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Abstract: The first national product of Surface Water Dynamics in France (SWDF) is generated on a 10 

monthly temporal scale and 10-m spatial scale using an automatic rule-based superpixel (RBSP) approach. 11 

The current surface water dynamic products from high resolution (HR) multispectral satellite imagery are 12 

typically analyzed to determine the annual trend and related seasonal variability. Annual and seasonal time 13 

series analyses may fail to detect the intra-annual variations of water bodies. Sentinel-2 allows us to 14 

investigate water resources based on both spatial and temporal high-resolution analyses. We propose a new 15 

automatic RBSP approach on the Google Earth Engine platform. The RBSP method employs combined 16 

spectral indices and superpixel techniques to delineate the surface water extent; this approach avoids the 17 

need for training data and benefits large-scale, dynamic and automatic monitoring. We used the proposed 18 

RBSP method to process Sentinel-2 monthly composite images covering a two-year period and generate the 19 

monthly surface water extent at the national scale, i.e., over France. Annual occurrence maps were further 20 

obtained based on the pixel frequency in monthly water maps. The monthly dynamics provided in SWDF 21 

products are evaluated by HR satellite-derived water masks at the national scale (JRC GSW monthly water 22 

history) and at local scales (over two lakes, i.e., Lake Der-Chantecoq and Lake Orient, and 200 random 23 

sampling points). The monthly trends between SWDF and GSW were similar, with a coefficient of 0.94. 24 

The confusion matrix-based metrics based on the sample points were 0.885 (producer’s accuracy), 0.963 25 

(user’s accuracy), 0.932 (overall accuracy) and 0.865 (Matthews correlation coefficient). The annual surface 26 

water extents (i.e., permanent and maximum) are validated by two HR satellite image-based water maps and 27 

an official database at the national scale and small water bodies (ponds) at the local scale at Loir-et-Cher. 28 

The results show that the SWDF results are closely correlated to the previous annual water extents, with a 29 

coefficient greater than 0.950. The SWDF results are further validated for large rivers and lakes, with 30 

extraction rates of 0.929 and 0.802, respectively. Also, SWDF exhibits superiority to GSW in small water 31 

body extraction (taking 2498 ponds in Loir-et-Cher as example), with an extraction rate improved by 32 

approximately 20%. Thus, the SWDF method can be used to study interannual, seasonal and monthly 33 

variations in surface water systems. The monthly dynamic maps of SWDF improved the degree of land 34 

surface coverage by 25% of France on average compared with GSW, which is the only product that provides 35 

monthly dynamics. Further harmonization of Sentinel-2 and Landsat 8 and the introduction of enhanced 36 

cloud detection algorithm can fill some gaps of no-data regions. 37 
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1. Introduction 41 

1.1. Background 42 

Water bodies are the main component of the land surface. The accurate spatial detection and dynamic 43 

monitoring of inland water bodies are important tasks in many applications, such as sustainable land and 44 

water management (Zou et al., 2017), water volume and water level estimation (Crétaux et al., 2016; 45 

Ohanya et al., 2013), natural hazard analysis (including flooding, drought, and urban inland inundation) 46 

(Huber et al., 2013; Mueller et al., 2016), and local climate and zoology-related analysis (Huber et al., 2015; 47 

Sun and Chen, 2012). Compared with conventional survey methods, remote sensing approaches monitor 48 

water body dynamics in time- and cost-saving modes. Various types of remote sensing optical imagery (with 49 

very high, high, and moderate spatial resolutions) have been utilized to monitor inland water bodies. (i) 50 

Water body maps from very high-resolution (VHR) optical satellite imagery (Huang et al., 2015; C. Xie et 51 

al., 2016) and aerial imagery (Ford, 2013) have fine spatial resolutions, but the data are expensive to obtain 52 

and may not support long-term dynamic monitoring. (ii) The highly repetitive coverage of the Moderate 53 

Resolution Imaging Spectroradiometer (MODIS) offers the possibility of dynamic monitoring every few 54 

days (Che et al., 2017; Klein et al., 2014; Lu et al., 2018; Wang et al., 2014) , but the spatial resolution of 55 

250 m is extremely coarse, especially for subtle variations in inland water bodies. (iii) High resolution (HR) 56 

multispectral satellite remote sensing imagery balances temporal frequency and spatial resolution (Li and 57 

Gong, 2016; Yésou et al., 2016) and has been commonly utilized because this imagery offers the following 58 

advantages: vivid spectral information related to water characteristics (typically in the green, near infrared 59 

(NIR), and short-wavelength infrared (SWIR) bands), an appropriate spatial resolution (tens of meters), 60 

repetitive monitoring (i.e., nearly half a month), large-area coverage and free access. 61 

Considerable effort has focused on extracting the seasonal and annual dynamics of the surface water 62 

extent at large scales, typically using Landsat imagery (Li and Gong, 2016; Pekel et al., 2016; Tulbure et al., 63 

2016). However, inland surface water bodies are dynamically changing and undergoing severe drainage, 64 

especially for ephemeral streams and lakes. Higher-resolution monitoring, such as using monthly time-series 65 

analysis, can better capture the interannual variation in the surface water extent and presents the shrinking 66 

and inundation that occurs during the year. Satellite-based monitoring of the monthly extent of surface water 67 

bodies can integrate with hydrological models and meteorological data for further analyses. 68 

Copernicus, the EU's Earth Observation Program, ensures the regular observation and monitoring of 69 

Earth’s sub-systems, including the atmosphere, oceans, and continental surfaces, and this program provides 70 

reliable, validated and guaranteed information to support a broad range of environmental and security 71 

applications and decisions. The HR optical component, the Sentinel-2 mission (Drusch et al., 2012), 72 

acquires high spatial resolution optical observations (as high as 10 m) over global terrestrial surfaces with a 73 
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high revisit frequency (approximately five days) using a bi-satellite system, which is important for land 74 

cover dynamic mapping and updating. Sentinel-2 can effectively extract the distribution of land surface 75 

water at a resolution of 10 m (Du et al., 2016; Gong et al., 2019; Wang et al., 2018; Yang et al., 2018, 2017; 76 

Yésou et al., 2016), but its potential for dynamic water body monitoring and change detection deserves more 77 

attention considering the high revisit frequency of the satellite (Ogilvie et al., 2018a). 78 

1.2. Related works 79 

(1) Distribution of surface water 80 

During the last 25 years, there have been many approaches to extract water bodies from multispectral 81 

imagery (Table 1 & Table 2). These approaches can be divided into three levels: pixelwise classification, 82 

object-based image analysis (OBIA) and subpixel fraction estimation. Pixelwise approaches directly extract 83 

the pixels associated with water body areas, mainly considering the spectral characteristics of targets. OBIA 84 

groups the adjacent pixels with similar features into homogeneous clusters, which provides valuable 85 

information, including spectral, textural, shape, and spatial relationships. Subpixel fraction estimation 86 

considers the mixed pixels in remote sensing images and estimates the fraction of water bodies in each pixel 87 

using the spectral mixture analysis (SMA) method. However, the relevant methodologies fall into two 88 

categories depending on whether training samples are needed. The sample-based approach relies on the 89 

training dataset for supervised classification at both the pixel and object levels or on pure endmember 90 

selection to derive the subpixel water body fraction. The rule-based approach is based on prior knowledge of 91 

the target and background instead of the known sample data.  92 

Table 1. Methodologies of water body extraction from multispectral imagery 93 

Training 

samples 

Different levels Literature Methodology Main water bodies 

Sample-

based 

methods 

Pixelwise 

supervised 

classification 

(Acharya et al., 2016) 

(Deng et al., 2017) 

(Isikdogan et al., 2017) 

(Mueller et al., 2016) 

(Sun et al., 2015) 

(Tulbure and Broich, 2013) 

(Verpoorter et al. 2012; 2014) 

(Jakovljević et al., 2018) 

(Tulbure et al., 2016) 

Decision tree 

Decision tree 

Deep learning 

Regression tree 

Support vector machines (SVMs) 

Classification tree algorithm 

Supervised classification 

Supported vector machine (SVM) classifier 

Random forest 

River and lakes 

Urban lakes 

Inland surface water 

Across Australia 

Urban water bodies 

Western Australia 

Global lakes 

Open water bodies 

Australia 

Object-based 

supervised 

classification 

(Bayram, 2013) 

(Yang and Chen, 2017) 

 

Spectral indices 

Spectral indices 

Shorelines 

Urban water bodies 

Subpixel 

mixture 

analysis 

(Pan et al., 2016) 

(Rover et al., 2010) 

(Zhou et al., 2014) 

Mixed land-water pixel extraction using SMA methods 

Combined with regression-tree technique 

Spectral mixture analysis combined with multiscale extraction 

Urban water bodies 

Lakes, wetlands and small water 

bodies 

Rivers 

Rule-

based 

methods 

Spectral indices (Arvor et al., 2018) 

(Avisse et al., 2017) 

(Campos et al., 2012) 

(Cian et al., 2018) 

(Du et al., 2016) 

(Fisher et al., 2016) 

(Ogilvie et al., 2018) 

(Yamazaki et al., 2015) 

(Yang et al., 2018) 

Time series indices 

Water and vegetation indices 

Sample-based thresholding 

Minimum, maximum and mean of the NDVI throughout the entire stack of 

images 

Indices and thresholding 

New water index 

Comparing popular water indices 

Water indices and temporal analysis 

Small water reservoirs 

Small water reservoirs 

Seasonal and permanent water  

Flood mapping 

Venice coastland 

Eastern Australia  

Small water bodies 

Global water body map 

Urban water bodies 
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(Feng et al., 2016) Refined by constrained energy minimization 

Terrain metrics and prior coarse-resolution water masks 

Global inland water 

Object/cluster-

based image 

analysis 

 

(Chen et al., 2017) 

(Mitkari et al., 2017) 

(Sivanpillai and Miller, 2010) 

(H. Xie et al., 2016) 

(Zhang et al., 2013) 

Segment images using an active contour model 

Combined with band indices 

Unsupervised ISODATA algorithm to generate clusters 

k-means/ISODATA to generate clusters 

Object-oriented image analysis and edge detection 

Glacial lake outlines 

Glacial lakes 

Water bodies 

Lake and river 

Coastlines 

 94 

Among the rule-based approaches, water indices and binary thresholding-based methods are 95 

characterized by easy implementation and a high calculation efficiency and are thus widely utilized (Table 96 

2), especially in large-scale and time series analyses (Campos et al., 2012; Pekel et al., 2016; Thomas et al., 97 

2015; Zou et al., 2017). Water indices differentiate the water bodies (normally with positive values) from the 98 

background (tending to negative values). Many water indices have been designed to enhance the separation 99 

between water bodies and other land cover types (Table 2). Water indices can be directly utilized for water 100 

mapping based on thresholding (Allen and Pavelsky, 2018; Fan et al., 2018) and serve as the basis for other 101 

algorithms, such as machine learning (Isikdogan et al., 2017), object-level segmentation (Mitkari et al., 102 

2017), and subpixel mapping (Zhou et al., 2014). 103 

Table 2. Water indices designed for water body detection 104 

Water indices Literature Bands 

normalized difference water index (NDWI) (Gao, 1996) NIR, SWIR 

normalized difference water index (NDWI) (McFeeters, 1996) Green, NIR 

modified NDWI (MNDWI) (Xu, 2006) Green, SWIR 

automated water extraction index (AWEI) (Feyisa et al., 2014) Blue, Green, NIR, SWIRs 

multi-spectral water index (WuWI) (Wang et al., 2018) Blue, Green, NIR, SWIRs 

normalized difference mud index (NDMI) (Bernstein, 2012) Narrow bands with wavelengths of 795 nm and 990 nm 

WI2015 (Fisher et al., 2016) Green, Red, NIR, SWIRs 

NDWI built-up index (NDWI-DB) (Li et al., 2016) Blue, SWIR 

Tasseled Cap Wetness (TCW) (Crist, 1985) Blue, Green, Red, NIR, SWIRs 

normalized difference vegetation index (NDVI) (Zhu and Woodcock, 2012) Red, NIR 

NDWInm (H. Xie et al., 2016) Composed of a visible band and an infrared band 

enhanced water index (EWI) (Wang et al., 2015) Green, Red, NIR, SWIR 

simple water index (SWI) (Malahlela, 2016) Blue, SWIR 

LBV transformation (Zhang et al., 2017) Green, Red, NIR, SWIR 

 105 

(2) Dynamics of surface water 106 

Most previous large-scale and time series mapping studies of the surface water extent were conducted 107 

based on MODIS and Landsat datasets (Aires et al., 2018), and the spatial resolution was generally 250 m or 108 

30 m, respectively (Yésou et al., 2011). The dynamics of the surface water extent have been mapped at three 109 

different time scales using Landsat data, including interannual, seasonal/inner-annual, and multi/bi-temporal 110 

change analyses (Table 3). (i) Most works utilized Landsat series data to continuously monitor the general 111 

trend of the surface water extent over several decades. Rokni et al. (2014) modeled the spatiotemporal 112 

changes in Lake Urmia from 2000 to 2013 and reported a dramatic decreasing trend. Thomas et al. (2015) 113 

mapped the inundation and flooding patterns of the Macquarie Marshes by selecting Landsat images (1989-114 
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2010) over a range of flood magnitudes. Deng et al. (2017) monitored the extent of the spatiotemporal 115 

changes of a lake in Wuhan, China, based on Landsat images from 1987 to 2015. (ii) The seasonality of 116 

surface water based on interannual monitoring has also been widely explored. The most famous work was 117 

conducted by the European Commission’s Joint Research Centre (JRC) (Pekel et al., 2016), who developed 118 

high-resolution maps of the global surface water (GSW) occurrence, change, seasonality, and transition 119 

using Landsat data at 30 meter resolution. In addition, Campos et al. (2012) derived seasonal and permanent 120 

water data between 2007 and 2011 and monitored the decrease in water resources in Africa. Tulbure & 121 

Broich (2013) studied spatially and temporally explicit time series of a surface water body on the Swan 122 

Coastal Plain from 1999 to 2011 and adopted landscape metrics to determine the extent of changes in the 123 

seasonally continuous surface water body after comparing summer and winter images. Zou et al. (2017) 124 

generated four water body extent maps (maximum, year-long, seasonal, and average maps) of Oklahoma 125 

from 1984 to 2015 based on the annual water body frequency. (iii) Bi-/multitemporal images are typically 126 

applied to investigate flooding mapping and land use/cover (LULC) changes. Chignell et al. (2015) utilized 127 

pre- and post-flood Landsat 8 images to produce a flood layer image at the regional scale of the Colorado 128 

Front Range Flood in 2013. Bayram (2013) analyzed the combined shoreline and LULC changes of the 129 

Terkos Lake basin using Landsat satellite images from 1986, 2001, and 2009. 130 

Table 3. Temporal scales for water body dynamics monitoring 131 

Temporal scale Literature Methodology 

Annual to decade trend (Allen and Pavelsky, 2018) 

(Arvor et al., 2018) 

(Avisse et al., 2017) 

(Carroll and Loboda, 2017) 

(Deng et al., 2017) 

(Fan et al., 2018) 

(Ogilvie et al. 2018) 

(Pardo-Pascual et al., 2012) 

(Sagar et al., 2017) 

(Shi et al., 2017) 

(Tseng et al., 2016) 

(Liu and Yue, 2017) 

(Zou et al., 2018) 

(Yamazaki et al., 2015) 

Water indices 

Time series indices 

Fmask, water and vegetation indices 

Using the DSWE product 

Indices and random forest 

Water index 

Water index and hydrological modeling 

Shoreline subpixel detection 

Median pixel compositing of NDWI stacks 

An ‘eight-field’ morphological method 

Surface water area and level changes 

Band value and Otsu threshold 

The relationship between water and vegetation indices 

Spectral indices 

Seasonality (Pekel et al., 2016) 

(Tulbure and Broich, 2013) 

(Zou et al., 2017) 

(Tulbure et al., 2016) 

(Sheng et al., 2016) 

Expert systems, visual analytics, and evidential reasoning 

Decision tree classification algorithm 

Spectral indices 

Random forest 

Water index 

Monthly changes (Campos et al., 2012) 

(Hui and Xu, 2008) 

(Pekel et al., 2016) 

Water indices based on one image per month between 2001 and 

2010 

Water indices and empirical threshold 
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Expert systems, visual analytics, and evidential reasoning 

Multi- or bi-temporal (Bayram, 2013) 

(Chignell et al., 2015) 

(Ghosh et al., 2015) 

(Dronova et al., 2011) 

OBIA and indices 

Independent component analysis and indices 

Water index 

OBIA 

 132 

Nonetheless, more fine-resolution temporal monitoring is necessary to reflect the subtle variabilities in 133 

water bodies on a monthly scale. The monthly surface water occurrence based on multispectral imagery is 134 

generally ignored. To our knowledge, monthly dynamics have only been assessed by Hui et al. (2008), 135 

Dronova et al., (2011), Campos et al. (2012) and Pekel et al. (2016). Hui et al. (2008) monitored the monthly 136 

changes in Poyang Lake, China, between November 1999 and October 2000, using eight images acquired 137 

from Landsat ETM+ 5 and Landsat TM 7. Dronova et al. (2011) selected four images acquired in November 138 

2007 and January, February, and March 2008 using the Beijing-1 microsatellite and examined the surface 139 

cover composition and its changes at Poyang Lake. Campos et al. (2012) chose one image per month 140 

between 2001 and 2010 to analyze the historical trend of the water bodies, and yet, these researchers could 141 

not monitor the real-time changes in the water bodies. JRC GSW recorded the entire history of water 142 

detection on a month-by-month basis between March 1984 and December 2018. However, the coverage of 143 

the monthly map is still limited by an insufficient number of valid observations based on Landsat data. 144 

Currently, the active Landsat 7 and 8 satellites theoretically allow an 8-day repeat coverage of the land 145 

surface. However, on May 31, 2003, the scan line corrector (SLC), which compensates for the forward 146 

motion of Landsat 7, failed and led to the loss of an estimated 22 percent of the dataset. Additional cloud 147 

cover and haziness can reduce the number of valid images, which can result in a lack of sufficient data for 148 

monthly dynamic mapping. Thus, the potential use of the Sentinel-2 constellation in water body monitoring 149 

and dynamic analysis is a highly anticipated exploration. 150 

1.3. Contributions 151 

The main objective of this study is therefore to continuously monitor the monthly, quarterly and annual 152 

changes in surface water body dynamics in France at a 10-m spatial resolution using Sentinel-2 imagery. 153 

The main contributions of this study include developing an automatic methodology and application of the 154 

method at the national scale. 155 

First, an automatic rule-based superpixel (RBSP) approach is proposed. RBSP automatically analyzes 156 

the large-scale spatiotemporal variability and trends of surface water bodies. A new spectral index-based 157 

approach is proposed to delineate the water body extent. This method considers the different error sources in 158 

water body detection: (i) built-up areas using an automated water extraction index (AWEI), with noise 159 

associated with shadow and very-high albedo objects eliminated and (ii) natural areas using the normalized 160 

difference muddy index (NDMI) (for muddy and shallow water bodies) and the AWEI, with noise 161 

associated with vegetation ice and snow eliminated. Additionally, the proposed approach is implemented at 162 

the superpixel level. Superpixel segmentation groups the connected pixels with similar characteristics, and 163 
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the automatic processing method is in accordance with the research objectives. RBSP is automatically run in 164 

the Google Earth Engine (GEE) platform for large-scale dynamic mapping. 165 

Second, the Surface Water Dynamics in France (SWDF) product is generated with monthly, quarterly 166 

and annual surface water extents. To our knowledge, this product is the first national inland surface water 167 

map published at the monthly temporal scale and a 10-m spatial scale. RBSP is applied to monthly and 168 

quarterly images with medium composite pixels. Annual occurrence maps are further generated based on the 169 

pixel frequency of the monthly water maps. Our product is evaluated in both the dynamic and static states 170 

and at both national and local scales: (i) the monthly dynamic water maps are compared with satellite image 171 

based water masks at the national scale (JRC GSW monthly water history) and at local scales (over two 172 

lakes, i.e., Lake Der-Chantecoq and Lake Orient, as well as 200 random sampling points); (ii) the annual 173 

surface water extent is validated by satellite image-based water maps (JRC GSW annual product and Theia 174 

land cover product (Inglada et al., 2017)) and an official database (BD Carthage hydrological product, main 175 

watercourses, and major lakes and reservoir) at the national scale and small water bodies (ponds) at local 176 

scales (including the Sologne region of the Department of Loir-et-Cher). 177 

2. Methodology 178 

The methodology part involves the overall workflow (Figure 1) of the proposed RBSP approach and the 179 

generated SWDF product. First, Sentinel-2 Level-1C data covering the France (Section 2.1) are collected. 180 

Second, these images are preprocessed (Section 2.2) to eliminate the invalid pixels covered by clouds, to 181 

divide the bu 182 

ilt-up and natural scenes and to exclude the possible terrain shadows. Third, the proposed RBSP 183 

approach is explained, including the different spectral rules for natural and built-up scenes in Section 2.3 and 184 

superpixel technique to generate the homogeneous objects in Section 2.4. Finally, the auxiliary data and 185 

metrics used to evaluate the generated SWDF product are described in Section 2.5. 186 
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 187 

Figure 1. The workflow of the proposed RBSP approach and the validation of the obtained SWDF product 188 

2.1. Study areas 189 

The experiments presented in this paper focus on European France (i.e. mainland France and Corsica) 190 

(Figure 2), which encompasses an area of approximately 551,695 km2. France lies within the northern 191 

temperate zone and mainly includes oceanic, semi-continental, Mediterranean, and mountain climates (Fort 192 

and André, 2013; Terasmaa et al., 2019). France possesses a wide variety of landscapes, from coastal plains 193 

in the north and west to the mountain ranges of the Alps in the southeast, as well as the Massif Central in the 194 

south and the Pyrenees in the southwest. Additionally, the islands of Corsica lie off the Mediterranean coast. 195 

France has an extensive river system mainly consisting of four major rivers and their tributaries, 196 

including the Seine, Loire, Garonne and Rhône Rivers, with a combined catchment area that includes over 197 

62% of the territory (Kristensen and Bogestrand, 1996). In addition, the Rhine River and some tributaries 198 

flow through the northeastern portion of the region. Knoema Corporation (2017) reported approximately 199 

153,000 ha of inland water occupied by major rivers, lakes and reservoirs in France. Considering the water 200 

bodies larger than 1 ha, Bartout and Touchart (2013) regarded 555,000 waters bodies as corresponding to a 201 

cumulated surface area of 450,000 ha.  202 

This study focuses on inland water detection and neglects coastline monitoring. The national and 203 

administrative boundaries are from GADM, the database of global administrative areas. 204 
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 205 

Figure 2. (A) The study area of France consists of 96 administrative divisions and (B) an example of a Sentinel-2 206 
annual composite image 207 

 208 

2.2. Datasets and GEE platform 209 

This project uses the open source GEE as the research platform. The GEE provides programming and 210 

graphic interfaces for scientific applications using remote sensing data. With the powerful Google cloud 211 

storage and computational hardware technologies to accelerate remotely sensed data processing (Gorelick et 212 

al., 2017; Trianni et al., 2015), GEE is advantageous for large-scale mapping and time series analysis based 213 

on multispectral images, including analyses of surface water (Pekel et al., 2014), forest cover (Hansen et al., 214 

2013), paddy rice planting areas (Dong et al., 2016), and settlement areas (Huang et al., 2017). 215 

The Sentinel-2 mission is composed of a two-satellite system, Sentinel-2A and Sentinel-2B, which were 216 

launched on 23 June 2015 and 07 March 2017 respectively, allowing for a high revisit frequency of 217 

approximately 5 days at the equator and 2-3 days at the mid-latitudes. The high revisit frequency is 218 

important for dynamic land cover mapping and monitoring. Sentinel-2 imagery includes 13 spectral bands 219 

(Table 4) that span from the visible (VIS) and near infrared (NIR) bands to the shortwave infrared (SWIR) 220 

bands at different spatial resolutions on the ground ranging from 10 m to 60 m (Drusch et al., 2012). In this 221 

study, six broad bands, including the VIS, NIR, and SWIR bands, and two narrow bands, the Red Edge 3 222 

and 4 bands, are utilized. The SWIR and Red Edge bands with a spatial resolution of 20 m were resized to 223 

10 m by dividing each pixel into 4 pixels with the same gray value to maintain the same spatial resolution as 224 

the VIS and NIR bands. 225 

Table 4. Band information of the Sentinel-2 Level-1C data 226 

Band number Band name Resolution (m) Band number Band name Resolution (m) 

B1 Aerosols 60 B8 NIR 10 

B2 Blue 10 B8A Red Edge 4 20 
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B3 Green 10 B9 Water vapor 60 

B4 Red 10 B10 Cirrus 60 

B5 Red Edge 1 20 B11 SWIR 1 20 

B6 Red Edge 2 20 B12 SWIR 2 20 

B7 Red Edge 3 20 QA60 Cloud mask 60 

The Sentinel-2 Level-1C dataset is the standard product for top of the atmosphere (TOA) reflectance and 227 

has been completely integrated into the GEE platform. A QA60 band is embedded in the Sentinel-2 Level-228 

1C data, where opaque and cirrus clouds are computed based on spectral criteria. In the project, the Sentinel-229 

2 images are filtered and collected with less than 20% cloud cover. Because the current QA60 band cannot 230 

provide accurate cloud and cloud detection results, we select a low cloud cover threshold (20%) to reduce 231 

the potential of including omission errors in cloud/cloud shadow detection. 232 

Here, we used 8955 Sentinel-2 images (based on the 20% maximum cloud criteria) and analyzed an 233 

average of 373 Sentinel-2 observations for each month. Then, the QA60 band associated with the image was 234 

used to exclude the invalid pixels in each image. These images were acquired between March 2017 and 235 

February 2019 to cover the four seasons (starting on March 1, June 1, September 1, and December 1 for 236 

spring, summer, autumn and winter, respectively) during a two-year period. The annual map covers four 237 

quarterly datasets starting on March 1. 238 

To complete the task of Month-Of-Year (MOY) time series analysis, images were placed into collections 239 

according to the calendar month. Image composition combines spatially overlapping images into a single 240 

image that has a medium value for each band within the monthly collection. Figure 3A displays the number 241 

of valid monthly composites of 24 months, which is the occurrence of available monthly surface water maps. 242 

The proposed RBSP approach processes these 24 monthly time series composite data between March 2017 243 

and February 2019 and generates the SWDF product. Over half of the land surface has been covered with 244 

over 20 MOYs, and over 90% percentage of the land surface is covered with over 17 MOYs. If utilizing 245 

quarterly composites, approximately 96% percentage of the land surface is covered with all eight seasons 246 

(Figure 3B). The detailed statistics of the valid MOYs and quarterly composites can be found in the 247 

Supplemental materials (Figure S3 and Figure S4). That is, a short period of monthly analyses may result in 248 

the occurrence of data gaps but are beneficial for observing the visible changes in hydrology in a higher 249 

temporal resolution. 250 
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 251 

Figure 3. Number of valid MOYs (A) and quarterly composites (B) during a two-year period using Sentinel-2 with less 252 
than 20% cloud cover 253 

The auxiliary data include the JRC Global Human Settlement Layer (GHSL), HydroSHEDS, and Height 254 

Above the Nearest Drainage (HAND) datasets, all of which are available globally and have been integrated 255 

into the GEE platform. The GHSL contain multitemporal information layers on built-up areas, as derived 256 

from Landsat image collections (1975, 1990, 2000, and 2015) (Pesaresi et al., 2015). The latest built-up 257 

layer in 2015 was utilized to separate built-up and natural areas, and water delineation issues stemmed from 258 

different error sources (Yang et al., 2018). 259 

Notably, terrain shadows are easily misclassified as water bodies, and digital elevation models (DEMs) 260 

are widely used to exclude terrain shadow effects. Two hydrologically relevant terrain models, HAND 261 

(Donchyts et al., 2016b; Silveira et al., 2011) and HydroSHEDS (Lehner and Döll, 2004), were utilized to 262 

eliminate mountain shadow effects. Both models are based on high-resolution SRTM elevation data and are 263 

generally used in hydrological and remote sensing applications, such as water likelihood elimination and hill 264 

shadow correction. In this study, HydroSHEDS was used to mask mountain areas with slopes greater than 5 265 

degrees. HAND was used to mask terrain shadow areas in flat regions with a threshold of 30 (Table 5). 266 

2.3. Rule-based water body detection 267 

Spectral indices highlight the pixels of objects of interest from the background, and binary thresholding 268 

can be used to delineate the object areas, which benefits time series and large-scale analyses due to the ease 269 

of implementation. Water body mapping based on water indices faces error identification, and the main 270 

noise source varies with different indices (such as the NDWI, MNDWI, and AWEI) and backgrounds 271 

(mainly including vegetation, shadows, snow and built-up objects) (Yang et al., 2018). Compared to natural 272 

and open areas, the urban environment consists of heterogeneous human-made objects and can lead to the 273 

severe overestimation of water bodies. In this study, the AWEI, a water index for urban scenes (Feyisa et al., 274 

2014), is adopted to distinguish water bodies from the background. However, the AWEI still faces some 275 
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challenges; for example, the omission error of muddy and shallow water bodies widely can be considerable 276 

in natural areas, and commission error can occur due to the existence of building shadows and high-albedo 277 

objects in urban areas. The study area is thus divided into natural/open scenes and urban/built-up scenes to 278 

address the different types of error sources. The GHSL settlement regions designated in 2015 (Pesaresi et al., 279 

2015) are adopted to separate the natural and built-up areas, which were further processed with different 280 

rules (Table 5). 281 

Table 5. The image characteristics used to delineate water bodies from the background using Sentinel-2 282 

Scenes Feature Equation or Methodology Thresholding Objectives 

Preprocessing 

HydroSHEDS HydroSHEDS.slope Empirical value: 5 Terrain shadows 

HAND Combined with JRC water occurrence Empirical value: 30 
Mountain shadows in 

flat areas 

Built-up areas 

AWEIsh B2 + 2.5 × B3 − 1.5 × 
B8 + B11� − 0.25 × B12 Edge-based Otsu Water maps 

NIR band B8 Empirical threshold: 0.2 Very-high albedo noise 

USI 
−2


1 − B2� × 
1 − B3� × 
1 − B4� Edge-based Otsu Urban shadow noise 

Natural areas 

MWI max�NDMI, AWEI��� ; NDMI = B7 − B8A
B7 + B8A Edge-based Otsu Water maps 

MVI 

MVI = EVI + NDVI
2 ;  NDVI = B8 − B4

B8 + B4 ; 

EVI =  2.5 ∗ 
B8 −  B4�

B8 +  6 ×  B4 −  7.5 ×  B2 +  1� 

Relative threshold 

%&' − %(' > 0.1 
Vegetation noise 

Blue band B2 Empirical threshold: 0.5 Ice and snow noise 

Natural areas may include muddy and shallow water bodies, especially after rainfall events, and these 283 

areas could be underestimated by the AWEI. The NDMI (Bernstein, 2012) is often utilized to highlight 284 

muddy and shallow water pixels, and it was originally designed as a filter to exclude those pixels and 285 

improve the accuracy of quick atmospheric correction (QUAC). Thus, a mixed water index (MWI) with 286 

large AWEI and NWI values is used to reflect the surface water extent in the natural environment. Moreover, 287 

vegetation indices can suppress shadow effects (Yamazaki et al., 2015) and vegetation misclassification 288 

(Zou et al., 2017) in water body extraction. In this study, a mixed vegetation index (MVI) is used to 289 

eliminate errors in the surface water extent, and only those pixels that meet the criteria 
%&' − %(' ≤290 

0.1� are classified as open surface water body pixels. Additionally, ice and snow generally display a very 291 

high degree of reflection at visible wavelengths and low reflection in the NIR and SWIR band. That is, ice 292 

and snow have a similar spectral trend (from VIS to NIR and SWIR) as water bodies, except for its stronger 293 

reflectance in the VIS bands. Thus, the blue band (greater than 0.5) is used to exclude ice and snow cover in 294 

mountainous areas.  295 

Urban scenes involve heterogeneous human-made objects, where some building shadow areas and very-296 

high albedo objects may return high positive values after AWEI calculations and serve as the main noise 297 

sources for water body maps. The NIR band is used to eliminate very-high albedo objects considering the 298 

ultralow reflectance of water bodies. Although the AWEI can suppress low-albedo objects and shadows in 299 
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urban scenes, the misclassification of shadow areas still cannot be avoided. Thus, we designed an urban 300 

shadow index (USI) to highlight the shadows in urban scenes. The index considers the low reflectance of 301 

shadow areas in VIS bands compared to that of water bodies, and the reflectance values of both types of 302 

objects tends to zero in the NIR and SWIR bands. 303 

The binary segmentation threshold is an important factor when using spectral indices to delineate target 304 

objects. The imaging of spectral indices involves polarization, where the pixel values of an object of interest 305 

tend to be positive and the background returns negative values in theory. The histogram of an index image is 306 

thus characteristic of a bimodal distribution representing the object and background and a deep and sharp 307 

valley between two peaks. Although a user-defined threshold can return optimum results, it is more 308 

appropriate to use an automated threshold or an empirical threshold to automate the delineation process, 309 

especially for large-scale and time series analyses. 310 

In this paper, an improved Otsu threshold is adopted based on the Canny edge detection algorithm 311 

(Donchyts et al., 2016a). The performance of the global thresholding techniques (including Otsu’s method) 312 

used for binary segmentation is limited for small objects and images with abundant noise (Lee et al., 1990). 313 

Land surface water represents a small fraction of the land cover in some administrative divisions in France. 314 

Thus, the Canny edge detection algorithm is first used to identify the pixels within the buffer areas of each 315 

edge. A histogram-based Otsu approach is then applied to these pixels to filter low-probability water bodies 316 

in the scene. In addition, several soft empirical thresholds are adopted to exclude error sources to some 317 

extent. Although some pixels of these land cover types (such as snow, very-high albedo objects and 318 

vegetation) may return values similar to those of water bodies after water index calculation, they exhibit 319 

differences in other spectral bands and indices. Thus, soft empirical thresholds can effectively reduce 320 

overestimation issues. Table 5 lists the specific thresholds for different objects. For example, very-high 321 

albedo masking is given a loose threshold of 0.2 because water bodies absorb most of the spectral energy, 322 

whereas high-albedo objects have strong reflectance. 323 

2.4. Superpixel water body mapping 324 

Due to the lack of consideration of contextual information, the water body thematic maps obtained at the 325 

pixelwise level often experience a “salt and pepper” problem with sparse noise (Yang and Chen, 2017; 326 

Zhang et al., 2015). Rather than concentrating on individual pixels, OBIA groups the nearby pixels with 327 

similar characteristics as homogeneous clusters (Fernández et al., 2014; Huang et al., 2015; Mitkari et al., 328 

2017), which can effectively restrain the “salt and pepper” phenomenon and convey valuable information, 329 

including the spectral, textural, shape, and spatial information associated with adjacent objects. However, 330 

OBIA can be time consuming when extracting information from large images because most segmentation 331 

algorithms use the pixel grid as the initial object representation (Stutz et al., 2018). Additionally, automatic 332 

segmentation remains an unresolved problem because segmentation is sensitive to many factors, such as the 333 

image sensor resolution, scene complexity and number of bands (Csillik, 2017; Gong et al., 2017). 334 
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In the field of computer science, superpixel segmentation has become increasingly popular, and images 335 

are divided into hundreds of non-overlapping superpixels (Ren and Malik, 2003). Similar to OBIA, a 336 

superpixel is composed of pixels that are spectrally similar and spatially adjacent, and a superpixel is the 337 

basic unit for subsequent processing steps. Compared with OBIA, superpixel segmentation can be 338 

performed automatically for large-scale remote sensing images with low memory requirements and few 339 

parameters. 340 

In the proposed framework, a simple non-iterative clustering (SNIC) algorithm (Achanta and Süsstrunk, 341 

2017) is applied to generate the corresponding superpixel blocks. The SNIC algorithm is an improved 342 

version of the simple linear iterative clustering (SLIC) algorithm (Achanta et al., 2012) and is a fast and 343 

powerful algorithm with high boundary adherence and low complexity (Gharibbafghi et al., 2018). The 344 

SNIC algorithm has been proven to perform better and faster than other state-of-the-art superpixel 345 

algorithms with less memory in comparisons based on segmentation benchmarks (Achanta and Süsstrunk, 346 

2017). This study aims to automatically and rapidly monitor water body dynamics. SNIC is thus selected 347 

due to its speed and ability to perform well for various study sites with a single set of default parameters. 348 

The main parameter of SNIC is compactness. A large value of compactness reflects clusters with a 349 

generally rectangular shape. In this study, a low compactness value (0.1) is selected considering the irregular 350 

shape of surface water bodies. Superpixels are composed of clustered individual pixels (Figure 4), and the 351 

corresponding mean value can be used as an input for the rule-based superpixel water body delineation 352 

algorithm (Table 5). This approach results in a fast, simple, and efficient computation. 353 

 354 

Figure 4. SNIC segmentation to generate a homogeneous superpixel image using the mean value of the pixels within a 355 
block 356 

2.5. Validation and comparison 357 

A statistically rigorous validation for this product would be desirable. However, a statistically robust 358 

national validation dataset is not available to measure the accuracy of this national water body database, 359 

especially considering the extent of surface water dynamics. Nonetheless, we evaluated our product with 360 

other existing global, national and local datasets (see S.2 in the Supplemental materials for the available 361 
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online addresses). We also performed a qualitative assessment based on careful visual interpretation (see S.3 362 

in the Supplemental materials and attached Data). Table 6 lists the main reference datasets from HR satellite 363 

image-derived water masks and official databases and the evaluation metrics. 364 

Table 6. Datasets used to evaluate SWDF monthly and annual surface water maps at national and local scales 365 

  Monthly dynamic map Annual static map 

  Dataset Evaluation Dataset Evaluation 

National 

Satellite image 

based product 
JRC GSW monthly water history 

Correlation analysis 

& trend analysis 

Theia OSO annual product 

JRC GSW annual product 

Confusion matrix & 

correlation analysis 

Official 

database 
Not available 

BD Carthage in 2016 

Main watercourse 

Main lake and reservoir 

Confusion matrix 

Extraction rate 

Extraction rate 

Local 

Satellite image 

based product 

200 random sample points 

Two seasonal lakes 

South coastal area 

Confusion matrix 

Trend analyses 

Qualitative analyses 

Small water bodies in Loir-et-Cher 

provided from JRC GSW 

Comparison based 

on confusion matrix 

& number count 

Official 

database 
Not available Small water bodies in Loir-et-Cher 

Confusion matrix & 

Number count 

 366 

(1) Evaluation metrics 367 

The monthly and annual surface water extents are evaluated considering classification of water bodies 368 

and estimation of area extent. The classification accuracy of water body pixels is measured by the confusion 369 

matrix and detection rate (+). Except for the distribution of the water bodies, it is important to estimate the 370 

amount of the surface water bodies. Based on sine and cosine fitting, a MOY model is used to predict the 371 

tendency of the monthly surface water area. Linear regression and the correlation coefficient are also used to 372 

quantitatively analyze the consistency of the surface water area estimation. 373 

The confusion matrix divides the pixels in the study area into four classes: TP (true positive), FN (false 374 

negative), FP (false positive), and TN (true negative), reflecting accurate pixel extraction, missing water 375 

bodies, inaccurate extraction, and the accurate rejection of non-water, respectively. Four normalized metrics 376 

(Eq. 1) were then calculated to assess the performance of the proposed approach. The producer’s accuracy 377 

(PA) and user’s accuracy (UA) were used to indicate completeness and correctness, respectively. A low PA 378 

reflects serious omission error, and a low UA indicates an extreme commission error. The accuracy (ACC) 379 

and Matthews correlation coefficient (MCC) indicate the general accuracy of the approach. In this study, the 380 

extents of surface water and non-water bodies may be unbalanced and vary greatly. The MCC considers the 381 

four confusion matrix categories and is thus more informative than the ACC, especially when the water 382 

bodies account for a small portion of the environment. 383 

PA = -.
-./01 , UA = -.

-./0. , ACC = -./-1
-./01/0./-1 , MCC = -.∗-140.∗01

5
-./0.�
-./01�
-1/0.�
-1/01�   (1) 384 

A detection rate (+) is used to measure how well the extent (for lake) or length (for river) is accurately 385 

extracted. +  is the ratio of the correctly extracted extent (for lake) or watercourse (for river) to the 386 
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corresponding value in the reference dataset (Eq. 2). The extracted watercourse is calculated through an 387 

intersection process with the buffering area of the experimental river extent considering the positional 388 

deviation of the reference dataset. 389 

+ =  .6789:;
<6=</
?9@@=6 <6=<� �∩B=@=6=C:=
D6=</E=CF;��
B=@=6=C:=
<6=</E=CF;��  (2) 390 

The monthly surface water area model is a function of the sines and cosines shown in Eq. (3), and it is 391 

initially used to predict the day-of-year (DOY) time series surface reflectance for Landsat data (Zhu et al., 392 

2012; Zhu and Woodcock, 2014). In this study, we utilize the monthly composite image to simulate the 393 

month-of-year (MOY) time series of the surface area. The sine and cosine models estimate the interannual 394 

seasonal changes and inner-annual trend simultaneously, and these variations are in accord with the land 395 

surface water dynamics. A few coefficients are required to fit the functions considering the relatively small 396 

number of monthly composites. The generalized reduced gradient (GRG) solution method (Lasdon et al., 397 

1978) is used to fit the nonlinear time series model. 398 

GH 
∆J�KLK =  MN + MO sin STU
OT ∆JV + WO cos STU

OT ∆JV + MT sin S TU
OT×Z ∆JV + WTcos 
 TU

OT×Z ∆J�  (3) 399 

where ∆J is the month number of the sequence, N is the number of years of utilized Sentinel-2 data, MN 400 

is the coefficient for overall values, MO and WO are the coefficients of inner-annual change, and MT and WT are 401 

the coefficients of interannual change. 402 

Additionally, a linear regression and the correlation coefficient were used to evaluate the spatial 403 

distribution (in the units of 96 administrative divisions) of the surface water and the general trend (monthly 404 

change) of the surface water area. The correlation (a value between −1 and +1) is a common numerical 405 

measure of the degree of similarity or linear association between two variables. In this study, the Pearson 406 

correlation coefficient (\) (Eq. 4) was adopted to measure the consistency of the extent area prediction based 407 

on two products. The higher the positive value is, the more similar between the two results are in the 408 

estimation of the surface water area. 409 

\ = ∑ 
^_4^̅�
a_4a̅�bc_de
f∑ 
^_4^̅�g ∑ 
a_4a̅�gbc_debc_de

  (4) 410 

where h is the administrative division in France, and ij and \j are the surface water areas within the 411 

division estimated by our SWDF product and previous products (GSW and OSO), respectively. 412 

(2) National scale datasets 413 

Two HR satellite derived water masks and some official datasets at the national scale are available to 414 

evaluate the SWDF results.  415 

JRC GSW used 3,865,618 scenes (till now) from Landsat 5, 7, and 8 to quantify global water body 416 

dynamics from March 1984 to December 2018, at a 30-m spatial resolution, with an overall accuracy over 417 

90%. GSW is currently the only product providing monthly dynamic data for inland surface water at a 418 

spatial resolution of several decameters. Thus, a detailed comparison of the monthly dynamics and annual 419 

surface water map in 2017 and 2018 from GSW and SWDF is conducted in this project. 420 
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The French Theia Land Data Centre has set up a Scientific Expertise Centre OSO (“Occupation des sols” 421 

in French) group, and the aim is to produce a land cover map of France using Sentinel-2 images. The OSO 422 

product is updated once a year, with the inland surface water extent at a 10-m resolution; the annual surface 423 

water extent from 2016-2018 has been released (Inglada et al., 2017). The overall accuracy of land 424 

classification is approximately 90%, and the F-score for the surface water is approximately 0.99. The 425 

consistency of annual water maps in 2017 and 2018 from SWDF and OSO are compared by using a 426 

confusion matrix and correlation analysis. 427 

The national hydrological surface of the BD Carthage database provided by IGN, the French National 428 

Institute of Geography, drew the surface water extent in 2016. BD Carthage is used to evaluate the 429 

maximum annual water extents in 2017 and 2018 in the SWDF product using confusion matrix-based 430 

metrics. However, the different years between BD Carthage and SWDF mean that the surface water may 431 

vary in terms spatial distribution. 432 

Other hydrological datasets are also used to evaluate the extraction rates (+) of the main rivers and lakes 433 

in the SWDF annual surface water maps (Figure 5). The watercourses of the major rivers in Europe, with a 434 

catchment area larger than 5,000 km2, released by European Environmental Agency, and the surface extents 435 

of the main lakes and reservoirs published by Système d’Information sur l’Eau (SIE) are used as the 436 

reference maps.  437 
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 438 

Figure 5. Reference data used to evaluate the water body maps, which involve the publicly released datasets (main 439 
rivers and lakes, and ponds in Loir-et-Cher) and a detailed monitoring analysis (Lake Der-Chantecoq and Lake Orient, 440 

as well as 200 sample points) 441 

(3) Local scale datasets 442 

Three local approaches have been carried out. The first approach corresponds to the analysis of 200 443 

samples points’ analysis, the second approach compares the monthly surface water dynamics with a detailed 444 

Sentinel-2 time series over the two major reservoirs of Lake Der-Chantecoq and Lake Orient (Figure 5), and 445 

the third approach considers a large number of ponds in the Sologne region of the Loir-et-Cher Department. 446 

The detailed information and vector datasets of the sample points and these two reservoirs are provided in 447 

the Supplemental materials (S.3) and attached Data files. 448 

To validate the monthly time series of surface water dynamics, we estimated confusion matrices based 449 

on 200 sample points (green points in Figure 5), which were selected from a stratified random sampling 450 

design using water/non-water strata and monthly time series of Sentinel-2 composite images. A pixel could 451 

alternate among water, non-water and no-data over the time series, and a careful visual interpretation is 452 

likely the most stable approach other than long-term field work. The accuracy of the surface water time 453 
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series was described by summarizing the data in a confusion matrix and estimating the normalized 454 

coefficients (Eq. 1) of water/non-water samples across France. 455 

The reservoirs, Lake Der-Chantecoq, 48 km2, and Lake Orient, 23 km2, (enlarged views in Figure 5) are 456 

the largest and third-largest artificial lakes in France, respectively. The Lake Der-Chantecoq and Lake 457 

Orient reservoirs are designed to protect Paris from floods by holding the water of the Marne River and 458 

Seine River, respectively. These reservoirs are fully controlled; infilling occurs from November to June, and 459 

at that time, water is taken from the Marne River (for Lake Der-Chantecoq) and the Seine (Lake Orient). 460 

From July to October, water is released from the reservoirs for flow replenishment of the rivers. Surface 461 

water changes dramatically during the year, reducing by half of the original extent from the high to low 462 

period for Lake Der-Chantecoq and reducing to a fourth of the original extent for Lake Orient. During the 463 

period of March 2017 to February 2019, 46 and 49 Sentinel-2 images were selected over Lake Der-464 

Chantecoq and Lake Orient, respectively. One Landsat-8 image acquired on December 7, 2017, is used 465 

because of no clear Sentinel-2 image is available. We generated the reference data of these two lakes using 466 

an SVM classification approach and an on-screen quality check. 467 

Additionally, the Sologne region, which is a wet and relatively wild area located in the southern portion 468 

of Loir-et-Cher Department, is characterized by a large number of ponds, with a total of approximately 469 

3,200 pounds, for a total surface area of 12,000 ha. These ponds correspond to small water bodies, where 470 

only 50 water bodies reach an area of 50 ha and the largest pond has an area of 180 ha. The reference dataset 471 

for these ponds released by the Departmental Direction of the Territories (DDT) is used to evaluate the 472 

accuracy of the proposed approach for small water body detection using the confusion matrix. 473 

 474 

3. Results 475 

3.1. Monthly and quarterly dynamics of the surface water extent 476 

 The development of a consistent and automated RBSP workflow enables us to generate a national-scale 477 

SWDF product (vector format products are attached in the Supplemental materials and Data files). We 478 

generate the spatiotemporal dynamics of inland surface water bodies using monthly composite images 479 

extending from March 2017 to February 2019. Figure 6 displays the land surface water extent in France in 480 

February 2019. The detailed results include the urban areas in Bordeaux, the natural environment of forest 481 

and farmland near Paris and in Loir-et-Cher, and the mountainous area by the Alps. Correspondingly, the 482 

land surface water bodies involve the Garonne River, which runs through Bordeaux; the Seine River, which 483 

flows through natural areas; small water bodies, such as ponds, that are surrounded by farmlands; and Lake 484 

Annecy, which is located in alpine area with terrain shadow and snow. These different types of water bodies 485 

and backgrounds reflect the robustness of the RBSP and the effectiveness of the SWDF analysis method. 486 
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 487 

Figure 6. Surface water extent using monthly composite data during February 2019 (A) in France and several details 488 
over different environment/landscape units, including (B) urban, (C) agricultural, (D) mountainous and (E) forest areas. 489 
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 490 

As the only two available products recording the monthly variation in surface water extent, SWDF and 491 

GSW are compared in terms of the aspect of area predictions. We construct two MOY time series models 492 

based on the monthly surface water area calculated in the SWDF (at the annual scale) and GSW (between 493 

March and October) products, and then, we evaluate the predicted trends based on sine and cosine fitting 494 

(Figure 7). Both products exhibit similar seasonal trends, and the correlation coefficient of the variation is 495 

0.940. However, SWDF provides more of the larger surface water area than GSW, and this average increase 496 

of approximately 35,000 ha is related to the gain of the spatial resolution from the 30 m of Landsat image to 497 

the 10 m of Senitnel-2 image.  498 

 499 

Figure 7. Tendency of national MOY surface water area variations estimated from the SWDF and GSW products. The 500 
crossing points indicate the monthly surface water area of France, and the curves present the fitted seasonal trend by 501 

using harmonic model. GSW provides the surface water maps between March and October. 502 

 503 

The SWDF products describe the monthly variation based on the monthly composite data. In fact, 504 

quarterly variation can be generated if using quarterly composite data, which have also been provided in the 505 

attached Data as well. The area surface water extent in four seasons is estimated as well (Figure 8). The 506 

results indicate a general seasonality of dry autumn and wet winter. During the winter of 2017-2018 (Figure 507 

8), particularly in January 2018 (Figure 7), France witnessed an intense episode of flooding with several 508 

successive flood waves. The highest values of SWDF MOY are related to this long flood period. 509 
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 510 

Figure 8. Surface water area of France in four seasons estimated in SWDF product 511 

To illustrate the temporal resolution of SWDF, we focused on a detailed example (Figure 9) of mapped 512 

surface water in the southern coastal areas covering parts of the Camargue Regional Nature Park, the Pond 513 

of Vaccarès, and the lower courses of the Rhône River and the Pond of Berre, which is largest salt water 514 

lake in France, within the department of Bouches-du-Rhône, at the monthly time scale. The MOY surface 515 

water area estimated from SWDF and GSW is also fitted with the sine and cosine functions (Eq. 4). The 516 

result displays dramatic seasonal behavior (Figure 9). In general, the monthly time series trend features the 517 

transition from dry summers beginning as early as June to wet winters beginning in October, which is in 518 

accord with the Mediterranean climate characteristics. In addition, there are only two months (May 2017 and 519 

Nov. 2018) that are extremely affected by clouds in SWDF over the 24 MOYs. The detailed monthly 520 

changes and corresponding false color composite images are provided in Figure S1and Figure S2 (in the 521 

Supplemental materials S.4). 522 

 523 

Figure 9. Monthly time series changes in a part of the southern coastal area. (A) Monthly time series estimation of the 524 
surface water area in the study area SWDF, GSW and fitted models. (B) & (C) are two monthly maps provided by 525 
SWDF. (D-G) display two zoom-in regions, where the surface water extents (yellow lines) overlay the Sentinel-2 526 

monthly composite image.  527 
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Here, at a more detailed scale, an example of lake dynamics across Lake Der-Chantecoq and Lake 528 

Orient in 2017 and 2018 from the quarterly maps is shown (Figure 10). The surface water extent displays 529 

seasonal variations according to the quarterly time series analysis. Compared to the monthly variation in 530 

Figure 11, the quarterly maps are more robust because clear images are generally available for the whole of 531 

France during the quarterly time span. Nevertheless, the greater accuracy of the spatial distribution reduces 532 

the temporal variation. For example, the changes between December and February (within the period of 533 

winter) and between September and October (within the period of autumn) are noteworthy; yet, the quarterly 534 

map cannot capture these monthly changes. In the monthly product (Figure 11), Lake Der-Chantecoq is 535 

completely filled from December to February, and Lake Orient ran dry during the September and October. 536 

The quarterly product (Figure 10) only displays the dry situation in autumn and the waterlogged state in 537 

winter. The correlation between the SWDF monthly time series products and the reference maps is 0.946 for 538 

Lake Der-Chantecoq and 0.892 for Lake Orient. That is, the monthly map can monitor the variation at 539 

higher temporal resolution with an acceptable extraction accuracy. In addition, the dramatically smallest 540 

surfaces’ period occurs between November to February, which cannot be reflected in the GSW product 541 

owing to the data deficiency. 542 

 543 

Figure 10. Quarterly time series changes in the surface water extent of Lake Der-Chantecoq and Lake Orient. The 544 
yellow lines display the surface water extents provided by SWDF. The background corresponds to the quarterly median 545 

composite data based on Sentinel-2 images. 546 
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 547 

Figure 11. Monthly time series changes in Lake Der-Chantecoq and Lake Orient. The curves (C) display the monthly 548 
surface water area estimated by SWDF and the reference values. A, B, D and E are surface water extents (yellow lines) 549 

overlaying on Sentinel-2 images. These monthly variations, including A and B in winter and D and E in autumn, 550 
cannot be reflected by quarterly maps. 551 

 552 

Additionally, 200 sample points are marked as water bodies, non-water bodies and no data by visual 553 

interpretation based on the reference monthly composite images. In total, 4800 sample points over 24 554 

months were obtained with two dimensions ("actual" by manual judgment and "predicted" by the RBSP 555 

method). The overall confusion matrix is presented in Table 7 after excluding 840 no-data sample points 556 

(Table S3 shows the monthly confusion matrix in the Supplemental materials). The ACC and MCC for the 557 
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general products within a two-year period are 0.932 and 0.865, respectively. Owing to the wet winter season 558 

in November and December, the results during these two months present relatively low accuracy; the ACC 559 

and MCC values are approximately 0.87 and 0.75, respectively. 560 

Table 7. Accuracy assessment of sample points 561 

840 points: no data available 

3960 points: valid MOYs 

Actual reference by visual interpretation 

Water Non-water 

Predicted SWDF 

by the RBSP method 

Water 1589 61 

Non-water 207 2103 

PA = 0.885; UA = 0.963; ACC = 0.932; MCC = 0.865 

3.2. Water frequency and annual surface extent 562 

 The annual frequency of surface water, expressed as a value from 0 to 100%, reflects the number of 563 

times a pixel is flagged as water over the total number of cloud-free monthly compositions during the year. 564 

Figure 12 displays the annual frequency of surface water in 2018. The satellite-based frequency of water 565 

bodies can be decreased by many factors, including the clouds (omitted by the cloud-screening algorithm), 566 

geometric mismatch and artifacts over certain areas (Zou et al., 2018). In the project, an annual frequency of 567 

no lower than 70% is regarded as a satellite-based permanent water body. Frequencies between 20% and 70% 568 

can be regarded as seasonal water bodies, where have water some time in a year. An annual frequency of no 569 

higher than 20% indicates that the pixels are marked as water bodies during one or two months of the year. 570 

These pixels could be the noise from cloud shadows and inundation zones, which are somewhat mixed in the 571 

annual frequency map and need further consideration. 572 
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 573 

Figure 12. Annual surface water occurrence map in 2018 generated by calculating the frequency of pixels marked as 574 
water bodies in the monthly maps. (A) France, (B) Lake Orient, and (C) Lake Der-Chantecoq. Note: The gap inside the 575 

Lake Der-Chantecoq is from the separate processing of the two divisions (Marne and Haute-Marne). 576 

In the project, we generated water body maps in 2017 and 2018 based on the frequency map. The 577 

minimum water extent covering the permanent water bodies was 308,374 ha and 313,808 ha in 2017 and 578 

2018, respectively, while the maximum water extent, including the permanent and seasonal water bodies, 579 
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was approximately 421,857 ha and 414,449 ha in 2017 and 2018, respectively. Table 8 listed the surface 580 

water area estimated from different HR derived products and the hydrological BD Cartage dataset. 581 

Table 8. Surface water area in France estimated from different products 582 

Surface water area (ha) 
SWDF GSW OSO 

maximum 

BD Cartage in 2016 

permanent maximum permanent maximum permanent maximum 

2017 

2018 
308,374 
313,808 

421,857 
414,449 

277,959 
287,551 

394,297 
402,313 

541,912 
540,353 

428,401 543,319 

 583 

These permanent and maximum surface water maps were quantitatively compared with the HR satellite 584 

derived annual maps from 2017 and 2018 (Table 9). The confusion matrix was calculated to determine the 585 

degree of consistency of the surface water extents predicted by the different products. TP and TN denote the 586 

same extracted regions of water bodies and non-water bodies, and FP and FN denote the omission in one 587 

product and commission in another product. Additionally, correlation analysis is performed based on the 588 

surface water areas in 96 administrative divisions. The coefficient of determination (R2) (Figure 13) of linear 589 

regression is found to be approximately 0.98 for GSW and 0.80 on average for OSO compared with SWDF. 590 

The Pearson correlation coefficient (\) between the SWDF and GSW methods is approximately 0.99 on 591 

average. In general, the SWDF and GSW approaches display a high degree of consistency in both area-592 

based correlation analysis and region-based confusion matrix aspects, perhaps due to their similar solutions 593 

based on the annual percentage of pixels. 594 

Also, the SWDF annual products are evaluated using the BD Carthage hydrological database obtained in 595 

2016. The confusion matrix-based metrics were 0.617 (PA), 0.801 (UA), 0.995 (ACC) and 0.700 (MCC) on 596 

average for the maximum extent and 0.611 (PA), 0.842 (UA), 0.996 (ACC) and 0.715 (MCC) for permanent 597 

water bodies. The relative high UA means that SWDF soundly overcomes the error extraction of water 598 

bodies soundly. That is, the noise is effectively excluded based on the water occurrence analysis. The low 599 

PA means that the SWDF faces greater challenges in detecting the missing parts of the surface water bodies. 600 

However, the hydrological data were obtained before 2016 and thus the dissimilarity cannot be avoided 601 

between the different temporal data. 602 

Table 9. Comparison of the annual surface water maximum and permanent extent provided by three satellite derived 603 
products and a hydrological database 604 

(2017/2018) SWDF vs OSO SWDF vs GSW OSO vs GSW SWDF vs BD Cartage 

Maximum extent 

r  0.952 / 0.838 0.991 / 0.989 0.946 / 0.856 0.915 / 0.914 

ACC 0.996 / 0.995 0.997 / 0.997 0.995 / 0.994 0.995 / 0.995 

MCC 0.750 / 0.700 0.779 / 0.776 0.740 / 0.687 0.698 / 0.702 

Permanent ACC Not available 0.997 / 0.997 Not available 0.996 / 0.996 

 MCC Not available 0.757 / 0.759 Not available 0.721 / 0.710 
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 605 

Figure 13. Correlation analysis of the annual surface water maximum extent between the SWDF and GSW/OSO 606 
methods based on the surface water areas in 96 administrative divisions in (A) 2017 and (B) 2018 607 

Furthermore, the extraction rates (Figure 14) of the main rivers and main lakes are 0.929 and 0.802 in 608 

the annual water map of 2018, respectively. Further, the extraction of small water bodies is analyzed based 609 

on a large number of ponds spreading across Loir-et-Cher. The confusion matrix analysis of these small 610 

water bodies (Figure 15A) indicates that PA, UA, ACC and MCC are 0.683, 0.882, 0.995 and 0.774, 611 

respectively. These metrics for the GSW method (Figure 15B) are 0.498, 0.865, 0.993, and 0.653.  Both 612 

products predict a similar degree of correctness of approximately 90% and commission errors of 613 

approximately 10%; however, they face problems with small water bodies related to low completeness and 614 

high omission errors. The SWDF method at a 10-m spatial resolution has a higher extraction rate for small 615 

water bodies and ponds in Loir-et-Cher than does the GSW method at a 30-m spatial resolution. The 616 

reference data include 2498 ponds larger than 1 ha and a total area of 8286 ha (Figure 15C). SWDF detects 617 

1900, 2498 and 2779 ponds larger than 1 ha, 0.6 ha and 0.5 ha, respectively. GSW detects 1265, 2100 and 618 

2498 ponds larger than 1 ha, 0.5 ha and 0.3 ha, respectively. The detailed illustration in Figure 15 indicates 619 

that the boundaries of the ponds are subject to extremely omission phenomena (redaa color), especially for 620 

GSW, which are mainly caused by the vegetation and vegetation shadows. This kind of omission error 621 

reduces the surface water area for each pond. In addition, GSW includes approximately 2000 ponds between 622 

0.2 ha and 0.5 ha, which are generally sparse noise owing to the pixelwise mapping. The official database of 623 

the surface water extent faces the problem of the temporal changes, which would reduce its reliability in 624 

measuring SWDF dynamic products. 625 

 626 
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 627 

Figure 14. Evaluation of the extraction rate of main riverway and lake extents in 2018. (B) (C) and (D) are some zoom-628 
in details in different geological regions of France, which are located in Paris Basin, mountainous Alps and 629 

Mediterranean coastal area, respectively. 630 

 631 

Figure 15. Evaluation maps of pond extraction in Loir-et-Cher based on the (A) SWDF and (B) GSW products. (C) 632 
displays the statistics of the number of ponds in different size. 633 
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 634 

4. Discussion and perspectives 635 

Monthly time series monitoring of surface water bodies at a 10-m resolution was performed for France 636 

between March 2017 and February 2019. The SWDF results indicate that Sentinel-2 data can provide higher 637 

temporal and spatial resolution information compared with the existing surface water extent products. The 638 

proposed RBSP approach tested here allows the frequent updating of the product based on a newly available 639 

Sentinel-2 monthly composite image. However, the proposed approach can be further improved to obtain 640 

more accurate and complete products, including the commission error of moist soil, the omission error of 641 

streams, creeks and frozen water bodies, and the data deficient because of cloud cover. 642 

4.1. Error sources and potential improvements 643 

Clouds and cloud shadows can cause both the omission error (Figure 16A) and commission errors 644 

(Figure 16D), and they reduce the coverage of valid observations, especially during the wet winter in France. 645 

In this study, we utilized the Sentinel-2 QA60 band to mask clouds in images with cloud cover percentages 646 

of less than 20%. The low cloud cover threshold does not affect the proposed RBSP approach. However, the 647 

coverage of the SWDF product could be further improved if an enhanced cloud and cloud shadow algorithm 648 

are available and introduced in the preprocessing stage. Recently, the Fmask 4.0 algorithm (Qiu et al., 2019), 649 

which robustly detected clouds and cloud shadows in Landsat data, was introduced into Sentinel-2. This 650 

enhanced masking algorithm is expected to (i) filter the clear pixels to restrain the commission error and (ii) 651 

add experimental data with a loose cloud cover flag to obtain a higher coverage of monthly surface water 652 

maps. 653 

Wet soil regions distributed in farmland (through irrigation) and wetland areas are somewhat 654 

misclassified as surface water bodies based on the rules of spectral indices (Figure 16E). The division of 655 

surface water, dry land and wet land is important for monitoring the inner-annual changes in intermittent 656 

rivers and ephemeral streams. Thus, some potential ideas involve the synergistically use of Sentinel-1 SAR 657 

data (Bousbih et al., 2018) and Landsat 8 thermal information (Sadeghi et al., 2017). 658 

RBSP typically faces omission error issues along narrow rivers (Figure 16B) because of 10 meters 659 

spatial resolution and the use of superpixel technique, especially when areas are sheltered by vegetation. It is 660 

important to restore the completeness of the watercourse in these cases. Potential development steps could 661 

be considered to restore rivers from fracture effects by (i) using prior knowledge and GIS data to obtain map 662 

layers over time and limit projection distortion, (ii) implementing salient object detection approaches and 663 

perceptual organization techniques to address the computational efficiency, and (iii) performing spectral 664 

mixture analysis to extract the endmembers of different environments. 665 

RBSP regarded ice as the other type of land cover and excluded it from surface water maps in the current 666 

project. That is, RBSP would underestimate surface water in winter because the water bodies are frozen 667 

(Figure 16C). For the SWDF product, ice is mostly limited to mountainous lakes and hydropower reservoirs 668 



 

31

in the Alps and Pyrenees areas, which represent a very small percentage of water bodies. The monitoring of 669 

inland river and lake ice indicates significant environment and climate changes (Yang et al., 2020). The 670 

detection of a surface water body can provide the basic layer for further inland ice detection and estimate the 671 

percentages and frequencies of the river and lake ice. 672 

 673 

Figure 16. Main error sources in the current SWDF products. Omission errors from (A) cloud cover, (B) stream of 674 
Claise River and (C) frozen water bodies in Plagnes Lake and Montriond Lake. Commission errors from (D) cloud 675 

shadow (E) wet land and forests shadow areas.  676 

In brief, the SWDF method may overestimate the number of water bodies in locations that contain moist 677 

soil and shaded pixels and underestimate the extent of water bodies such as streams, creeks and frozen water 678 

bodies. Commission error exists in the monthly time series maps but can be effectively excluded from the 679 

annual water maps based on frequency calculations. Such accelerated error reduces the accuracy of the 680 

SWDF flood mapping results because bi-temporal maps are applied before and after flooding. Fortunately, 681 

these errors are mainly specific to the monthly maps. The quarterly and annual surface water maps appear to 682 

be more robust than the monthly maps based on the high quality of quarterly composite images and annual 683 

frequency calculations. 684 

4.2. Data accessibility and homogeneity of S2 and Landsat 685 

To our knowledge, until now, JRC GSW is the only available product that provides the monthly 686 

dynamics of inland surface water bodies. However, GSW could be unavailable in certain months at certain 687 

locations. For France, GSW provides the monthly dynamics between March and October, as shown in 688 

Figure 7. 689 

Figure 17 compares the percentage of areas with valid observations in France using Sentinel-2, Landsat 690 

8 and GSW data (synthetic use of Landsat 7 and 8). With a high revisit frequency, Sentinel-2 (85% on 691 

average) can provide more available valid data than Landsat 8 (49% on average) and even GSW (60% on 692 

average). When limited to March through October in the dry season, the available percentage of the area is 693 

similar between the obtained product and the JRC dataset (approximately 90% on average), and the valid 694 

area decreases to 58% on average if only Landsat 8 is utilized. For the quarterly maps, Sentinel-2 provides 695 
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99.5% coverage, on average, in France, and Landsat 8 covers 85.6% of the entire national area on average. 696 

The SWDF method can provide the complete seasonal dynamic changes in the inland surface water extent, 697 

although the MOY time series analysis requires further improvement to obtain complete coverage, perhaps 698 

by introducing advanced cloud mask algorithms to include more images with 699 

CLOUDY_PIXEL_PERCENTAGE flags or by homogeneously merging Landsat and Sentinel-2 data. 700 

Figure 3 and Figure 18 present the valid MOY maps in a two-year period using Sentinel-2, Landsat 8 and 701 

Sentinel-2 and Landsat 8 combined. Our future work will involve the homogeneous merging of the Landsat 702 

and Sentinel-2 datasets, especially considering the recently published Landsat Analysis-ready Data (ARD) 703 

products and upcoming Landsat 9 scheduled for launch in December 2020. 704 

 705 

Figure 17. The percentage of the monthly composite data coverage from Sentinel-2, Landsat 8 and the combined use of 706 
Landsat 7 and Landsat 8 707 

 708 

Figure 18. Number of valid monthly composite images from (A) Landsat 8 and (B) the homogeneous use of Sentinel-2 709 
and Landsat 8 with less than 20% cloud cover 710 

5. Conclusion 711 

We develop an automated inland surface water detection approach and release a national surface water 712 

dynamics product. To the best of our knowledge, this study is the first to monitor the monthly dynamics of 713 

the surface water extent at a 10-m resolution over a large-scale using Sentinel-2 imagery. The RBSP 714 
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algorithm runs automatically to delineate surface water bodies in different environments (such as urban 715 

scenes, agricultural fields, and mountainous areas). The SWDF product determines the water occurrence in 716 

France at monthly time steps and at a 10-m spatial resolution. The geography of France includes coastline 717 

areas, mountainous areas, plains, islands and metropolises. Thus, the RBSP approach is intuitively 718 

implemented in GEE and has the potential to generate surface water dynamics at other national scopes and 719 

even the global scope. 720 

The obtained SWDF product is evaluated and validated based on both the HR satellite image derived 721 

water maps and official datasets. The annual surface water maps of SWDF show consistency with the 722 

publicly released land surface water maps of the JRC GSW, OSO and BD Cartage based on both the spatial 723 

distribution and surface area. These products display a high correlation coefficient of over 0.950 for surface 724 

water area prediction and high overall accuracies of over 0.995 (ACC) and approximately 0.750 (MCC) 725 

based on confusion matrix analysis. Moreover, the MOY SWDF and GSW products exhibit a similar 726 

seasonal trend, with a correlation coefficient of 0.940. The SWDF results cover all 24 months in the two-727 

year period, but the GSW method excludes results for the winter seasons from November to February. 728 

Additionally, the SWDF method has a higher extraction rate than the GSW method for small water bodies 729 

due to its higher spatial resolution of 10 m. For example, the completeness of pond extractions in Loir-et-730 

Cher is 0.683 (SWDF) and 0.498 (GSW) using the two methods, respectively. Moreover, the randomly 731 

sampled points show that the monthly water dynamics of SWDF have overall accuracies of 0.932 (ACC) 732 

and 0.865 (MCC). The detailed monitoring analysis of Lake Der-Chantecoq and Lake Orient indicates the 733 

superiority of MOY compared with conventional seasonal analysis on subtle variation monitoring. 734 

Our ongoing work is dedicated to improving the RBSP approach and the general application of the 735 

SWDF product. The automatic RBSP approach overestimates the SWDF in wet soil and shadow areas and 736 

underestimates the areas of water bodies such as rivers, streams and frozen water bodies. An advanced cloud 737 

masking algorithm and soil moisture estimation method could be implemented to reduce the commission 738 

error. A salient edge detection approach will be considered to address the omission of river fractures. The 739 

monitoring of percentage and frequency of river and lake ice is an interesting topic to be explored in our 740 

ongoing work.  741 

Overall, the SWDF results provide a unique opportunity for the monthly continuous mapping of the 742 

surface water extent at a 10-m scale using time series of composite images. Such monthly continuous time 743 

series of surface water dynamics benefit in-depth research on the inner-annual spatiotemporal variability in 744 

surface water changes, such as for ephemeral stream and lake monitoring, seasonal variation assessment and 745 

inundation mapping. Currently, SWDF has a valid coverage of 85% for the monthly maps and 99.5% for the 746 

quarterly maps on average. The valid coverage can be further improved if an enhance cloud and cloud 747 

shadow detection algorithm is introduced and a high cloud cover flag is used. Additionally, the 748 

homogeneous use of Sentinel-2 and Landsat 8 could further increase the valid coverage of the SWDF 749 

product. 750 



 

34

SWDF product access 751 

https://data.mendeley.com/datasets/475kmt7ysv/draft?a=eea5b126-937b-4ccd-ab96-92bcc3c6d637 752 
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