenac by LaFeO3-Catalyzed peroxymonosulfate oxidation-kinetics and toxicity assessment.
- 568 Chemosphere 218, 299-307.
- Rao, Y.F., Xue, D., Pan, H.M., Feng, J.T., Li, Y.J., 2016. Degradation of ibuprofen by a synergistic
- 570 UV/Fe(III)/Oxone process. Chem. Eng. J. 283, 65-75.
- 571 Rasheed, T., Bilal, M., Iqbal, H.M.N., Shah, S.Z.H., Hu, H., Zhang, X., Zhou, Y., 2018.
- 572 TiO₂/UV-assisted rhodamine B degradation: putative pathway and identification of intermediates
- by UPLC/MS. Environmental Technology 39, 1533-1543.
- 874 Rehman, F., Sayed, M., Khan, J.A., Shah, N.S., Khan, H.M., Dionysiou, D.D., 2018. Oxidative removal
- of brilliant green by UV/S₂O₈²⁻, UV/HSO₅⁻ and UV/H₂O₂ processes in aqueous media: A
- 576 comparative study. J. Hazard Mater. 357, 506-514.
- 577 Semitsoglou-Tsiapou, S., Mous, A., Templeton, M.R., Graham, N.J.D., Leal, L.H., Kruithof, J.C., 2016.
- 578 The role of natural organic matter in nitrite formation by LP-UV/H₂O₂ treatment of nitrate-rich
- 579 water. Water Res. 106, 312-319.
- 580 Shankar, M.V., Nelieu, S., Kerhoas, L., Einhorn, J., 2007. Photo-induced degradation of diuron in
- aqueous solution by nitrites and nitrates: Kinetics and pathways. Chemosphere 66, 767-774.
- 582 Shen, Y.-S., Lin, C.-C., 2003. The effect of pH on the decomposition of hydrophenols in aqueous
- solutions by ultraviolet direct photolysis and the ultraviolet-hydrogen peroxide process. Water
- environment research : a research publication of the Water Environment Federation 75, 54-60.
- 585 Stefan, M.I., 2017. Advanced Oxidation Processes for Water Treatment: Fundamentals and
- 586 Applications. IWA Publishing.
- 587 Su, S.N., Guo, W.L., Leng, Y.Q., Yi, C.L., Ma, Z.M., 2013. Heterogeneous activation of Oxone by
- CoxFe₃-xO₄ nanocatalysts for degradation of rhodamine B. J. Hazard Mater. 244, 736-742.
- Tian, F.-X., Ma, S.-X., Xu, B., Hu, X.-J., Xing, H.-B., Liu, J., Wang, J., Li, Y.-Y., Wang, B., Jiang, X.,
- 590 2019. Photochemical degradation of iodate by UV/H₂O₂ process: Kinetics, parameters and
- enhanced formation of iodo-trihalomethanes during chloramination. Chemosphere 221, 292-300.
- Wang, C., Hofmann, M., Safari, A., Viole, I., Andrews, S., Hofmann, R., 2019. Chlorine is preferred
- over bisulfite for H₂O₂ quenching following UV-AOP drinking water treatment. Water Res. 165.

- Wang, F.G., Wang, W.J., Yuan, S.J., Wang, W., Hu, Z.H., 2017. Comparison of UV/H₂O₂ and UV/PS
- processes for the degradation of thiamphenical in aqueous solution. J. Photoch. Photobio. A 348,
- **596** 79-88.
- Wang, P., Cheng, M., Zhang, Z., 2014. On different photodecomposition behaviors of rhodamine B on
- laponite and montmorillonite clay under visible light irradiation. Journal of Saudi Chemical
- 599 Society 18, 308-316.
- Wang, Y.R., Chu, W., 2011. Degradation of a xanthene dye by Fe(II)-mediated activation of Oxone process. J. Hazard Mater. 186, 1455-1461.
- Westerhoff, P., Mezyk, S.P., Cooper, W.J., Minakata, D., 2007. Electron pulse radiolysis determination
- of hydroxyl radical rate constants with Suwannee river fulvic acid and other dissolved organic
- matter isolates. Environ. Sci. Technol. 41, 4640-4646.
- Xu, X.-R., Li, X.-Z., 2010. Degradation of azo dye Orange G in aqueous solutions by persulfate with
- ferrous ion. Sep. Purif. Technol. 72, 105-111.
- Zhang, T., Chen, Y., Wang, Y., Le Roux, J., Yang, Y., Croue, J.-P., 2014. Efficient Peroxydisulfate
- Activation Process Not Relying on Sulfate Radical Generation for Water Pollutant Degradation.
- Environ. Sci. Technol. 48, 5868-5875.
- Zhang, T., Zhu, H., Croue, J.-P., 2013. Production of Sulfate Radical from Peroxymonosulfate Induced
- by a Magnetically Separable CuFe₂O₄ Spinel in Water: Efficiency, Stability, and Mechanism.
- Environ. Sci. Technol. 47, 2784-2791.
- Zhang, Y., Luo, G., Wang, Q., Zhang, Y., Zhou, M., 2020. Kinetic study of the degradation of
- rhodamine B using a flow-through UV/electro-Fenton process with the presence of
- ethylenediaminetetraacetic acid. Chemosphere 240.
- Zhang, Y., Xiao, Y., Zhong, Y., Lim, T.-T., 2019. Comparison of amoxicillin photodegradation in the
- VV/H_2O_2 and VV/persulfate systems: Reaction kinetics, degradation pathways, and antibacterial
- 618 activity. Chem. Eng. J. 372, 420-428.
- 619 Zhao, X., Jiang, J., Pang, S., Guan, C., Li, J., Wang, Z., Ma, J., Luo, C., 2019. Degradation of
- 620 iopamidol by three UV-based oxidation processes: Kinetics, pathways, and formation of iodinated
- disinfection byproducts. Chemosphere 221, 270-277.
- 622 Zhou, X., Zhou, Y., Liu, J., Song, S., Sun, J., Zhu, G., Gong, H., Wang, L., Wu, C., Li, M., 2019. Study
- on the pollution characteristics and emission factors of PCDD/Fs from disperse dye production in
- 624 China. Chemosphere 228, 328-334.

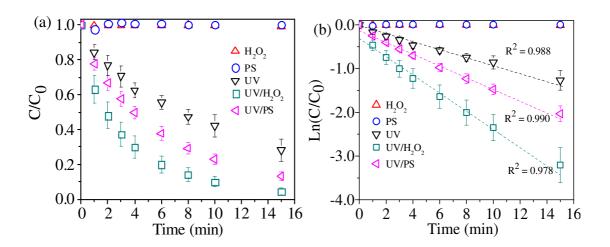


Fig. 1. (a) Relative degradation, and (b) pseudo-first-order kinetics of RhB in different oxidation

systems. ([RhB]
$$_0$$
 = 10 μ M, [H $_2$ O $_2$] $_0$ = [PS] $_0$ = 50 μ M, pH = 7)

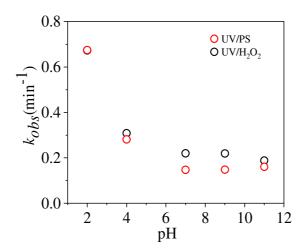


Fig. 2. Pseudo-first-order rate constant of RhB degradation under different initial solution pH in

 UV/H_2O_2 and UV/PS systems. ([RhB] $_0$ = 10 $\mu M,\,[H_2O_2]_0$ = [PS] $_0$ = 50 $\mu M,\,pH$ = 7)

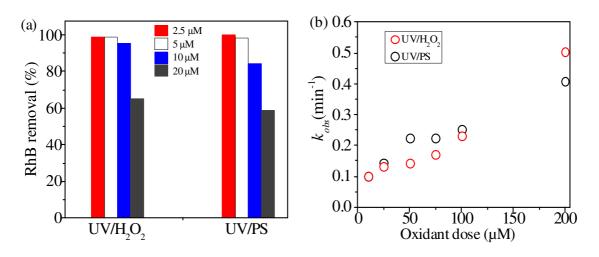


Fig. 3. RhB removal in UV/H₂O₂ and UV/PS systems under various (a) initial RhB concentration and (b)

varying oxidant dose. ([H_2O_2]₀ = [PS]₀ = 50 μ M, pH = 7)

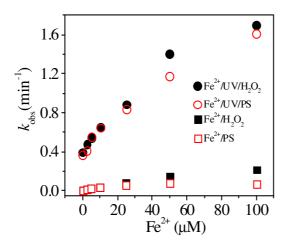


Fig. 4. Comparison of the pseudo-first-order rate constant (k_{obs}) of RhB degradation in different oxidation systems in the presence of Fe²⁺ as a transition metal activator. ([RhB]₀ = 10 μ M, [H₂O₂]₀ = [PS]₀ = 50 μ M, pH = 3)

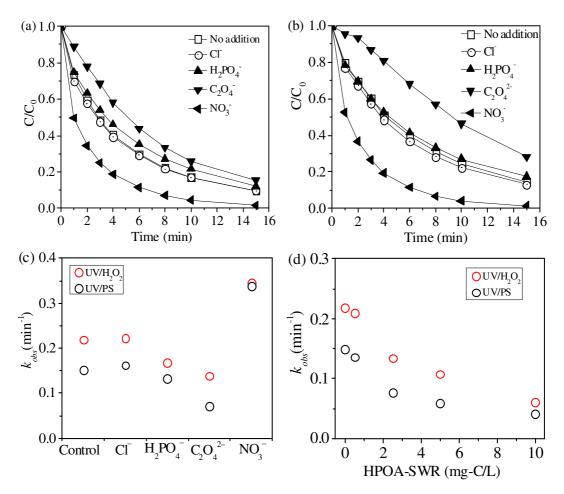


Fig. 5. Effect of different anions on the degradation of RhB in (a) UV/H₂O₂ and (b) UV/PS systems and the pseudo-first-order rate constants of RhB degradation in the presence of different anions (c) and varying concentrations of HPOA-SWR (d). ([RhB]₀ = 10 μ M, [H₂O₂]₀ = [PS]₀ = 50 μ M, [Cl⁻]₀ = [H₂PO₄⁻]₀ = [C₂O₄²-]₀ = [NO₃⁻]₀ = 10 mM, pH=7)

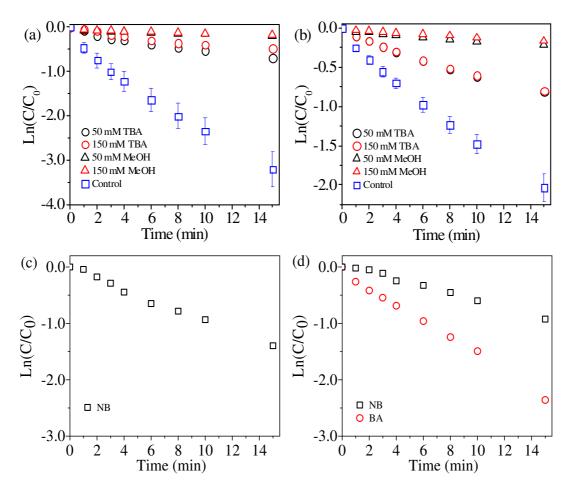


Fig. 6. The degradation of RhB in the presence of TBA or MeOH in (a) UV/H₂O₂ and (b) UV/PS systems, and the reaction kinetics of NB and BA degradation in the presence of 10 μ M RhB in (c) UV/H₂O₂ and (d) UV/PS systems. ([RhB]₀ = 10 μ M, [H₂O₂]₀ = [PS]₀ = 50 μ M, [NB]₀ = [BA]₀ = 1 μ M, pH = 7)

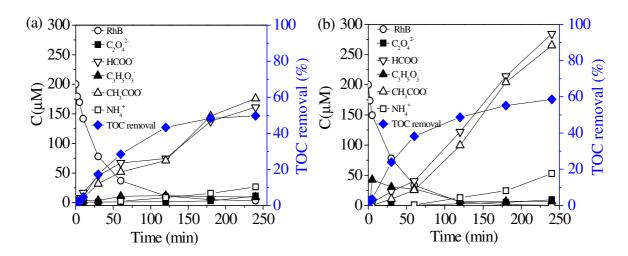
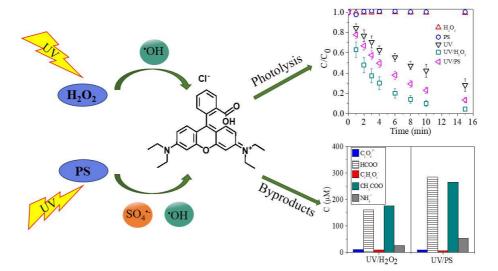



Fig. 7. Degradation and transformation of RhB and the subsequent formation of small molecular acids and NH_4^+ in (a) UV/H_2O_2 and (b) UV/PS systems. ([RhB] $_0 = 0.2$ mM, [H $_2O_2$] $_0 = [PS]_0 = 1$ mM, pH = 7)

Graphical Abstract

