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Abstract

Discrete granular models are a natural choice when simulating dense suspensions,

when the small distances between the particles lead to dominant contributions by lu-

brication and contact forces. In such case one can get rid of the costly resolution of

Navier-Stokes equations, using closed form expressions for lubrication terms. How-

ever, those terms diverge when two hard spheres approach contact, and there are issues

when integrating them directly with the finite precision of floating point calculations. In

this paper, we introduce a visco-elasto-plastic interaction model for suspended spheres,

which combines lubrication and elastic-frictional contact behaviour depending on sur-

face roughness. An integration scheme is proposed for that model. Unlike earlier meth-

ods, the scheme enables an unconditionally stable time-integration of the interactions.

The case of perfectly smooth spheres (null roughness), namely, is integrated correctly.

The theoretical results are well reproduced in benchmark tests on two-sphere systems:

one sphere sedimenting on one other and two spheres in a shear flow. From these

benchmark tests, we propose phase diagrams showing the interplay between viscosity,

roughness and stiffness. The second test case highlights the origin of non-reversibility

particle trajectories. It is controlled by the particle roughness for rigid particles, and by

the particle deformation when the capillary number is higher than the relative rough-

ness.
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1. Introduction

Suspensions of solid particles dispersed in a viscous fluid are ubiquitous in nat-

ural, industrial as well as biological flows. For dense suspensions, the resistance to

flow depends on a combination of frictional contacts between the particles and viscous

interactions mediated by the interstitial fluid. Those combined effects might result in

non-Newtonian behaviour even for simple cases such as suspensions of monodisperse

spheres in a Newtonian fluid [1, 2]. Particle-scale simulation with discrete element

methods (DEM) is a way to investigate the intricate micro-scale processes at play in

such flow. There are a few caveats in the concrete implementation of a lubricated con-

tact model in DEM though, and coverage of this point in the literature is scarse whereas

many other types of interaction model have been analysed in details (see, namely, [3, 4]

and other papers by the same author). This paper contributes a robust method.

Several simulation frameworks have yet been developed in relation to suspensions.

Direct Numerical Simulations (DNS) using some Navier-Stokes solvers are feasible

though computationally demanding. They require a high spatial resolution to resolve

the flow between close particles. Regardless of spatial resolution, though, some sin-

gularities will not be captured. Those singularities are associated to the divergence at

the approach of contact of the so-called lubrication forces, i.e. the viscous resistance

to relative motion between two immersed particles. The change of distance between

two rigid spheres, namely, leads to a resisting normal viscous force which scales like

u̇nu−1
n if un is the gap between the solid surfaces. Since getting this resistance from

DNS would require to shrink the spatial resolution to virtually 0 when un → 0, the

models generally incorporate lubrication corrections to include what’s beyhond mesh

resolution. The approaches coupling DNS with suspended particles include the Force-

Coupling Method (FCM)[5, 6], Fictious Domain method (FD)[7] or Smooth Particle

Hydrodynamics (SPH) [8, 9].

While the aforementioned methods spend most of the CPU time in resolving the

fluid, multiple authors found that the steady-state flow of suspensions could be sim-

ulated accurately by leaving the fluid unresolved and introducing only the lubrication

terms through closed form expressions. Down to solid fractions of the order of φ = 0.2,

2



analytical solutions for regular arrays of spheres [10] as well as numerical solutions in

three-dimensional disordered systems [11, 12, 13, 14, 15], provide rather accurate pre-

dictions of bulk viscosity by taking lubrication as the only form of viscous dissipation.

As lubrication forces decrease sharply with distance the pairs farther than one parti-

cle diameter, typically, are insignificant and can be safely ignored. It of course leads

to much greater computational efficiency. Worth noting, good agreement with exper-

imental data needs to account not only for the repulsion-attraction effects but also for

the viscous response to contact shearing [13] and for contact friction [15].

The lubrication effects being pair-wise interactions they fit well in conventional

discrete element methods (DEM), which track the motion of interacting particles with

an explicit integration scheme [13], and which was adopted for this work.

The aforementioned models share the same closed-form solutions for the lubrica-

tion terms overall. However they differ in the way lubrication and solid contact be-

haviour are combined. It must be noted that in most DEM models a contact is defined

when un < 0. This situation, which corresponds to a small overlap between the geomet-

rical spheres, reflects a deformation near the contact region, following Hertzian models

or some linearized form of them. un < 0 comes in contradiction with the fact that the

lubrication forces diverge when un = 0, which would in principle prevent contacts. A

classical argument to resolve the contradiction, supported by empirical facts[16], is that

asperities of the solid surfaces can be in contact when there is still a fluid film of finite

thickness between the surfaces. Along this line a surface roughness εa (length scale of

the asperities, a being the mean sphere radius and ε relative roughness) is introduced in

the models such that the normal lubrication force scale like (un +εa)−1 [17, 18, 19, 13],

and thus it takes a finite value when a contact is created (i.e. when un = 0).

Various implementations of this idea have been proposed. Some authors proposed

that whenever un ≤ 0 the viscous multiplier be kept constant [17], or that all lubrication

terms be dropped [17, 18, 14] and the interaction model replaced by a linear spring-

dashpot model (LSD [20], conventional in dry granular models), tuned in order to

produce a specific coefficient of restitution. As pointed out by some authors, though,

the restitution coefficient as well as the distance at which lubrication is turned off are

additional parameters and the results depend on tuning them relatively arbitrarily [14].
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Finally, some authors considered that solid contact and lubrication could act simul-

taneously and be combined in a visco-elasto-plastic (VEP) model. Therein interaction

force at a lubricated contact combines an elastic force in response to some surface de-

flection and a viscous force in response to changes of gap distance. A simple method

to define changes of the gap distance is to set it equal to the total deflection (un + εa)

even if un < 0 [19], as if soft asperities would deform at the surface of otherwise rigid

spheres. Another method[13, 15], which we follow overall, is to let the total contact

deflection be split in two parts. One part is the change of gap, coming with the flatten-

ing of asperities and producing lubrication effects. The other part is an elastic length ue

corresponding to change of shape around the contact (Hertzian scale) under the com-

bined action of contact forces through asperities and lubricating pressure in the gap.

The gap is then un + εa− ue. This model recovers others as special cases if spheres and

asperities have distinct stiffness: a low sphere to asperity ratio corresponds to the hard

sphere limit, a high ratio corresponds to the hard asperity limit (constant gap).

A potential downside of the VEP models is that the smooth limit (ε → 0+) may

be difficult to approach. In the hard sphere limit the interaction forces diverge when

(un + εa) → 0+ (with un < 0 at contacts), which sets an implicit lower bound to

ε. In addition, viscosity dominated regimes when (un + εa) is small though strictly

positive, may cause instabilities with explicit time integration schemes. This is partly

regularized by introducing ue, but then the stiff problem becomes the time integration

of ue in itself. As a matter of fact ε < 10−2 remained untouched overall with VEP

models while other methods were applied successfully to ε = 10−3 [18] or ε = 0 [7].

In this paper a model and a time integration method are proposed to alleviate the

limitations of previous VEP approaches; namely

• the physical model is free of arbitrary tricks in combining lubrication and solid

contact;

• the limits ε→ 0 and/or (un + εa)→ 0 is approached robustly.

The proposed model is based on the assumption that the elastic deformations comes

from both the compliance of individual contact asperities and the global compliance
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of the solid surface. Robustness is obtained using an implicit time integration of the

interaction forces in an otherwise explicit time-stepping algorithm.

The governing equations and the time integration scheme are given in the first part

of the paper. In the second part two test cases are presented to assess the robustness

of the approach and to identify different regimes by parametric analysis. The first test

case is a suspended sphere subjected to gravitational load and bouncing on another,

fixed, sphere; the other involves the interaction of two spheres in a sheared fluid. In

both cases theoretical solutions exist and are recovered by our model.

2. Governing equations and time integration

The interaction between two immersed spheres is defined as the sum of two con-

tributions from, respectively, direct (repulsive) contact between the solid surfaces and

lubrication by the suspending fluid. It is assumed that they both contribute to deform

the spheres elastically and that the deformation occurs through, either, a flattening of

the surface asperities leading to a change of the interstitial gap u, or a more general de-

flection of the surface associated to a local change of shape, as if the sphere radii where

modified locally by a small distance ue. For simplicity linear elasticity is assumed for

both modes of deformation in what follows. It will lead to a visco-elastic model similar

to the standard linear solid model, yet with variable viscosity. The approach could be

extended to non-linear contact models, such as Hertzian ones, without major difficulty.

In the following, we detail the governing equations of the model. Since time inte-

gration only requires the calculations of interaction forces and torques between the two

spheres at a given time step and is furthermore not the focus of the present work, we

start by presenting these forces and torques. Since they involves intermediate quanti-

ties, and in particular the interstitial gap u between the (deformed) surface, their eval-

uation is not straightforward. In section 2.1, we first detail the normal component of

the forces and explain how to efficiently compute the interstitial gap using an implicit

scheme. Then, we detail the tangential components in section 2.2. These are more di-

rect as there is no direct coupling with u contrary to the case of normal ones. However,

several cases need to be distinguished, depending on the type of contact (no contact,
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sticking contact and slipping contact). Time integration is finally described briefly in

section 2.3, but is beyond the scope of this paper.

2.1. Normal components

2.1.1. Solid contact

It is assumed that a finite repulsive contact force arises whenever the interstitial gap

is less than the size of asperities. For two particles of mean radius a = (r1 + r2)/2 the

normal component of the contact force is taken proportional to the deflection of the

asperities, following

Fc
n = −kn max(0, εa − u)n (1)

where εa defines the characteristic size of the asperities, and ε is termed relative rough-

ness. kn is the normal stiffness of the asperities, and u is the distance between the solid

surfaces (not counting the size of asperities). n is the unit normal of the contact (see

figure 1). Here and in the following, subscripts n and s denote normal and shear com-

ponents of the interactions, respectively. Superscript c and l will be used to distinguish

contact and lubrication contributions.

In the elastic regime the tangential component of the contact force is an incre-

mentally linear function of the tangential displacement. The contact model includes

a threshold on the magnitude of the shear force following Coulombian friction, as in

Cundall and Strack [21]. The shear force thus has to satisfy the inequality:

‖Fc
s‖ ≤ µm‖Fc

n‖, (2)

where µm is the coefficient of contact friction.
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2.1.2. Lubrication

The lubrication terms are defined as in Marzougui et al. [13]. They define the

viscous resistance to relative motion between particles.

Fl
n =

3
2
πη f a2 u̇

u
n (3)

Fl
s =

πη f

2

[
−2a + (2a + u) ln

(
2a + u

u

)]
v̇ (4)

Tl
r = πη f a3

(
3
2

+
63

500
u
a

)
ln

(a
u

)
ω × n (5)

Tl
t = πη f a2u ln

(a
u

)
(ω · n)n (6)

where Fl
n, Fl

s, Tl
r and Tl

t are respectively normal lubrication force, tangential lubrication

force, rolling lubrication torque and twisting lubrication torque. v is the tangential

displacement, ω the spin velocity, and η f the fluid velocity. The expressions are based

on Frankel and Acrivos [22] for the forces and Jeffrey and Onishi [23] for the torques.

Although the above expressions define the lubrication terms for virtually any dis-

tance u, they are exact only asymptotically in the limit u/a → 0. In practice, they are

computed only for particle pairs within a distance range. The torques (equations 5-6)

are computed as long as u ≤ a. For u > a the direction of the torques switches to

the same direction as the relative rotation and thus physical consistency is lost - which

justifies the upper bound unambiguously. There normal and shear forces (equations

3-4) are also cut off beyond a certain distance yet there is no simple argument to fix the

maximum distance in that case. The cut-off distance is left as a model parameter for

now. It will be further examined on the basis of the second test case.

For writing simplicity, prefactors νn, νt(u) are introduced in the expression of forces,

such that:

νn =
3
2
πη f (7)

νt(u) =
πη f

2

[
−2a + (2a + u) ln

(
2a + u

u

)]
(8)

Fl
n = νna2 u̇

u
n (9)

Fl
s = νt(u)v̇ (10)
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2.1.3. Visco-elastic coupling

Contact and lubrication are combined in a rheological model summarized in figure

1. Three different length appear in the model: the gap between the solid surfaces u,

the deflection of surfaces ue, and finally the change of center-to-center distance with

respect to the stress free configuration: un = |r1 − r2| − 2a, with r1,2 the positions vec-

tors and 2a the sum of radii. The gap u is always positive, un and ue can be positive

or negative (ue > 0 when lubrication produces traction between separating bodies).

un depends only on the particles positions which, in concrete cases, will result from

integrating the equations of motion for the particles (which is done independently of

the present derivation). A change of the center-to-center distance relative to the stress

free configuration implies that either the distance between the surfaces is changing, or

the surfaces are deforming, or both. In all cases un accumulates the other two displace-

ments and the following equality holds:

un = u + ue (11)

It is assumed that the lubricating pressure and the contact forces through asperities

both contribute to deflect the surfaces by a distance ue in the normal direction, and

that the compliance is defined by a single coefficient of stiffness kb such that the total

normal force Fn = Fl
n + Fc

n and ue are linearly dependent:

Fn = kbuen (12)

Combining equations 1, 3 and 12 and projecting in the normal direction n yields the

scalar form

kbue = −kn max(0, εa − u) + νna2 u̇
u

(13)

Elimination of ue using equation 11 yields a differential equation governing the

visco-elastic coupling, where u is the only unknown (owing to the fact that un results

from motion integration). Normalization by the length a and the characteristic visco-
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elastic time τ = ηa/kb leads to the dimensionless form

(1 + α)u∗ − u∗n − αε +
u̇∗

u∗
= 0 (14)

α(u∗) =


0 when u∗ > ε (no contact)

kn

kb
when u∗ <= ε (contact)

(15)

Here and in the following ”∗” is used to denote the dimensionless form of a variable

(e.g. u∗ = u/a). In this paper, kn/kb is set equal to 1 at contacts; in other words the

stiffness of asperities and the stiffness of the surfaces are taken equal. The numerical

scheme is compatible with all positive values.

[Figure 1 about here.]

Tracking the evolution of the interaction with time asks for u integration using

equation 14 while continuously updating un to reflect particles motion. For this pur-

pose, and in order to insure unconditional stability, an implicit backward Euler method

is used. The time derivative of u∗ is approximated by

u̇∗+ =
u∗+ − u∗−

∆t∗
+ O(∆t∗), (16)

where ∆t∗ is the time step normalized by τ, and the exponents ”−” and ”+” refer to the

times at which a quantity is evaluated (the start and the end of the time interval). Using

equation 14, we obtain

(
u∗+

)2 (1 + α+) − u∗+
(
u∗n + α+ε −

1
∆t∗

)
−

u∗−

∆t∗
= 0, (17)

which is a second order polynomial equation, of positive discriminant. The smallest

solution is always negative, hence rejected since the gap u is positive. Finally the

updated gap and the associated force are given by

u∗+ =
1

2(1 + α+)


(
u∗n + α+ε −

1
∆t∗

)
+

√(
u∗n + α+ε −

1
∆t∗

)2

+ 4(1 + α+)
u∗−

∆t∗

 (18)

Fn = kba
(
u∗n − u∗+

)
. (19)
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Interestingly, equation 18 remains applicable for every positive value of u and it does

not suffer from the singular evolution of lubrication as u → 0+. This is a key property

of the proposed approach.

The function α that is used to write the general solution introduces discontinuous

derivatives at the transition between contact and no-contact solutions, and it has to be

handled with care. Setting u∗+ = ε in equation 17 gives the time delay after which the

transition occurs, i.e.

t∗c =
ε − u∗−

ε(ε − un)
. (20)

Where t∗c is the dimensionless critical collision time. If t∗c is positive and the dimension-

less time step ∆t∗ > t∗c , a contact transition occurs within the time step. In such a case,

we integrate on a fraction of the nominal time-step, noted ∆t∗, and starting from an

intermediate solution (variables subscripted with i) which correspond to the transition:
u∗−i = ε

∆t∗i = ∆t∗ − t∗c

α+
i = 1 − α+

(21)

Implementing equation 18 directly would have detrimental effects in terms of accu-

racy when both u∗ and u∗n are small. This is because with such settings the terms 1/∆t∗

dominate all other terms in equation 18, which leads to a substraction of two nearly

equal terms, beyond the accuracy of floating point operations. The algorithm would ef-

fectively give u∗ ≤ 0 after some time if a contact pair is compressed permanently. The

fact that u∗ appears often in a logarithm suggests the change of variable ξ = log(u∗) to

circumvent this accuracy issue. The following equation on ξ now has to be solved:

(1 + α+) exp(ξ+) −
(
un + α+ε −

1
∆t∗

)
−

exp(ξ− − ξ+)
∆t∗

= 0 (22)

This equation can be solved by conventional non-linear solvers, initialized at ξ+ = ξ−.

The bisections method is used in the current implementation.

2.2. Tangential components

The tangential forces are combined in a visco-elastic model as shown in figure 2.

Like for the normal part, lubrication and contact act in parallel, and they both contribute
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to distord (or to shear) the solid surfaces. Unlike the normal behaviour, described by a

single scalar equation, the quantities vs, ve, and v, defining the tangential displacements,

are vector quantities. They need to be handled as such to reflect changes in the direction

of shearing and rotations of the particle pair. vs is the geometrical shear displacement,

obtained by integrating shear velocity over time. ve is the elastic part of vs produced

by shearing the particles around a sticking contact area. v is the accumulated plastic

slip, i.e. v = vs − ve. The lubrication forces are activated by plastic slip, assuming that

viscous stresses in the interstitial fluid are negligible when the contact sticks.

vs is always known before computing the tangential interaction. Just like un for

the normal component it results from motion integration. The gap u can be considered

known, too, since it was derived in the previous section independently of the tangential

components.

[Figure 2 about here.]

The evolution of the shear components is governed by the system of equations
vs = ve + v

Fs = −ktve = min
(
||Fc

s||, µm||Fc
n||

) Fc
s

||Fc
s||
− νt(u)v̇.

(23)

The equations express, respectively, the additivity of elastic and plastic displace-

ment, and the force evaluated alternatively in the spring component then in the visco-

plastic component. A Coulombian slider accounts for the frictional solid contact (com-

ponents of force Fc
s and Fc

n), and a Newtonian dashpot with u-dependent viscosity re-

flects lubrication by the fluid. There is no need to integrate the total plastic slip vector

v over time in practice since its rate of change suffice to integrate the above equations.

The problem is now solved for the tree possible cases: no contact (u > εa), sticking

elastic contact (v = 0), and slipping contact (||Fc
s|| = µm||Fc

n||). If there is contact,

the force is first evaluated by assuming a sticking regime. Then, if the magnitude of

the trial force Fc∗
s exceeds the frictional threshold, the Coulomb condition is taken into

account. Similarly as the normal part, we derive an implicit scheme based on backward

Euler approximation for the time derivative, i.e.

v̇e =
v+e − v−e

∆t
+ O(∆t). (24)
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The three cases are detailed below.

2.2.1. No contact

If the normal contact force is null, the shear contact force is also null as a con-

sequence of Coulomb condition. Equations 23 degenerate to a Maxwell-type visco-

elastic equation given by

−ktve = −νt(u)(v̇s − v̇e). (25)

Using equation 24 and rearranging yields to

v+
e =
−νt(u)(v̇s∆t + v−e )
νt(u) + kt∆t

(26)

and to

F+s =
νt(u)(F−s − ktv̇s∆t)

νt(u) + kt∆t
. (27)

2.2.2. Sticking contact

If the contact is sticking over a time interval, the elastic displacement rate is equal

to total displacement rate: v̇e = v̇s (no slip). The incremental change of ve can be

obtained by direct integration of v̇s and in this purely elastic regime the force changes

linearly with respect to this change, i.e.

v+e = v̇s∆t + v−e , (28)

Fe+
s = F−s − ktv̇s∆t.. (29)

The force obtained herein by assuming no-slip is a trial elastic force, which may or

may not satisfy Coulomb condition. If it does, then we set simply F+
s = Fe+

s . If it does

not then we proceed to the third case (slipping contact) to find a visco-elasto-plastic

solution.

2.2.3. Slipping contact

The trial elastic force from Eqs. 29 defines the direction of the contact force and of

the plastic slip if it occurs. An equivalent form of equations 23 is then

−ktve = µm||Fc
n||

Fe+
s

||Fe+
s ||
− νt(u)(v̇s − v̇e). (30)

12



Using equation. 24, we obtain

v+e =

µm||Fc
n||

Fe+
s

||Fe+
s ||

∆t − νt(u)
(
v̇s∆t + v−e

)
νt(u) + kt∆t

, (31)

and

F+s =

ktµm||Fc
n||

Fe+
s

||Fe+
s ||

∆t + νt(u)
(
F−s − ktv̇s∆t

)
νt(u) + kt∆t

. (32)

Further substitution and factorization by Fe+
s gives a more compact expression:

F+s = Fe+
s

νt(u) + kt∆tµm
||Fc

n||

||Fe+
s ||

νt(u) + kt∆t
. (33)

2.3. Note on motion integration in DEM

The classical motion integration in DEM requires a single evaluation of the inter-

action forces at time t to compute positions and velocities at time t + ∆t. This is done

classically with a symplectic integrator using a centered, second order accurate, finite

difference approximation of the translational and rotational accelerations. The details

of this integration is beyond the scope of the paper yet an important feature is that it

sets an upper bound to ∆t for numerical stability, which has a critical influence on the

total computation time (a detailed derivation can be found in [24]).

In brief the computational time-step for rate-independent (non-viscous) interactions

depends on the incremental stiffness of each interaction, i.e. the partial derivatives of

F with respect the particle positions.

For rate-dependent interaction models such as the LSD however, an additional sta-

bility condition appears in the viscosity dominated regimes, since the forces depend

not only on positions but also on velocities. To avoid this constraint many authors tune

the interaction viscosity in order to stick to the under-damped, elasticity dominated,

regime. Obviously such a trick is not acceptable in a lubrication model, where fluid

viscosity has to be taken for what it is.

A key feature of the visco-elastic interaction defined in previous sections is that it

leaves the stability of explicit motion integration independent of viscosity ν, and even
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of ν/u. Indeed the stiffness g is an upper bound of the incremental stiffness regardless

of other parameters (the upper bound being approached when viscosity dominates).

In practice, it is thus enough to determine ∆t using the same expressions as for rate-

independent interactions, using g as the contact stiffness. It does not only make se-

lecting the computational time-step straightforward, but also, and more importantly, it

lets limit cases be approached with no impact on the computational cost (e.g. viscosity

dominated regimes, perfectly smooth particles, vanishing gap distances...).

3. Test cases

In this section, two 2-spheres simulations are performed using the computational

scheme introduced previously and the DEM code Yade-DEM. In this code, motion is

integrated by a conventional explicit, 2nd order, central finite difference scheme. A

link to the algorithm used to generate these test cases is provided in reference 25.

3.1. Falling sphere

In this first test case two immersed spheres undergo normal motion only. The simu-

lation consists in one fixed sphere and one free sphere subjected to gravitational accel-

eration. The free sphere is initially static at position (0, u0, 0). The fixed sphere remains

at position (0, 0, 0). This test shows the robustness and numerical stability of the model

down to very small gaps. Various regimes are expected depending on input parameters.

When the viscosity is high enough, the trajectory is dominated by viscous effects and

the gap distance tends to decay exponentially with time. If roughness is finite, the gap

closure converges to a final value corresponding to static equilibrium, else it converges

to zero. For less viscous situations, the trajectory may appear nearly parabolic in the

early stage. However, viscosity will necessarily come into play when the spheres are

close enough. Finally, the free sphere may bounce, oscillate around the static position,

or approach it in over-damped mode.

[Figure 3 about here.]
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The equation of motion for this system gives
mün = −mg − kbue

mün = −mg − kn max(0, εa − u) −
3
2
πη f a2 u̇

u
un = u + ue

(34)

This system is non-linear, and as far as we know, it cannot be solved analytically.

However, it is still possible to obtain partial solutions with some simplifications. For

quasi-static motion controlled by viscous damping and hard spheres (ue → 0), this

system can be reduced to:

0 = −mg −
3
2
πη f a2 u̇

u
, (35)

which has the solution

u = u0 exp
(
−8
9

t
τc

)
, (36)

where τc is the characteristic sedimentation time: τc = η f /aρg.

At static equilibrium, there must be a persistent contact through asperities (for finite

roughness at least), with the normal force balancing weight, and all velocities must be

null. The elastic displacement at equilibrium is thus given by

ueq = εa −
mg
kn

(37)

Note that this equilibrium does not exist for heavy yet soft particles, when εa < mg/kn.

In this case, the gap distance still decreases exponentially but it does so with an appar-

ent weight reduced by the contact force corresponding to u = 0: Fc
n(u = 0) = −knεan.

The problem involves two dimensionless numbers, in addition to the relative rough-

ness ε. Let us define the ”contact number”K , which balances the contact force and the

particle weight at equilibrium, i.e.

K =
knε

4
3πa2ρg

(38)

This number can be generalized in the case of suspensions, as K = Eε/Pp, where E

is the particle elastic modulus and Pp the confining pressure applied on the particle

phase. For the present test case, if the contact number goes below 1, there is no static

equilibrium.
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The other relevant number for this test case is the Stokes number, generally defined

as St = aρu̇/η f . Since the characteristic velocity for this problem is the undamped

free-fall velocity, u̇2 = 2u0g, the Stokes number reads

St =
aρ

√
2u0g
η f

(39)

When the Stokes number is small enough, the trajectory is driven by viscous effects,

as in over-damped oscillators. In contrast, if this number is high, the sphere should

collide as in a nearly undamped, or under-damped, oscillator.

[Figure 4 about here.]

Figure 4 shows several typical solutions of this test case. The initial trajectory is

always dominated by gravity since viscous forces are initially null (no initial velocity),

which results in a quadratic evolution of position with time just after the start. Then, for

rigid particles or smooth particles at low Stokes numbers, the movement is damped (a),

and the falling sphere reaches static equilibrium smoothly. With soft particles, the trend

is for the free sphere to be entrapped by lubrication (b), as if the surfaces where sticking.

The oscillations in u are so small that viscous dissipation becomes negligible, hence the

center of mass keeps oscillating in a nearly undamped mode. For high Stokes number

as in (c), the rebound energy is sufficient for the sphere to detach after the collisions

and we recover damped bouncing. Note that the restitution coefficient progressively

decreases at each bouncing, and the number of bouncing is finite. Situation (a) can be

seen as the last rebound of a series starting like (c). Finally, (d) is intermediate between

(b) and (c), the stiffness is small enough to enable oscillations but still high enough for

bouncing.

[Figure 5 about here.]

The three dimensionless numbers (ε, K , and St) have been investigated in an ex-

tensive set of simulations in order to obtain a complete phase diagram of the type of

response (damping, bouncing, oscillating). The complete phase diagram is a volume

and some slices for St from 10 to 104 are presented in figure 5. As showed in figure

4d, simulations close to the transitions exhibits both behaviours. Then, the transition
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between areas are smooth rather than sharp. For the highest Stokes simulations (a), the

trajectories exhibit mainly either oscillating or bouncing according to the particles stiff-

ness. The softest ones (K < 0.7) are oscillating after first collision whereas the stiffest

ones bounces. Even at this Stokes number, there are still some parameters where the

ideal exponential damping predicted by equation 36 is recovered. Reducing the Stokes

number (from (a) to (d)) let more and more configurations being damped, but only for

stiff cases. The oscillating area is being affected for lower Stokes number (e,f).

When the Stokes number is small enough, all trajectories are completely driven by

viscous forces, and the solution calculated in (36) is recovered until the two spheres

create a contact. Figure 6a shows it is indeed the case down to very small gaps for

smooth particles. For rough particles, this solution is also obtained before reaching

contact. Rough particles with negative equilibrium distances ueq exhibit an exponential

behaviour with a longer characteristic time associated to the apparent weight discussed

above. As shown in Figure 6c an excellent agreement is found between the gap reached

at the end of the simulation and the calculated equilibrium one.

[Figure 6 about here.]

To conclude, this first test case enables to verify the implementation of the method

by comparing the numercial solution to the analytical one at low Stokes number for

both rough and smooth spheres. It also highlights that for the latter, it is robust down

to arbitrary small gaps.

3.2. Two spheres in a shear flow

[Figure 7 about here.]

[Figure 8 about here.]

The second test case concerns the motion of two neutrally buoyant spheres sus-

pended in a sheared fluid. This problem has been studied extensively by numerical

methods and compared to closed-form solutions in earlier works [26, 6, 7, 27, 28]. The

closed-form solutions come from analytical integration of Stokes’ equations in linear

flow fields [29, 30], of which shear flow is a particular case [31, 32].
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The spheres are subjected to entrainment by the suspending fluid, and lubrication

forces as they approach each other. The entrainment is modelized by Stokes drag, for

which force Fd and torque T d are given by

Fd = −6πη f a
(
ṙ − w f

)
(40)

Td = −8πη f a3
(
ω −

1
2
∇ × w f

)
(41)

where w f is the background fluid velocity given by (γ̇y; 0; 0), ṙ and ω are the particle

velocity and spin velocity, respectively. The initial particle positions are (0, 0, 0) and

(−10a, d0 sin θ, d0 cos θ), with initial velocity and spin corresponding to the force and

torque free case in the above equations. All distances are normalized by a and noted

with ”∗” for the comparison with analytical results. Besides θ and d0/a, the relevant

dimensionless numbers of the problem are the roughness and the ratio of viscous stress

to stiffness: η f γ̇/E. This last number controls the deformation of the sphere induced

by viscous forces. Examples of soft systems for which this coupling has been stud-

ied include bubbles, drops, vesicles or elastic capsules, for which the stiffness is an

interfacial property (surface tension or surface modulus). By analogy to these cases

and similarly to other authors (see e.g. reference 33), let us call the above number the

Capillary Number, Ca = η f γ̇/E.

Whereas suspended smooth hard spheres follow reversible paths, both roughness

(i.e. the possibility of solid contact) and deformability of the particles are known to

induce non reversible, the particles being driven to different streamlines as a result

of the interaction [31, 34]. Figure 8 illustrates this three typical cases: smooth hard

spheres, rough hard shperes, deformable particles.

[Figure 9 about here.]

The case of smooth hard spheres is particularly interesting since it can be directly

compared to the analytical solution of Da Cunha and Hinch [31]. As it can be seen

on figure 8a, the obtained trajectories follow the analytical solutions from Da Cunha

and Hinch [31] for smooth hard spheres with a maximum deviation of 2%. However,

looking into details to the gap between the spheres, a discrepancy could be detected

between the numerical and the analytical one. Although it has no consequences on the

18



trajectories, it is interesting to discuss its origin. In the numerical model, the fluid is

accounted by a combination of Stokes drag and lubrication force and torque. As stated

in the model description, the lubrication analytical expressions are only valid for small

gaps, and are set to zero in the model when the gap exceeds an arbitrary distance. We

have varied this lubrication cut off distance from 2a to 7a. The results are displayed

in Fig 9, in terms of the minimal gap reached during the simulation. Clearly, this cut

off has a rather strong influence on this minimal gap - although the trajectories remain

nearly unchanged overall. A larger cur-off distance tends to increases the minimal gap,

the best match to the analytical solution of Da Cunha and Hinch [31] being obtained at

4a. This cut-off value was thus retained since there was no other objective way to define

it, and the minimal distance was somehow sensitive to it. That the same cutoff should

be used in all cases is no implied since the two-sphere system is not representative

of typical applications. The influence of the cut-off distance is much smaller when

simulating dense or, even, semi-dilute suspensions. The dominant lubrication terms

are indeed due to the nearest neighbours in general, and the nearest neighbours are

generally much closer than 4a. Any cut-off value beyond one particle diameter will

lead to quantitatively similar results.

The very good agreement between with the analytical solution for smooth hard

sphere is interesting as it clearly shows that lubrication forces and torques are suffi-

cient to describe the viscous interaction between two spheres. This conclusion differs

to the one which is mentioned in Metzger et al. [26], where a significant discrepancy

is found between the numerical solution obtained with lubrication interaction and the

analytical solution. This has been interpreted as the consequence of neglecting the

long-range interaction which are present the Stokes equation. In fact, in reference 26,

only the normal component of the lubrication force was considered; additionally no

drag torque was considered. By turning off tangential forces or sphere rotation, we

indeed obtain a similar discrepancy with the analytical solution , as shown in figure 10.

This consideration allows us to highlight that tangential lubrication forces are crucial

to get quantitative results - they are too often neglected in numerical models. The cost

of computing the shear component in the present model is small compared to the nor-

mal component and it does not introduce additional constraints in terms of numerical
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stability. Therefore there is no substantial computational gain to expect by neglecting

these terms - besides the fact that ignoring them would make the model quantitatively

wrong.

[Figure 10 about here.]

A set of typical trajectories for rough stiff spheres is presented in figure 8b. As

expected, roughness breaks the symmetry as soon as contact occurs. The role of rough-

ness is apparent in the plots of u∗, which look as if the smallest distances were trun-

cated. The sphere then moves to a streamline corresponding to min(u∗) ≈ ε irrespective

of the initial position of the particle. As seen in figure 9 for smooth spheres (ε = 0),

u∗ reaches a finite minimum value when d∗0 → 0, and this distance is about 3 10−5.

Consistently, the results are not modified by a finite roughness as long as ε < 3 10−5.

Another set of trajectories is presented for soft spheres in figure 8c. Up to our

knowledge, there is no analytical solution in that case. However, changes of streamline

have been reported in the literature, based on experiments and on simulations [34]. The

trajectories with large capillary number are qualitatively similar to those found in the

literature. A noticeable effect is that the closure of the gap is smaller as compared to

stiff spheres, which implies - for a given value of roughness - a smaller normal contact

force and therefore a lower resistance to contact sliding.

[Figure 11 about here.]

We have performed a systematic analysis of the streamline deviation, varying both

roughness and capillary numbers. The results are summarized in figure 11, which

reports the magnitude of the streamline deviation for almost coaxial initial distances

(d∗0 = 10−2) For this kind of initial separation distance, the streamline is very close

from the closed-loop streamline border for smooth hard spheres. Therefore, if any

streamline deviation occurs, the far deflection gives the height of an area that is not

reachable anymore after spheres interaction. The red area highlights the cases where

this distance is strictly 0. It approximately corresponds to cases where ε < 3×10−5 and

Ca < 10−4. From this figure, we can deduce the main origin of irreversibility above

these limits. When ε � Ca, the streamline deviaton is controlled by the roughness,
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whereas when Ca � ε, it is controlled by the particle deformation. Strikingly, when

Ca and ε are of the same order of magnitude, the streamline deviation is smaller than

the case of rigid particles of similar roughness or than the case of smooth deformable

particles. This non-monotonic effect is probably due to the fact that the particle stiffness

also controls the deformation of the roughness. In case of intermediate roughness and

capillary numbers, the apparent roughness is smaller than at low Ca.

To conclude, this test case shows that the model reproduces very well analytical

results in the case of rigid particles. Extension to slightly deformable particles allow to

predict the existence of reversible trajectories at low Ca and for rather smooth particles.

It also lead to a phase diagram of the origin of irreversibility.

4. Conclusion

A complete model of lubricated contact and an unconditionally stable integration

scheme for the interaction forces have been introduced in section 2. The model can

be readily implemented as an interaction model in conventional granular simulations.

The scheme handles the case ε = 0 (perfectly smooth spheres) gracefully, and regular-

ization by elasticity removes the singularity of lubrication when u → 0+. Furthermore

the visco-elastic coupling is such that the stability of explicit integrator for particle

dynamics is independent of viscous terms, whereas viscosity dominated regimes were

challenging most explicit schemes until now.

This work contributed an implementation in the open source discrete element code

Yade-DEM.org [35] (used for running the test cases of last section). The lubricated

contact model presented here is available as part of that code and our results can be

reproduced independently.

Two test cases have been investigated. The first one evidenced the robustness of

the method. In the viscous regime, the decreasing exponential trajectory has been re-

covered. In the regime where inertia is not negligible, some behaviours like damped

bouncing (close to pure-elastic limit) and vibration after collision (soft limit) have been

reproduced by the model. Two dimensionless numbers are shown to control the re-

sponse in that simple two-sphere system, and a phase diagram is proposed, showing
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the interplay between stiffness, roughness and viscosity. These dimensionless numbers

might bear some relevance to shear flows of granular suspensions.

The second test case, two spheres suspended in a sheared liquid, has been exten-

sively used to compare models and theories. We found a good agreement with theoret-

ical solutions for stiff spheres, and we reproduced qualitatively some features observed

previously with soft particles. A phase diagram has been determined concerning the

deviation from reversible trajectories in shear flows, which originates either from par-

ticle roughness, either from particle deformation.
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Figure 8: Relative trajectories of spheres, computed by DEM (points) and compared to Da Cunha and Hinch
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a Mean particles radius
d0 Initial streamline separation distance
E Elastic modulus
F Force
g Gravity
kb Bulk normal stiffness
kn Roughness stiffness
kt Bulk tangential stiffness
m Mass
n Normal vector

Pp Particules confining pressure
r Sphere position
T Torque
tc Critical collision time
u Distance between deformed surfaces
u0 Initial distance between spheres
ue Surface deflection
ueq Equilibrium distance between deformed spheres
un Geometrical overlap between spheres
v Plastic slip
ve Elastic tangential displacement
vs Integral of total tangential displacement
w f Flow field
α Roughness to bulk stiffness ratio
γ̇ Shear rate
∆t Timestep
ε Relative roughness
η f Fluid viscosity
θ Angle
µm Friction coefficient
νn Prefactor for normal lubrication
νt Prefactor for tangential lubrication
ξ Logarithm of u/a
ρ Density
τ Viscoelastic characteristic time
τc Sedimentation characteristic time
ω Sphere’s rotations
Ca Capilary number
K Contact number
St Stokes number
·c Contact
·d Drag
·i Intermediate result
·l Lubrication
·n Normal component
·r Roll component
·s Tangential component
·t Twist component
·∗ Dimensionless component
·+ Variable at current timestep
·− Variable at previous timestep

Table 1: Notations used
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