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Hyperspectral imaging opens the opportunity in analytical chemistry to investigate always more complex samples by the use of Multivariate Curve Resolution -Alternating Least Squares (MCR-ALS) and other signal unmixing techniques, but not without difficulties. Nowadays, one of the principal challenges regarding this kind of analysis is the awkward estimation of the correct chemical rank of the dataset, which represents the total number of pure compounds present in the chemical system. Despite the existence of various algorithms able to focus on this rank evaluation, the method very often used for this task is finally quite simple since it is based on the observation of the eigenvalues generated by the Principal Component Analysis (PCA). Although this method has shown some potential for rank evaluation, it is still difficult to use it on complex and big datasets or when the signal to noise ratio is relatively weak. In this paper, we introduce a new method, based on the SIMPLE-to-use Self-modeling Mixture Analysis (SIMPLISMA) algorithm that we call Randomised SIMPLISMA. The main idea is thus to use random selections of spectra from the initial dataset and to apply the SIMPLISMA approach to each of them. At the end of this step, all selected spectra are

2 observed using PCA where observed clusters can potentially be highlighted and exploited for the tasks we are interested in. With the present paper, we want to highlight in particular the possibility of an easier rank estimation and initial estimates generation when this approach is considered. Datasets of different complexity acquired with various spectroscopic techniques will be explored in order to evaluate the potential of this approach.

INTRODUCTION

Nowadays, hyperspectral imaging is a useful technique employed in analytical chemistry with the aim to deeply investigate complex matrices of various types [START_REF] Lu | Medical hyperspectral imaging: a review[END_REF][START_REF] Gowen | Hyperspectral imaging -an emerging process analytical tool for food quality and safety control[END_REF][START_REF] Studer | Compressive fluorescence microscopy for biological and hyperspectral imaging[END_REF][START_REF] Liang | Advances in multispectral and hyperspectral imaging for archaeology and art conservation[END_REF][START_REF] Edelman | Hyperspectral imaging for non-contact analysis of forensic traces[END_REF][START_REF] Elmasry | Hyperspectral imaging for nondestructive determination of some quality attributes for strawberry[END_REF]. In this perspective, one of the most important tasks is to decompose the spectra of mixtures into purest contributions of the components present in the matrix [START_REF] Awa | Self-modeling curve resolution (SMCR) analysis of near-infrared (NIR) imaging data of pharmaceutical tablets[END_REF][START_REF] Vajna | Comparison of chemometric methods in the analysis of pharmaceuticals with hyperspectral Raman imaging[END_REF][START_REF] Zhang | Multivariate Curve Resolution Applied to Hyperspectral Imaging Analysis of Chocolate Samples[END_REF][START_REF] Siddiqi | Use of hyperspectral imaging to distinguish normal, precancerous, and cancerous cells[END_REF][START_REF] Amigo | Hyperspectral Imaging and Chemometrics[END_REF]. Among all the available techniques used with the purpose of spectral unmixing (also called source separation method in the signal processing community), Multivariate Curve Resolution -Alternating Least Squares (MCR-ALS) [START_REF] Tauler | Selectivity, local rank, three-way data analysis and ambiguity in multivariate curve resolution[END_REF][START_REF] Jaumot | A graphical user-friendly interface for MCR-ALS: a new tool for multivariate curve resolution in MATLAB[END_REF][START_REF] De Juan | Multivariate Curve Resolution (MCR) from 2000: Progress in Concepts and Applications[END_REF][START_REF] Jaumot | MCR-ALS GUI 2.0: New features and applications[END_REF] is probably the most suitable method applied in the chemometrics community, as shown in many works, to datasets acquired with various techniques, for instance, separation methods [START_REF] Berbel | Multivariate Resolution of Coeluted Peaks in Hyphenated Liquid Chromatography -Linear Sweep Voltammetry[END_REF][START_REF] De Juan | Multivariate Curve Resolution (MCR). Solving the mixture analysis problem[END_REF][START_REF] Johnson | Three-way data analysis of pollutant degradation profiles monitored using liquid chromatography-diode array detection[END_REF], and different spectroscopies such as Raman [START_REF] Xie | Characterization of Mannitol Polymorphic Forms in Lyophilized Protein Formulations Using a Multivariate Curve Resolution (MCR)-Based Raman Spectroscopic Method[END_REF][START_REF] Fega | Application of Raman Multivariate Curve Resolution to Solvation-Shell Spectroscopy[END_REF], UV-Vis [START_REF] Mas | Photodegradation study of decabromodiphenyl ether by UV spectrophotometry and a hybrid hard-and soft-modelling approach[END_REF][START_REF] Jayaraman | Study of the photodegradation of 2-bromophenol under UV and sunlight by spectroscopic, chromatographic and chemometric techniques[END_REF], Mid-Infrared (MIR), Near Infrared (NIR) [START_REF] Navea | Modeling Temperature-Dependent Protein Structural Transitions by Combined Near-IR and Mid-IR Spectroscopies and Multivariate Curve Resolution[END_REF][START_REF] Ruckebusch | Time-Resolved Step-Scan FT-IR Spectroscopy: Focus on Multivariate Curve Resolution[END_REF][START_REF] Czarnik-Matusewicz | Temperature-dependent water structural transitions examined by near-IR and mid-IR spectra analyzed by multivariate curve resolution and two-dimensional correlation spectroscopy[END_REF][START_REF] De Beer | In-line and real-time process monitoring of a freeze drying process using Raman and NIR spectroscopy as complementary process analytical technology (PAT) tools[END_REF], fluorescence [START_REF] Bosco | Resolution of phenol, and its di-hydroxyderivative mixtures by excitation-emission fluorescence using MCR-ALSApplication to the quantitative monitoring of phenol photodegradation[END_REF] and even on very specific techniques such as ion mobility spectrometry (IMS) [START_REF] Cao | SIMPLISMA and ALS applied to two-way nonlinear wavelet compressed ion mobility spectra of chemical warfare agent simulants[END_REF]. In a natural way, MCR-ALS is also widely applied to the resolution of hyperspectral images [START_REF] Duponchel | Multivariate Curve Resolution Methods in Imaging Spectroscopy: Influence of Extraction Methods and Instrumental Perturbations[END_REF][START_REF] Piqueras | Monitoring polymorphic transformations by using in situ Raman hyperspectral imaging and image multiset analysis[END_REF][START_REF] Piqueras | Resolution and segmentation of hyperspectral biomedical images by Multivariate Curve Resolution-Alternating Least Squares[END_REF][START_REF] Zhang | Quantitative Vibrational Imaging by Hyperspectral Stimulated Raman Scattering Microscopy and Multivariate Curve Resolution Analysis[END_REF]. The basic assumption of MCR-ALS is that the considered data matrix or the multicomponent system has to follow a bilinear model in order to propose its decomposition into the pure individual contributions of concentration profiles and corresponding pure spectra. Despite this great potential, it is well-known that non-unique solutions can be potentially extracted through the presence of rotational ambiguities. This lack of trueness is due to the fact that different sets of pure individual contributions can reproduce the original dataset with the same fit quality. To avoid as much as possible this uncertainty, different constraints can be applied to MCR-ALS in order to force the concentration and spectral profiles to obey certain conditions, as described in many works [START_REF] Gemperline | Advantages of Soft versus Hard Constraints in Self-Modeling Curve Resolution Problems. Alternating Least Squares with Penalty Functions[END_REF][START_REF] Van Benthem | Application of equality constraints on variables during alternating least squares procedures[END_REF][START_REF] Hugelier | Application of a sparseness constraint in multivariate curve resolution -Alternating least squares[END_REF][START_REF] Golshan | A review of recent methods for the determination of ranges of feasible solutions resulting from soft modelling analyses of multivariate data[END_REF][START_REF] Firmani | MCR-ALS of hyperspectral images with spatio-spectral fuzzy clustering constraint[END_REF][START_REF] Azzouz | Application of multivariate curve resolution alternating least squares (MCR-ALS) to the quantitative analysis of pharmaceutical and agricultural samples[END_REF].

For instance, non-negativity is the most natural and classical constraint applied in the field of signal unmixing. Another important aspect regarding the use of the MCR-ALS method, but also all source separation methods, is the evaluation of the rank of the data matrix, i.e. finding the appropriate number of pure components present in the system. This task is particularly crucial with MCR-ALS, because it is not nested, contrarily to Principal Component Analysis (PCA) [39]. It means that if the selected rank is incorrect, the algorithm could lead to the extraction of wrong profiles even in the case of a rank overestimation. The common method used to achieve this task is the observation of the eigenvalues generated by PCA [START_REF] Tauler | Application of a new multivariate curve resolution procedure to the simultaneous analysis of several spectroscopic titrations of the copper(II)-polyinosinic acid system[END_REF]. In a second step, we must also generate initial estimates of pure spectral profiles or concentration profiles which will be refined afterword by the MCR-ALS algorithm. It is generally managed by the use of the simple-to-use interactive self-modelling mixture analysis (SIMPLISMA) [START_REF] Windig | Guilment, Interactive self-modeling mixture analysis[END_REF], a technique based on the concept of variable purity. In general, this tool can lead to good initial estimates though there is not any guarantee about the positivity of the solution.

Nevertheless, these guesses can be used as a starting point and refined during the MCR-ALS process.

Despite the effectiveness of SIMPLISMA, it can nevertheless show weaknesses, for instance with complex chemical systems, but also when the signal to noise ratio is limited. Moreover, SIMPLISMA cannot sometimes be simply applied when the number of spectra is too large.

The aim of this work is to present an alternative approach based on the SIMPLISMA algorithm, called randomised SIMPLISMA leading to an easier estimation of the rank by the simultaneous use of a pixel-pulling technique and the SIMPLISMA algorithm. Then a graphical exploration of the selected pixels in the PCA-space will allow us to estimate the rank but also observe groups of pixels from which initial estimates will be generated. In order to show the potential of this approach, three different datasets obtained from different instruments (Raman, Auto-fluorescence and EDX) were selected and processed by the use of randomised SIMPLISMA with the aim of investigating the number of pure components in the data matrix and the generation of initial estimates necessary for MCR-ALS calculations. The last step will be the extraction of all pure contributions on the basis of the information extracted by our method.

MATERIAL AND METHODS

Multivariate Curve Resolution -Alternating Least Squares (MCR-ALS)

The purpose of Multivariate Curve Resolution methods [START_REF] Lawton | Self Modeling Curve Resolution[END_REF] is to extract the relevant information in a mixture system to obtain the pure components through a bilinear model decomposition of the experimental data matrix D of dimensions n × m into the product of the concentration profiles matrix C (n × k) containing the concentration of the components present in the system and the corresponding spectral profiles matrix S T (k × m). In this notation, n represents the mixture spectra in rows measured at m wavelength that follows the bilinear model, while k is the number of pure components supposed to underlie D. The algorithm can be resumed in the equation 1, that represents the multiwavelength extension of Lambert-Beer's law in a matrix form:

= + (1) 
with E the residual matrix, containing the variability of D which is not explained by the model and should be close to the experimental error.

As discussed in the Introduction, in order to obtain acceptable results, the MCR-ALS algorithm needs first the rank evaluation and second the generation of initial guesses of the pure components without requiring prior information about the composition of the sample. These tasks will be discussed in the next sections. Furthermore, constraints are applied during the ALS process in order to refine initial estimates, but also and more importantly, to reduce rotational ambiguity due to the non-uniqueness of the pure component MCR decomposition. The final quality of the model depends on two important figures of merit: Lack of Fit (LOF), representing the difference among the input data D and the data reproduced from the CS T product obtained by MCR-ALS and the percentage of variance explained (r 2 ), shown respectively in equations 2 and 3:
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where dij is the spectral value of the mixture i at the wavelength j and eij is the associated error. It is worth stopping on another important aspect regarding the investigation of a hyperspectral image in the MCR-ALS framework. In this case, the three-dimensional cube of dimensions x × y × λ where x and y represent the number of pixels in the two spatial directions and λ the direction of the spectral variable will have to be unfolded prior MCR calculations in order to allow the decomposition of D into the contribution of C and S T matrices. In the last step, the C matrix will be refolded in order to retrieve concentration maps of each pure compound extracted by MCR-ALS.

Rank evaluation using PCA

As already discussed, the most used method in order to evaluate the rank of a data matrix prior MCR-ALS analysis is based on the observation of the scree plot of the eigenvalues associated with principal components obtained by PCA. This method was introduced the first time by Cattell [START_REF] Cattell | The Scree Test For The Number Of Factors[END_REF] and it is based on the principle of the meaningful information expressed by a particular factor (or component). It is displayed as a downward curve in which eigenvalues compare on the Y axes, the most important first, while on the X are reported the various components. Because the useful information decreases gradually taking into account the subsequent eigenvalues (as also the distance in the graphic between them), the strategy is to consider only a limited number of components. Using a scree plot, the choice of this value is done by the interpretation of the curve, in which the right value should correspond to the 'elbow' in the graph, where the eigenvalues level off. In this way, we try to set a threshold above which we will consider significant eigenvalues that carry chemical information.

Despite the method can seem easy and immediate, a subjective and arbitrative interpretation is often observed, especially when the noise level is significant. Moreover, it also remains very delicate with this method to detect minor compounds that are then very close to the noise level.

Simple-to-use interactive self-modeling mixture analysis (SIMPLISMA)

SIMPLISMA [START_REF] Windig | Guilment, Interactive self-modeling mixture analysis[END_REF] was one of the very first multivariate curve resolution methods used in spectroscopy [START_REF] Windig | Interactive self-modeling multivariate analysis[END_REF][START_REF] Snyder | Interactive self-modeling multivariate analysis of thermolysis mass spectra[END_REF][START_REF] Windig | Self-modeling mixture analysis of categorized pyrolysis mass spectral data with the SIMPLISMA approach[END_REF]. It is based on two basic statistical tools which are the mean and the standard deviation. In fact, the central task of this approach is the selection of so-called pure variables from the data matrix D. A pure variable is a variable that depends on the contribution of only one component. The first purity of the variable i is then estimated with the purity index :
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The user-defined parameter α avoids giving a high purity value to a variable with a low mean and therefore could only be noise. Then the first purest variable will have the highest value. In a second step, it is necessary to subtract the contribution of this first pure variable from matrix D before continuing the search for a second pure variable. A weighting parameter + is thus considered in order to reduce the influence of other variables that would be correlated to the first pure variable.

More details about this parameter are given in other works [START_REF] Gourvénec | Determination of the number of components during mixture analysis using the Durbin-Watson criterion in the Orthogonal Projection Approach and in the SIMPLe-to-use Interactive Self-modelling Mixture Analysis approach[END_REF]. The second purity of a variable i is then defined by:

= + ! for i=1,…,n (6) 
Again, the next purest variable has the highest value. The following purest variables are of course obtained by iterating these calculations until the number of variables corresponding to a given rank is obtained. It is often forgotten that this extraction of pure variables can be done in both dimensions of the matrix D. In this way, the selection of variables along the columns of D allows us to obtain estimates of concentration profiles while following the rows we obtain estimates of purest spectra.

We will consider the latter case in this work because we potentially have an higher probability to select purest pixels for the considered spectroscopies.

Randomised SIMPLISMA

The main concept of the proposed randomised SIMPLISMA approach is very simple because it is based on random pixel selections on which SIMPLIMA will be applied. Thus it can be resumed in four steps, as reported in the scheme in Figure 1:

1) The first and fundamental step is to generate z random subsets of the whole dataset, with the idea of taking a small percentage of all pixels in the matrix D. In this way, we give all pixels a chance to be explored whether they belong to a major or minor class of compound.

2) Then the SIMPLISMA algorithm is applied to each generated subset. However, because we don't want to fix the rank in advance, SIMPLISMA is systematically applied to each subset considering a varying number of pure contributions k from 2 to kmax. At this level, k pixels are selected per subset, which represent a total number of selected spectra at most equal to zk.

However, the total number of selected pixels is often much weaker since identical spectra can be selected from different subsets.

3) In the next step, the new dataset of selected pixels is explored with PCA. Natural groupings of pixels corresponding to pure compounds are then observed in scores plots. The idea is then to count these clusters in order to estimate the rank. Given the rank, spectra belonging to a specific class of compound are selected by hand in the scores plot. In this way, we can say that we generate a dictionary of spectra for each pure compound in the investigated chemical system. We are fully aware that our approach based on visual inspection may appear subjective. So naturally we could say that an automatic cluster analysis should be used.

Nevertheless, we know that the literature is full of so-called ultimate metrics to automatically count the number of clusters in an optimal way. The only problem is that there is an optimal metric for each considered data set, which adapts to the variations in point densities in the clusters but also to their insect structures, which are not always Gaussian. It is for all these reasons that we have preferred a visual approach which is finally no more debatable than an arbitrarily chosen metric.

4)

In order to exploit the results of the previous step, the mean spectrum of each dictionary can be used as an initial guess in MCR-ALS.

Dataset #1

The first dataset corresponds to a Raman analysis of an oil-in-water emulsion sample. It has been acquired by Andrew et al. [START_REF] Andrew | Raman Imaging of Emulsion Systems[END_REF]. The data cube consists of 60 pixels by 60 pixels corresponding to a 1 µm 2 area each on the sample surface. The spectral range is between 950 cm -1 and 1800 -1 corresponding to 253 wavenumbers. Further details about the instrumental and acquisition setup may be obtained through the original work [START_REF] Andrew | Raman Imaging of Emulsion Systems[END_REF].

Dataset #2

The second dataset has been acquired using an auto-fluorescence imaging microscope. It is focused on the growing process of wheat plants, a precise stage of the wheat grain development being investigated. The freshly harvested grain samples were frozen and cut in the equatorial region using a cryotome (HM 500 OM, Microm) into 20 µm cross-sections. The sample was analyzed using a confocal laser-scanning system (A1, Nikon) equipped with an x40 objective for confocal imaging in order to obtain an auto-fluorescence response. Three excitation wavelengths have been considered: 375 nm (UV), 488 nm (blue) and 561 nm (green). As a consequence, three hyperspectral images have been acquired by collecting emitted light from 404 to 714 nm for the UV excitation, 504 to 744 nm for the blue excitation and 574 to 744 nm for the green one with a 10 nm step between spectral variables. The size of the image is 512 pixels by 512 pixels (0.62 µm per pixel) corresponding to a total of 262,144 emission spectra for 75 variables, obtained by a data augmentation strategy apply on the wavelength dimension from each excitation wavelength range. Further details of this specific dataset are described in the work of Ghaffari et al. [START_REF] Ghaffari | Multi-excitation hyperspectral autofluorescence imaging for the exploration of biological samples[END_REF].

Dataset #3

The last dataset is a hyperspectral image of two cancer cells treated with a bromine-containing prodrug. More specifically, P31 cells were grown a gold-coated silicon wafer. Spectra have been acquired with a Fei Quanta 200 electron microscope with an EDX detector. Scanning electron microscope images were obtained in secondary and backscattered electron mode using an acceleration voltage of 5 kV. The size of the image is 101 pixels by 176 pixels, with a size of 0.4 µm per pixel, for a total of 17776 emission spectra for 13 spectral variables, corresponding to 13 different elements (Au, Br, C, Ca, Cl, K, Mg, N, Na, O, P, Pd, S). Further details about the dataset are described in the work of Ofner et al. [START_REF] Ofner | Image-Based Chemical Structure Determination[END_REF].

RESULTS AND DISCUSSION

Dataset #1

Before entering into a real chemometric exploration of a hyperspectral dataset, it is always interesting to generate a global integration image. This procedure is very simple since it consists of the summation of all intensities for each pixel over the whole spectral domain. Of course, we lose the chemical information but it is nevertheless possible to observe structures within the explored sample.

The global integration image of the oil-in-water emulsion is presented in Figure 2. Intuitively, it is possible to recognize at least three structures: a big drop (upper left area with highest intensity values) in contrast with a surrounding area (lowest values of intensity) and a less well-defined area in the lower right part of the image. Logically and without taking too much risk, we can imagine having drops of oil and the aqueous phase. Furthermore, the border of the drop shows different levels of intensity compared with its internal part, which could suggest the potential presence of a more complex chemical structure. To get a better idea of the complexity of the dataset, an investigation by using PCA is performed (Figure 3). More specifically, Figure 3a presents the first 8 score maps in decreasing order of explained variance. The first 7 components seem to have structures even if the last ones are rather noisy. Beside PC1 and PC2 that mainly describe the big drop, some specific aspects are highlighted: as an example, PC3 focuses on two small drops while PC5 and PC6 seem to describe the oil-water interface. The remaining PCs contain supplementary information, but the amount of noise hinders a meaningful interpretation at this level. Of course, another aspect of PCA is the observation of eigenvalues in order to potentially estimate the rank of the considered data cube.

However, we quickly observe in figure 3b that the rank evaluation is difficult due to a smooth decrease of the eigenvalues in the scree plot. Indeed, it is quite impossible to select a threshold above which we could consider significant variances from chemical compounds alone. It is also interesting to represent all spectra in a three-dimensional representation of scores along PC1, PC2, and PC3, which we often do in chemometrics but finally not very much in the specific framework of imaging. From figure 3c, we quickly understand that it is indeed very difficult to extract information despite a dataset with not so many spectra. Thus, even if PCA usually allows us to estimate the rank, it remains difficult here to propose unambiguously a number of pure compounds present in this chemical system from all previous representations. However, it is interesting to know that despite these conflicting elements, a rank of 4 is often used for this particular dataset.

After this first conventional chemometric investigation, we now want to show what our strategy can bring to the exploration of this same dataset. In a first pixel resampling step, 1,000 datasets have been generated by randomly selecting 10% of pixels from the whole dataset (i.e. 360 pixels on a total of 3600 in this case).

We can then ask ourselves the question of this specific choice for these two parameters, which will be approximately the same for the other two data sets. First of all, we observed that at least 500 subsets were needed to observe reproducible results if the whole procedure was replicated several times. Second, regarding the percentage of selected pixels, a value below 10% did not allow the observation of minor compounds, while a higher value densified the clusters in such a way that they tended to overlap or even merge into a single one. As a conquence, more than 500 subsets and 10%

of selected pixels was a good compromise for all the explored data sets in this work.

The second step of our strategy was to apply randomised SIMPLISMA to each of the 1,000-pixel subsets for different values of k, i.e. the number of purest pixels extracted with SIMPLISMA. The idea is not, of course, to set the value of k in advance, since one of the objectives of this method is specifically to determine its optimal value. We will, therefore, observe the evolution of pixel selection as the value of k increases. Figure 4a shows a PCA of all the purest pixels selected from the 1,000 subsets for k =3. Only 150 spectra are finally present in the score plot because many of them have been selected several times in different subsets. On theory, we could effectively extract 3 x 1000 spectra from the initial dataset. Then, we notice that pixels are organized in 4 clusters in this PCA space. It is precisely the principle of this approach to consider each cluster as a representation of a pure compound allowing some variations around a mean point. In this way, we have a kind of spectral dictionary for each of them. It is also interesting to see in figure 4a more differences between eigenvalues in the corresponding scree plot compared with figure 3b. Thus at this stage, we detect at least 4 chemical species. The idea is now to look at the evolution of the pixel selection when the k value increases. Thus for two successive values of k, any appearance of a new cluster would correspond to the detection of the new family of a compound and therefore mechanically to an increase of the rank. Figure 4b shows PCA results when considering simultaneously purest pixels for k=3 (in blue ) and k=4 (in red). By the way, 220 over 3,600 spectra are now selected when k=4. It should be noted that most of the red dots (k=4) are projected into clusters already described by blue dots (k=3). Nevertheless, a number of spectra (in red) are located in a new area represented by a solid line ellipse. Thus a new compound is detected. In figure 4c, the comparison of the pixel selections between for k=4 (in blue) and k=5 (in red) highlights the presence of a new cluster (also represented by a solid line ellipse). If we continue this process, pixel selections between for k=5 (in blue) and k=6

(in red) are compared in figure 4d. Again, a number of red dots are located in a new area of the PCA space highlighting a new class of compounds. At this step, a rank of 7 is considered. At the same time, we see that the corresponding scree plot shows clearer differences between the eigenvalues on which we could begin to consider a threshold. From these first results, we could easily believe that simply increasing the value of k is enough to increase the number of clusters and thus the chemical rank. This is not the case as we can see in figure 4e where pixel selections between k=6 (in blue) and k=7 (in red) are compared. Indeed, all red dots are projected in all areas already defined by the previous calculations. In this way, we observe a certain stabilization of the cluster structure. Thus, we can say that the pixel selection obtained for k=6 with its 7 clusters is a good representation of the complexity of the dataset. We now propose to look in detail at each of these 7 clusters. Figure 5 shows the spectra contained in each cluster in overlay mode and their localization (yellow pixels) on the sample surface. Thus for each of the clusters, we first notice a good consistency between the spectra.

With regard to spatial distributions, it is already observed that some classes are located on specific parts of the emulsion. For example, class 1 is specifically located on two small drops, class 3 seems to describe the inside of the largest drop, and classes 2 and 7 are located on the edge of the large drop.

It is more difficult to define a location for the other three classes, but we can still say that the aqueous phase must be part of it. We must not lose sight of the fact that our approach aims to select the purest pixels. In other words, the spectra shown in figure 5 can be weakly mixed, which makes the task of spectral interpretation all the more difficult. It is in this sense that the MCR-ALS method is then used to refine these solutions.

As part of the MCR-ALS method, we now need initial guesses of spectra for each of the 7 classes.

For simplicity, we use here the average spectrum of each class. It is interesting to compare these 7 spectra with the 7 estimates that could be obtained directly with SIMPLISMA on the whole dataset of 3600 spectra (figure S1 in supplementary material). It is then not difficult to see that a better signalto-noise ratio is obtained on the generated spectra with randomised SIMPLISMA.

Finally, figure 6 shows the MCR-ALS results considering different configurations. In the top and the middle panel, a rank of 4 and 7 have been respectively considered with an estimation of initial guesses obtained from the standard SIMPLISMA algorithm on the whole dataset. The bottom panel shows the MCR-ALS decomposition when initial estimates are generated from randomised SIMPLISMA. If we look at the rank of 4, we see that the first pure chemical map describes the small drops, the second and third ones the big drop and its edge, and the last one the aqueous phase. A lack of fit and R 2 values of 7.76% and 99.39% are respectively obtained in this condition which is not so bad for the considered signal-to-noise ratio. If we now look at the results obtained for a rank of 7 for the two strategies (i.e. the classical and randomised SIMPLISMA), almost the same figures of merit are observed (LOF ≈ 3.23%, R 2 ≈ 99.65%). Contributions 1 and 3 are very similar to those previously obtained with a rank of 4. The greatest change is observed for the description of the border of the drops since three distinct contributions are now extracted (contributions 2, 4 and 7) against only one in the previous resolution. As for contribution 6, it seems a priori questionable because it is not particularly structured but the corresponding pure spectra (bold curves, figure S2 in supplementary material) mainly explain a variance related to a baseline deformation badly corrected by the spectralpreprocessing. This contribution is, therefore, an important part of this resolution. The greatest difference is observed for the contribution 5 corresponding to the aqueous phase. A more contrasted and less ambiguous image is extracted with randomised SIMPLISMA. Indeed, we observe a significant contribution inside the drop when the classical SIMPLISMA method is used which is rather incoherent compared to the knowledge about the behaviour of the molecules considered in this chemical system. From a general point of view, some people might say that for a rank of 7 the extraction results are not so different between the classical method and our strategy but we must not forget that we would never have used such a rank with the classical approach.

Dataset #2

The second data set is particularly interesting because of its size and the type of spectroscopy envisaged. Indeed, we have a much larger number of spectra, namely 262,144 in the data cube. We also selected very original spectroscopy, namely the autofluorescence one with only 75 emission wavelengths, which is much lower than in the previous case. Beyond this small number of spectral variables, we can expect a significant spectral overlap between chemical species related to an intrinsically large bandwidth in this spectroscopy.

As in the previous case, it is natural to make first a PCA of the complete dataset. Thus, from the score images (Figure S3), we observe that the two first principal components explain 93.81% of the total variance. At this stage, even if it seems possible to observe some details on the score maps from the third principal component, it remains difficult to certify at this level of the investigation that they correspond to relevant chemical information. It is now interesting to look at the evolution of the eigenvalues in the scree plot given in figure 7a. As we can see, a sharp decrease in values is observed after the second principal component, which would potentially indicate a rank of two with the traditional threshold-based method. It is also interesting to look at the three-dimensional representation of scores along PC1, PC2, and PC3 in this same figure. With these 262,144 spectra, the point density is so high that it is impossible to see details on the intrinsic structure of the dataset except for a global V-shape.

Then randomised SIMPLISMA has been applied considering the generation of 500 subsets with 10% of pixels randomly selected from the whole dataset. Figure 7b shows a PCA of the 131 pixels selected from these 500 subsets for k =3. Then it is very easy to detect the presence of 3 clusters.

Moreover, the third eigenvalue of the corresponding scree plot is now detached from the noise level.

As with the previous dataset, we will now analyze the evolution of pixel selection as the k value increases. PCA results considering simultaneously purest pixels for k=3 (in blue) and k=4 (in red) are given in figure 7c. By the way, 227 spectra are now selected when k=4. It is then obvious that a new cluster is detected indicating a rank of 4. By continuing this exploration for the values of k equals 4 and 5, new clusters are not highlighted. As a conclusion, pixels selected with k=4 represent the intrinsic structure of this dataset, which finally has a rank of 4. Spectra contained in each cluster are represented in figure S4 in the supplementary material. Again a good consistency between the spectra of a cluster is observed. With regard to pixel location (yellow pixels in figure S4), it is particularly difficult here to link this information to the biological structure because of the very small number of spectra selected compared to the 262,144 pixels of the sample surface. Finally, Figure S5 proposes the 4 pure concentration maps and corresponding pure spectra extracted by MCR-ALS using the mean spectrum of each cluster as an initial estimate. It can, therefore, be concluded that without this approach, we would certainly not have extracted contributions 3 and 4. These two contributions have very small variations in concentration at a very local level but specific spectral contributions. We must also insist on the fact that it is not possible to apply the classical SIMPLISMA approach to the 262,144 spectra of the dataset for RAM problems, even on very large computers.

Dataset #3

The originality of this last dataset does not lie in its size but in the chemical information it contains. Thus, the variables describing each pixel in this data cube are elemental concentrations obtained from Energy Dispersive X-Ray Analysis (EDX). Two tumor cells treated with a brominecontaining prodrug are explored in this case. As usual, we will start with a PCA of the complete dataset. Score images are given in figure S6. It is then possible to observe 4 or even 5 chemical contributions defining both the cells and the support. In parallel with that, the scree plot in figure 8a seems to indicate a rank of 3. This observation is very interesting because it is quite symptomatic of the use of PCA in imaging when the number of spectra is very large. Indeed, we can see for example that there is a potential contribution expressed on the fourth score maps but the number of pixels it concerns is so small compared to the total number of pixels, that they only induce a very small variance of 0.67% almost undetectable in the scree plot. On the basis of this information, many of us would certainly have selected a chemical rank of 3. Figure 8a also proposes the three-dimensional representation of scores along PC1, PC2, and PC3 for the 17,776 pseudo-spectra. Once again, the density of points is so high that it is impossible to see a particular data structure.

Randomised SIMPLISMA has been applied to this dataset considering the generation of 500 subsets with 10% of pixels randomly selected from the whole dataset. Figure 8b shows a PCA of the 89 pixels selected when k = 2. Thus 2 clusters are detected at this step. Then purest pixels obtained from k = 2 (in blue) and k = 3 (in red) have been explored with PCA (figure 8c). We, therefore, observe in this representation two new clusters. Spectra of these two clusters are also shown in figure 8c in order to highlight the chemical differences. The chemical rank is now 4. For the next PCA on the purest pixels for k=3 (in blue) and k=4 (in red), the last cluster is detected (Figure 8d). No additional clusters are observed in figure 8e which makes it possible to set a rank of 5. Figure S7 in the supplementary material shows spectra selected in each of the 5 clusters. We observe a good consistency between the spectra of a cluster. Except for class 3 located mainly on a cell, it is rather delicate to strictly associate the others to a sample structure. Finally, Figure S8 (in the supplementary material) shows the MCR-ALS extractions obtained from cluster averages. Thus we quickly notice that each pure contribution is mainly influenced by one particular element. The first contribution contains bromine so we can localize the prodrug in the cell volume. Palladium particles are also detected inside the cells from contribution 2. Obviously, contribution 4 corresponds to the gold on the surface of the wafer. Contribution 5 reports on the presence of other elements such as phosphorus also present on the surface mainly related to cell preparation. Finally, contribution 3 is very interesting since it expresses the presence of the minor compound present only on a few isolated pixels.

CONCLUSION

Numerous publications demonstrate on a daily basis the strong potential of the MCR-ALS method for a priori-free extraction of the contributions of all pure compounds present in complex chemical systems. This approach is particularly useful in the spectroscopic imaging framework, for which unsupervised exploration is often the only alternative in view of the complexity of the samples and the absence of reference methods. Nevertheless, the main constraint of a signal unmixing approach such as MCR-ALS remains the chemical rank evaluation which thus conditions all the relevance of the extractions. Of course, principal component analysis can help us in this task, but this study has shown on different datasets that it is not always suitable for the simultaneous detection of major and minor compounds. It is also very sensitive to the signal-to-noise ratio and not well-suited to big datasets. The aim of this work was then to present a new concept called randomised SIMPLISMA based on pixel resampling and the original SIMPLISMA algorithm. Through the different datasets, we were able to show that our approach not only facilitates the estimation of rank but also provides initial estimates of pure compounds. Moreover, it has been possible to manage datasets containing several hundred thousand spectra where SIMPLISMA simply cannot be directly applied. Another peculiarity of our approach also lies in the generation of a real dictionary of spectra for each pure compound. This makes it possible to better locate a given contribution even before curve resolution.

The perspectives of this work are twofold. First, randomised SIMPLISMA will be evaluated on even bigger datasets containing several million spectra. Second, as can be seen, the variability present in a dictionary of a given contribution is rather little exploited since finally, we use its mean as an initial estimate prior MCR-ALS. Thus, as can be done today in the remote sensing community, we could, for example, consider that the spectra of a dictionary would be different pure representations of a given compound. We would then consider a non-linear model, which may make sense in some cases of matter-radiation interaction.
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