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, a fit to thermochemical equilibrium data for quaternary system had been derived and tested. In this paper, that previous fit is improved to derive a new fitting function, which is capable of covering a wider range of reactor designs (characterized by C uz in present study) and accident scenarios (characterized by C ox ). In order to derive this new fit, equilibrium calculations were made with the thermochemical database NUCLEA, developed at IRSN. One of the characteristic features of the phases at equilibrium, studied in this work, is that F e found to be always absent from the oxide phase. Another feature observed, is that the solubility of O in the metal phase is quite limited. Finally, the analysis performed shows that the atomic ratio of U/Zr, is almost invariant in the oxide phase, and as a consequence, is almost invariant in the metal phase (at least for a sufficient dilution with F e). From these observations, it is possible to propose a simplified representation of the equilibrium between liquid oxide and liquid metal, as a simple partition of (U -Zr) between both phases, the other atoms (O and F e) remaining in their respective phases (oxide and metal). The proposed new fit in this paper consists in evaluating the (U -Zr) partition. The fit is defined by two parameters, which depend on the global degree of oxidation of Zr and on the global U/Zr ratio. Finally, a simple pseudo-binary model is proposed in order to simulate the transient evolution of a two-liquids mixture in the quaternary U -Zr -F e -O system, towards an equilibrium.
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Introduction

In case of a severe accident in a nuclear reactor, with massive core degradation, the molten fuel materials (U O 2 and Zr) form a mixture called corium which gets mixed with structure materials (mainly steel) when corium progresses towards the bottom of the vessel. In the lower plenum, the vessel wall and other structures are partly melted due to the contact with hot corium. This results in a significant addition of steel to the global mixture of materials. At high temperature (i.e. above the oxide melting temperature), two immiscible liquid phases co-exist: an oxide and a metal. This means that, when the corium-steel mixture is stabilized at the bottom of the vessel, it must be stratified. One of the important issues is to know the position of the metal phase with respect to the oxide phase. Indeed, earlier observations made during RASPLAV Asmolov et al. (2000) and MASCA Asmolov et al. (2007) programs have shown that it is possible to get either a heavy metal, sinking below the oxide, or a light metal sitting on top, depending on the global composition. This depends on the density of the metal, which is directly related to the atomic fraction of U. The position of the metal layer has a direct impact on the evaluation of the heat flux profile across the pool [START_REF] Theofanous | Invessel coolability and retention of a core melt[END_REF]; [START_REF] Carénini | Modelling issues related to molten pool behaviour in case of In-Vessel Retention strategy[END_REF] and, hence, on the time of possible rupture of the vessel. In particular, when the metal layer is on top, there is a concentration of the heat flux along the metal layer (called focusing effect), and this concentration factor depends on the thickness of the top metal layer. Therefore, the partitioning of U and Zr between the metal and oxide layers determines both position and thickness of the metal layer. Hence, in the context of the In-Vessel Retention (IVR) analysis, it is essential to be able to predict this partitioning. Further, because of the computational cost of thermochemical equilibrium calculations, it is interesting to have a fast-running model, to evaluate the composition of the metal phase and its relative mole fraction with respect to the oxide. This is the objective of the work presented in this paper. In a first part, some characteristic features of the two phases at equilibrium are identified, from the results of thermochemical calculations using the NUCLEA database. From those characteristic features, a simplified representation of the quaternary (U, Zr, F e, O) system is provided showing that it can be represented as two pseudo-binary systems, in each phase. This simplification leads to the reduction of the number of unknowns to 3 (instead of 7, i.e. three unknown mole fractions in each phase and the global mole fraction of metal phase). Further considerations of mass conservation allow reducing this number of unknowns to only 1. In a second part, this unknown parameter is fitted by an approximate function depending on the global composition. The fit is similar to the one proposed in [START_REF] Salay | Modelling of corium stratification in the lower plenum of a reactor vessel[END_REF] The current equilibrium thermochemical calculations of (U, Zr, F e, O) species are performed with IRNS's NUCLEA toolbox. We first briefly introduce the NUCLEA toolbox in sub-section 2.1, and then give an overview of the thermochemical calculations in sub-section 2.2.

2.1. The NUCLEA Toolbox for Simulation of the Thermochemical Equilibria NUCLEA is an IRSN owned project, providing the following two functionalities:

1. A set of non-ideal solution based thermodynamic database, called NUCLEA database.

2. A toolbox of computational thermodynamics, referred to as NUCLEA toolbox.

Simply put, NUCLEA is a self-sufficient database cum computational tool designed for the calculation of thermochemical equilibria. It is specially developed for in-and ex-vessel nuclear applications, related to severe accident scenario. NUCLEA database contains 18 + 2 elements:

O -U -Zr -Ag -In -B -C -F e -Cr -N i -Ba -La -Sr -Ru -Al -Ca -M g -Si + Ar -H
and includes the following 15 oxide systems: (2007). To supplement the database, NUCLEA also comes with a Gibbs function minimization solver. Such a solver with all its functionalities are integrated within NUCLEA toolbox in the form of a Python Application Program Interface (API). Because of this API, a user can write codes in Python, and access Gibbs solver to compute the thermochemical equilibrium for known initial moles and mass fractions of the system of species. An example of calculating the thermodynamic equilibrium for given initial moles of species at a particular temperature and pressure is illustrated in Fig. 1. 

U O 2 -ZrO 2 -In 2 O 3 -B 2 O 3 -F eO -F e 2 O3 - Cr 2 O 3 -N iO -BaO -La 2 O 3 -SrO -Al 2 O 3 -CaO -M gO -SiO 2 .

Overview of Thermochemical Calculations

Table 1 shows the variables for which thermochemical calculations has been performed. The study has been carried out to see the variation in parameters listed in Table 1, with the increasing moles of F e. Moles of F e have been chosen as independent variable in order to simulate the accident scenario, where there is a continuous addition of molten Steel -coming mainly from the melting of reactor internals -to the relocated corium pool in the lower head of the reactor vessel. With respect to the composition, the corium initially contains oxidised Uranium (U O 2 ), oxidised Zircaloy (ZrO 2 ), and unoxidised Zircaloy (Zr). Global corium composition can be described by following three parameters, listed in Table 2.

C uz

It is the global ratio of U to Zr atoms in the corium. This value, depends mainly on the reactor design and accident scenario. Typically, for a Pressurised Water Reactor (PWR) it may go up to 1.45, and for a typical Boiling Water Reactor (BW R) it may go down to 0.8.

C ox

It is the global degree of oxidation of Zr. This parameter depends on the accident scenario. For instance in a slow scenario like Small Break Loss Of Coolant Accident (SBLOCA), the degree of oxidation would be larger than in a fast scenario like Large Break Loss Of Coolant Accident (LBLOCA).

C sz

It is the global ratio of Fe to Zr atoms. Depending on local configurations and timing in the accident scenario, the value of C sz may vary between 0 and rather large values, although the global value is typically around 1 for many reactors designs and accident scenarios. 

N z = 1 (1) N u = N z C uz = C uz (2) N o = 2(C uz + C ox ) (3) N s = N z C sz = C sz (4) N tot = N z + N u + N o + N s (5)
where N tot is the total number of moles and C sz is the global F e/Zr ratio.

For all thermochemical analysis, the version of thermochemical database used is NUCLEA-17 1.

The present study deals with the miscibility gap where two liquid phases (oxide + metal) coexist. NUCLEA-17 1 calculations show that two liquid phases are obtained only in the temperature range between 2900K and 3100K. Thus, this study is valid in this range of temperature. Results show that the equilibrium mole fractions do not depend visibly on temperature in that range, as it is shown in Fig. 2. Therefore, all the calculations presented thereafter were performed at 2900K.

The main findings of the thermochemical calculations performed with NUCLEA are summarised in the foregoing sections 2.3, 2.4, 2.5, 2.6. 

Absence of Fe in the Oxide Phase

For all the thermochemical calculations, no trace of F e is predicted in the oxide phase. This is due to the immiscibility of F e in U O 2 . Therefore, n ox s = 0 in all cases of interest. In the derivation of a simple equilibrium model, we will make the assumption that

N ox s = 0 (6)
2.4. Solubility of Oxygen in the Metal Phase From Fig. 3, it can be seen that only a small amount of O is found in the metal phase. This shows the limited solubility of O in metal phase. So, it can be neglected with respect to the mole farction of the other elements and, in the derivation of a simple equilibrium model, we will make the assumption that N m o = 0 (7) 

Invariance of U/Zr Ratio

If we look in detail at the variation of U/Zr ratio in the metal, we can see in Fig. 5, that it is slightly lower than the global value of C uz in each case shown, and this deviation is more important when C uz is greater than 1. This indicates a preferential extraction of Zr in the metal. However, this deviation remains small, especially in the asymptotic limit where the number of moles of iron is large. Figs. 4 and5 show the evolution of U/Zr with the number of moles of Iron in oxide and metal phase respectively. It can be seen that U/Zr ratio almost remains constant in both phases. This shows that as a first approximation, it may be estimated that in both oxide and metal phases there is a C uz atom of U , for one atom of Zr. It also means that there is the same partitioning coefficient K for both U and Zr atoms. Therefore, in the derivation of a simple equilibrium model, and using N z = 1, we will make the assumption that:

K = N m u N u = N m z N z = N m z + N m u (1 + C uz ) (8)
2.6. Relation Between n m s and C ox Referring to Fig. 6, we can see that the mole fraction of F e in the metal becomes asymptotically independent of C uz as soon as the number of moles of Iron (N s ) becomes more than 5, and even for lower values, the dependence is weak. Looking at Fig. 7, it clearly appears that there is a linear dependence of the mole fraction of Fe in the metal (n m s ) with C ox , for N s = 1.

This linear dependence can be written as:

n m s = 1 -n * s (1 -C ox ) (9) n m u + n m z = n * s (1 -C ox ) (10) N m u + N m z = n * s N m (1 -C ox ) (11)
And, using the partitioning coefficient K, we can write that From the previous equation, we see that the unknown partition coefficient K is not only related to input variables C uz and C ox but also to n * s , which is another unknown. This relation will be used to derive the simple analytical model in the next section. Before moving on to the derivation of simplified model, for the calculation of equilibrium compositions of quaternary (U, Zr, F e, O) species in two immiscible liquid phases (oxide + metal), it is worth noting, one of the important conclusions drawn from the aforementioned thermochemical study. Based on the observations made in section 2.3, it can be seen that no trace of F e is found in oxide phase. Further, if we neglect the small trace of O in metal phase (sub-section 2.4), and take the U/Zr ratio to be almost constant (as seen in sub-section 2.5), the quaternary system (U, Zr, F e, O) dispersed across metal+oxide phases, can be decomposed into binary in each phase, like:

K(C ox , C uz , C sz )(1 + C uz ) = n * s N m (1 -C ox ) (12) 
1. (U -Zr) + F e in liquid metal phase.

(U

-Zr) + O in liquid oxide phase.
Thus, a quaternary system can be treated as a pseudo-binary. The implications of this reduction will be discussed in section 8.

Derivation of a Simplified Model for the (U, Zr, Fe, O) System of Species

In this section, we propose to fit the thermochemical equilibrium compositions predicted by NU-CLEA with a simpler model. The purpose of using such simplified model in CFD codes or in severe accident codes is to reduce the CPU time necessary for estimating equilibrium compositions.

We start our analysis with the identification of the global inventory (recalling from sub-section 2.2) as:

N z = 1 (13) N u = C uz (14) N o = 2(C uz + C ox ) (15) 
N tot = N z + N u + N o + N s (16)
3.1. Expressions for n m s , n ox o and n m The inventory of the metal phase is:

N m = N m z + N m u + N s (17)
and n m s is given by:

n m s = N s N m z + N m u + N s (18)
The inventory of the oxide phase is:

N ox = N ox z + N ox u + N o (19)
and n ox o is given by:

n ox o = N o N ox z + N ox u + N o (20) 
It is straightforward to see that:

N s n m s + N o n ox o = N m + N ox = N tot (21)
which may also be written as:

n s n m s + n o n ox o = 1 (22)
Thus, the conservation of the total number of atoms gives the relation between n m s and n x o :

n ox o = n o (1 - n s n m s ) -1 (23)
Then, the mole fraction of metal phase is simply obtained by:

n m = N m N tot = N m N s N s N tot = n s n m s (24)
Therefore, we see that, in principle, only one of the three variables n m s , n ox o or n m has to be fitted.

Choice of the Fitting Function and Parameters

If we assume that O is present only in the oxide phase, as discussed previously, we can derive a relation between C ox and n ox o , from Eqs. (1, 2, 3, 5). The relation can be written as:

n ox o = N o N ox = 2(C uz + C ox ) (1 -K)(1 + C uz ) + 2(C uz + C ox ) (25)
After some algebraic transformations, the previous expression is equivalent to:

1 -C ox = (1 + C uz ) 1 -3-K 2 n ox o 1 -n ox o ( 26 
)
Substituting the left-hand side term in Eq. ( 26), with Eq. ( 9), we get:

n m s = 1 -n * s (1 + C uz ) 1 -3-K 2 n ox o 1 -n ox o ( 27 
)
At this point, it is interesting to remember that, when C ox tends to 1, the partition coefficient K tends asymptotically to 0, and n ox o tends asymptotically to n st o = 2/3. We introduce an unknow x: n ox o can be written as

n ox o = n st o -x or n ox o = 2/3 -x.
This is also true when C sz becomes large. If we write the previous Eq. ( 27) as a function of x, and set K = 0 we get:

2 3n * s (1 + C uz ) n m s = 2 3n * s (1 + C uz ) - x 1 3 + x (28) 
We make the approximation that 1 3 + x ≈ 1 3 and we define two constants m and b as:

m = 2 9n * s (1 + C uz ) (29) b = 2 3 -m = n st o -m (30) 
We may then re-write Eq. ( 28) as:

mn m s ≈ (m - 2 3 ) + ( 2 3 -x) = n ox o -b (31) 
From the Eq. ( 31), it can be seen that:

n m s = n ox o -b m ( 32 
)
and:

n ox o = mn m s + b (33)
The previous relation is asymptotically correct when C ox = 1 or when C sz is large. Therefore, we propose to generalize it and assume that we can write both n m s and n ox o as a function of some fitting function f (y), as:

n m s = 1 m f (y) ( 34 
)
n ox o = b + f (y) (35) 
From constraint given by Eq. ( 22), it can be written:

mn s f (y) + n o b + f (y) = 1 (36)
which gives a second order equation:

f (y) 2 + (b -n o -mn s )f (y) -bmn s = 0 (37)
We define the variable y as:

y = 1 2 (n o + mn s -b) (38) 
Then, the previous equation can be written as:

f (y) 2 -2yf (y) -bmn s = 0 (39)
We select the positive solution:

f (y) = y + y 2 + bmn s (40)
Finally, the two unknown mole fractions are given by the Eqs. (38,40,34,35). And it is easy to check that the last unknown variable n m is given by:

n m = mn s f (y) (41) 

Behavior of the Fitting Function f (y)

The fitting function given by Eq. ( 40), starts from 0 for n s = 0 (mole fraction of iron) and tends to m, very quickly, in an asymptotic way when n s increases. Therefore the asymptotic solution for n m s is 1 and for n ox o is b + m. This gives the following constraint:

b + m = n st o (42)
Thus the fit is made only with one fitting parameter (either b or m), the other being deduced from Eq. (42).

Illustration of Fit to NUCLEA Thermochemical Calculations for Various Inventory Compositions

In this section we show the quality of fit, made by the derived simplified model, for the NUCLEA calculations. Method of Least Squares have been used to fit the NUCLEA data by the derived simplified model, which has lead to the deduction of the values of fit parameter (m). Fig. 8, shows fit data (coloured lines) to the NUCLEA data (coloured dots), corresponding to C uz = 1.0 and C ox = 0.3. It can be seen that the model fits quite well to the thermochemical calculations. The value of fit parameter (m) for this case is found to be 0.0948. The value of other fit parameter (b) can be calculated from Eq. ( 42). Similarly, fits for thermochemical calculations, obtained for other values of C uz and C ox , can be seen in Figs. 9, 10 and 11, respectively. The values of fit parameter (m) found after fitting the NUCLEA data, for other important values of C uz and C ox , can be seen in Table 3. To calculate the values of the fit parameter (m), for other values of C uz and C ox , apart from the one given in Table 3, we found in our study, that for a given C ox , m follows a simple dependence on C uz . This dependence is expressed as:

m(C uz ) = m ref 1 + C ref uz 1 + C uz (43)
where, m(C uz ) is the unknown for a given C uz at a fixed C ox , m ref is a reference value of m, which can be taken to be any already known value of m from Table 3, at a fixed C ox . Similarly, C ref uz is the value of C uz , corresponding to m ref , at a fixed C ox , and C uz is the value for which m(C uz ) is to be determined. In Table 4, the values of m in bold corresponds to the already known values given in Table 3, and non-bold m values are the one calculated by using Eq. ( 43). In a similar way, values of m for other values of various C uz , at C ox = 0.6 and C ox = 0.9 can be approximated by using Eq. ( 43).

Range of Application of Fit model (Range of Data Fitted)

Figure 12 (a) shows the range of fitted thermochemical data obtained from NUCLEA database.

Clearly it can be seen that fitting covers values of C uz ranging from 0.8 to 1.5 and C ox ranging from 0.3 to 0.9. This data set is larger than the available experimental data points, thus making the fitting relevant to various inventory compositions found in different nuclear reactors like PWR, BWR, etc. Another illustration, showing the globalness of the fit data can be seen in Fig. 12 In this section we present an algorithm for using the simplified thermochemical model developed in section 3 for fast thermochemical equilibrium calculations.

Global data:

C uz , C ox , C sz Calculate: m = m ref 1+C ref uz 1+Cuz b = n st o -m Set: N z = 1 N u = C uz N o = 2(C uz + C ox ) N s = C sz N tot = N z + N u + N o + N s n i = N i /N tot (i = o, s)
Calculate the fit function f (y): f (y) = y + y 2 + bmn s where:

y = 1 2 (n o + mn s -b)
Calculate thermochemical equilibrium parameters: Calculations of mass fractions of Uranium and Zirconium in metal phase (X m U , X m z ) by the Salay's correlation and the new simplified model is shown in Fig. 14. These calculations are carried out by referring to the calculated MASCA element mole fractions in [START_REF] Salay | Modelling of corium stratification in the lower plenum of a reactor vessel[END_REF]. A improvement can be seen for the prediction of mass fraction of Uranium in metal for STFM-2, STFM-4, STFM-5, STFM-14 and STFM-15. Similarly, improvement in the prediction of Zirconium mass fractions in metal can be observed for STFM-7. A comparison between the fit to NUCLEA thermochemical data by the Salay's model and new model is shown in Fig. 15. The global inventory chosen for this comparison has quite high degree of oxidation of Zr atoms i.e. C ox being 0.9, and C uz being 1.45. In our study it has been observed that for higher values of C ox , the mole fraction of F e in metal (n m s ) goes quickly to 0.9 followed by an asymptotic tending to a value of 0.99. This quick variation happens over a very low moles of iron (N F e ). This can be seen from red dots in Fig. 15. To correctly fit the points spanned by low moles of iron for all high values of C ox = 0.9 and C uz = 0.8 -1.45, Salay's single set of fit parameters can no longer be used. This is evident from the black dashed curve missing the NUCLEA red dotted data of mole fraction of F e in metal, for very low values of moles of iron. A better viable method to address this inconsistency for higher values of C ox is to perform independent curve fittingto find different values of fit parameters best suitable for each case -using the simplified model proposed in this work. This methodology of using different set of fit parameters unique to each case ensures the best fit to NUCLEA data for wide range of values of C uz and C ox , covered in the present study.

n m s = f (y) m n m s = mns f (y) n ox o = b + f (y)

Use of Thermochemical Study to Simulate the Equilibrium in a Quaternary System by a Pseudo-Binary System

In this last section, we propose a methodology to simplify the set of four conservation equations (for U, Zr, F e, O) in each phase by taking into account the main characteristics of the quaternary equilibrium identified in this paper. We consider a situation where sub-oxidized corium gets in contact with molten steel (represented by F e atoms). In that case, we have seen in section 2, that F e will remain absent from the oxide phase, and that it is reasonable to neglect the transfer of O into the metal phase. Therefore, the problem requires the determination of the partitioning of U and Zr between the oxide and metal phases. The system of equations in the oxide phase are the following:

∂n ox o ∂t = D ox o ∇ 2 n ox o ( 44 
)
∂n ox u ∂t = D ox u ∇ 2 n ox u ( 45 
)
∂n ox z ∂t = D ox z ∇ 2 n ox z (46) 
8.1. Reduction to Binary Mixture in Oxide Phase If we come back to the thermochemical analysis, where U/Zr mole ratio is found to be almost invariant (from sub-section 2.5), we have the relation n ox u = C uz n ox z , and the Eqs. ( 45) and ( 46) are identical, with the assumption that D ox u ≈ D ox z . Therefore, the system becomes equivalent to a binary mixture in the oxide phase. Since, in sub-section 2.4, it is seen that O has a negligible solubility in metal phase, and hence, remains in the oxide phase, therefore, we have to track the transfer of only (U -Zr) atoms from the oxide phase to metal phase, and vice-versa. In the oxide phase, the atoms are not independent from each other, because the oxide phase is a mixture of oxide species (U O 2 and ZrO 2 ) and metal species (U and Zr). Because there are 2 atoms of O for every atom of U and Zr in oxide phase, each oxide "molecule" (U O 2 , ZrO 2 ) contains 3 atoms. So, the fixed atoms mole fraction in oxide phase can be defined by a new variable X ox , which is written as:

X ox = 3 2 n ox o (47) 
The total mole fraction of free U and free Zr corresponds to another new variable Y ox :

Y ox = 1 -X ox = 1 - 3 2 n ox o (48)
Therefore, we can conclude that diffusive transport in the oxide phase is described by the single variable Y ox , which diffuses at the same rate as O. The mole fraction of n ox o is found from Eq. ( 48). And, in order to find the mole fractions n ox u and n ox z , we use the constraint between mole fractions in oxide phase:

n ox z + n ox u + n ox o = 1 (49) 
Therefore we have:

Y ox = n ox z + n ox u - 1 2 n ox o (50) 
Further, using Eq. ( 25), we can see that

Y ox varies from Y ox = 0, if C ox = 1, to a maximum value of Y ox = Cuz 1+3Cuz , if C ox = 0.
The transport in oxide phase can be written in the form of a single specie mole fraction, Y ox , given by Eq. ( 51):

∂Y ox ∂t = D ox o ∇ 2 Y ox (51) 

Reduction to Binary Mixture in Metal Phase

In metal phase, the analysis is simpler, because the atoms are independent in this phase. Consequently, if we want to describe the transport of free (U -Zr) in metal phase, identified by new mole fraction Y m , and assuming that U/Zr mole ratio is almost constant in this phase as well (from sub-section 2.5). We can write Y m as:

Y m = 1 -n m s ( 52 
)
The above equation shows that diffusion of Y m will be governed by diffusivity of Fe in metal phase, ie. D m s . Thus, the diffusive transport in the metal phase can be written as:

∂Y m ∂t = D m s ∇ 2 Y m (53)

Condition at the Interface Between Oxide and Metal Phase

If we consider no source and sink at the interface between the oxide and metal phase, the continuity of the fluxes (Advective + Diffusive) from both the sides will give an expression like:

êoxm • ( J ox Advective + J ox Dif f usive ) = êoxm • ( J m Advective + J m Dif f usive ) (54) 
In Eq.( 54), êoxm , is the unit normal at the interface, pointing towards the metal phase, shown in Fig. 16. The expression for diffusive fluxes are straight forward to write as:

J k Dif f usive = D k i ∇Y k ; (i = o or s, and k = ox or m) (55) 
The expressions for advective fluxes can be written as:

J k Advective = Y k ( V k -w oxm ) ; (k = ox or m) (56) 
In Eq. ( 56), w oxm is the velocity of the interface, and V k is the velocity of a k phase (here oxide and metal). In this paper, we constrain ourselves to only diffusion, thus, V k = 0, hereafter. Substituting Eqs. (55, 56) into (54), we get the interfacial balance equation as:

êoxm • (Y ox (-w oxm ) + D ox o ∇Y ox ) = êoxm • (Y m (-w oxm ) + D m s ∇Y m ) (57)
Since, the problem in hand involves two phases, the Eqs. (51-57) along with boundary conditions, and jump conditions at the interface, need to be solved, which is not a very numerically feasible task, given interfacial geometrical complexity for most practical problems. Thus, some sort of simplification is required. Here, in this work, such simplification is done with the method of volume averaging. The Eqs. (51,53,57) 

∂(ε ox Y ox ox ) ∂t -Y ox eq ∂(ε ox ) ∂t = ∇ • (D ox o ∇ Y ox ox ) -∇ • (D ox o Y ox ox ∇ε ox ) + h ox (Y ox eq -Y ox ox ) (58)
Transport equation in metal phase:

∂(ε m Y m m ) ∂t + Y m eq ∂(ε ox ) ∂t = ∇ • (D m s ∇ Y m m ) -∇ • (D m s Y m m ∇ε m ) + h m (Y m eq -Y m m ) (59)
Volume averaging Eq. ( 57), gives phase change rate, given by Eq. ( 60).

Rate of phase change ( ṁox ) for a binary system:

∂(ε ox ) ∂t = 1 (Y m eq -Y ox eq ) h ox (Y ox eq -Y ox ox ) + h m (Y m eq -Y m m ) (60) 
In the Eqs. (58 -60), Y ox ox and Y m m are intrinsic phase average mole fractions of free (U -Zr) in oxide and metal phases, respectively. Y ox eq and Y m eq are equilibrium mole fractions of free (U -Zr) , to be calculated from the simplified model derived in section 3. ε ox and ε m (porosity) are respective volume fractions of oxide and metal phases. h ox and h m are mass transfer coefficients in oxide and metal phases, respectively. It is to be noted that these new variables have arisen out of the volume averaging procedure.

Application of the Pseudo-Binary Model in 0-D and 1-D Cases

In this section, we show an application of the binary model to predict the quaternary equilibria in a stratified metal-oxide system. At first, we consider a 0-D model, by neglecting the diffusion and gradients of porosity terms from Eqs. ( 58) and (59). Consequently, the Eqs. ( 58) and ( 59), reduces to system of Ordinary Differential Equations (ODEs):

d dt (ε ox Y ox ox ) -Y ox eq ṁox = h ox (Y ox eq -Y ox ox ) (61) d dt (ε m Y m m ) + Y m eq ṁox = h m (Y m eq -Y m m ) (62) 
The above ODEs along with Eq. ( 60) are solved numerically by choosing the following closure for mass transfer coefficients:

h k = h k0 ε k (1 -ε k ) ; (k = ox or m) (63) 
The validity of these closure models has been discussed in [START_REF] Nandan | A Two-Phase Mathematical Model to Describe Dissolution of a (U, Zr, O) Solid Crust by Liquid Steel[END_REF]. In Eq. ( 64), h k0 are constants whose value has been chosen to be 10 -3 for k = m and 10 -6 for k = ox. These values corresponds to the case of diffusion in liquid-metal phase to be much faster than the dissolution of solid-oxide grains [START_REF] Nandan | A Two-Phase Mathematical Model to Describe Dissolution of a (U, Zr, O) Solid Crust by Liquid Steel[END_REF]).

Figs. 17 Also, from Fig. 17 (b), it can be inferred that, if we start with 80% oxide (shown in red curve in Fig. 17 (b)), there will be a reduction of about 5% in oxide volume fraction, and hence, metal volume fraction (shown in green curve in Fig. 17 (b)) increases to 25% from initial 20%, by 1400 seconds. It is also interesting to see the conservativeness of the pseudo-binary model from Fig. 18, where mass of O and F e remains conserved in respective oxide phase and metal phase, and the mass of (U -Zr) remains conserved in oxide+metal phase.

Analysis carried out with 0-D model is also repeated with a 1-D model. For this, the terms like diffusion and gradients in porosity in Eqs. (58, 59) are retained. The closure model used for diffusivities are: 2018): the diffusivity is in the range between 10 -9 m 2 .s -1 and 10 -8 m 2 .s -1 . However, we could not find any data or model for the diffusivity of F e in (U, Zr), and we need to estimate D m s from the data for other mixtures containing F e. In [START_REF] Ichikawa | Atomic transport property of Fe-O liquid alloys in the Earth's outer core P, T condition[END_REF], the diffusivity of Fe is of the order of 10 -8 m 2 .s -1 . In [START_REF] Lee | Interdiffusion of copper and iron in liquid aluminum[END_REF], the diffusivity of Fe in Aluminum is between 10 -9 m 2 .s -1 and 10 -8 m 2 .s -1 . The values which worked well for us, as shown in [START_REF] Nandan | A Two-Phase Mathematical Model to Describe Dissolution of a (U, Zr, O) Solid Crust by Liquid Steel[END_REF] and [START_REF] Nandan | A Two Phase Mathematical Model to Describe the Dissolution of a Binary Solid by Liquid[END_REF], are D x o and D m s being in the order of 10 -9 m 2 .s -1 and 10 -6 m 2 .s -1 , respectively. at 1400 seconds, when the interface between oxide and metal phase has moved by 5% because of the dissolution of the oxide phase. Thus, making metal phase to have 25% volume fraction, like the one observed for 0-D model, shown in Fig. 17 (b). Similarly, the mole fraction of (U -Zr) in metal phase (i.e. Y m ), shown in Fig. 20 (a), has attained an equilibrium value of Y m = 0.2 by

D k = D k0 ε k ; (k = ox or m) (64 

Conclusions

The quaternary system U -Zr -F e -O dispersed across two liquid phases (oxide+metal) is studied in the miscibility gap region, at high temperatures. Equilibrium calculations are made with the thermochemical toolbox NUCLEA, developed at IRSN. Calculations covered wide range of C uz (i.e. the global molar ratio U/Zr) and C ox (i.e. the global oxidation degree of Zr). Results show several interesting features of the two phases. One of the characteristic features of the phases at equilibrium is that, Fe is always absent of the oxide phase. Another feature is that the solubility of O in the metal phase is very limited. Finally, it appears that the atomic ratio U/Zr is almost invariant in the oxide phase, and as a consequence, is almost invariant in the metal phase (at least for a sufficient dilution with F e). From those observations, it is possible to propose a simplified representation of the equilibrium between liquid oxide and liquid metal as a simple partition of (U -Zr) between both phases, the other atoms (O and F e) remaining in their respective phases (oxide and metal). Such simplified representation of the quaternary system in the miscibility gap allows to derive a new fit for the equilibrium mole fractions in both phases. This fit, which is dedicated to the evaluation of (U -Zr) partition between both phases, is applicable to a broad spectrum of reactor designs and accident scenarios. The fit is defined by two parameters which depend on the global degree of oxidation of Zr, C ox , and on the global U/Zr ratio, C uz . Finally, the specific features of the quaternary system allow to derive a simple pseudo-binary model able to simulate the transient evolution of a two-liquids mixture in the quaternary (U, Zr, F e, O) system towards equilibrium. This pseudo-binary model requires only the resolution of a mass transfer equation for (U -Zr) and the knowledge of equilibrium mole fractions (provided by the fit previously developed). This model is sufficient to predict the time evolution of two-stratified layers, which are initially out of equilibrium. The model can be improved by introducing the solubility of O in the metal phase, if necessary.

  but it is extended to a broader range of global compositions. The fit depends on two parameters only. In the last part of the paper, a two-phase model is proposed to calculate the transient chemical reaction between the oxide and metal phases. This model takes advantage of the simplified representation of the quaternary (U, Zr, F e, O) system as two pseudo-binaries. The resulting model exhibits the role of free Oxygen atoms in the oxide phase, i.e. the fraction of Oxygen atoms, which are not involved in the stoichiometric compounds U O 2 and Zr. Two examples of application of the model are shown: a 0-D application and a 1-D application, considering species diffusion in each phase. 2. Calculation of the Equilibrium Compositions of Quaternary (U, Zr, Fe, O) Species in Metal-Oxide Liquid Phases

  This database covers the entire range, from metal to oxide domains. The quaternary system (U, Zr, F e, O) was developed from binary data, later completed by the ternary (U, Zr, O) Chevalier & Fischer (1998); Barrachin et al. (2008). The whole database was recently improved, as explained in Bakardjieva et al. (2014). It is useful to mention the importance of data from the MASCA experiments for the validation of the quaternary system. After the MASCA program, several alternative thermochemical models of the quaternary were proposed in Asmolov et al. (2007); Fukasawa et al. (2005); Fukasawa & Fukasawa

Figure 1 :

 1 Figure 1: NUCLEA toolbox API for calculating the thermodynamic equilibrium

Figure 2 :

 2 Figure 2: NUCLEA-17 1 data in the temperature range of existence of two immiscible liquid phases (2900 K -3100 K)

Figure 3 :

 3 Figure 3: Mole fraction of O in metal phase Vs. Moles of Iron (n m o Vs. N s ) for various inventory compositions (C uz ), and degree of oxidation of Zr (C ox )

  Figure 4: U/Zr molar ratio in oxide phase Vs. Moles of Iron ( (U/Zr) ox Cuz Vs. N s ) for various inventory compositions (C uz ) and degree of oxidation of Zr (C ox )

Figure 6 :Figure 7 :

 67 Figure 6: Dependence of F e molar fraction in metal (n m s ) on C uz

Figure 8 :

 8 Figure 8: Inventory: Cuz = 1.0 and Cox = 0.3 (m = 0.0948)

Figure 10 :Figure 11 :

 1011 Figure 10: Inventory: Cuz = 1.45 and Cox = 0.3 (m = 0.07176)

  11 m = 0.104 m = 0.0948 m = 0.09 m = 0.086 m = 0.07176 Table 4

  Figure12(a) shows the range of fitted thermochemical data obtained from NUCLEA database. Clearly it can be seen that fitting covers values of C uz ranging from 0.8 to 1.5 and C ox ranging from 0.3 to 0.9. This data set is larger than the available experimental data points, thus making the fitting relevant to various inventory compositions found in different nuclear reactors like PWR, BWR, etc. Another illustration, showing the globalness of the fit data can be seen in Fig.12 (b), which is showing a pseudo-binary form (U -Zr, F e, O) of a full quternary system (U, Zr, F e, O) in a cross-sectional ternary phase diagram. Yet again, it can be seen that the fit data covers broader range than the experimental data.

Figure 13 :

 13 Figure 13: An algorithm to calculate the thermochemical parameters with derived simplified model

Figure 14 :Figure 15 :

 1415 Figure 14: Comparison between mass fractions of Uranium (X m U ) and Zirconium (X m z ) in metal phase for MASCA experiments, Salay's correlation and the new correlation

Figure 16 :

 16 Figure 16: Volume averaging oxide and metal phases over a REV

  Figs. 17 (a) and 17 (b), shows the result of 0-D analysis, carried out for C uz = 1 and C ox = 0.3. The moles of iron (N s ) are taken as 2. At first, the equilibrium values of n ox o and n m s are calculated for C uz = 1, C ox = 0.3 and N s = 2, from derived simplified model (section 3). Subsequently, the

  (a) that Y ox and Y m reaches their respective equilibrium values at around 1400 seconds.

  ) Other details of the numerical resolution of such a model can be referred from Nandan & Fichot (2018). To estimate D x o , some data are available in Kupryazhkin et al. (2008); Cardon et al. (2016); Alderman et al. (

  Variation of oxide and metal volume fractions

Figure 17 :

 17 Figure 17: Results for 0-D study performed with pseudo-binary model, and its comparison with 1-D model

Fig. 19 ,Figure 18 :

 1918 Fig.19, illustrates the 1-D analysis with the same thermochemical data used for 0-D study. For the sake of comparison with 0-D model, the initial oxide volume fraction (ε ox ) in Fig.19 (a) is again taken to be 80% in a square domain.Fig. 19 (b) and Fig. 20 (b) shows the state of the system

Figure 19 :

 19 Figure 19: Colour maps for 1-D study performed with pseudo-binary model (box size: 6mmx6mm)

  (a) M olef raction Y m at t = 1400 sec.

  ox at t = 0 sec. ox at t = 1400 sec.(b) ε ox at t = 0 and t = 1400 sec.

Figure 20 :

 20 Figure 20: Results for 1-D study performed with pseudo-binary model (box size: 6mmx6mm)

Table 1

 1 

	n m o	mole fraction of O in metal phase
	n ox s	mole fraction of Fe in oxide phase
	n ox o	mole fraction of O in oxide phase
	n m s	mole fraction of Fe in metal phase
	(U/Zr) ox	U/Zr molar ratio in oxide phase
	(U/Zr) m	U/Zr molar ratio in metal phase

Table 2

 2 To keep the analysis relevant to the broad range of reactors -PWR, BWR etc. -the thermochemical analysis has considered several values of C uz and C ox , which correspond to different core inventory compositions, and degrees of oxidation of Zirconium (Zr). uz and C ox , it is important to relate these two parameters with moles of U , Zr and O. This conversion of C uz and C ox to N u , N z and N o , is important because NUCLEA takes moles/mole fractions/mass fractions as a input, to calculate an equilibrium. This conversion is done by identifying the global inventory as given below(Eqs. (1, 2, 3, 4)). All the global mole numbers of the three other species are normalised by the number of moles of Zr:

	Since, in our present study, the thermochemical study has been performed by prescribing dif-
	ferent values of C

Table 4 ,

 4 shows the use of Eq. (43), to determine the value of m for various values of C uz at a given value of C ox . In this analysis, C uz is varied from 0.8 to 1.45 at a given C ox = 0.3, chosen m ref = 0.11 (from Table3) and the C ref uz corresponding to m ref = 0.11 is C ref uz = 0.8 (from Table3).

  are volume averaged over a Representative Elementary Volume (REV), represented in Fig. 16, to derive a two phase model for a binary mixture. Below, we have summarised the volume averaged model in simplified form. The derivation of such a model can be referred from Bousquet-Mélou et al. (2002).
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