

Monthly estimation of the surface water extent in France at a 10-m resolution using Sentinel-2 data

Xiucheng Yang, Qiming Qin, Hervé Yésou, Thomas Ledauphin, Mathieu

Koehl, P. Grussenmeyer, Zhe Zhu

▶ To cite this version:

Xiucheng Yang, Qiming Qin, Hervé Yésou, Thomas Ledauphin, Mathieu Koehl, et al.. Monthly estimation of the surface water extent in France at a 10-m resolution using Sentinel-2 data. Remote Sensing of Environment, 2020, 244, pp.111803 -. 10.1016/j.rse.2020.111803 . hal-03490249

HAL Id: hal-03490249 https://hal.science/hal-03490249

Submitted on 20 May 2022 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

1 Monthly estimation of the surface water extent in France at a 10-m resolution

2 using Sentinel-2 data

3

4

5

6

7

8

9

Xiucheng Yang^{1,2*}, Qiming Qin^{1,3}, Hervé Yésou⁴, Thomas Ledauphin⁴, Mathieu Koehl², Pierre Grussenmeyer², Zhe Zhu⁵ ¹ Institute of Remote Sensing and Geographic Information System, Peking University, 100871, Beijing, China ² Photogrammetry and Geomatics Group, ICube UMR 7357, INSA Strasbourg, University of Strasbourg, 67084, Strasbourg, France

³ Geographic information system technology innovation center of the Ministry of natural resources of China, Beijing, China

⁴ ICube-SERTIT, UMR 7357, Institut Telecom Physiques Strasbourg, University of Strasbourg,

67412 Illkirch Graffenstaden, France

⁵ Department of Natural Resources and the Environment, University of Connecticut, Storrs, CT, 06269, United States

10 Abstract: The first national product of Surface Water Dynamics in France (SWDF) is generated on a monthly temporal scale and 10-m spatial scale using an automatic rule-based superpixel (RBSP) approach. 11 The current surface water dynamic products from high resolution (HR) multispectral satellite imagery are 12 13 typically analyzed to determine the annual trend and related seasonal variability. Annual and seasonal time 14 series analyses may fail to detect the intra-annual variations of water bodies. Sentinel-2 allows us to investigate water resources based on both spatial and temporal high-resolution analyses. We propose a new 15 automatic RBSP approach on the Google Earth Engine platform. The RBSP method employs combined 16 17 spectral indices and superpixel techniques to delineate the surface water extent; this approach avoids the 18 need for training data and benefits large-scale, dynamic and automatic monitoring. We used the proposed 19 RBSP method to process Sentinel-2 monthly composite images covering a two-year period and generate the 20 monthly surface water extent at the national scale, i.e., over France. Annual occurrence maps were further 21 obtained based on the pixel frequency in monthly water maps. The monthly dynamics provided in SWDF 22 products are evaluated by HR satellite-derived water masks at the national scale (JRC GSW monthly water 23 history) and at local scales (over two lakes, i.e., Lake Der-Chantecoq and Lake Orient, and 200 random 24 sampling points). The monthly trends between SWDF and GSW were similar, with a coefficient of 0.94. 25 The confusion matrix-based metrics based on the sample points were 0.885 (producer's accuracy), 0.963 (user's accuracy), 0.932 (overall accuracy) and 0.865 (Matthews correlation coefficient). The annual surface 26 27 water extents (i.e., permanent and maximum) are validated by two HR satellite image-based water maps and 28 an official database at the national scale and small water bodies (ponds) at the local scale at Loir-et-Cher. 29 The results show that the SWDF results are closely correlated to the previous annual water extents, with a 30 coefficient greater than 0.950. The SWDF results are further validated for large rivers and lakes, with 31 extraction rates of 0.929 and 0.802, respectively. Also, SWDF exhibits superiority to GSW in small water 32 body extraction (taking 2498 ponds in Loir-et-Cher as example), with an extraction rate improved by 33 approximately 20%. Thus, the SWDF method can be used to study interannual, seasonal and monthly 34 variations in surface water systems. The monthly dynamic maps of SWDF improved the degree of land 35 surface coverage by 25% of France on average compared with GSW, which is the only product that provides 36 monthly dynamics. Further harmonization of Sentinel-2 and Landsat 8 and the introduction of enhanced cloud detection algorithm can fill some gaps of no-data regions. 37

Keywords: dynamic mapping, Google Earth Engine, Sentinel-2, water bodies, France, superpixel, spectral
 indices, monthly

41 **1. Introduction**

42 1.1. Background

43 Water bodies are the main component of the land surface. The accurate spatial detection and dynamic 44 monitoring of inland water bodies are important tasks in many applications, such as sustainable land and 45 water management (Zou et al., 2017), water volume and water level estimation (Crétaux et al., 2016; 46 Ohanya et al., 2013), natural hazard analysis (including flooding, drought, and urban inland inundation) 47 (Huber et al., 2013; Mueller et al., 2016), and local climate and zoology-related analysis (Huber et al., 2015; 48 Sun and Chen, 2012). Compared with conventional survey methods, remote sensing approaches monitor 49 water body dynamics in time- and cost-saving modes. Various types of remote sensing optical imagery (with 50 very high, high, and moderate spatial resolutions) have been utilized to monitor inland water bodies. (i) 51 Water body maps from very high-resolution (VHR) optical satellite imagery (Huang et al., 2015; C. Xie et 52 al., 2016) and aerial imagery (Ford, 2013) have fine spatial resolutions, but the data are expensive to obtain 53 and may not support long-term dynamic monitoring. (ii) The highly repetitive coverage of the Moderate 54 Resolution Imaging Spectroradiometer (MODIS) offers the possibility of dynamic monitoring every few 55 days (Che et al., 2017; Klein et al., 2014; Lu et al., 2018; Wang et al., 2014), but the spatial resolution of 56 250 m is extremely coarse, especially for subtle variations in inland water bodies. (iii) High resolution (HR) 57 multispectral satellite remote sensing imagery balances temporal frequency and spatial resolution (Li and 58 Gong, 2016; Yésou et al., 2016) and has been commonly utilized because this imagery offers the following 59 advantages: vivid spectral information related to water characteristics (typically in the green, near infrared 60 (NIR), and short-wavelength infrared (SWIR) bands), an appropriate spatial resolution (tens of meters), 61 repetitive monitoring (i.e., nearly half a month), large-area coverage and free access.

Considerable effort has focused on extracting the seasonal and annual dynamics of the surface water extent at large scales, typically using Landsat imagery (Li and Gong, 2016; Pekel et al., 2016; Tulbure et al., 2016). However, inland surface water bodies are dynamically changing and undergoing severe drainage, especially for ephemeral streams and lakes. Higher-resolution monitoring, such as using monthly time-series analysis, can better capture the interannual variation in the surface water extent and presents the shrinking and inundation that occurs during the year. Satellite-based monitoring of the monthly extent of surface water bodies can integrate with hydrological models and meteorological data for further analyses.

69 Copernicus, the EU's Earth Observation Program, ensures the regular observation and monitoring of 70 Earth's sub-systems, including the atmosphere, oceans, and continental surfaces, and this program provides 71 reliable, validated and guaranteed information to support a broad range of environmental and security 72 applications and decisions. The HR optical component, the Sentinel-2 mission (Drusch et al., 2012), 73 acquires high spatial resolution optical observations (as high as 10 m) over global terrestrial surfaces with a high revisit frequency (approximately five days) using a bi-satellite system, which is important for land
cover dynamic mapping and updating. Sentinel-2 can effectively extract the distribution of land surface
water at a resolution of 10 m (Du et al., 2016; Gong et al., 2019; Wang et al., 2018; Yang et al., 2018, 2017;
Yésou et al., 2016), but its potential for dynamic water body monitoring and change detection deserves more

attention considering the high revisit frequency of the satellite (Ogilvie et al., 2018a).

79 1.2. Related works

80 (1) Distribution of surface water

81 During the last 25 years, there have been many approaches to extract water bodies from multispectral 82 imagery (Table 1 & Table 2). These approaches can be divided into three levels: pixelwise classification, 83 object-based image analysis (OBIA) and subpixel fraction estimation. Pixelwise approaches directly extract 84 the pixels associated with water body areas, mainly considering the spectral characteristics of targets. OBIA 85 groups the adjacent pixels with similar features into homogeneous clusters, which provides valuable 86 information, including spectral, textural, shape, and spatial relationships. Subpixel fraction estimation 87 considers the mixed pixels in remote sensing images and estimates the fraction of water bodies in each pixel 88 using the spectral mixture analysis (SMA) method. However, the relevant methodologies fall into two 89 categories depending on whether training samples are needed. The sample-based approach relies on the 90 training dataset for supervised classification at both the pixel and object levels or on pure endmember 91 selection to derive the subpixel water body fraction. The rule-based approach is based on prior knowledge of 92 the target and background instead of the known sample data.

```
93
```

Table 1. Methodologies of water body extraction from multispectral imagery

Training	Different levels	Literature	Methodology Main water bodies	
samples				
Sample-	Pixelwise	(Acharya et al., 2016)	Decision tree	River and lakes
based	supervised	(Deng et al., 2017)	Decision tree	Urban lakes
methods	classification	(Isikdogan et al., 2017)	Deep learning	Inland surface water
		(Mueller et al., 2016)	Regression tree	Across Australia
		(Sun et al., 2015)	Support vector machines (SVMs)	Urban water bodies
		(Tulbure and Broich, 2013)	Classification tree algorithm	Western Australia
		(Verpoorter et al. 2012; 2014) Supervised classification		Global lakes
		(Jakovljević et al., 2018) Supported vector machine (SVM) classifier		Open water bodies
	(Tulbure et al., 2016) Random forest		Australia	
	Object-based	(Bayram, 2013)	Spectral indices	Shorelines
	supervised (Yang and Chen, 2017)		Spectral indices	Urban water bodies
	classification	classification		
	Subpixel	(Pan et al., 2016)	Mixed land-water pixel extraction using SMA methods	Urban water bodies
	mixture	(Rover et al., 2010)	Combined with regression-tree technique	Lakes, wetlands and small water
	analysis	(Zhou et al., 2014)	Spectral mixture analysis combined with multiscale extraction	bodies
				Rivers
Rule-	Spectral indices	(Arvor et al., 2018)	Time series indices	Small water reservoirs
based		(Avisse et al., 2017)	Water and vegetation indices	Small water reservoirs
methods		(Campos et al., 2012)	Sample-based thresholding	Seasonal and permanent water
		(Cian et al., 2018)	Minimum, maximum and mean of the NDVI throughout the entire stack of	Flood mapping
		(Du et al., 2016)	images	Venice coastland
		(Fisher et al., 2016)	Indices and thresholding	Eastern Australia
		(Ogilvie et al., 2018)	New water index	Small water bodies
		(Yamazaki et al., 2015)	Comparing popular water indices	Global water body map
		(Yang et al., 2018)	Water indices and temporal analysis	Urban water bodies
Rule- based methods	Object-based supervised classification Subpixel mixture analysis Spectral indices	(Bayram, 2013) (Yang and Chen, 2017) (Pan et al., 2016) (Rover et al., 2010) (Zhou et al., 2014) (Arvor et al., 2014) (Avisse et al., 2017) (Campos et al., 2017) (Cian et al., 2018) (Du et al., 2018) (Du et al., 2016) (Fisher et al., 2018) (Yamazaki et al., 2015) (Yang et al., 2018)	Spectral indices Spectral indices Mixed land-water pixel extraction using SMA methods Combined with regression-tree technique Spectral mixture analysis combined with multiscale extraction Time series indices Water and vegetation indices Sample-based thresholding Minimum, maximum and mean of the NDVI throughout the entire stack of images Indices and thresholding New water index Comparing popular water indices Water indices and temporal analysis	Shorelines Urban water bodies Lakes, wetlands and small wate bodies Rivers Small water reservoirs Small water reservoirs Seasonal and permanent water Flood mapping Venice coastland Eastern Australia Small water bodies Global water body map Urban water bodies

	(Feng et al., 2016)	Refined by constrained energy minimization	Global inland water
		Terrain metrics and prior coarse-resolution water masks	
Object/cluster-	(Chen et al., 2017)	Segment images using an active contour model	Glacial lake outlines
based image	(Mitkari et al., 2017)	Combined with band indices	Glacial lakes
analysis	(Sivanpillai and Miller, 2010)	Unsupervised ISODATA algorithm to generate clusters	Water bodies
	(H. Xie et al., 2016)	k-means/ISODATA to generate clusters	Lake and river
	(Zhang et al., 2013)	Object-oriented image analysis and edge detection	Coastlines

95 Among the rule-based approaches, water indices and binary thresholding-based methods are 96 characterized by easy implementation and a high calculation efficiency and are thus widely utilized (Table 97 2), especially in large-scale and time series analyses (Campos et al., 2012; Pekel et al., 2016; Thomas et al., 98 2015; Zou et al., 2017). Water indices differentiate the water bodies (normally with positive values) from the 99 background (tending to negative values). Many water indices have been designed to enhance the separation 100 between water bodies and other land cover types (Table 2). Water indices can be directly utilized for water 101 mapping based on thresholding (Allen and Pavelsky, 2018; Fan et al., 2018) and serve as the basis for other 102 algorithms, such as machine learning (Isikdogan et al., 2017), object-level segmentation (Mitkari et al., 103 2017), and subpixel mapping (Zhou et al., 2014).

104

Table 2. Water indices designed for water body detection

Water indices	Literature	Bands
normalized difference water index (NDWI)	(Gao, 1996)	NIR, SWIR
normalized difference water index (NDWI)	(McFeeters, 1996)	Green, NIR
modified NDWI (MNDWI)	(Xu, 2006)	Green, SWIR
automated water extraction index (AWEI)	(Feyisa et al., 2014)	Blue, Green, NIR, SWIRs
multi-spectral water index (WuWI)	(Wang et al., 2018)	Blue, Green, NIR, SWIRs
normalized difference mud index (NDMI)	(Bernstein, 2012)	Narrow bands with wavelengths of 795 nm and 990 nm
WI ₂₀₁₅	(Fisher et al., 2016)	Green, Red, NIR, SWIRs
NDWI built-up index (NDWI-DB)	(Li et al., 2016)	Blue, SWIR
Tasseled Cap Wetness (TCW)	(Crist, 1985)	Blue, Green, Red, NIR, SWIRs
normalized difference vegetation index (NDVI)	(Zhu and Woodcock, 2012)	Red, NIR
NDWI _{nm}	(H. Xie et al., 2016)	Composed of a visible band and an infrared band
enhanced water index (EWI)	(Wang et al., 2015)	Green, Red, NIR, SWIR
simple water index (SWI)	(Malahlela, 2016)	Blue, SWIR
LBV transformation	(Zhang et al., 2017)	Green, Red, NIR, SWIR

105

106 (2) Dynamics of surface water

107 Most previous large-scale and time series mapping studies of the surface water extent were conducted 108 based on MODIS and Landsat datasets (Aires et al., 2018), and the spatial resolution was generally 250 m or 109 30 m, respectively (Yésou et al., 2011). The dynamics of the surface water extent have been mapped at three 110 different time scales using Landsat data, including interannual, seasonal/inner-annual, and multi/bi-temporal 111 change analyses (Table 3). (i) Most works utilized Landsat series data to continuously monitor the general 112 trend of the surface water extent over several decades. Rokni et al. (2014) modeled the spatiotemporal 113 changes in Lake Urmia from 2000 to 2013 and reported a dramatic decreasing trend. Thomas et al. (2015) 114 mapped the inundation and flooding patterns of the Macquarie Marshes by selecting Landsat images (1989115 2010) over a range of flood magnitudes. Deng et al. (2017) monitored the extent of the spatiotemporal 116 changes of a lake in Wuhan, China, based on Landsat images from 1987 to 2015. (ii) The seasonality of 117 surface water based on interannual monitoring has also been widely explored. The most famous work was 118 conducted by the European Commission's Joint Research Centre (JRC) (Pekel et al., 2016), who developed 119 high-resolution maps of the global surface water (GSW) occurrence, change, seasonality, and transition 120 using Landsat data at 30 meter resolution. In addition, Campos et al. (2012) derived seasonal and permanent 121 water data between 2007 and 2011 and monitored the decrease in water resources in Africa. Tulbure & 122 Broich (2013) studied spatially and temporally explicit time series of a surface water body on the Swan 123 Coastal Plain from 1999 to 2011 and adopted landscape metrics to determine the extent of changes in the 124 seasonally continuous surface water body after comparing summer and winter images. Zou et al. (2017) 125 generated four water body extent maps (maximum, year-long, seasonal, and average maps) of Oklahoma 126 from 1984 to 2015 based on the annual water body frequency. (iii) Bi-/multitemporal images are typically 127 applied to investigate flooding mapping and land use/cover (LULC) changes. Chignell et al. (2015) utilized 128 pre- and post-flood Landsat 8 images to produce a flood layer image at the regional scale of the Colorado 129 Front Range Flood in 2013. Bayram (2013) analyzed the combined shoreline and LULC changes of the 130 Terkos Lake basin using Landsat satellite images from 1986, 2001, and 2009.

131

Table 3. Temporal scales for water body dynamics monitoring

Temporal scale	Literature	Methodology			
Annual to decade trend	(Allen and Pavelsky, 2018)	Water indices			
	(Arvor et al., 2018)	Time series indices			
	(Avisse et al., 2017)	Fmask, water and vegetation indices			
	(Carroll and Loboda, 2017)	Using the DSWE product			
	(Deng et al., 2017)	Indices and random forest			
	(Fan et al., 2018)	Water index			
	(Ogilvie et al. 2018)	Water index and hydrological modeling			
	(Pardo-Pascual et al., 2012)	Shoreline subpixel detection			
	(Sagar et al., 2017)	Median pixel compositing of NDWI stacks			
	(Shi et al., 2017)	An 'eight-field' morphological method Surface water area and level changes			
	(Tseng et al., 2016)				
	(Liu and Yue, 2017)	Band value and Otsu threshold			
	(Zou et al., 2018)	The relationship between water and vegetation indices			
	(Yamazaki et al., 2015)	Spectral indices			
Seasonality	(Pekel et al., 2016)	Expert systems, visual analytics, and evidential reasoning			
	(Tulbure and Broich, 2013)	Decision tree classification algorithm			
	(Zou et al., 2017)	Spectral indices			
	(Tulbure et al., 2016)	Random forest			
	(Sheng et al., 2016)	Water index			
Monthly changes	(Campos et al., 2012)	Water indices based on one image per month between 2001 and			
	(Hui and Xu, 2008)	2010			
	(Pekel et al., 2016)	Water indices and empirical threshold			

		Expert systems, visual analytics, and evidential reasoning
Multi- or bi-temporal	(Bayram, 2013)	OBIA and indices
	(Chignell et al., 2015)	Independent component analysis and indices
	(Ghosh et al., 2015)	Water index
	(Dronova et al., 2011)	OBIA

133 Nonetheless, more fine-resolution temporal monitoring is necessary to reflect the subtle variabilities in 134 water bodies on a monthly scale. The monthly surface water occurrence based on multispectral imagery is 135 generally ignored. To our knowledge, monthly dynamics have only been assessed by Hui et al. (2008), 136 Dronova et al., (2011), Campos et al. (2012) and Pekel et al. (2016). Hui et al. (2008) monitored the monthly 137 changes in Poyang Lake, China, between November 1999 and October 2000, using eight images acquired 138 from Landsat ETM+ 5 and Landsat TM 7. Dronova et al. (2011) selected four images acquired in November 139 2007 and January, February, and March 2008 using the Beijing-1 microsatellite and examined the surface 140 cover composition and its changes at Poyang Lake. Campos et al. (2012) chose one image per month 141 between 2001 and 2010 to analyze the historical trend of the water bodies, and yet, these researchers could not monitor the real-time changes in the water bodies. JRC GSW recorded the entire history of water 142 143 detection on a month-by-month basis between March 1984 and December 2018. However, the coverage of 144 the monthly map is still limited by an insufficient number of valid observations based on Landsat data. 145 Currently, the active Landsat 7 and 8 satellites theoretically allow an 8-day repeat coverage of the land 146 surface. However, on May 31, 2003, the scan line corrector (SLC), which compensates for the forward 147 motion of Landsat 7, failed and led to the loss of an estimated 22 percent of the dataset. Additional cloud 148 cover and haziness can reduce the number of valid images, which can result in a lack of sufficient data for 149 monthly dynamic mapping. Thus, the potential use of the Sentinel-2 constellation in water body monitoring 150 and dynamic analysis is a highly anticipated exploration.

151 1.3. Contributions

The main objective of this study is therefore to continuously monitor the monthly, quarterly and annual changes in surface water body dynamics in France at a 10-m spatial resolution using Sentinel-2 imagery. The main contributions of this study include developing an automatic methodology and application of the method at the national scale.

156 First, an automatic rule-based superpixel (RBSP) approach is proposed. RBSP automatically analyzes 157 the large-scale spatiotemporal variability and trends of surface water bodies. A new spectral index-based 158 approach is proposed to delineate the water body extent. This method considers the different error sources in 159 water body detection: (i) built-up areas using an automated water extraction index (AWEI), with noise 160 associated with shadow and very-high albedo objects eliminated and (ii) natural areas using the normalized 161 difference muddy index (NDMI) (for muddy and shallow water bodies) and the AWEI, with noise associated with vegetation ice and snow eliminated. Additionally, the proposed approach is implemented at 162 163 the superpixel level. Superpixel segmentation groups the connected pixels with similar characteristics, and the automatic processing method is in accordance with the research objectives. RBSP is automatically run in
 the Google Earth Engine (GEE) platform for large-scale dynamic mapping.

Second, the Surface Water Dynamics in France (SWDF) product is generated with monthly, quarterly 166 167 and annual surface water extents. To our knowledge, this product is the first national inland surface water 168 map published at the monthly temporal scale and a 10-m spatial scale. RBSP is applied to monthly and 169 quarterly images with medium composite pixels. Annual occurrence maps are further generated based on the 170 pixel frequency of the monthly water maps. Our product is evaluated in both the dynamic and static states 171 and at both national and local scales: (i) the monthly dynamic water maps are compared with satellite image 172 based water masks at the national scale (JRC GSW monthly water history) and at local scales (over two lakes, i.e., Lake Der-Chantecoq and Lake Orient, as well as 200 random sampling points); (ii) the annual 173 174 surface water extent is validated by satellite image-based water maps (JRC GSW annual product and Theia 175 land cover product (Inglada et al., 2017)) and an official database (BD Carthage hydrological product, main 176 watercourses, and major lakes and reservoir) at the national scale and small water bodies (ponds) at local 177 scales (including the Sologne region of the Department of Loir-et-Cher).

178 **2. Methodology**

The methodology part involves the overall workflow (Figure 1) of the proposed RBSP approach and the generated SWDF product. First, Sentinel-2 Level-1C data covering the France (Section 2.1) are collected. Second, these images are preprocessed (Section 2.2) to eliminate the invalid pixels covered by clouds, to divide the bu

183 ilt-up and natural scenes and to exclude the possible terrain shadows. Third, the proposed RBSP 184 approach is explained, including the different spectral rules for natural and built-up scenes in Section 2.3 and 185 superpixel technique to generate the homogeneous objects in Section 2.4. Finally, the auxiliary data and 186 metrics used to evaluate the generated SWDF product are described in Section 2.5.

188 Figure 1. The workflow of the proposed RBSP approach and the validation of the obtained SWDF product

189 2.1. Study areas

190 The experiments presented in this paper focus on European France (i.e. mainland France and Corsica) 191 (Figure 2), which encompasses an area of approximately 551,695 km². France lies within the northern 192 temperate zone and mainly includes oceanic, semi-continental, Mediterranean, and mountain climates (Fort 193 and André, 2013; Terasmaa et al., 2019). France possesses a wide variety of landscapes, from coastal plains 194 in the north and west to the mountain ranges of the Alps in the southeast, as well as the Massif Central in the south and the Pyrenees in the southwest. Additionally, the islands of Corsica lie off the Mediterranean coast. 195 France has an extensive river system mainly consisting of four major rivers and their tributaries, 196 197 including the Seine, Loire, Garonne and Rhône Rivers, with a combined catchment area that includes over 198 62% of the territory (Kristensen and Bogestrand, 1996). In addition, the Rhine River and some tributaries 199 flow through the northeastern portion of the region. Knoema Corporation (2017) reported approximately 153,000 ha of inland water occupied by major rivers, lakes and reservoirs in France. Considering the water 200 201 bodies larger than 1 ha, Bartout and Touchart (2013) regarded 555,000 waters bodies as corresponding to a 202 cumulated surface area of 450,000 ha.

This study focuses on inland water detection and neglects coastline monitoring. The national and administrative boundaries are from GADM, the database of global administrative areas.

Figure 2. (A) The study area of France consists of 96 administrative divisions and (B) an example of a Sentinel-2 annual composite image

207

205 206

209 2.2. Datasets and GEE platform

This project uses the open source GEE as the research platform. The GEE provides programming and graphic interfaces for scientific applications using remote sensing data. With the powerful Google cloud storage and computational hardware technologies to accelerate remotely sensed data processing (Gorelick et al., 2017; Trianni et al., 2015), GEE is advantageous for large-scale mapping and time series analysis based on multispectral images, including analyses of surface water (Pekel et al., 2014), forest cover (Hansen et al., 2013), paddy rice planting areas (Dong et al., 2016), and settlement areas (Huang et al., 2017).

216 The Sentinel-2 mission is composed of a two-satellite system, Sentinel-2A and Sentinel-2B, which were launched on 23 June 2015 and 07 March 2017 respectively, allowing for a high revisit frequency of 217 approximately 5 days at the equator and 2-3 days at the mid-latitudes. The high revisit frequency is 218 219 important for dynamic land cover mapping and monitoring. Sentinel-2 imagery includes 13 spectral bands (Table 4) that span from the visible (VIS) and near infrared (NIR) bands to the shortwave infrared (SWIR) 220 221 bands at different spatial resolutions on the ground ranging from 10 m to 60 m (Drusch et al., 2012). In this 222 study, six broad bands, including the VIS, NIR, and SWIR bands, and two narrow bands, the Red Edge 3 223 and 4 bands, are utilized. The SWIR and Red Edge bands with a spatial resolution of 20 m were resized to 224 10 m by dividing each pixel into 4 pixels with the same gray value to maintain the same spatial resolution as the VIS and NIR bands. 225

Table 4. Band information of the Sentinel-2 Level-1C data

Band number	Band name	Resolution (m)	Band number	Band name	Resolution (m)
B1	Aerosols	60	B8	NIR	10
B2	Blue	10	B8A	Red Edge 4	20

B3	Green	10	B9	Water vapor	60
B4	Red	10	B10	Cirrus	60
B5	Red Edge 1	20	B11	SWIR 1	20
B6	Red Edge 2	20	B12	SWIR 2	20
B7	Red Edge 3	20	QA60	Cloud mask	60

The Sentinel-2 Level-1C dataset is the standard product for top of the atmosphere (TOA) reflectance and has been completely integrated into the GEE platform. A QA60 band is embedded in the Sentinel-2 Level-1C data, where opaque and cirrus clouds are computed based on spectral criteria. In the project, the Sentinel-2 images are filtered and collected with less than 20% cloud cover. Because the current QA60 band cannot provide accurate cloud and cloud detection results, we select a low cloud cover threshold (20%) to reduce the potential of including omission errors in cloud/cloud shadow detection.

Here, we used 8955 Sentinel-2 images (based on the 20% maximum cloud criteria) and analyzed an average of 373 Sentinel-2 observations for each month. Then, the QA60 band associated with the image was used to exclude the invalid pixels in each image. These images were acquired between March 2017 and February 2019 to cover the four seasons (starting on March 1, June 1, September 1, and December 1 for spring, summer, autumn and winter, respectively) during a two-year period. The annual map covers four quarterly datasets starting on March 1.

239 To complete the task of Month-Of-Year (MOY) time series analysis, images were placed into collections 240 according to the calendar month. Image composition combines spatially overlapping images into a single 241 image that has a medium value for each band within the monthly collection. Figure 3A displays the number 242 of valid monthly composites of 24 months, which is the occurrence of available monthly surface water maps. 243 The proposed RBSP approach processes these 24 monthly time series composite data between March 2017 244 and February 2019 and generates the SWDF product. Over half of the land surface has been covered with 245 over 20 MOYs, and over 90% percentage of the land surface is covered with over 17 MOYs. If utilizing 246 quarterly composites, approximately 96% percentage of the land surface is covered with all eight seasons 247 (Figure 3B). The detailed statistics of the valid MOYs and quarterly composites can be found in the 248 Supplemental materials (Figure S3 and Figure S4). That is, a short period of monthly analyses may result in 249 the occurrence of data gaps but are beneficial for observing the visible changes in hydrology in a higher 250 temporal resolution.

Figure 3. Number of valid MOYs (A) and quarterly composites (B) during a two-year period using Sentinel-2 with less than 20% cloud cover

The auxiliary data include the JRC Global Human Settlement Layer (GHSL), HydroSHEDS, and Height Above the Nearest Drainage (HAND) datasets, all of which are available globally and have been integrated into the GEE platform. The GHSL contain multitemporal information layers on built-up areas, as derived from Landsat image collections (1975, 1990, 2000, and 2015) (Pesaresi et al., 2015). The latest built-up layer in 2015 was utilized to separate built-up and natural areas, and water delineation issues stemmed from different error sources (Yang et al., 2018).

Notably, terrain shadows are easily misclassified as water bodies, and digital elevation models (DEMs) are widely used to exclude terrain shadow effects. Two hydrologically relevant terrain models, HAND (Donchyts et al., 2016b; Silveira et al., 2011) and HydroSHEDS (Lehner and Döll, 2004), were utilized to eliminate mountain shadow effects. Both models are based on high-resolution SRTM elevation data and are generally used in hydrological and remote sensing applications, such as water likelihood elimination and hill shadow correction. In this study, HydroSHEDS was used to mask mountain areas with slopes greater than 5 degrees. HAND was used to mask terrain shadow areas in flat regions with a threshold of 30 (Table 5).

267 2.3. Rule-based water body detection

251

268 Spectral indices highlight the pixels of objects of interest from the background, and binary thresholding 269 can be used to delineate the object areas, which benefits time series and large-scale analyses due to the ease 270 of implementation. Water body mapping based on water indices faces error identification, and the main 271 noise source varies with different indices (such as the NDWI, MNDWI, and AWEI) and backgrounds 272 (mainly including vegetation, shadows, snow and built-up objects) (Yang et al., 2018). Compared to natural 273 and open areas, the urban environment consists of heterogeneous human-made objects and can lead to the 274 severe overestimation of water bodies. In this study, the AWEI, a water index for urban scenes (Feyisa et al., 275 2014), is adopted to distinguish water bodies from the background. However, the AWEI still faces some

challenges; for example, the omission error of muddy and shallow water bodies widely can be considerable
in natural areas, and commission error can occur due to the existence of building shadows and high-albedo
objects in urban areas. The study area is thus divided into natural/open scenes and urban/built-up scenes to
address the different types of error sources. The GHSL settlement regions designated in 2015 (Pesaresi et al.,
2015) are adopted to separate the natural and built-up areas, which were further processed with different
rules (Table 5).

282

Table 5. The image characteristics used to delineate water bodies from the background using Sentinel-2

Scenes	Feature	Equation or Methodology	Thresholding	Objectives
	HydroSHEDS	HydroSHEDS.slope	Empirical value: 5	Terrain shadows
Preprocessing	HAND	Combined with JRC water occurrence	Empirical value: 30	Mountain shadows in flat areas
	AWEI _{sh}	B2 + 2.5 × B3 - 1.5 × (B8 + B11) - 0.25 × B12	Edge-based Otsu	Water maps
Built-up areas	NIR band	B8	Empirical threshold: 0.2	Very-high albedo noise
	USI	$\frac{-2}{(1-B2) \times (1-B3) \times (1-B4)}$	Edge-based Otsu	Urban shadow noise
	MWI	max{NDMI, AWEI _{sh} }; NDMI = $\frac{B7 - B8A}{B7 + B8A}$	Edge-based Otsu	Water maps
Natural areas	MVI	$MVI = \frac{EVI + NDVI}{2}; NDVI = \frac{B8 - B4}{B8 + B4};$ $EVI = \frac{2.5 * (B8 - B4)}{(B8 + 6 \times B4 - 7.5 \times B2 + 1)}$	Relative threshold $MVI - MWI > 0.1$	Vegetation noise
	Blue band	B2	Empirical threshold: 0.5	Ice and snow noise

283 Natural areas may include muddy and shallow water bodies, especially after rainfall events, and these 284 areas could be underestimated by the AWEI. The NDMI (Bernstein, 2012) is often utilized to highlight 285 muddy and shallow water pixels, and it was originally designed as a filter to exclude those pixels and 286 improve the accuracy of quick atmospheric correction (QUAC). Thus, a mixed water index (MWI) with 287 large AWEI and NWI values is used to reflect the surface water extent in the natural environment. Moreover, 288 vegetation indices can suppress shadow effects (Yamazaki et al., 2015) and vegetation misclassification 289 (Zou et al., 2017) in water body extraction. In this study, a mixed vegetation index (MVI) is used to 290 eliminate errors in the surface water extent, and only those pixels that meet the criteria ($MVI - MWI \leq$ 291 0.1) are classified as open surface water body pixels. Additionally, ice and snow generally display a very 292 high degree of reflection at visible wavelengths and low reflection in the NIR and SWIR band. That is, ice 293 and snow have a similar spectral trend (from VIS to NIR and SWIR) as water bodies, except for its stronger 294 reflectance in the VIS bands. Thus, the blue band (greater than 0.5) is used to exclude ice and snow cover in 295 mountainous areas.

Urban scenes involve heterogeneous human-made objects, where some building shadow areas and veryhigh albedo objects may return high positive values after AWEI calculations and serve as the main noise sources for water body maps. The NIR band is used to eliminate very-high albedo objects considering the ultralow reflectance of water bodies. Although the AWEI can suppress low-albedo objects and shadows in 300 urban scenes, the misclassification of shadow areas still cannot be avoided. Thus, we designed an urban 301 shadow index (USI) to highlight the shadows in urban scenes. The index considers the low reflectance of 302 shadow areas in VIS bands compared to that of water bodies, and the reflectance values of both types of 303 objects tends to zero in the NIR and SWIR bands.

The binary segmentation threshold is an important factor when using spectral indices to delineate target objects. The imaging of spectral indices involves polarization, where the pixel values of an object of interest tend to be positive and the background returns negative values in theory. The histogram of an index image is thus characteristic of a bimodal distribution representing the object and background and a deep and sharp valley between two peaks. Although a user-defined threshold can return optimum results, it is more appropriate to use an automated threshold or an empirical threshold to automate the delineation process, especially for large-scale and time series analyses.

311 In this paper, an improved Otsu threshold is adopted based on the Canny edge detection algorithm 312 (Donchyts et al., 2016a). The performance of the global thresholding techniques (including Otsu's method) 313 used for binary segmentation is limited for small objects and images with abundant noise (Lee et al., 1990). 314 Land surface water represents a small fraction of the land cover in some administrative divisions in France. 315 Thus, the Canny edge detection algorithm is first used to identify the pixels within the buffer areas of each 316 edge. A histogram-based Otsu approach is then applied to these pixels to filter low-probability water bodies 317 in the scene. In addition, several soft empirical thresholds are adopted to exclude error sources to some 318 extent. Although some pixels of these land cover types (such as snow, very-high albedo objects and 319 vegetation) may return values similar to those of water bodies after water index calculation, they exhibit 320 differences in other spectral bands and indices. Thus, soft empirical thresholds can effectively reduce 321 overestimation issues. Table 5 lists the specific thresholds for different objects. For example, very-high 322 albedo masking is given a loose threshold of 0.2 because water bodies absorb most of the spectral energy, 323 whereas high-albedo objects have strong reflectance.

324 2.4. Superpixel water body mapping

325 Due to the lack of consideration of contextual information, the water body thematic maps obtained at the 326 pixelwise level often experience a "salt and pepper" problem with sparse noise (Yang and Chen, 2017; 327 Zhang et al., 2015). Rather than concentrating on individual pixels, OBIA groups the nearby pixels with 328 similar characteristics as homogeneous clusters (Fernández et al., 2014; Huang et al., 2015; Mitkari et al., 329 2017), which can effectively restrain the "salt and pepper" phenomenon and convey valuable information, 330 including the spectral, textural, shape, and spatial information associated with adjacent objects. However, 331 OBIA can be time consuming when extracting information from large images because most segmentation 332 algorithms use the pixel grid as the initial object representation (Stutz et al., 2018). Additionally, automatic 333 segmentation remains an unresolved problem because segmentation is sensitive to many factors, such as the 334 image sensor resolution, scene complexity and number of bands (Csillik, 2017; Gong et al., 2017).

335 In the field of computer science, superpixel segmentation has become increasingly popular, and images 336 are divided into hundreds of non-overlapping superpixels (Ren and Malik, 2003). Similar to OBIA, a 337 superpixel is composed of pixels that are spectrally similar and spatially adjacent, and a superpixel is the 338 basic unit for subsequent processing steps. Compared with OBIA, superpixel segmentation can be 339 performed automatically for large-scale remote sensing images with low memory requirements and few 340 parameters.

341 In the proposed framework, a simple non-iterative clustering (SNIC) algorithm (Achanta and Süsstrunk, 342 2017) is applied to generate the corresponding superpixel blocks. The SNIC algorithm is an improved 343 version of the simple linear iterative clustering (SLIC) algorithm (Achanta et al., 2012) and is a fast and 344 powerful algorithm with high boundary adherence and low complexity (Gharibbafghi et al., 2018). The 345 SNIC algorithm has been proven to perform better and faster than other state-of-the-art superpixel 346 algorithms with less memory in comparisons based on segmentation benchmarks (Achanta and Süsstrunk, 347 2017). This study aims to automatically and rapidly monitor water body dynamics. SNIC is thus selected 348 due to its speed and ability to perform well for various study sites with a single set of default parameters.

349 The main parameter of SNIC is compactness. A large value of compactness reflects clusters with a generally rectangular shape. In this study, a low compactness value (0.1) is selected considering the irregular 350 351 shape of surface water bodies. Superpixels are composed of clustered individual pixels (Figure 4), and the 352 corresponding mean value can be used as an input for the rule-based superpixel water body delineation 353 algorithm (Table 5). This approach results in a fast, simple, and efficient computation.

354

(C) Homogeneous superpixel imag

357 2.5. Validation and comparison

358 A statistically rigorous validation for this product would be desirable. However, a statistically robust 359 national validation dataset is not available to measure the accuracy of this national water body database, 360 especially considering the extent of surface water dynamics. Nonetheless, we evaluated our product with 361 other existing global, national and local datasets (see S.2 in the Supplemental materials for the available

- 362 online addresses). We also performed a qualitative assessment based on careful visual interpretation (see S.3
- 363 in the Supplemental materials and attached Data). Table 6 lists the main reference datasets from HR satellite
- 364 image-derived water masks and official databases and the evaluation metrics.

2	65	
э	0°	

Table 6. Datasets used to evaluate SWDF monthly and annual surface water maps at national and local scales

		Monthly dynamic map		Annual static map	
		Dataset	Evaluation	Dataset	Evaluation
National	Satellite image based product	JRC GSW monthly water history	Correlation analysis & trend analysis	Theia OSO annual product JRC GSW annual product	Confusion matrix & correlation analysis
	Official database	Not available		BD Carthage in 2016 Main watercourse Main lake and reservoir	Confusion matrix Extraction rate Extraction rate
Local	Satellite image based product	200 random sample points Two seasonal lakes South coastal area	Confusion matrix Trend analyses Qualitative analyses	Small water bodies in Loir-et-Cher provided from JRC GSW	Comparison based on confusion matrix & number count
	Official database	Not available		Small water bodies in Loir-et-Cher	Confusion matrix & Number count

367 (1) Evaluation metrics

The monthly and annual surface water extents are evaluated considering classification of water bodies and estimation of area extent. The classification accuracy of water body pixels is measured by the confusion matrix and detection rate (τ). Except for the distribution of the water bodies, it is important to estimate the amount of the surface water bodies. Based on sine and cosine fitting, a MOY model is used to predict the tendency of the monthly surface water area. Linear regression and the correlation coefficient are also used to quantitatively analyze the consistency of the surface water area estimation.

374 The confusion matrix divides the pixels in the study area into four classes: TP (true positive), FN (false negative), FP (false positive), and TN (true negative), reflecting accurate pixel extraction, missing water 375 376 bodies, inaccurate extraction, and the accurate rejection of non-water, respectively. Four normalized metrics 377 (Eq. 1) were then calculated to assess the performance of the proposed approach. The producer's accuracy 378 (PA) and user's accuracy (UA) were used to indicate completeness and correctness, respectively. A low PA 379 reflects serious omission error, and a low UA indicates an extreme commission error. The accuracy (ACC) 380 and Matthews correlation coefficient (MCC) indicate the general accuracy of the approach. In this study, the 381 extents of surface water and non-water bodies may be unbalanced and vary greatly. The MCC considers the 382 four confusion matrix categories and is thus more informative than the ACC, especially when the water 383 bodies account for a small portion of the environment.

384
$$PA = \frac{TP}{TP+FN}, UA = \frac{TP}{TP+FP}, ACC = \frac{TP+TN}{TP+FN+FP+TN}, MCC = \frac{TP*TN-FP*FN}{\sqrt{(TP+FP)(TP+FN)(TN+FP)(TN+FN)}}$$
(1)

385 A detection rate (τ) is used to measure how well the extent (for lake) or length (for river) is accurately 386 extracted. τ is the ratio of the correctly extracted extent (for lake) or watercourse (for river) to the 387 corresponding value in the reference dataset (Eq. 2). The extracted watercourse is calculated through an 388 intersection process with the buffering area of the experimental river extent considering the positional 389 deviation of the reference dataset.

$$\tau = \frac{\text{Product(area/(buffer area))} \cap \text{Reference(Area/length)}}{\text{Reference(area/length)}} (2)$$

The monthly surface water area model is a function of the sines and cosines shown in Eq. (3), and it is 391 392 initially used to predict the day-of-year (DOY) time series surface reflectance for Landsat data (Zhu et al., 393 2012; Zhu and Woodcock, 2014). In this study, we utilize the monthly composite image to simulate the 394 month-of-year (MOY) time series of the surface area. The sine and cosine models estimate the interannual 395 seasonal changes and inner-annual trend simultaneously, and these variations are in accord with the land 396 surface water dynamics. A few coefficients are required to fit the functions considering the relatively small 397 number of monthly composites. The generalized reduced gradient (GRG) solution method (Lasdon et al., 398 1978) is used to fit the nonlinear time series model.

399
$$\hat{\rho} \left(\Delta m\right)_{GRG} = a_0 + a_1 \sin\left(\frac{2\pi}{12}\Delta m\right) + b_1 \cos\left(\frac{2\pi}{12}\Delta m\right) + a_2 \sin\left(\frac{2\pi}{12\times N}\Delta m\right) + b_2 \cos\left(\frac{2\pi}{12\times N}\Delta m\right)$$
(3)

400 where Δm is the month number of the sequence, N is the number of years of utilized Sentinel-2 data, a_0 401 is the coefficient for overall values, a_1 and b_1 are the coefficients of inner-annual change, and a_2 and b_2 are 402 the coefficients of interannual change.

Additionally, a linear regression and the correlation coefficient were used to evaluate the spatial distribution (in the units of 96 administrative divisions) of the surface water and the general trend (monthly change) of the surface water area. The correlation (a value between -1 and +1) is a common numerical measure of the degree of similarity or linear association between two variables. In this study, the Pearson correlation coefficient (r) (Eq. 4) was adopted to measure the consistency of the extent area prediction based on two products. The higher the positive value is, the more similar between the two results are in the estimation of the surface water area.

410
$$r = \frac{\sum_{d=0}^{96} (p_d - \bar{p})(r_d - \bar{r})}{\sqrt{\sum_{d=0}^{96} (p_d - \bar{p})^2 \sum_{d=0}^{96} (r_d - \bar{r})^2}}$$
(4)

411 where *d* is the administrative division in France, and p_d and r_d are the surface water areas within the 412 division estimated by our SWDF product and previous products (GSW and OSO), respectively.

413 (2) National scale datasets

414 Two HR satellite derived water masks and some official datasets at the national scale are available to 415 evaluate the SWDF results.

JRC GSW used 3,865,618 scenes (till now) from Landsat 5, 7, and 8 to quantify global water body dynamics from March 1984 to December 2018, at a 30-m spatial resolution, with an overall accuracy over 90%. GSW is currently the only product providing monthly dynamic data for inland surface water at a spatial resolution of several decameters. Thus, a detailed comparison of the monthly dynamics and annual surface water map in 2017 and 2018 from GSW and SWDF is conducted in this project. The French Theia Land Data Centre has set up a Scientific Expertise Centre OSO ("Occupation des sols" in French) group, and the aim is to produce a land cover map of France using Sentinel-2 images. The OSO product is updated once a year, with the inland surface water extent at a 10-m resolution; the annual surface water extent from 2016-2018 has been released (Inglada et al., 2017). The overall accuracy of land classification is approximately 90%, and the F-score for the surface water is approximately 0.99. The consistency of annual water maps in 2017 and 2018 from SWDF and OSO are compared by using a confusion matrix and correlation analysis.

The national hydrological surface of the BD Carthage database provided by IGN, the French National Institute of Geography, drew the surface water extent in 2016. BD Carthage is used to evaluate the maximum annual water extents in 2017 and 2018 in the SWDF product using confusion matrix-based metrics. However, the different years between BD Carthage and SWDF mean that the surface water may vary in terms spatial distribution.

433 Other hydrological datasets are also used to evaluate the extraction rates (τ) of the main rivers and lakes 434 in the SWDF annual surface water maps (Figure 5). The watercourses of the major rivers in Europe, with a 435 catchment area larger than 5,000 km², released by European Environmental Agency, and the surface extents 436 of the main lakes and reservoirs published by Système d'Information sur l'Eau (SIE) are used as the 437 reference maps.

438

Figure 5. Reference data used to evaluate the water body maps, which involve the publicly released datasets (main
rivers and lakes, and ponds in Loir-et-Cher) and a detailed monitoring analysis (Lake Der-Chantecoq and Lake Orient,
as well as 200 sample points)

442 (3) Local scale datasets

Three local approaches have been carried out. The first approach corresponds to the analysis of 200 samples points' analysis, the second approach compares the monthly surface water dynamics with a detailed Sentinel-2 time series over the two major reservoirs of Lake Der-Chantecoq and Lake Orient (Figure 5), and the third approach considers a large number of ponds in the Sologne region of the Loir-et-Cher Department. The detailed information and vector datasets of the sample points and these two reservoirs are provided in the Supplemental materials (S.3) and attached Data files.

To validate the monthly time series of surface water dynamics, we estimated confusion matrices based on 200 sample points (green points in Figure 5), which were selected from a stratified random sampling design using water/non-water strata and monthly time series of Sentinel-2 composite images. A pixel could alternate among water, non-water and no-data over the time series, and a careful visual interpretation is likely the most stable approach other than long-term field work. The accuracy of the surface water time 454 series was described by summarizing the data in a confusion matrix and estimating the normalized 455 coefficients (Eq. 1) of water/non-water samples across France.

The reservoirs, Lake Der-Chantecoq, 48 km², and Lake Orient, 23 km², (enlarged views in Figure 5) are 456 457 the largest and third-largest artificial lakes in France, respectively. The Lake Der-Chantecoq and Lake 458 Orient reservoirs are designed to protect Paris from floods by holding the water of the Marne River and 459 Seine River, respectively. These reservoirs are fully controlled; infilling occurs from November to June, and 460 at that time, water is taken from the Marne River (for Lake Der-Chantecoq) and the Seine (Lake Orient). 461 From July to October, water is released from the reservoirs for flow replenishment of the rivers. Surface 462 water changes dramatically during the year, reducing by half of the original extent from the high to low 463 period for Lake Der-Chantecoq and reducing to a fourth of the original extent for Lake Orient. During the 464 period of March 2017 to February 2019, 46 and 49 Sentinel-2 images were selected over Lake Der-465 Chantecoq and Lake Orient, respectively. One Landsat-8 image acquired on December 7, 2017, is used because of no clear Sentinel-2 image is available. We generated the reference data of these two lakes using 466 467 an SVM classification approach and an on-screen quality check.

Additionally, the Sologne region, which is a wet and relatively wild area located in the southern portion of Loir-et-Cher Department, is characterized by a large number of ponds, with a total of approximately 3,200 pounds, for a total surface area of 12,000 ha. These ponds correspond to small water bodies, where only 50 water bodies reach an area of 50 ha and the largest pond has an area of 180 ha. The reference dataset for these ponds released by the Departmental Direction of the Territories (DDT) is used to evaluate the accuracy of the proposed approach for small water body detection using the confusion matrix.

474

475 **3. Results**

476 *3.1.* Monthly and quarterly dynamics of the surface water extent

477 The development of a consistent and automated RBSP workflow enables us to generate a national-scale SWDF product (vector format products are attached in the Supplemental materials and Data files). We 478 479 generate the spatiotemporal dynamics of inland surface water bodies using monthly composite images 480 extending from March 2017 to February 2019. Figure 6 displays the land surface water extent in France in 481 February 2019. The detailed results include the urban areas in Bordeaux, the natural environment of forest 482 and farmland near Paris and in Loir-et-Cher, and the mountainous area by the Alps. Correspondingly, the 483 land surface water bodies involve the Garonne River, which runs through Bordeaux; the Seine River, which 484 flows through natural areas; small water bodies, such as ponds, that are surrounded by farmlands; and Lake 485 Annecy, which is located in alpine area with terrain shadow and snow. These different types of water bodies 486 and backgrounds reflect the robustness of the RBSP and the effectiveness of the SWDF analysis method.

Figure 6. Surface water extent using monthly composite data during February 2019 (A) in France and several details
over different environment/landscape units, including (B) urban, (C) agricultural, (D) mountainous and (E) forest areas.

491 As the only two available products recording the monthly variation in surface water extent, SWDF and 492 GSW are compared in terms of the aspect of area predictions. We construct two MOY time series models 493 based on the monthly surface water area calculated in the SWDF (at the annual scale) and GSW (between 494 March and October) products, and then, we evaluate the predicted trends based on sine and cosine fitting 495 (Figure 7). Both products exhibit similar seasonal trends, and the correlation coefficient of the variation is 496 0.940. However, SWDF provides more of the larger surface water area than GSW, and this average increase 497 of approximately 35,000 ha is related to the gain of the spatial resolution from the 30 m of Landsat image to 498 the 10 m of Senitnel-2 image.

499

490

Figure 7. Tendency of national MOY surface water area variations estimated from the SWDF and GSW products. The crossing points indicate the monthly surface water area of France, and the curves present the fitted seasonal trend by using harmonic model. GSW provides the surface water maps between March and October.

503

The SWDF products describe the monthly variation based on the monthly composite data. In fact, quarterly variation can be generated if using quarterly composite data, which have also been provided in the attached Data as well. The area surface water extent in four seasons is estimated as well (Figure 8). The results indicate a general seasonality of dry autumn and wet winter. During the winter of 2017-2018 (Figure 8), particularly in January 2018 (Figure 7), France witnessed an intense episode of flooding with several successive flood waves. The highest values of SWDF MOY are related to this long flood period.

Figure 8. Surface water area of France in four seasons estimated in SWDF product

512 To illustrate the temporal resolution of SWDF, we focused on a detailed example (Figure 9) of mapped 513 surface water in the southern coastal areas covering parts of the Camargue Regional Nature Park, the Pond 514 of Vaccarès, and the lower courses of the Rhône River and the Pond of Berre, which is largest salt water 515 lake in France, within the department of Bouches-du-Rhône, at the monthly time scale. The MOY surface 516 water area estimated from SWDF and GSW is also fitted with the sine and cosine functions (Eq. 4). The result displays dramatic seasonal behavior (Figure 9). In general, the monthly time series trend features the 517 518 transition from dry summers beginning as early as June to wet winters beginning in October, which is in 519 accord with the Mediterranean climate characteristics. In addition, there are only two months (May 2017 and 520 Nov. 2018) that are extremely affected by clouds in SWDF over the 24 MOYs. The detailed monthly 521 changes and corresponding false color composite images are provided in Figure S1 and Figure S2 (in the 522 Supplemental materials S.4).

⁵²³ 524 525

Figure 9. Monthly time series changes in a part of the southern coastal area. (A) Monthly time series estimation of the surface water area in the study area SWDF, GSW and fitted models. (B) & (C) are two monthly maps provided by 526 SWDF. (D-G) display two zoom-in regions, where the surface water extents (yellow lines) overlay the Sentinel-2 527 monthly composite image.

528 Here, at a more detailed scale, an example of lake dynamics across Lake Der-Chantecoq and Lake 529 Orient in 2017 and 2018 from the quarterly maps is shown (Figure 10). The surface water extent displays 530 seasonal variations according to the quarterly time series analysis. Compared to the monthly variation in 531 Figure 11, the quarterly maps are more robust because clear images are generally available for the whole of 532 France during the quarterly time span. Nevertheless, the greater accuracy of the spatial distribution reduces 533 the temporal variation. For example, the changes between December and February (within the period of 534 winter) and between September and October (within the period of autumn) are noteworthy; yet, the quarterly 535 map cannot capture these monthly changes. In the monthly product (Figure 11), Lake Der-Chantecoq is completely filled from December to February, and Lake Orient ran dry during the September and October. 536 The quarterly product (Figure 10) only displays the dry situation in autumn and the waterlogged state in 537 winter. The correlation between the SWDF monthly time series products and the reference maps is 0.946 for 538 539 Lake Der-Chantecoq and 0.892 for Lake Orient. That is, the monthly map can monitor the variation at higher temporal resolution with an acceptable extraction accuracy. In addition, the dramatically smallest 540 541 surfaces' period occurs between November to February, which cannot be reflected in the GSW product owing to the data deficiency. 542

543 544 545 546

Figure 10. Quarterly time series changes in the surface water extent of Lake Der-Chantecoq and Lake Orient. The yellow lines display the surface water extents provided by SWDF. The background corresponds to the quarterly median composite data based on Sentinel-2 images.

Figure 11. Monthly time series changes in Lake Der-Chantecoq and Lake Orient. The curves (C) display the monthly
 surface water area estimated by SWDF and the reference values. A, B, D and E are surface water extents (yellow lines)
 overlaying on Sentinel-2 images. These monthly variations, including A and B in winter and D and E in autumn,
 cannot be reflected by quarterly maps.

547

Additionally, 200 sample points are marked as water bodies, non-water bodies and no data by visual interpretation based on the reference monthly composite images. In total, 4800 sample points over 24 months were obtained with two dimensions ("actual" by manual judgment and "predicted" by the RBSP method). The overall confusion matrix is presented in Table 7 after excluding 840 no-data sample points (Table S3 shows the monthly confusion matrix in the Supplemental materials). The ACC and MCC for the

- 558 general products within a two-year period are 0.932 and 0.865, respectively. Owing to the wet winter season 559 in November and December, the results during these two months present relatively low accuracy; the ACC
- and MCC values are approximately 0.87 and 0.75, respectively.

5	6	1
-	-	

Table 7.	Accuracy	assessment	of	sampl	le	points
					-	

840 points: no data available		Actual reference	Actual reference by visual interpretation			
3960 points: valid MOYs		Water	Non-water			
Predicted SWDF	Water	1589	61			
by the RBSP method	Non-water	207	2103			
PA = 0.885; UA = 0.963; ACC = 0.932; MCC = 0.865						

562 *3.2.* Water frequency and annual surface extent

563 The annual frequency of surface water, expressed as a value from 0 to 100%, reflects the number of 564 times a pixel is flagged as water over the total number of cloud-free monthly compositions during the year. 565 Figure 12 displays the annual frequency of surface water in 2018. The satellite-based frequency of water bodies can be decreased by many factors, including the clouds (omitted by the cloud-screening algorithm), 566 567 geometric mismatch and artifacts over certain areas (Zou et al., 2018). In the project, an annual frequency of 568 no lower than 70% is regarded as a satellite-based permanent water body. Frequencies between 20% and 70% 569 can be regarded as seasonal water bodies, where have water some time in a year. An annual frequency of no 570 higher than 20% indicates that the pixels are marked as water bodies during one or two months of the year. 571 These pixels could be the noise from cloud shadows and inundation zones, which are somewhat mixed in the 572 annual frequency map and need further consideration.

Figure 12. Annual surface water occurrence map in 2018 generated by calculating the frequency of pixels marked as
water bodies in the monthly maps. (A) France, (B) Lake Orient, and (C) Lake Der-Chantecoq. Note: The gap inside the
Lake Der-Chantecoq is from the separate processing of the two divisions (Marne and Haute-Marne).

577 In the project, we generated water body maps in 2017 and 2018 based on the frequency map. The 578 minimum water extent covering the permanent water bodies was 308,374 ha and 313,808 ha in 2017 and 579 2018, respectively, while the maximum water extent, including the permanent and seasonal water bodies,

was approximately 421,857 ha and 414,449 ha in 2017 and 2018, respectively. Table 8 listed the surface
water area estimated from different HR derived products and the hydrological BD Cartage dataset.

Surface water area (ha)	SWDF		GSW		OSO	BD Cartage in 2016		
	permanent	maximum	permanent	maximum	maximum	permanent	maximum	
2017		308,374	421,857	277,959	394,297	541,912	129 101	542 210
2018		313,808	414,449	287,551	402,313	540,353	428,401	545,519

Table 8. Surface water area in France estimated from different products

582

584 These permanent and maximum surface water maps were quantitatively compared with the HR satellite 585 derived annual maps from 2017 and 2018 (Table 9). The confusion matrix was calculated to determine the degree of consistency of the surface water extents predicted by the different products. TP and TN denote the 586 587 same extracted regions of water bodies and non-water bodies, and FP and FN denote the omission in one 588 product and commission in another product. Additionally, correlation analysis is performed based on the 589 surface water areas in 96 administrative divisions. The coefficient of determination (\mathbb{R}^2) (Figure 13) of linear 590 regression is found to be approximately 0.98 for GSW and 0.80 on average for OSO compared with SWDF. 591 The Pearson correlation coefficient (r) between the SWDF and GSW methods is approximately 0.99 on 592 average. In general, the SWDF and GSW approaches display a high degree of consistency in both area-593 based correlation analysis and region-based confusion matrix aspects, perhaps due to their similar solutions 594 based on the annual percentage of pixels.

595 Also, the SWDF annual products are evaluated using the BD Carthage hydrological database obtained in 596 2016. The confusion matrix-based metrics were 0.617 (PA), 0.801 (UA), 0.995 (ACC) and 0.700 (MCC) on 597 average for the maximum extent and 0.611 (PA), 0.842 (UA), 0.996 (ACC) and 0.715 (MCC) for permanent 598 water bodies. The relative high UA means that SWDF soundly overcomes the error extraction of water 599 bodies soundly. That is, the noise is effectively excluded based on the water occurrence analysis. The low 600 PA means that the SWDF faces greater challenges in detecting the missing parts of the surface water bodies. 601 However, the hydrological data were obtained before 2016 and thus the dissimilarity cannot be avoided 602 between the different temporal data.

 Table 9. Comparison of the annual surface water maximum and permanent extent provided by three satellite derived products and a hydrological database

(2017/2018)		SWDF vs OSO	SWDF vs GSW	OSO vs GSW	SWDF vs BD Cartage
	r	0.952 / 0.838	0.991 / 0.989	0.946 / 0.856	0.915 / 0.914
Maximum extent	ACC	0.996 / 0.995	0.997 / 0.997	0.995 / 0.994	0.995 / 0.995
	MCC	0.750 / 0.700	0.779 / 0.776	0.740 / 0.687	0.698 / 0.702
Permanent	ACC	Not available	0.997 / 0.997	Not available	0.996 / 0.996
	MCC	Not available	0.757 / 0.759	Not available	0.721 / 0.710

605 606

Figure 13. Correlation analysis of the annual surface water maximum extent between the SWDF and GSW/OSO methods based on the surface water areas in 96 administrative divisions in (A) 2017 and (B) 2018

608 Furthermore, the extraction rates (Figure 14) of the main rivers and main lakes are 0.929 and 0.802 in 609 the annual water map of 2018, respectively. Further, the extraction of small water bodies is analyzed based on a large number of ponds spreading across Loir-et-Cher. The confusion matrix analysis of these small 610 water bodies (Figure 15A) indicates that PA, UA, ACC and MCC are 0.683, 0.882, 0.995 and 0.774, 611 612 respectively. These metrics for the GSW method (Figure 15B) are 0.498, 0.865, 0.993, and 0.653. Both products predict a similar degree of correctness of approximately 90% and commission errors of 613 approximately 10%; however, they face problems with small water bodies related to low completeness and 614 615 high omission errors. The SWDF method at a 10-m spatial resolution has a higher extraction rate for small water bodies and ponds in Loir-et-Cher than does the GSW method at a 30-m spatial resolution. The 616 617 reference data include 2498 ponds larger than 1 ha and a total area of 8286 ha (Figure 15C). SWDF detects 618 1900, 2498 and 2779 ponds larger than 1 ha, 0.6 ha and 0.5 ha, respectively. GSW detects 1265, 2100 and 619 2498 ponds larger than 1 ha, 0.5 ha and 0.3 ha, respectively. The detailed illustration in Figure 15 indicates 620 that the boundaries of the ponds are subject to extremely omission phenomena (redaa color), especially for GSW, which are mainly caused by the vegetation and vegetation shadows. This kind of omission error 621 622 reduces the surface water area for each pond. In addition, GSW includes approximately 2000 ponds between 0.2 ha and 0.5 ha, which are generally sparse noise owing to the pixelwise mapping. The official database of 623 624 the surface water extent faces the problem of the temporal changes, which would reduce its reliability in 625 measuring SWDF dynamic products.

627 628 629 630

Figure 14. Evaluation of the extraction rate of main riverway and lake extents in 2018. (B) (C) and (D) are some zoomin details in different geological regions of France, which are located in Paris Basin, mountainous Alps and Mediterranean coastal area, respectively.

Figure 15. Evaluation maps of pond extraction in Loir-et-Cher based on the (A) SWDF and (B) GSW products. (C)
 displays the statistics of the number of ponds in different size.

635 **4. Discussion and perspectives**

Monthly time series monitoring of surface water bodies at a 10-m resolution was performed for France between March 2017 and February 2019. The SWDF results indicate that Sentinel-2 data can provide higher temporal and spatial resolution information compared with the existing surface water extent products. The proposed RBSP approach tested here allows the frequent updating of the product based on a newly available Sentinel-2 monthly composite image. However, the proposed approach can be further improved to obtain more accurate and complete products, including the commission error of moist soil, the omission error of streams, creeks and frozen water bodies, and the data deficient because of cloud cover.

643 4.1. Error sources and potential improvements

644 Clouds and cloud shadows can cause both the omission error (Figure 16A) and commission errors 645 (Figure 16D), and they reduce the coverage of valid observations, especially during the wet winter in France. 646 In this study, we utilized the Sentinel-2 QA60 band to mask clouds in images with cloud cover percentages 647 of less than 20%. The low cloud cover threshold does not affect the proposed RBSP approach. However, the 648 coverage of the SWDF product could be further improved if an enhanced cloud and cloud shadow algorithm 649 are available and introduced in the preprocessing stage. Recently, the Fmask 4.0 algorithm (Qiu et al., 2019), 650 which robustly detected clouds and cloud shadows in Landsat data, was introduced into Sentinel-2. This 651 enhanced masking algorithm is expected to (i) filter the clear pixels to restrain the commission error and (ii) 652 add experimental data with a loose cloud cover flag to obtain a higher coverage of monthly surface water 653 maps.

Wet soil regions distributed in farmland (through irrigation) and wetland areas are somewhat misclassified as surface water bodies based on the rules of spectral indices (Figure 16E). The division of surface water, dry land and wet land is important for monitoring the inner-annual changes in intermittent rivers and ephemeral streams. Thus, some potential ideas involve the synergistically use of Sentinel-1 SAR data (Bousbih et al., 2018) and Landsat 8 thermal information (Sadeghi et al., 2017).

RBSP typically faces omission error issues along narrow rivers (Figure 16B) because of 10 meters spatial resolution and the use of superpixel technique, especially when areas are sheltered by vegetation. It is important to restore the completeness of the watercourse in these cases. Potential development steps could be considered to restore rivers from fracture effects by (i) using prior knowledge and GIS data to obtain map layers over time and limit projection distortion, (ii) implementing salient object detection approaches and perceptual organization techniques to address the computational efficiency, and (iii) performing spectral mixture analysis to extract the endmembers of different environments.

RBSP regarded ice as the other type of land cover and excluded it from surface water maps in the current
 project. That is, RBSP would underestimate surface water in winter because the water bodies are frozen
 (Figure 16C). For the SWDF product, ice is mostly limited to mountainous lakes and hydropower reservoirs

in the Alps and Pyrenees areas, which represent a very small percentage of water bodies. The monitoring of
inland river and lake ice indicates significant environment and climate changes (Yang et al., 2020). The
detection of a surface water body can provide the basic layer for further inland ice detection and estimate the
percentages and frequencies of the river and lake ice.

673

Figure 16. Main error sources in the current SWDF products. Omission errors from (A) cloud cover, (B) stream of
 Claise River and (C) frozen water bodies in Plagnes Lake and Montriond Lake. Commission errors from (D) cloud
 shadow (E) wet land and forests shadow areas.

677 In brief, the SWDF method may overestimate the number of water bodies in locations that contain moist 678 soil and shaded pixels and underestimate the extent of water bodies such as streams, creeks and frozen water 679 bodies. Commission error exists in the monthly time series maps but can be effectively excluded from the 680 annual water maps based on frequency calculations. Such accelerated error reduces the accuracy of the 681 SWDF flood mapping results because bi-temporal maps are applied before and after flooding. Fortunately, 682 these errors are mainly specific to the monthly maps. The quarterly and annual surface water maps appear to be more robust than the monthly maps based on the high quality of quarterly composite images and annual 683 684 frequency calculations.

685 4.2. Data accessibility and homogeneity of S2 and Landsat

To our knowledge, until now, JRC GSW is the only available product that provides the monthly dynamics of inland surface water bodies. However, GSW could be unavailable in certain months at certain locations. For France, GSW provides the monthly dynamics between March and October, as shown in Figure 7.

Figure 17 compares the percentage of areas with valid observations in France using Sentinel-2, Landsat 8 and GSW data (synthetic use of Landsat 7 and 8). With a high revisit frequency, Sentinel-2 (85% on average) can provide more available valid data than Landsat 8 (49% on average) and even GSW (60% on average). When limited to March through October in the dry season, the available percentage of the area is similar between the obtained product and the JRC dataset (approximately 90% on average), and the valid area decreases to 58% on average if only Landsat 8 is utilized. For the quarterly maps, Sentinel-2 provides

696 99.5% coverage, on average, in France, and Landsat 8 covers 85.6% of the entire national area on average. 697 The SWDF method can provide the complete seasonal dynamic changes in the inland surface water extent, 698 although the MOY time series analysis requires further improvement to obtain complete coverage, perhaps 699 by introducing advanced cloud mask algorithms to include more images with 700 CLOUDY_PIXEL_PERCENTAGE flags or by homogeneously merging Landsat and Sentinel-2 data. 701 Figure 3 and Figure 18 present the valid MOY maps in a two-year period using Sentinel-2, Landsat 8 and 702 Sentinel-2 and Landsat 8 combined. Our future work will involve the homogeneous merging of the Landsat 703 and Sentinel-2 datasets, especially considering the recently published Landsat Analysis-ready Data (ARD) 704 products and upcoming Landsat 9 scheduled for launch in December 2020.

708

705

Figure 18. Number of valid monthly composite images from (A) Landsat 8 and (B) the homogeneous use of Sentinel-2
 and Landsat 8 with less than 20% cloud cover

711 **5. Conclusion**

We develop an automated inland surface water detection approach and release a national surface water dynamics product. To the best of our knowledge, this study is the first to monitor the monthly dynamics of the surface water extent at a 10-m resolution over a large-scale using Sentinel-2 imagery. The RBSP algorithm runs automatically to delineate surface water bodies in different environments (such as urban scenes, agricultural fields, and mountainous areas). The SWDF product determines the water occurrence in France at monthly time steps and at a 10-m spatial resolution. The geography of France includes coastline areas, mountainous areas, plains, islands and metropolises. Thus, the RBSP approach is intuitively implemented in GEE and has the potential to generate surface water dynamics at other national scopes and even the global scope.

721 The obtained SWDF product is evaluated and validated based on both the HR satellite image derived 722 water maps and official datasets. The annual surface water maps of SWDF show consistency with the 723 publicly released land surface water maps of the JRC GSW, OSO and BD Cartage based on both the spatial 724 distribution and surface area. These products display a high correlation coefficient of over 0.950 for surface 725 water area prediction and high overall accuracies of over 0.995 (ACC) and approximately 0.750 (MCC) 726 based on confusion matrix analysis. Moreover, the MOY SWDF and GSW products exhibit a similar 727 seasonal trend, with a correlation coefficient of 0.940. The SWDF results cover all 24 months in the two-728 year period, but the GSW method excludes results for the winter seasons from November to February. 729 Additionally, the SWDF method has a higher extraction rate than the GSW method for small water bodies 730 due to its higher spatial resolution of 10 m. For example, the completeness of pond extractions in Loir-et-731 Cher is 0.683 (SWDF) and 0.498 (GSW) using the two methods, respectively. Moreover, the randomly 732 sampled points show that the monthly water dynamics of SWDF have overall accuracies of 0.932 (ACC) 733 and 0.865 (MCC). The detailed monitoring analysis of Lake Der-Chantecoq and Lake Orient indicates the 734 superiority of MOY compared with conventional seasonal analysis on subtle variation monitoring.

Our ongoing work is dedicated to improving the RBSP approach and the general application of the SWDF product. The automatic RBSP approach overestimates the SWDF in wet soil and shadow areas and underestimates the areas of water bodies such as rivers, streams and frozen water bodies. An advanced cloud masking algorithm and soil moisture estimation method could be implemented to reduce the commission error. A salient edge detection approach will be considered to address the omission of river fractures. The monitoring of percentage and frequency of river and lake ice is an interesting topic to be explored in our ongoing work.

742 Overall, the SWDF results provide a unique opportunity for the monthly continuous mapping of the 743 surface water extent at a 10-m scale using time series of composite images. Such monthly continuous time 744 series of surface water dynamics benefit in-depth research on the inner-annual spatiotemporal variability in 745 surface water changes, such as for ephemeral stream and lake monitoring, seasonal variation assessment and 746 inundation mapping. Currently, SWDF has a valid coverage of 85% for the monthly maps and 99.5% for the 747 quarterly maps on average. The valid coverage can be further improved if an enhance cloud and cloud 748 shadow detection algorithm is introduced and a high cloud cover flag is used. Additionally, the 749 homogeneous use of Sentinel-2 and Landsat 8 could further increase the valid coverage of the SWDF 750 product.

751 SWDF product access

https://data.mendeley.com/datasets/475kmt7ysv/draft?a=eea5b126-937b-4ccd-ab96-92bcc3c6d637
753

754 Acknowledgments

This work is funded by National Key R&D Program Funding (2017YFB0503905-05). The work of X. Yang was supported by the China Scholarship Council (No. 201504490008). We thank the European Commission's Joint Research Centre, Theia, the European Environment Agency, and Système d'Information sur l'Eau (SIE) for providing the reference maps used to validate our products. The Lake de Der and Lake d Orient monitoring was realized within the framework of the SWOT Project.

760 **References**

- Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S., 2012. SLIC superpixels compared to
 state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell.
 doi:10.1109/TPAMI.2012.120
- Achanta, R., Süsstrunk, S., 2017. Superpixels and polygons using simple non-iterative clustering. Proc. 30th IEEE Conf. Comput. Vis. Pattern Recognition, CVPR 2017 2017-Janua, 4895–4904.
 doi:10.1109/CVPR.2017.520
- Acharya, T.D., Lee, D.H., Yang, I.T., Lee, J.K., 2016. Identification of water bodies in a landsat 8 OLI
 image using a J48 decision tree. Sensors (Switzerland) 16, 1–16. doi:10.3390/s16071075
- Aires, F., Prigent, C., Fluet-Chouinard, E., Yamazaki, D., Papa, F., Lehner, B., 2018. Comparison of visible
 and multi-satellite global inundation datasets at high-spatial resolution. Remote Sens. Environ. 216,
 427–441. doi:10.1016/j.rse.2018.06.015
- Allen, G.H., Pavelsky, T., 2018. Global extent of rivers and streams. Science (80-.). 361, 585–588.
 doi:10.1126/science.aat063
- Arvor, D., Daher, F.R.G., Briand, D., Dufour, S., Rollet, A.J., Simões, M., Ferraz, R.P.D., 2018. Monitoring
 thirty years of small water reservoirs proliferation in the southern Brazilian Amazon with Landsat time
 series. ISPRS J. Photogramm. Remote Sens. 145, 225–237. doi:10.1016/j.isprsjprs.2018.03.015
- Avisse, N., Tilmant, A., François Müller, M., Zhang, H., 2017. Monitoring small reservoirs' storage with
 satellite remote sensing in inaccessible areas. Hydrol. Earth Syst. Sci. 21, 6445–6459.
 doi:10.5194/hess-21-6445-2017
- Bartout, P., Touchart, L., 2013. L'inventaire des plans d'eau français: Outil d'une meilleure gestion des eaux
 de surface. Ann. Georgr. 123, 266–289.
- Bayram, B., 2013. An Integrated Approach to Temporal Monitoring of the Shoreline and Basin of Terkos
 Lake. J. Coast. Res. 29, 1427. doi:10.2112/jcoastres-d-12-00084.1
- 784 Bernstein, L.S., 2012. Quick atmospheric correction code: algorithm description and recent upgrades. Opt.

- 785 Eng. 51, 111719. doi:10.1117/1.OE.51.11.111719
- Bousbih, S., Zribi, M., Hajj, M. El, Baghdadi, N., Lili-Chabaane, Z., Gao, Q., Fanise, P., 2018. Soil moisture
 and irrigation mapping in a semi-arid region, based on the synergetic use of Sentinel-1 and Sentinel-2
 data. Remote Sens. 10, 1–22. doi:10.3390/rs10121953
- Campos, J.C., Sillero, N., Brito, J.C., 2012. Normalized difference water indexes have dissimilar
 performances in detecting seasonal and permanent water in the Sahara-Sahel transition zone. J. Hydrol.
 464–465, 438–446. doi:10.1016/j.jhydrol.2012.07.042
- Carroll, M.L., Loboda, T. V., 2017. Multi-decadal surface water dynamics in North American tundra.
 Remote Sens. 9, 1–15. doi:10.3390/rs9050497
- Che, X., Feng, M., Yang, Y., Xiao, T., Huang, S., Xiang, Y., Chen, Z., 2017. Mapping extent dynamics of
 small lakes using downscaling MODIS surface reflectance. Remote Sens. 9. doi:10.3390/rs9010082
- Chen, F., Zhang, M., Tian, B., Li, Z., 2017. Extraction of Glacial Lake Outlines in Tibet Plateau Using
 Landsat 8 Imagery and Google Earth Engine. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 10,
 4002–4009. doi:10.1109/JSTARS.2017.2705718
- Chignell, S.M., Anderson, R.S., Evangelista, P.H., Laituri, M.J., Merritt, D.M., 2015. Multi-temporal
 independent component analysis and landsat 8 for delineating maximum extent of the 2013 Colorado
 front range flood. Remote Sens. 7, 9822–9843. doi:10.3390/rs70809822
- Cian, F., Marconcini, M., Ceccato, P., 2018. Normalized Difference Flood Index for rapid flood mapping:
 Taking advantage of EO big data. Remote Sens. Environ. 209, 712–730. doi:10.1016/j.rse.2018.03.006
- Crétaux, J.F., Abarca-del-Río, R., Bergé-Nguyen, M., Arsen, A., Drolon, V., Clos, G., Maisongrande, P.,
 2016. Lake Volume Monitoring from Space. Surv. Geophys. 37, 269–305. doi:10.1007/s10712-0169362-6
- 807 Crist, E.P., 1985. A TM Tasseled Cap equivalent transformation for reflectance factor data. Remote Sens.
 808 Environ. 17, 301–306. doi:10.1016/0034-4257(85)90102-6
- Csillik, O., 2017. Fast segmentation and classification of very high resolution remote sensing data using
 SLIC superpixels. Remote Sens. 9. doi:10.3390/rs9030243
- Beng, Y., Jiang, W., Tang, Z., Li, J., Lv, J., Chen, Z., Jia, K., 2017. Spatio-temporal change of lake water
 extent in Wuhan urban agglomeration based on Landsat images from 1987 to 2015. Remote Sens. 9.
 doi:10.3390/rs9030270
- 814 Donchyts, G., Schellekens, J., Winsemius, H., Eisemann, E., van de Giesen, N., 2016a. A 30 m Resolution
- 815 Surface Water Mask Including Estimation of Positional and Thematic Differences Using Landsat 8,
- 816 SRTM and OpenStreetMap: A Case Study in the Murray-Darling Basin, Australia. Remote Sens. 8,
 817 386. doi:10.3390/rs8050386
- B18 Donchyts, G., Winsemius, H., Schellekens, J., Erickson, T., Gao, H., Savenije, H., van de Giesen, N., 2016b.
 B19 Global 30m Height Above the Nearest Drainage, in: European Geosciences Union.
 B20 doi:10.13140/RG.2.1.3956.8880
- 821 Dong, J., Xiao, X., Menarguez, M.A., Zhang, G., Qin, Y., Thau, D., Biradar, C., Moore, B., 2016. Mapping

- paddy rice planting area in northeastern Asia with Landsat 8 images, phenology-based algorithm and
 Google Earth Engine. Remote Sens. Environ. 185, 142–154. doi:10.1016/j.rse.2016.02.016
- Dronova, I., Gong, P., Wang, L., 2011. Object-based analysis and change detection of major wetland cover
 types and their classification uncertainty during the low water period at Poyang Lake, China. Remote
 Sens. Environ. 115, 3220–3236. doi:10.1016/j.rse.2011.07.006
- Drusch, M., Del Bello, U., Carlier, S., Colin, O., Fernandez, V., Gascon, F., Hoersch, B., Isola, C., Laberinti,
 P., Martimort, P., Meygret, A., Spoto, F., Sy, O., Marchese, F., Bargellini, P., 2012. Sentinel-2: ESA's
 Optical High-Resolution Mission for GMES Operational Services. Remote Sens. Environ. 120, 25–36.
- 830 doi:10.1016/j.rse.2011.11.026
- Bu, Y., Zhang, Y., Ling, F., Wang, Q., Li, W., Li, X., 2016. Water bodies' mapping from Sentinel-2
 imagery with Modified Normalized Difference Water Index at 10-m spatial resolution produced by
 sharpening the swir band. Remote Sens. 8, 354. doi:10.3390/rs8040354
- Fan, Y., Chen, S., Zhao, B., Pan, S., Jiang, C., Ji, H., 2018. Shoreline dynamics of the active Yellow River
 delta since the implementation of Water-Sediment Regulation Scheme: A remote-sensing and
 statistics-based approach. Estuar. Coast. Shelf Sci. 200, 406–419. doi:10.1016/j.ecss.2017.11.035
- Feng, M., Sexton, J.O., Channan, S., Townshend, J.R., 2016. A global, high-resolution (30-m) inland water
 body dataset for 2000: first results of a topographic–spectral classification algorithm. Int. J. Digit.
 Earth 9, 113–133. doi:10.1080/17538947.2015.1026420
- Fernández, I., Aguilar, F.J., Aguilar, M.A., Álvarez, M.F., 2014. Influence of data source and training size
 on impervious surface areas classification using VHR satellite and aerial imagery through an objectbased approach. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 7, 4681–4691.
 doi:10.1109/JSTARS.2014.2327159
- Feyisa, G.L., Meilby, H., Fensholt, R., Proud, S.R., 2014. Automated Water Extraction Index: A new
 technique for surface water mapping using Landsat imagery. Remote Sens. Environ. 140, 23–35.
 doi:10.1016/j.rse.2013.08.029
- Fisher, A., Flood, N., Danaher, T., 2016. Comparing Landsat water index methods for automated water
 classification in eastern Australia. Remote Sens. Environ. 175, 167–182. doi:10.1016/j.rse.2015.12.055
- Ford, M., 2013. Shoreline changes interpreted from multi-temporal aerial photographs and high resolution
 satellite images: Wotje Atoll, Marshall Islands. Remote Sens. Environ. 135, 130–140.
 doi:10.1016/j.rse.2013.03.027
- Fort, M., André, M.-F., 2013. Landscapes and Landforms of France (World Geomorphological Landscapes).
 Springer.
- Gao, B.-C., 1996. NDWI A Normalized Difference Water Index for Remote Sensing of Vegetation Liquid
 Water From Space. Remote Sens. Env. 7212, 257–266.
- Gharibbafghi, Z., Tian, J., Reinartz, P., 2018. Modified Superpixel Segmentation for Digital Surface Model
 Refinement and Building Extraction from Satellite Stereo Imagery. Remote Sens. 10, 1824.
 doi:10.3390/rs10111824

- Ghosh, M.K., Kumar, L., Roy, C., 2015. Monitoring the coastline change of Hatiya Island in Bangladesh
 using remote sensing techniques. ISPRS J. Photogramm. Remote Sens. 101, 137–144.
 doi:10.1016/j.isprsjprs.2014.12.009
- Gong, M., Zhan, T., Zhang, P., Miao, Q., 2017. Superpixel-Based Difference Representation Learning for
 Change Detection in Multispectral Remote Sensing Images 55, 2658–2673. doi:10.4018/978-1-52255589-6.ch001
- 865 Gong, P., Liu, H., Zhang, M., Li, C., Wang, J., Huang, H., Clinton, N., Ji, L., Li, Wenyu, Bai, Y., Chen, B., 866 Xu, B., Zhu, Z., Yuan, C., Ping Suen, H., Guo, J., Xu, N., Li, Weijia, Zhao, Y., Yang, J., Yu, C., Wang, X., Fu, H., Yu, L., Dronova, I., Hui, F., Cheng, X., Shi, X., Xiao, F., Liu, Q., Song, L., 2019. Stable 867 classification with limited sample: transferring a 30-m resolution sample set collected in 2015 to 868 869 2017. mapping 10-m resolution global land cover in Sci. Bull. 2017-2020.
- 870 doi:10.1016/j.scib.2019.03.002
- Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., Moore, R., 2017. Google Earth Engine:
 Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27.
 doi:10.1016/j.rse.2017.06.031
- Hansen, M.C.C., Potapov, P. V, Moore, R., Hancher, M., Turubanova, S.A. a, Tyukavina, A., Thau, D.,
 Stehman, S.V. V, Goetz, S.J.J., Loveland, T.R.R., Kommareddy, A., Egorov, A., Chini, L., Justice,
 C.O.O., Townshend, J.R.G.R.G., Patapov, P.V., Moore, R., Hancher, M., Turubanova, S.A. a,
- Tyukavina, A., Thau, D., Stehman, S.V. V, Goetz, S.J.J., Loveland, T.R.R., Kommaredy, A., Egorov,
 A., Chini, L., Justice, C.O.O., Townshend, J.R.G.R.G., 2013. High-Resolution Global Maps of 21st
 century forest cover change. Science (80-.). 342, 850–854. doi:10.1126/science.1244693
- Huang, H., Chen, Y., Clinton, N., Wang, J., Wang, X., Liu, C., Gong, P., Yang, J., Bai, Y., Zheng, Y., Zhu,
 Z., 2017. Mapping major land cover dynamics in Beijing using all Landsat images in Google Earth
 Engine. Remote Sens. Environ. 202, 166–176. doi:10.1016/j.rse.2017.02.021
- Huang, X., Xie, C., Fang, X., Zhang, L., 2015. Combining Pixel-and Object-Based Machine Learning for
 Identification of Water-Body Types from Urban High-Resolution Remote-Sensing Imagery. IEEE J.
 Sel. Top. Appl. Earth Obs. Remote Sens. 8, 2097–2110. doi:10.1109/JSTARS.2015.2420713
- 886 Huber, C., Battiston, S., Yesou, H., Tinel, C., Laurens, A., Studer, M., 2013. Synergy of VHR pleiades data 887 and SWIR spectral bands for flood detection and impact assessment in urban areas: Case of Krymsk, 888 Federation, in July 2012. Geosci. Russian Int. Remote Sens. Symp. 4538-4541. 889 doi:10.1109/IGARSS.2013.6723845
- Huber, C., Li, F., Lai, X., Haouet, S., Durand, A., Butler, S., Burnham, J., Tinel, C., Yizhen, L., Qin, H.,
 Yésou, H., 2015. Using Pléiades data to understand and monitor a dynamic socio-ecological system:
 China's Poyang Lake. Rev. Fr. Photogramm. Teledetect. 125–132.
- Hui, F., Xu, B., 2008. International Journal of Remote Modelling spatial temporal change of Poyang Lake
 using multitemporal Landsat imagery. Int. J. Remote Sens. 29, 5767–5784.
- 895 Inglada, J., Vincent, A., Arias, M., Tardy, B., Morin, D., Rodes, I., 2017. Operational High Resolution Land

- Kover Map Production at the Country Scale Using Satellite Image Time Series. Remote Sens. 9, 95.
 doi:10.3390/rs9010095
- Isikdogan, F., Bovik, A.C., Passalacqua, P., 2017. Surface water mapping by deep learning. IEEE J. Sel. Top.
 Appl. Earth Obs. Remote Sens. 10, 4909–4918. doi:10.1109/JSTARS.2017.2735443
- Jakovljević, G., Govedarica, M., Álvarez-Taboada, F., 2018. Waterbody mapping: a comparison of remotely
 sensed and GIS open data sources. Int. J. Remote Sens. 00, 1–29. doi:10.1080/01431161.2018.1538584
- Klein, I., Dietz, A.J., Gessner, U., Galayeva, A., Myrzakhmetov, A., Kuenzer, C., 2014. Evaluation of
 seasonal water body extents in Central Asia over thepast 27 years derived from medium-resolution
 remote sensing data. Int. J. Appl. Earth Obs. Geoinf. 26, 335–349. doi:10.1016/j.jag.2013.08.004
- 905Knoema,2017.France-Inlandwater[WWWDocument].URL906https://knoema.com/atlas/France/topics/Land-Use/Area/Inland-water
- Kristensen, P., Bogestrand, J., 1996. Surface water quality monitoring. EEA/European Environment Agency,
 Copenhagen. doi:ISBN: 92-9167-001-4
- Lasdon, L.S., Waren, A.D., Jain, A., Ratner, M., 1978. Design and Testing of a Generalized Reduced
 Gradient Code for Nonlinear Programming. ACM Trans. Math. Softw. 4, 34–50.
 doi:10.1145/355769.355773
- Lee, S.U., Yoon Chung, S., Park, R.H., 1990. A comparative performance study of several global
 thresholding techniques for segmentation. Comput. Vision, Graph. Image Process. 52, 171–190.
 doi:10.1016/0734-189X(90)90053-X
- Lehner, B., Döll, P., 2004. Development and validation of a global database of lakes, reservoirs and
 wetlands. J. Hydrol. 296, 1–22. doi:10.1016/j.jhydrol.2004.03.028
- Li, W., Gong, P., 2016. Continuous monitoring of coastline dynamics in western Florida with a 30-year time
 series of Landsat imagery. Remote Sens. Environ. 179, 196–209. doi:10.1016/j.rse.2016.03.031
- Li, Y., Gong, X., Guo, Z., Xu, K., Hu, D., Zhou, H., 2016. An index and approach for water extraction using
 Landsat–OLI data. Int. J. Remote Sens. 37, 3611–3635. doi:10.1080/01431161.2016.1201228
- Liu, Y., Yue, H., 2017. Estimating the fluctuation of Lake Hulun, China, during 1975–2015 from satellite
 altimetry data. Environ. Monit. Assess. 189. doi:10.1007/s10661-017-6346-z
- Lu, S., Ma, J., Ma, X., Tang, H., Zhao, H., Hasan Ali Baig, M., 2018. Time series of Inland Surface Water
 Dataset in China (ISWDC) for 2000–2016 derived from MODIS archives. Earth Syst. Sci.
 Data Discuss. 1–19. doi:10.5194/essd-2018-134
- Malahlela, O.E., 2016. Inland waterbody mapping: towards improving discrimination and extraction of
 inland surface water features. Int. J. Remote Sens. 37, 4574–4589.
 doi:10.1080/01431161.2016.1217441
- McFeeters, S.K., 1996. The use of the Normalized Difference Water Index (NDWI) in the delineation of
 open water features. Int. J. Remote Sens. 17, 1425–1432. doi:10.1080/01431169608948714
- Mitkari, K. V., Arora, M.K., Tiwari, R.K., 2017. Extraction of Glacial Lakes in Gangotri Glacier Using
 Object-Based Image Analysis. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 10, 5275–5283.

- 933 doi:10.1109/JSTARS.2017.2727506
- Mueller, N., Lewis, A., Roberts, D., Ring, S., Melrose, R., Sixsmith, J., Lymburner, L., McIntyre, A., Tan,
 P., Curnow, S., Ip, A., 2016. Water observations from space: Mapping surface water from 25years of
 Landsat imagery across Australia. Remote Sens. Environ. 174, 341–352. doi:10.1016/j.rse.2015.11.003
- Ogilvie, A., Belaud, G., Massuel, S., Mulligan, M., Le Goulven, P., Calvez, R., 2018a. Surface water
 monitoring in small water bodies: Potential and limits of multi-sensor Landsat time series. Hydrol.
 Earth Syst. Sci. 22, 4349–4380. doi:10.5194/hess-22-4349-2018
- Ogilvie, A., Belaud, G., Massuel, S., Mulligan, M., Le Goulven, P., Malaterre, P.O., Calvez, R., 2018b.
 Combining Landsat observations with hydrological modelling for improved surface water monitoring
 of small lakes. J. Hydrol. 566, 109–121. doi:10.1016/j.jhydrol.2018.08.076
- Ohanya, S.O., Omondi, P.A., Gonçalves, R.M., Forootan, E., Heck, B., Fleming, K., Kusche, J., Kiema, 943 944 J.B.K., Awange, J.L., 2013. Understanding the decline of water storage across the Ramser-Lake 945 Naivasha using satellite-based methods. Adv. Water Resour. 60. 7–23. 946 doi:10.1016/j.advwatres.2013.07.002
- Pan, H., Xu, X., Luo, X., Tong, X., Xie, H., 2016. Automated Subpixel Surface Water Mapping from
 Heterogeneous Urban Environments Using Landsat 8 OLI Imagery. Remote Sens. 8, 584.
 doi:10.3390/rs8070584
- Pardo-Pascual, J.E., Almonacid-Caballer, J., Ruiz, L.A., Palomar-Vázquez, J., 2012. Automatic extraction of
 shorelines from Landsat TM and ETM+ multi-temporal images with subpixel precision. Remote Sens.
 Environ. 123, 1–11. doi:10.1016/j.rse.2012.02.024
- Pekel, J.F., Cottam, A., Gorelick, N., Belward, A.S., 2016. High-resolution mapping of global surface water
 and its long-term changes. Nature 540, 418–422. doi:10.1038/nature20584
- Pekel, J.F., Vancutsem, C., Bastin, L., Clerici, M., Vanbogaert, E., Bartholomé, E., Defourny, P., 2014. A
 near real-time water surface detection method based on HSV transformation of MODIS multi-Spectral
 time series data. Remote Sens. Environ. 140, 704–716. doi:10.1016/j.rse.2013.10.008
- Pesaresi, M., Ehrilch, D., Florczyk, A.J., Freire, S., Julea, A., Kemper, T., Soille, P., Syrris, V., 2015. GHS
 built-up grid, derived from Landsat, multitemporal (1975, 1990, 2000, 2014), European Commission,
 Joint Research Centre, JRC Data Catalogue. doi:10.2788/656115
- Qiu, S., Zhu, Z., He, B., 2019. Fmask 4.0: Improved cloud and cloud shadow detection in Landsats 4–8 and
 Sentinel-2 imagery. Remote Sens. Environ. 231, 111205. doi:10.1016/j.rse.2019.05.024
- 963 Ren, X., Malik, J., 2003. Learning a Classification Model for Segmentation, in: ICCV.
 964 doi:10.21313/hawaii/9780824839673.003.0030
- Rokni, K., Ahmad, A., Selamat, A., Hazini, S., 2014. Water feature extraction and change detection using
 multitemporal landsat imagery. Remote Sens. 6, 4173–4189. doi:10.3390/rs6054173
- Rover, J., Wylie, B.K., Ji, L., 2010. A self-trained classification technique for producing 30 m percent-water
 maps from Landsat data. Int. J. Remote Sens. 31, 2197–2203. doi:10.1080/01431161003667455
- 969 Sadeghi, M., Babaeian, E., Tuller, M., Jones, S.B., 2017. The optical trapezoid model: A novel approach to

- 970 remote sensing of soil moisture applied to Sentinel-2 and Landsat-8 observations. Remote Sens.
 971 Environ. 198, 52–68. doi:10.1016/j.rse.2017.05.041
- Sagar, S., Roberts, D., Bala, B., Lymburner, L., 2017. Extracting the intertidal extent and topography of the
 Australian coastline from a 28 year time series of Landsat observations. Remote Sens. Environ. 195,
 153–169. doi:10.1016/j.rse.2017.04.009
- Sheng, Y., Song, C., Wang, J., Lyons, E.A., Knox, B.R., Cox, J.S., Gao, F., 2016. Representative lake water
 extent mapping at continental scales using multi-temporal Landsat-8 imagery. Remote Sens. Environ.
 185, 129–141. doi:10.1016/j.rse.2015.12.041
- Shi, Y., Feng, L., Gong, J., 2017. Four decades of the morphological dynamics of the lakes in the Jianghan
 Plain using Landsat observations. Water Environ. J. 31, 353–359. doi:10.1111/wej.12250
- 980 Silveira, A., Saleska, S., Waterloo, M., Rodrigues, G., Cuartas, L.A., Hodnett, M., Rennó, C.D., Nobre, A.D.,
- 2011. Height Above the Nearest Drainage a hydrologically relevant new terrain model. J. Hydrol.
 404, 13–29. doi:10.1016/j.jhydrol.2011.03.051
- Sivanpillai, R., Miller, S.N., 2010. Improvements in mapping water bodies using ASTER data. Ecol. Inform.
 5, 73–78. doi:10.1016/j.ecoinf.2009.09.013
- Stutz, D., Hermans, A., Leibe, B., 2018. Superpixels: An evaluation of the state-of-the-art. Comput. Vis.
 Image Underst. 166, 1–27. doi:10.1016/j.cviu.2017.03.007
- Sun, R., Chen, L., 2012. How can urban water bodies be designed for climate adaptation? Landsc. Urban
 Plan. 105, 27–33. doi:10.1016/j.landurbplan.2011.11.018
- 989 Sun, X., Li, L., Zhang, B., Chen, D., Gao, L., 2015. Soft urban water cover extraction using mixed training 990 samples and Support Vector Machines. Int. J. Remote Sens. 36. 3331-3344. 991 doi:10.1080/01431161.2015.1042594
- 992 Terasmaa, J., Bartout, P., Marzecova, A., Touchart, L., Vandel, E., Koff, T., Choffel, Q., Kapanen, G.,
 993 Maleval, V., Vainu, M., Millot, C., Qsair, Z., Al Domany, M., 2019. A quantitative assessment of the
 994 contribution of small standing water bodies to the European waterscapes case of Estonia and France.
 995 Heliyon 5. doi:10.1016/j.heliyon.2019.e02482
- Thomas, R.F., Kingsford, R.T., Lu, Y., Cox, S.J., Sims, N.C., Hunter, S.J., 2015. Mapping inundation in the
 heterogeneous floodplain wetlands of the Macquarie Marshes, using Landsat Thematic Mapper. J.
 Hydrol. 524, 194–213. doi:10.1016/j.jhydrol.2015.02.029
- Trianni, G., Lisini, G., Angiuli, E., Moreno, E.A., Dondi, P., Gaggia, A., Gamba, P., 2015. Scaling up to
 national/regional urban extent mapping using landsat data. IEEE J. Sel. Top. Appl. Earth Obs. Remote
 Sens. 8, 3710–3719. doi:10.1109/JSTARS.2015.2398032
- Tseng, K.H., Shum, C.K., Kim, J.W., Wang, X., Zhu, K., Cheng, X., 2016. Integrating Landsat Imageries
 and Digital Elevation Models to Infer Water Level Change in Hoover Dam. IEEE J. Sel. Top. Appl.
 Earth Obs. Remote Sens. 9, 1696–1709. doi:10.1109/JSTARS.2015.2500599
- 1005Tulbure, M.G., Broich, M., 2013. Spatiotemporal dynamic of surface water bodies using Landsat time-series1006data from 1999 to 2011. ISPRS J. Photogramm. Remote Sens. 79, 44–52.

- 1007 doi:10.1016/j.isprsjprs.2013.01.010
- Tulbure, M.G., Broich, M., Stehman, S. V., Kommareddy, A., 2016. Surface water extent dynamics from
 three decades of seasonally continuous Landsat time series at subcontinental scale in a semi-arid region.
 Remote Sens. Environ. 178, 142–157. doi:10.1016/j.rse.2016.02.034
- 1011 Verpoorter, C., Kutser, T., Seekell, D.A., Tranvik, L.J., 2014. A global inventory of lakes based on high1012 resolution satellite imagery. Geophys. Res. Lett. 41, 6396–6402. doi:10.1002/2014GL060641
- 1013 Verpoorter, C., Kutser, T., Tranvik, L., 2012. Automated mapping of water bodies using landsat
 1014 multispectral data. Limnol. Oceanogr. Methods 10, 1037–1050. doi:10.4319/lom.2012.10.1037
- Wang, J., Sheng, Y., Tong, T.S.D., 2014. Monitoring decadal lake dynamics across the Yangtze Basin
 downstream of Three Gorges Dam. Remote Sens. Environ. 152, 251–269.
 doi:10.1016/j.rse.2014.06.004
- Wang, S., Baig, M.H.A., Zhang, L., Jiang, H., Ji, Y., Zhao, H., Tian, J., 2015. A simple enhanced water
 index (EWI) for percent surface water estimation using landsat data. IEEE J. Sel. Top. Appl. Earth Obs.
 Remote Sens. 8, 90–97. doi:10.1109/JSTARS.2014.2387196
- Wang, Z., Liu, J., Li, J., Zhang, D.D., 2018. Multi-SpectralWater Index (MuWI): A Native 10-m MultiSpectralWater Index for accuratewater mapping on sentinel-2. Remote Sens. 10, 1–21.
 doi:10.3390/rs10101643
- 1024 Xie, C., Huang, X., Zeng, W., Fang, X., 2016. A novel water index for urban high-resolution eight-band
 1025 WorldView-2 imagery. Int. J. Digit. Earth 9, 925–941. doi:10.1080/17538947.2016.1170215
- 1026 Xie, H., Luo, X., Xu, X., Pan, H., Tong, X., 2016. Evaluation of Landsat 8 OLI imagery for unsupervised
 1027 inland water extraction. Int. J. Remote Sens. 37, 1826–1844. doi:10.1080/01431161.2016.1168948
- Xu, H., 2006. Modification of normalised difference water index (NDWI) to enhance open water features in
 remotely sensed imagery. Int. J. Remote Sens. 27, 3025–3033. doi:10.1080/01431160600589179
- Yamazaki, D., Trigg, M.A., Ikeshima, D., 2015. Development of a global ~90m water body map using
 multi-temporal Landsat images. Remote Sens. Environ. 171, 337–351. doi:10.1016/j.rse.2015.10.014
- Yang, X., Chen, L., 2017. Evaluation of automated urban surface water extraction from Sentinel-2A
 imagery using different water indices. J. Appl. Remote Sens. 11. doi:10.1117/1.JRS.11.026016
- Yang, X., Pavelsky, T.M., Allen, G.H., 2020. The past and future of global river ice. Nature 577, 69–73.
 doi:10.1038/s41586-019-1848-1
- Yang, X., Qin, Q., Grussenmeyer, P., Koehl, M., 2018. Urban surface water body detection with suppressed
 built-up noise based on water indices from Sentinel-2 MSI imagery. Remote Sens. Environ. 219, 259–
 270. doi:10.1016/j.rse.2018.09.016
- Yang, X., Zhao, S., Qin, X., Zhao, N., Liang, L., 2017. Mapping of urban surface water bodies from
 sentinel-2 MSI imagery at 10 m resolution via NDWI-based image sharpening. Remote Sens. 9.
 doi:10.3390/rs9060596
- Yésou, H., Huber, C., Lai, X., Averty, S., Li, J., Daillet, S., Bergé Nguyen, M., Chen, X., Huang, Burnham,
 J., Jean-François, C., Tiphanie, M., Jinggang, L., Rémi, A., 2011. Nine years of water resources

- monitoring over the middle reaches of the Yangtze River, with ENVISAT, MODIS, Beijing-1 time
 series, Altimetric data and field measurements. Lakes Reserv. Res. Manag. 16, 231–247.
 doi:10.1111/j.1440-1770.2011.00481.x
- 1047 Yésou, H., Pottier, E., Mercier, G., Grizonnet, M., Haouet, S., Giros, A., Faivre, R., Huber, C., Michel, J.,
- 2016. Synergy of Sentinel-1 and Sentinel-2 imagery for wetland monitoring information extraction
 from continuous flow of sentinel images applied to water bodies and vegetation mapping and
 monitoring. Int. Geosci. Remote Sens. Symp. 2016-Novem, 162–165.
 doi:10.1109/IGARSS.2016.7729033
- Zhang, G., Jia, X., Hu, J., 2015. Superpixel-based graphical model for remote sensing image mapping. IEEE
 Trans. Geosci. Remote Sens. 53, 5861–5871. doi:10.1109/TGRS.2015.2423688
- Zhang, T., Ren, H., Qin, Q., Zhang, C., Sun, Y., 2017. Surface Water Extraction from Landsat 8 OLI
 Imagery Using the LBV Transformation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 10, 4417–
 4429. doi:10.1109/JSTARS.2017.2719029
- Zhang, T., Yang, X., Hu, S., Su, F., 2013. Extraction of coastline in aquaculture coast from multispectral
 remote sensing images: Object-based region growing integrating edge detection. Remote Sens. 5,
 4470–4487. doi:10.3390/rs5094470
- Zhou, Y., Luo, J., Shen, Z., Hu, X., Yang, H., 2014. Multiscale water body extraction in urban environments
 from satellite images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 7, 4301–4312.
 doi:10.1109/JSTARS.2014.2360436
- Zhu, Z., Woodcock, C.E., 2014. Continuous change detection and classification of land cover using all
 available Landsat data. Remote Sens. Environ. 144, 152–171. doi:10.1016/j.rse.2014.01.011
- Zhu, Z., Woodcock, C.E., 2012. Object-based cloud and cloud shadow detection in Landsat imagery.
 Remote Sens. Environ. 118, 83–94. doi:10.1016/j.rse.2011.10.028
- Zhu, Z., Woodcock, C.E., Olofsson, P., 2012. Continuous monitoring of forest disturbance using all
 available Landsat imagery. Remote Sens. Environ. 122, 75–91. doi:10.1016/j.rse.2011.10.030
- Zou, Z., Xiao, X., Dong, J., Qin, Y., Doughty, R.B., Menarguez, M.A., Zhang, G., Wang, J., 2018.
 Divergent trends of open-surface water body area in the contiguous United States from 1984 to 2016.
 Proc. Natl. Acad. Sci. U. S. A. 115, 3810–3815. doi:10.1073/pnas.1719275115
- Zou, Z., Xiao, X., Menarguez, M.A., Dong, J., Hooker, K. V., Doughty, R.B., Qin, Y., David Hambright, K.,
 2017. Continued decrease of open surface water body area in Oklahoma during 1984–2015. Sci. Total
- 1074 Environ. 595, 451–460. doi:10.1016/j.scitotenv.2017.03.259