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Stability of propagation features under time-asymptotic1

approximations for a class of dispersive equations2

Florent Deweza
3

aInria, Modal team-project, Lille–Nord Europe research center, France4

Abstract5

We consider solutions of dispersive equations on the line defined by Fourier
multipliers with initial data having compactly supported Fourier transforms.
In this paper, a refinement of an existing method permitting to expand time-
asymptotically the solution formulas is proposed. Here the first term of the
expansion is supported in a space-time cone whose origin depends explicitly
on the initial datum. As an important consequence of our refined method,
the first term inherits the mean position of the solution together with a
constant variance error and a shifted time-decay rate is obtained. Hence this
refinement, which takes into account both spatial and frequency information
of the initial datum, makes stable some propagation features under time-
asymptotic approximations and permits a better description of the time-
asymptotic behaviour of the solutions. The results are achieved firstly by
making apparent the cone origin in the solution formula, secondly by applying
precisely an adapted version of the stationary phase method with a new error
bound, and finally by minimising the error bound with respect to the cone
origin.
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stationary phase method, frequency band7
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1. Introduction9

In this paper, we are interested in the time-asymptotic behaviour of wave10

packets of the form11

uf (t, x) =
1

2π

∫
R
Fu0(p) e−itf(p)+ixp dp , (1)
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where t ∈ R, x ∈ R and f : R −→ R is a strictly convex symbol. We suppose12

that the Fourier transform Fu0 of u0 ∈ S(R) is supported in a bounded13

interval [p1, p2], where p1 < p2 are finite real numbers. In terms of evolution14

equations, wave packets of the form (1) are solutions of the following type of15

dispersive equations:16 { [
i ∂t − f

(
D
)]
uf (t) = 0

uf (0) = u0

, (2)

for t ∈ R, where f(D) is the Fourier multiplier associated with f and17

u0 ∈ S(R) the initial datum supposed to be in the frequency band [p1, p2]. For18

instance, the solutions of the free Schrödinger equation, of the Klein-Gordon19

equation or of certain higher-order evolution equations can be described by20

wave packets of the form (1); we refer to [9, Sec. 6] for further details. In the21

present setting, the frequency band hypothesis prevents the wave packet (1)22

from being too much localised in space according to the uncertainty principle23

and makes hence challenging the task of describing its spatial propagation.24

25

Some approaches solving this challenge time-asymptotically have been26

developed. In [4], the authors propose to approximate the solution of the27

Klein-Gordon equation on a star-shaped network by a spatially localised28

function, the latter tending to the true solution as the time tends to infinity.29

This has been achieved by applying precisely the version of the stationary30

phase method given in [23, Theorem 7.7.5] to an integral solution formula of31

the equation. The desired approximation is then given by the first term of32

the asymptotic expansion from the stationary phase method. The principle33

of the stationary phase method, which consists in evaluating the integrand34

of the oscillatory integral of interest at the stationary point of the phase35

function, combined with the bounded frequency band hypothesis leads to36

an approximation supported in a space-time cone: this cone describes both37

the motion and the dispersion of the solution for large times. In particular,38

the results exhibit in this setting the influence of the tunnel effect on the39

time-decay rate of the solution.40

In [3], this approach has been adapted to the setting of the free Schrö-41

dinger equation on the line. In that paper, the initial data are assumed42

to have integrable singular frequencies in order to study the effect of such43

singularities on the time-asymptotic behaviour. The version of the stationary44

phase method proposed in [18, Sec. 2.9] (also proposed in [17]) has been used45
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since it covers the case of singular amplitudes; we mention that the authors46

in [3] propose modern formulations and detailed proofs of the results from47

[18]. The results show that a free particle with a singular frequency tends to48

travel at the speed associated with this frequency. This is highlighted by the49

existence of space-time cones, containing the direction given by the singular50

frequency, in which the time-decay rates are below the rate of the classical51

decay inherited from the classical dispersion.52

However, the expansion provided in [3] is proved to blow up when ap-53

proaching the space-time direction associated with the singular frequency:54

this prevents the method from approximating uniformly the true solution in55

regions containing this direction. This is due to the fact that the first term56

of the expansion inherits the singularity of the initial datum; see [3, Sec. 3]57

for more details. To tackle this issue, another approach has been proposed in58

[9]: the precision of asymptotic expansions to one term is removed in favour59

of less precise but more flexible uniform estimates. In particular, they cover60

the above critical regions. Further this flexibility has permitted to consider61

not only the free Schrödinger equation but also equations of type (2) with62

initial data having singular frequencies. The uniform estimates for the so-63

lutions have been achieved by applying a generalisation [9, Theorem 4.8] of64

the classical van der Corput Lemma [28, Chap. VIII, Sec. 1, Proposition 2]65

to the case of singular and integrable amplitudes.66

The approach developed in [4] and the subsequent adaptations appearing67

in [3, 9] permit then to describe both the motion and the dispersion of the68

solutions via the inclination of space-time cones (which depends actually on69

the frequency support of the initial datum). Nevertheless it is noteworthy70

that the origin of the space-time cones resulting from the above methods is71

always put at the space-time point (0, 0), whatever the localisation of the72

initial datum is: the approximations provided by the method do not have73

the right spatial positions. As a consequence this method, although asymp-74

totically correct, leads to inaccurate approximations of the solutions on large75

but finite time intervals [0, T ] for initial data spatially far from the origin.76

77

In view of this, we aim at proposing time-asymptotic approximations78

whose mean positions and variances are close (even the same) to those of79

the solutions of equation (2) for a better description of the spatial propaga-80

tion. To this end, we proceed in four steps, each of them containing a new81

argument:82
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1. The first step, which is actually independent from the setting of dis-
persive equations, consists in establishing new uniform and explicit
remainder estimates for asymptotic expansions of oscillatory integrals
of the form

∀ω > 0

∫
R
U(p) eiωψ(p) dp ,

where the amplitude U : R −→ C is compactly supported and the phase83

ψ : R −→ R is concave. The new remainder estimate we establish84

involves the L2-norm of the first derivative of the amplitude and not85

the L∞-norm as in the original proofs [3, 18]. This is achieved by86

applying Cauchy-Schwarz inequality to the integral representation of87

the remainder term. We refer to Theorems 3.3 and 3.4 for the precise88

statements of these results.89

2. As a second step, we introduce a space-time shift parametrised by a90

two-dimensional parameter (t0, x0) in the integral formula (1). Broadly91

speaking, this new argument modifies the initial datum which is then92

given by the solution at time t0 spatially translated by x0. Inspired by93

the main lines of the method developed in [4], we apply then carefully94

a stationary phase method to this shifted solution formula to obtain95

here a family of time-asymptotic expansions parametrised by (t0, x0).96

This parameter turns out to be the origin of the cone in which lies the97

support of the first term. This result is given in Theorem 2.2.98

3. Here we use our new version of the stationary phase method described99

above to expand the formula (1). Since this version makes appear100

the L2-norm of the derivative of Fu0, it offers the possibility to apply101

Plancherel’s theorem. This leads to an error bound depending explicitly102

on the spatial part of the initial datum and on (t0, x0). The third103

step consists then in computing explicitly the parameter (t∗, x∗) which104

minimises the (t0, x0)-dependent family of error bounds provided in105

Theorem 2.2. The expansion associated with this optimal parameter,106

given in Corollary 2.5, is then the one whose error bound is the smallest.107

4. In the last step, we prove that the mean position of the first term108

associated with (t∗, x∗) is the same as the one of the solution (1) and109

that the difference between the two variances is constant; this is stated110

in Theorem 2.6. It is noteworthy that the proof of this theorem shows111

that the first term associated with (t∗, x∗) is actually the only one in112

the family of first terms we provide which satisfies these two properties.113
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Contrary to the original method developed in [4] and adapted in [3, 9], the114

present refined approach offers sufficient flexibility to provide time-asymptotic115

approximations for solutions of equations of type (2) which are more precise116

and which verify expected propagation properties.117

118

Let us illustrate our main result in the case of the free Schrödinger equa-119

tion on the line with initial datum u0 ∈ S(R), namely120  i ∂tuS(t) = −1

2
∂xxuS(t)

uS(0) = u0

, (3)

for t ∈ R. We note that equation (3) is actually of the form (2) with symbol121

f(p) = 1
2
p2 and its solution is given by122

∀ (t, x) ∈ R× R uS(t, x) =
1

2π

∫
R
Fu0(p) e−

1
2
itp2+ixp dp . (4)

In terms of quantum mechanics, the solution of the free Schrödinger equation123

is the wave function associated with the free particle being in the state u0124

at the initial time. Further the frequency band hypothesis means that the125

particle has a momentum localised in the interval [p1, p2]. According to the126

physical principle of group velocity, the wave packet (4) will travel in space127

at different speeds between p1 and p2 over time. Hence a free wave packet in128

the frequency band [p1, p2] is expected to be mainly spatially localised in an129

interval of the form
[
p1 (t−t0)+x0, p2 (t−t0)+x0

]
, where t0 and x0 have to be130

fixed, illustrating the propagation of the associated particle. For instance,131

a partial formalisation of this principle is given by Ehrenfest theorem [22,132

Proposition 3.19] which describes the evolution of the mean position of the133

particle (but not the dispersion).134

In the following result, we apply Corollary 2.5 to the setting of the free135

Schrödinger equation (3) to provide a time-asymptotic expansion of the solu-136

tion (4) with explicit error estimates. According to Theorem 2.6, the resulting137

approximation has the right mean position and its variance is equal to the138

solution variance plus an explicit constant. This is actually the consequence139

of the fact that the origin of the space-time cone, in which lies the support of140

the approximation, is actually put at the mean spatial position of the solution141

at the time when the variance of the solution is minimal. Hence the resulting142

approximation describes both position and dispersion of the true solution143
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and the theorem provides a formalisation of the principle of group velocity144

which seems to be more precise than Ehrenfest theorem in the setting of a145

free particle.146

Theorem 1.1. Consider the free Schrödinger equation on the line (3) with
initial datum u0 ∈ S(R). Let p1, p2, p̃1 and p̃2 be finite real numbers such
that [p1, p2] ⊂ (p̃1, p̃2). Suppose ‖u0‖L2(R) = 1 and suppFu0 ⊆ [p1, p2], and
define

• t∗ = arg min
τ∈R

(∫
R
x2
∣∣uS(τ, x)

∣∣2 dx− (∫
R
x
∣∣uS(τ, x)

∣∣2 dx)2
)

;

• x∗ =

∫
R
x
∣∣uS(t∗, x)

∣∣2 dx .
Then for all (t, x) ∈

{
(t, x) ∈

(
R\{t∗}

)
× R

∣∣∣∣ p1 6
x− x∗

t− t∗
6 p2

}
, we have∣∣∣∣uS(t, x)− 1√

2π
e−sgn(t−t∗)iπ

4 e−it
(
x−x∗
t−t∗

)2
+ixx−x

∗
t−t∗ Fu0

(
x− x∗

t− t∗

)
|t− t∗|−

1
2

∣∣∣∣
6 C1(δ, p̃1, p̃2)

√∫
R
x2
∣∣uS(t∗, x)

∣∣2 dx− (∫
R
x
∣∣uS(t∗, x)

∣∣2 dx)2

|t− t∗|−δ ,

where the real number δ is arbitrarily chosen in
(

1
2
, 3

4

)
. And for all

(t, x) ∈
{

(t, x) ∈
(
R\{t∗}

)
× R

∣∣∣∣ x− x∗t− t∗
< p1 or p2 <

x− x∗

t− t∗

}
, we have

∣∣uS(t, x)
∣∣ 6 (C2(p1, p2, p̃1, p̃2)

√∫
R
x2
∣∣uS(t∗, x)

∣∣2 dx− (∫
R
x
∣∣uS(t∗, x)

∣∣2 dx)2

+ C3(p1, p2, p̃1, p̃2)
∥∥u0

∥∥
L1(R)

)
|t− t∗|−1 .

All the above constants are defined in Theorem 2.2.147

See Corollary 2.5 for the general result. Let us now make some comments on148

this result:149

• On one hand, we observe that the first term is spatially well-localised150

for a solution in a narrow frequency band; on the other hand, the er-151

ror is bounded by the minimal value of the standard deviation of the152
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solution. Combined with the uncertainty principle, this exhibits a com-153

promise: a frequency well-localised solution (4) can be approximated154

by a function supported in a narrow space-time cone but a time suffi-155

ciently far from t∗ is required to achieve a good precision; on the other156

hand, the approximation of the solution (4) with a small minimal stan-157

dard deviation lies in a larger cone but the error bound is smaller than158

in the preceding case.159

• We remark that the time-decay rate is shifted by t∗, which is the time
when the variance of the solution (4) is minimal; this corresponds to
the fact that the origin of the cone belongs to the vertical space-time
line

{
(t, x) ∈ R×R

∣∣ t = t∗
}

. Hence if we require an error smaller than
a certain threshold ε > 0, then this precision is achieved for all t ∈ R
satisfying

|t− t∗| > C1(δ, p̃1, p̃2)
1
δ

(∫
R
x2
∣∣uS(t∗, x)

∣∣2 dx
−
(∫

R
x
∣∣uS(t∗, x)

∣∣2 dx)2
) 1

2δ

ε−
1
δ

=: η(ε) .

In particular if we are interested in the evolution of the solution for160

positive times and if t∗ < −η(ε), then the error of the approximation161

is smaller than ε for all t > 0. This has to be compared with the162

results from the classical approach (as in [3, 4]) which always imply163

the existence of a small time-interval [0, T ] during which the error is164

larger than a given threshold. This is due to the lack of flexibility of165

the classical approach which enforces t∗ = 0 (the decay rate is then166

t−
1
2 ) and puts automatically the origin of the cone at the origin of167

space-time.168

Let us now comment on some possible improvements or applications of169

the present results. First of all, an interesting issue would be to apply the170

approach developed in this paper to more complicated settings. One may171

consider dispersive equations on certain networks where integral solution172

formulas are available, as for example the Schrödinger equation on a star-173

shaped network with infinite branches [1] or on a tadpole graph [2]. In174

both papers, the time-asymptotic behaviour is studied by a frequency band175
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hypothesis and one may hope a better description of physical phenomena by176

using our refined method.177

We could also consider the Schrödinger equation with a potential. In [10],178

the time-asymptotic behaviour of the two first terms of the Dyson-Phillips179

series [16, Chap. III, Theorem 1.10] representing the perturbed solution is180

studied by means of asymptotic expansions. The results concerning the se-181

cond term of the series are interpreted as follows: if the initial state travels182

from left to right in space, then the positive frequencies of the potential tend183

to accelerate the motion of the second term while the negative frequencies184

tend to slow down or even reverse it, exhibiting advanced and retarded trans-185

missions as well as reflections. The application of the present results could186

bring more information on these phenomena, in particular precise spatial187

information on the transmitted and reflected wave packets.188

As explained in this paper, the notion of frequency band is physically189

meaningful and permits to describe time-asymptotically the propagation of190

solutions of certain dispersive equations in a precise way. However it is a191

restrictive hypothesis: for example, a function in a finite frequency band is192

necessarily a C∞-function. Hence it would be relevant to extend this notion193

to functions whose Fourier transform is not necessarily compactly supported194

but still localised in a weaker sense. In this setting, the first term of the195

expansion is no longer supported in a space-time cone and so one has to196

quantify the localisation by means of different tools. For instance, we can197

consider approaches based on weighted norms; such norms have been used198

in [19], [20] or in [21] to show that the continuous part of the perturbed199

Schrödinger evolution transports away from the origin with non-zero velocity.200

Our approach makes appear naturally the shifted decay rate |t − t∗|− 1
2 ,201

where t∗ minimises the variance of the solution. It would be also interesting to202

introduce this time-shift in other existing results to obtain greater precision.203

For instance, one may consider the important Lp − Lp′ estimates for which204

a simple argument makes apparent the shifted decay; this is proved in the205

following result:206

Proposition 1.2. Consider the free Schrödinger equation on the line (3)
with u0 ∈ S(R) and define t∗ ∈ R as follows:

t∗ := arg min
τ∈R

(∫
R
x2
∣∣uS(τ, x)

∣∣2 dx− (∫
R
x
∣∣uS(τ, x)

∣∣2 dx)2
)
.
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Then for all p ∈ [2,∞] and for all t ∈ R\{t∗}, we have

∥∥uS(t, .)
∥∥
Lp(R)

6

(
1

4π

)− 1
2

+ 1
p ∥∥uS(t∗, .)

∥∥
Lp′ (R)

|t− t∗|−
1
2

+ 1
p ,

where p′ is the conjugate of p.207

Proof. For the sake of clarity, we use the one-parameter group
(
e−it∂xx

)
t∈R

which permits to describe the Schrödinger evolution as follows:

∀ t ∈ R uS(t) = e−it∂xxu0 .

Using the group property, we have for any t ∈ R,

e−it∂xxu0 = e−i(t−t
∗)∂xx e−it

∗∂xxu0 ,

and by applying the classical Lp − Lp′ estimate [6, Proposition 2.2.3] to the
above right-hand side, we obtain for all t 6= t∗,∥∥uS(t, .)

∥∥
Lp(R)

=
∥∥∥e−it∂xxu0

∥∥∥
Lp(R)

6

(
1

4π

)− 1
2

+ 1
p ∥∥∥e−it∗∂xxu0

∥∥∥
Lp′ (R)

|t− t∗|−
1
2

+ 1
p

=

(
1

4π

)− 1
2

+ 1
p ∥∥uS(t∗, .)

∥∥
Lp′ (R)

|t− t∗|−
1
2

+ 1
p .

Note that we are allowed to apply the classical Lp − Lp
′

estimate since208

e−it
∗∂xxu0 ∈ S(R) ⊂ Lp

′
(R) thanks to the hypothesis u0 ∈ S(R).209

Since the classical Lp−Lp′ estimates are exploited to establish Strichartz es-210

timates which are themselves used to study non-linear dispersive phenomena,211

it is necessary to extend the above shifted Lp−Lp′ estimates to spaces larger212

than the Schwartz space in view of precise applications. In particular, one213

may examine whether t∗ defined above still satisfies some optimal conditions;214

this could be linked with the results established in [7].215

Regarding long-term perspectives of our work, one could consider the full216

soliton resolution for non-linear dispersive equations [11, 12, 13, 14, 15], which217

aims at classifying the asymptotic behaviour of the non-linear solutions. A218

key argument for the results contained in this series of papers is the channel219
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energy method [26], which consists in estimating the associated free solution220

outside a space-time cone or channel; this estimate is then used to prove that221

a dispersive term appearing in the decomposition of the non-linear solution222

tends to 0 in the energy-space. In particular, we mention that the authors of223

[8] have to shift in time the cones and channels to derive the desired estimates.224

Hence one might hope that the ideas proposed in the present paper could225

help to understand the requirement for this shift and more generally to refine226

the channel energy method.227

Finally we could also think about minimal escape velocities [25, 27] which228

aim at exhibiting propagation features for evolution operators of type e−itH ,229

where H is a general Hamiltonian; for instance, one may consider the opera-230

tor H = −1
2
∂xx + V where V is real-valued potential. As explained in [24],231

the method to establish these estimates generalises the integration by parts232

which is actually crucial to describe the time-asymptotic behaviour of wave233

packets, as illustrated in the present paper. Our approach could bring more234

precision to the abstract setting and hence lead to estimates containing more235

information on the propagation of general wave packets.236

237

The paper is organised as follows: in the following section, we state the238

main results on time-asymptotic expansions for dispersive equations of the239

form (2). Since the proofs of the main results are substantially based on a240

careful application of the stationary phase method, Section 3 is devoted to241

our new version of this method. Finally Section 4 contains the proofs of each242

result presented in Section 2.243

2. Main results on time-asymptotic approximations for dispersive244

equations245

In this section, we present the main results of our paper. Prior to this,246

we introduce the mathematical setting as well as some notations.247

248

The Fourier transform Fu : R −→ C of a function u : R −→ C belonging
to the Schwartz space S(R) is defined by

∀ p ∈ R Fu(p) :=

∫
R
u(x) e−ixp dx .

The Fourier transform defines an invertible operator from S(R) onto itself,
and can be extended to the space of square-integrable functions L2(R) and

10



to the tempered distributions S ′(R). Moreover, for u ∈ L2(R), Plancherel
theorem assures the following equality:

∀u ∈ L2(R) ‖u‖L2(R) =
1√
2π

∥∥Fu∥∥
L2(R)

;

see [23, Theorem 7.1.6].249

Consider now a C∞-function f : R −→ R such that all its derivatives
grow at most as a polynomial at infinity and consider the associated operator
f(D) : S(R) −→ S(R) defined by

∀x ∈ R f(D)u(x) :=
1

2π

∫
R
f(p)Fu(p) eixp dp = F−1

(
f Fu

)
(x) ,

which can be extended to the tempered distributions S ′(R). The operator250

f(D) : S ′(R) −→ S ′(R) is called a Fourier multiplier associated with the251

symbol f .252

Given such an operator, we introduce the following evolution equation on253

the line,254 { [
i ∂t − f

(
D
)]
uf (t) = 0

uf (0) = u0

, (5)

for t ∈ R. If we suppose u0 ∈ S ′(R) then the equation (5) has a unique
solution in C1

(
R,S ′(R)

)
given by the following solution formula,

uf (t) = F−1
(
e−itfFu0

)
.

We refer to [5] for a detailed study of this family of equations. In this paper,255

we suppose that the symbol f is strictly convex; an important example of256

such an equation is given by the free Schrödinger equation whose symbol is257

fS(p) = 1
2
p2.258

For the sake of better presentation of the results, we consider initial data259

u0 belonging only to the Schwartz space S(R) to focus on the approach we260

propose. We mention that it is possible to extend our results to the case of261

initial data in L2(R) with additional assumptions on regularity and decay;262

but this falls out of the scope of the paper.263

Further the initial data are assumed to be in bounded frequency bands,264

meaning that their Fourier transforms are supported on bounded intervals265

[p1, p2], where p1 < p2 are finite real numbers. Under such hypotheses, the266
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solution formula for the equation (5) defines a function uf : R × R −→ C267

given by268

uf (t, x) =
1

2π

∫ p2

p1

Fu0(p) e−itf(p)+ixp dp . (6)

We define now the space-time cone related to the symbol f and to the269

frequency band [p̃1, p̃2] with origin (t0, x0) ∈ R2.270

Definition 2.1. Let t0, x0, p̃1 and p̃2 be finite real numbers such that p̃1 < p̃2271

and let f : R −→ R be a symbol.272

1. We define the space-time cone Cf
(
[p̃1, p̃2], (t0, x0)

)
as follows:

Cf
(
[p̃1, p̃2], (t0, x0)

)
:=

{
(t, x) ∈

(
R\{t0}

)
× R

∣∣∣∣ f ′(p̃1) 6
x− x0

t− t0
6 f ′(p̃2)

}
.

2. Let Cf
(
[p̃1, p̃2], (t0, x0)

)c
be the complement of the space-time cone273

Cf
(
[p̃1, p̃2], (t0, x0)

)
in
(
R\{t0}

)
× R .274

We present now our first main result. Theorem 2.2 provides a time-275

asymptotic expansion to one term with explicit error estimate of the solution276

(6) in the space-time cone Cf
(
[p̃1, p̃2], (t0, x0)

)
, where [p1, p2] ⊂ (p̃1, p̃2) and277

(t0, x0) ∈ R2 is arbitrarily chosen. A uniform estimate of the solution (6)278

outside the cone is also established. The result shows that the solution tends279

to be time-asymptotically localised in the cone Cf
(
[p̃1, p̃2], (t0, x0)

)
.280

Theorem 2.2. Let p1, p2, p̃1 and p̃2 be finite real numbers such that
[p1, p2] ⊂ (p̃1, p̃2). Suppose that u0 ∈ S(R) is a function whose Fourier
transform satisfies

suppFu0 ⊆ [p1, p2] ,

and fix (t0, x0) ∈ R2. Then281

1. for all (t, x) ∈ Cf
(
[p̃1, p̃2], (t0, x0)

)
, we have∣∣∣∣∣∣uf (t, x)− 1√

2π
e−sgn(t−t0)iπ

4 e−itf(p0(t,x))+ixp0(t,x) Fu0

(
p0(t, x)

)√
f ′′
(
p0(t, x)

) |t− t0|− 1
2

∣∣∣∣∣∣
6
(
C1(f, δ, p̃1, p̃2)

∥∥(.− x0)uf (t0, .)
∥∥
L2(R)

+ C2(f, δ, p̃1, p̃2)
∥∥u0

∥∥
L1(R)

)
|t− t0|−δ , (7)
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where the real number δ is arbitrarily chosen in
(

1
2
, 3

4

)
and

• p0(t, x) := (f ′)−1

(
x− x0

t− t0

)
;

• C1(f, δ, p̃1, p̃2) :=
2δ+

1
2 L(δ)

√
π
√

3− 4δ

(
p̃2 − p̃1

) 3−4δ
2 c1(f, δ, p̃1, p̃2) ;

• C2(f, δ, p̃1, p̃2) :=
2δ−2L(δ)

π(1− δ)
(
p̃2 − p̃1

)2−2δ
c2(f, δ, p̃1, p̃2) ;

• c1(f, δ, p̃1, p̃2) :=
∥∥f ′′∥∥ 3

2
−δ

L∞(p̃1,p̃2)
min
[p̃1,p̃2]

{
f ′′
}− 3

2 ;

• c2(f, δ, p̃1, p̃2) :=
∥∥f ′′∥∥ 5

2
−δ

L∞(p̃1,p̃2)

∥∥f (3)
∥∥
L∞(p̃1,p̃2)

min
[p̃1,p̃2]

{
f ′′
}− 7

2

+
1

3

∥∥f ′′∥∥ 7
2
−δ

L∞(p̃1,p̃2)

∥∥f (3)
∥∥
L∞(p̃1,p̃2)

min
[p̃1,p̃2]

{
f ′′
}− 9

2 .

The constant L(δ) > 0 is defined in (13);282

2. for all (t, x) ∈ Cf
(
[p̃1, p̃2], (t0, x0)

)c
, we have∣∣uf (t, x)

∣∣ 6 (C3(f, p1, p2, p̃1, p̃2)
∥∥(.− x0)uf (t0, .)

∥∥
L2(R)

+ C4(f, p1, p2, p̃1, p̃2)
∥∥u0

∥∥
L1(R)

)
|t− t0|−1 , (8)

where

• C3(f, p1, p2, p̃1, p̃2)

:=
1√
2π

(p2 − p1)
1
2 min

{
f ′(p1)− f ′(p̃1), f ′(p̃2)− f ′(p2)

}−1
;

• C4(f, p1, p2, p̃1, p̃2) :=
1

2π
min
{
f ′(p1)− f ′(p̃1), f ′(p̃2)− f ′(p2)

}−1
.

To state the two other main results, we define the following moment-type283

and variance-type quantities for normalized u ∈ L2(R).284

Definition 2.3. Let u ∈ L2(R) such that ‖u‖L2(R) = 1 and let
f : R −→ R be a symbol. If they exist, we define the real numbers Mf (u)
and Vf (u) as follows,

Mf (u) :=

∫
R
f(x)

∣∣u(x)
∣∣2 dx , Vf (u) :=Mf2(u)−Mf (u)2 .
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If f(x) = x, then we note for simplicity

M1(u) :=Mf (u) , M2(u) :=Mf2(u) , V(u) := Vf (u) .

Remark 2.4. The above quantitiesM1(u),M2(u) and V(u) are respectively285

the mean, the second moment and the variance of |u|2.286

The explicitness of the family of error bounds given in Theorem 2.2 allows287

to compute the parameter (t∗, x∗) giving the smallest bound; this computa-288

tion is carried out in Lemma 4.2.1. In the following result, we provide the289

values of t∗ and x∗ and we provide the time-asymptotic expansion for the290

solution of equation (5) associated with this optimal parameter.291

Corollary 2.5. Assume that the hypotheses of Theorem 2.2 are satisfied and
assume in addition that ‖u0‖L2(R) = 1. Then the (t0, x0)-dependent right-
hand sides of inequalities (7) and (8) in Theorem 2.2 have a global minimum
at the point

(
t∗, x∗

)
∈ R2 with

• t∗ = arg min
τ∈R

V
(
uf (τ, .)

)
;

• x∗ =M1

(
uf (t

∗, .)
)
.

In this case, for all (t, x) ∈ Cf
(
[p̃1, p̃2], (t∗, x∗)

)
, we have∣∣∣∣∣∣uf (t, x)− 1√

2π
e−sgn(t−t∗)iπ

4 e−itf(p∗(t,x))+ixp∗(t,x) Fu0

(
p∗(t, x)

)√
f ′′
(
p∗(t, x)

) |t− t∗|− 1
2

∣∣∣∣∣∣
6
(
C1(f, δ, p̃1, p̃2) min

τ∈R

(√
V
(
uf (τ, .)

))
+ C2(f, δ, p̃1, p̃2)

∥∥u0

∥∥
L1(R)

)
|t− t∗|−δ ,

where the real number δ is arbitrarily chosen in
(

1
2
, 3

4

)
and

p∗(t, x) := (f ′)−1

(
x− x∗

t− t∗

)
.

And for all (t, x) ∈ Cf
(
[p̃1, p̃2], (t∗, x∗)

)c
, we have∣∣uf (t, x)

∣∣ 6 (C3(f, p1, p2, p̃1, p̃2) min
τ∈R

(√
V
(
uf (τ, .)

))
+ C4(f, p1, p2, p̃1, p̃2)

∥∥u0

∥∥
L1(R)

)
|t− t∗|−1 .

All the constants are defined in Theorem 2.2.292
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In the last result of this section, we consider mean position and variance293

of the time-asymptotic approximation of the solution (6) associated with the294

optimal parameter (t∗, x∗). Theorem 2.6 claims that the mean position of295

this approximation is equal to the one of the true solution and the difference296

between the two variances is constant; the value for this constant is provided.297

Theorem 2.6. Assume that the hypotheses of Theorem 2.2 are satisfied and
assume in addition that ‖u0‖L2(R) = 1. For all t ∈

(
R\{t∗}

)
and x ∈ R, we

define

Hf (t, x, u0, t
∗, x∗)

:=
1√
2π

e−sgn(t−t∗)iπ
4 e−itf(p∗(t,x))+ixp∗(t,x) Fu0

(
p∗(t, x)

)√
f ′′
(
p∗(t, x)

) |t− t∗|− 1
2 ,

where t∗ and x∗ are introduced in Corollary 2.5 and p∗(t, x) := (f ′)−1
(
x−x∗
t−t∗

)
.

Then for all t ∈ R\{t∗}, we have{ M1

(
uf (t, .)

)
=M1

(
Hf (t, ., u0, t

∗, x∗)
)

V
(
uf (t, .)

)
− V

(
Hf (t, ., u0, t

∗, x∗)
)

= min
τ∈R
V
(
uf (τ, .)

) .

3. Explicit error estimates for a stationary phase method via Cau-298

chy-Schwarz inequality299

The proof of Theorem 2.2 is substantially based on a careful application300

of a new version of the stationary phase method for oscillatory integrals of301

the form302

∀ω > 0

∫
R
U(p) eiωψ(p) dp , (9)

where the amplitude U : R −→ C is a continuously differentiable function303

supported on a bounded interval and the phase ψ : R −→ R is a strictly304

concave C3-function having a unique stationary point p0. The remainder305

estimates we provide here are explicit, uniform with respect to p0 and involve306

the L2-norm of the first derivative of the amplitude. This plays actually a307

key role in the proof of Theorem 2.2.308

This section is fully devoted to this new version since it is generic and309

independent from the setting of Section 2. The asymptotic expansions to-310

gether with the uniform and explicit remainder estimates are established in311
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Theorems 3.3 and 3.4.312

313

We start by stating two technical lemmas which will be substantially used314

in the proof of Theorem 3.3.315

The first step to expand ω-asymptotically integrals of type (9) consists316

in making simpler the phase function in order to integrate then by parts. To317

do so, we use the diffeomorphisms ϕj (j = 1, 2) defined and studied in the318

following lemma. The values of these diffeomorphisms at the stationary point319

p0 are provided in order to compute explicitly the first term of the expansions320

and two inequalities for ϕj are established to bound the remainders of these321

expansions.322

The proof of the following result lies mainly on an integral representation of323

ϕj.324

Lemma 3.1. Let p0, p̃1 and p̃2 be finite real numbers such that
p0 ∈ (p̃1, p̃2). Suppose that ψ ∈ C3(R,R) is a strictly concave function which
has a unique stationary point at p0. Then, for j = 1, 2, the function

ϕj : Ij −→ [0, sj]

p 7−→
(
ψ(p0)− ψ(p)

) 1
2

where I1 := [p̃1, p0], I2 := [p0, p̃2] and sj := ϕj(p̃j), satisfies the following325

properties:326

1. the function ϕj is a C2-diffeomorphism between Ij and [0, sj] ;327

2. we have

ϕ′j(p0) = (−1)j
√
−ψ

′′(p0)

2
;

3. for all p ∈ Ij, the absolute value of ϕ′j(p) is lower bounded as follows:∣∣∣ϕ′j(p)∣∣∣ > 1√
2

min
[p̃1,p̃2]

{
− ψ′′

}∥∥ψ′′∥∥− 1
2

L∞(p̃1,p̃2)
;

4. we have the following L∞-norm estimate for
(
ϕ−1
j

)′′
:∥∥∥(ϕ−1

j

)′′∥∥∥
L∞(0,sj)

6
∥∥ψ′′∥∥ 3

2

L∞(p̃1,p̃2)

∥∥ψ(3)
∥∥
L∞(p̃1,p̃2)

min
[p̃1,p̃2]

{
− ψ′′

}− 7
2

+
1

3

∥∥ψ′′∥∥ 5
2

L∞(p̃1,p̃2)

∥∥ψ(3)
∥∥
L∞(p̃1,p̃2)

min
[p̃1,p̃2]

{
− ψ′′

}− 9
2 .
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Proof. Let j ∈ {1, 2} and fix p0 ∈ (p̃1, p̃2). The proof of the present lemma328

is mainly based on the following integral representation of the function ϕj:329

ϕj(p) = (−1)j (p− p0)

(∫ 1

0

∫ 1

0

ψ̃(p, τ, ν) dνdτ

) 1
2

, (10)

for all p ∈ Ij, where

ψ̃(p, τ, ν) := −ψ′′
(
(1− τ)(1− ν)p+ (ν − ντ + τ)p0

)
(1− τ) .

This representation can be derived by noting firstly that

ψ(p0)− ψ(p) = −
∫ p0

p

ψ′(p0)− ψ′(t) dt =

∫ p0

p

∫ p0

t

−ψ′′(v) dv dt ,

where we have used the hypothesis ψ′(p0) = 0 to obtain the first equality.
Then we make the change of variable (ν, τ) =

(
v−t
p0−t ,

t−p
p0−p

)
, leading to

ψ(p0)− ψ(p) = (p− p0)2

∫ 1

0

∫ 1

0

ψ̃(p, τ, ν) dνdτ ,

and we take finally the square root of the preceding equality to obtain the330

desired representation (10).331

1. Since ψ is a strictly concave function on R, the function ϕj is actually
the square root of the non-negative C3-function p 7−→ ψ(p0) − ψ(p),
showing that ϕj is twice continuously differentiable on Ij\{p0} (ϕj is
actually a C3-function on this domain). Let us prove that it is also
twice differentiable on the whole Ij. To do so, note that we have for
p ∈ Ij\{p0},

ϕ′j(p) = −1

2
ψ′(p)

(
ψ(p0)− ψ(p)

)− 1
2

= −1

2

(∫ p0

p

−ψ′′(q) dq
)
ϕj(p)

−1

=
1

2

(
(p− p0)

∫ 1

0

−ψ′′
(
(1− t)p+ tp0

)
dt

)
ϕj(p)

−1

=
(−1)j

2

(∫ 1

0

−ψ′′
(
(1− t)p+ tp0

)
dt

)
×
(∫ 1

0

∫ 1

0

ψ̃(p, τ, ν) dνdτ

)− 1
2

. (11)
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The preceding equality combined with the positivity of the C1-function
−ψ′′ shows that ϕ′j is continuously differentiable on Ij whose derivative
is given by

ϕ′′j (p) =
(−1)j

2

(∫ 1

0

−ψ(3)
(
(p− p0)t+ p0

)
(1− t) dt

)
×
(∫ 1

0

∫ 1

0

ψ̃(p, τ, ν) dνdτ

)− 1
2

+
(−1)j

2

(∫ 1

0

−ψ′′
(
(1− t)p+ tp0

)
dt

)
×
(
−1

2

) ∫ 1

0

∫ 1

0
ψ̌(p, τ, ν) dνdτ(∫ 1

0

∫ 1

0
ψ̃(p, τ, ν) dνdτ

) 3
2

,

for all p ∈ Ij, where

ψ̌(p, τ, ν) := −ψ(3)
(
(1− τ)(1− ν)p+ (ν − ντ + τ)p0

)
(1− τ)2 (1− ν) .

Now, according to equality (11), we observe that ϕ′j is negative for332

j = 1 and positive for j = 2 since −ψ′′ > 0. By the inverse function333

theorem, we deduce that ϕj is a C2-diffeomorphism.334

2. Thanks to the integral representation (10), we have

ϕ′j(p0) = lim
p→p0

ϕj(p)− ϕj(p0)

p− p0

= (−1)j lim
p→p0

(∫ 1

0

∫ 1

0

ψ̃(p, τ, ν) dνdτ

) 1
2

= (−1)j
√
−ψ

′′(p0)

2
.

3. From equality (11) (which holds actually for all p ∈ Ij), we deduce the335

following lower estimate for ϕ′j:336

∀ p ∈ Ij
∣∣∣ϕ′j(p)∣∣∣ > 1√

2
min
[p̃1,p̃2]

{
− ψ′′

}∥∥ψ′′∥∥− 1
2

L∞(p̃1,p̃2)
. (12)

4. From the expression of ϕ′′j computed above, we obtain the following
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upper estimate:∣∣∣ϕ′′j (p)∣∣∣ 6 1

2
√

2

∥∥ψ(3)
∥∥
L∞(p̃1,p̃2)

min
[p̃1,p̃2]

{
− ψ′′

}− 1
2

+
1

6
√

2

∥∥ψ′′∥∥
L∞(p̃1,p̃2)

∥∥ψ(3)
∥∥
L∞(p̃1,p̃2)

min
[p̃1,p̃2]

{
− ψ′′

}− 3
2 ,

for all p ∈ Ij. By combining the preceding inequality with estimate
(12) and the following relation,

∀ s ∈ [0, sj]
(
ϕ−1
j

)′′
(s) = −

ϕ′′j
(
ϕ−1
j (s)

)
ϕ′j
(
ϕ−1
j (s)

)3 ,

we obtain finally for all s ∈ [0, sj],∣∣∣(ϕ−1
j

)′′
(s)
∣∣∣ 6 ∥∥ψ′′∥∥ 3

2

L∞(p̃1,p̃2)

∥∥ψ(3)
∥∥
L∞(p̃1,p̃2)

min
[p̃1,p̃2]

{
− ψ′′

}− 7
2

+
1

3

∥∥ψ′′∥∥ 5
2

L∞(p̃1,p̃2)

∥∥ψ(3)
∥∥
L∞(p̃1,p̃2)

min
[p̃1,p̃2]

{
− ψ′′

}− 9
2 .

337

After having applied the above diffeomorphism to the integral (9) (pre-338

viously split at p0), the phase becomes the quadratic function s 7−→ −s2.339

In order to make an integration by parts, creating then the first and the340

remainder terms of the integral, one needs an expression for a primitive of341

the function s ∈ [0, s0] 7−→ e−iωs
2 ∈ C, for fixed s0, ω > 0. In the following342

lemma, a useful integral representation of such a primitive is given. As in the343

preceding result, its value at the origin and an inequality are also provided344

to compute respectively the first term of the expansion and an upper bound345

for the remainder term.346

To prove Lemma 3.2, we refer to the paper [3] which gives actually the347

successive primitives of more general functions by using essentially complex348

analysis; see [3, Theorems 6.4, 6.5 and Corollary 6.6].349

Lemma 3.2. Let ω, s0 > 0 be real numbers and let φ(., ω) : [0, s0] −→ C be
the function defined by

φ(s, ω) := −
∫

Λ(s)

e−iωz
2

dz ,
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where Λ(s) is the half-line in the complex plane given by

Λ(s) :=
{
s+ t e−i

π
4 ∈ C

∣∣∣ t > 0
}
.

Then350

1. the function φ(., ω) is a primitive of s ∈ [0, s0] 7−→ e−iωs
2 ∈ C ;351

2. we have

φ(0, ω) = − 1

2

√
π e−i

π
4 ω−

1
2 ;

3. the function φ(., ω) satisfies

∀ s ∈ (0, s0]
∣∣φ(s, ω)

∣∣ 6 L(δ) s1−2δ ω−δ ,

where the real number δ is arbitrarily chosen in
(

1
2
, 1
)

and the constant352

L(δ) > 0 is defined by353

L(δ) :=

√
π

2

(
1

2
√
π

+

√
1

4π
+

1

2

)2δ−1

. (13)

Proof. The function φ(., ω) of the present paper corresponds actually to the354

function φ
(2)
1 (., ω, 2, 1) defined in [3, Theorem 2.3]. Hence we apply the results355

established in [3] to the present situation:356

1. One proves this first point by applying [3, Corollary 6.6], which is a357

consequence of Theorems 6.4 and 6.5 of [3], in the case n = 1, j = 2,358

ρj = 2 and µj = 1.359

2. The proof of this point lies only on basic computations which are carried360

out in the fourth step of the proof of [3, Theorem 2.3].361

3. The combination of Lemmas 2.4 and 2.6 of [3] assures this last point.362

363

Thanks to the two preceding lemmas, we are now in position to establish364

the desired asymptotic expansions with respect to the parameter ω for oscil-365

latory integrals of type (9). In the following theorem, we are interested in the366

case where the stationary point p0 of the phase belongs to a neighbourhood367

of the support of the amplitude. We emphasise that the remainder estimate368

we provide is different from those appearing in the original paper [18] and in369

[3].370
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Technically speaking, we split the integral at the stationary point p0 and we371

study separately the two resulting integrals. In each situation, the method372

consists firstly in using the diffeomorphism introduced in Lemma 3.1 to make373

the phase function simpler, secondly in integrating by parts to create the ex-374

pansion by using Lemma 3.1 point 2, Lemma 3.2 point 1 and point 2, and375

finally in bounding the remainder term by combining Lemma 3.1 point 3,376

point 4 and Lemma 3.2 point 3 with Cauchy-Schwarz inequality.377

Theorem 3.3. Let p1, p2, p̃1 and p̃2 be finite real numbers such that
[p1, p2] ⊂ (p̃1, p̃2). Suppose that ψ ∈ C3(R,R) : R −→ R is a strictly concave
function which has a unique stationary point at p0 ∈ (p̃1, p̃2). And assume
that U ∈ C1(R,C) is a function satisfying

suppU ⊆ [p1, p2] .

Then we have for all ω > 0,∣∣∣∣∣
∫
R
U(p) eiωψ(p) dp−

√
2π e−i

π
4 eiωψ(p0) U(p0)√

−ψ′′(p0)
ω−

1
2

∣∣∣∣∣
6
(
C5(ψ, δ, p̃1, p̃2)

∥∥U ′∥∥
L2(R)

+ C6(ψ, δ, p̃1, p̃2)
∥∥U∥∥

L∞(R)

)
ω−δ ,

where the real number δ is arbitrarily chosen in
(

1
2
, 3

4

)
and

• C5(ψ, δ, p̃1, p̃2) :=
2δ+1 L(δ)√

3− 4δ

(
p̃2 − p̃1

) 3−4δ
2 c5(ψ, δ, p̃1, p̃2) ;

• C6(ψ, δ, p̃1, p̃2) :=
2δ−1L(δ)

1− δ
(
p̃2 − p̃1

)2−2δ
c6(ψ, δ, p̃1, p̃2) ;

• c5(ψ, δ, p̃1, p̃2) :=
∥∥ψ′′∥∥ 3

2
−δ

L∞(p̃1,p̃2)
min
[p̃1,p̃2]

{
− ψ′′

}− 3
2 ;

• c6(ψ, δ, p̃1, p̃2) :=
∥∥ψ′′∥∥ 5

2
−δ

L∞(p̃1,p̃2)

∥∥ψ(3)
∥∥
L∞(p̃1,p̃2)

min
[p̃1,p̃2]

{
− ψ′′

}− 7
2

+
1

3

∥∥ψ′′∥∥ 7
2
−δ

L∞(p̃1,p̃2)

∥∥ψ(3)
∥∥
L∞(p̃1,p̃2)

min
[p̃1,p̃2]

{
− ψ′′

}− 9
2 .

The constant L(δ) > 0 is defined in (13).378

Proof. Let ω > 0 and choose p0 ∈ (p̃1, p̃2). First of all, since the support of
the amplitude is included in [p1, p2] ⊂ (p̃1, p̃2), we have clearly∫

R
U(p) eiωψ(p) dp =

∫ p̃2

p̃1

U(p) eiωψ(p) dp =: I(ω) .
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Splitting the above integral at the point p0 and using the two C2-diffeomor-
phisms defined in Lemma 3.1, we obtain

I(ω) = −
∫ s1

0

(
U ◦ ϕ−1

1

)
(p)
(
ϕ−1

1

)′
(p) e−iωs

2

ds eiωψ(p0)

+

∫ s2

0

(
U ◦ ϕ−1

2

)
(p)
(
ϕ−1

2

)′
(p) e−iωs

2

ds eiωψ(p0) ;

note that we have used the fact that ϕ1 and ϕ2 are respectively decreasing and
increasing. We integrate now by parts by using the primitive s 7−→ φ(s, ω)
given in Lemma 3.2 and the regularity of ϕj:

(−1)j
∫ sj

0

(
U ◦ ϕ−1

j

)
(s)
(
ϕ−1
j

)′
(s) e−iωs

2

ds

= (−1)j
[(
U ◦ ϕ−1

j

)
(s)
(
ϕ−1
j

)′
(s)φ(s, ω)

]sj
0

+ (−1)j+1

∫ sj

0

((
U ◦ ϕ−1

j

) (
ϕ−1
j

)′)′
(s)φ(s, ω) ds

= (−1)j+1
(
U ◦ ϕ−1

j

)
(0)
(
ϕ−1
j

)′
(0)φ(0, ω)

+ (−1)j+1

∫ sj

0

((
U ◦ ϕ−1

j

) (
ϕ−1
j

)′)′
(s)φ(s, ω) ds

=
1

2

√
2π e−i

π
4

U(p0)√
−ψ′′(p0)

ω−
1
2

+ (−1)j+1

∫ sj

0

((
U ◦ ϕ−1

j

) (
ϕ−1
j

)′)′
(s)φ(s, ω) ds ;

the second equality has been obtained by using the fact that U(p̃j) = 0 and
the last one by applying Lemma 3.1 point 2 and Lemma 3.2 point 2. Hence
it follows

I(ω) =
√

2π e−i
π
4 eiωψ(p0) U(p0)√

−ψ′′(p0)
ω−

1
2

+
2∑
j=1

(−1)j+1

∫ sj

0

((
U ◦ ϕ−1

j

) (
ϕ−1
j

)′)′
(s)φ(s, ω) ds eiωψ(p0) .
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To estimate each term of the remainder, we proceed as follows:∣∣∣∣(−1)j+1

∫ sj

0

((
U ◦ ϕ−1

j

) (
ϕ−1
j

)′)′
(s)φ(s, ω) ds

∣∣∣∣
6

∣∣∣∣∫ sj

0

(
U ′ ◦ ϕ−1

j

)
(s)
((
ϕ−1
j

)′
(s)
)2

φ(s, ω) ds

∣∣∣∣
+

∣∣∣∣∫ sj

0

(
U ◦ ϕ−1

j

)
(s)
(
ϕ−1
j

)′′
(s)φ(s, ω) ds

∣∣∣∣
6

(∫ sj

0

∣∣∣∣(U ′ ◦ ϕ−1
j

)
(s)
((
ϕ−1
j

)′
(s)
)2
∣∣∣∣2 ds

) 1
2 (∫ sj

0

∣∣φ(s, ω)
∣∣2 ds) 1

2

+

∫ sj

0

∣∣φ(s, ω)
∣∣ ds∥∥U∥∥

L∞(R)

∥∥∥(ϕ−1
j

)′′∥∥∥
L∞(0,sj)

;

let us remark that we have applied Cauchy-Schwarz inequality to the first
integral. We continue the proof by estimating each resulting term; first of
all, by making the change of variable p = ϕ−1

j (s) and by using Lemma 3.1
point 3, we obtain(∫ sj

0

∣∣∣∣(U ′ ◦ ϕ−1
j

)
(s)
((
ϕ−1
j

)′
(s)
)2
∣∣∣∣2 ds

) 1
2

6 2
3
4

∥∥ψ′′∥∥ 3
4

L∞(p̃1,p̃2)
min
[p̃1,p̃2]

{
− ψ′′

}− 3
2
∥∥U ′∥∥

L2(R)
.

Then we use the point 3 of Lemma 3.2 to derive the two following inequalities:

•
∫ sj

0

∣∣φ(s, ω)
∣∣ ds 6 L(δ)

∫ sj

0

s1−2δ ds ω−δ 6
L(δ)

2− 2δ
ϕj(p̃j)

2−2δ ω−δ ;

•
(∫ sj

0

∣∣φ(s, ω)
∣∣2 ds) 1

2

6
L(δ)√
3− 4δ

ϕj(p̃j)
3−4δ

2 ω−δ .

By using the integral representation (10) of ϕj, we obtain

ϕj(p̃j) 6
1√
2

∥∥ψ′′∥∥ 1
2

L∞(p̃1,p̃2)
(p̃2 − p̃1) ,
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which permits to deduce

•
∫ sj

0

∣∣φ(s, ω)
∣∣ ds 6 1

21−δ
L(δ)

2− 2δ

(
p̃2 − p̃1

)2−2δ ∥∥ψ′′∥∥1−δ
L∞(p̃1,p̃2)

ω−δ ;

•
(∫ sj

0

∣∣φ(s, ω)
∣∣2 ds) 1

2

6
1

2
3
4
−δ

L(δ)√
3− 4δ

(
p̃2 − p̃1

) 3−4δ
2
∥∥ψ′′∥∥ 3

4
−δ

L∞(p̃1,p̃2)
ω−δ .

And, from Lemma 3.1 point 4, we recall that∥∥∥(ϕ−1
j

)′′∥∥∥
L∞(0,sj)

6
∥∥ψ′′∥∥ 3

2

L∞(p̃1,p̃2)

∥∥ψ(3)
∥∥
L∞(p̃1,p̃2)

min
[p̃1,p̃2]

{
− ψ′′

}− 7
2

+
1

3

∥∥ψ′′∥∥ 5
2

L∞(p̃1,p̃2)

∥∥ψ(3)
∥∥
L∞(p̃1,p̃2)

min
[p̃1,p̃2]

{
− ψ′′

}− 9
2 .

Putting everything together provides the desired estimate, namely,∣∣∣∣∣I(ω)−
√

2π e−i
π
4 eiωψ(p0) U(p0)√

−ψ′′(p0)
ω−

1
2

∣∣∣∣∣
6

2∑
j=1

∣∣∣∣(−1)j+1

∫ sj

0

((
U ◦ ϕ−1

j

) (
ϕ−1
j

)′)′
(s)φ(s, ω) ds eiωψ(p0)

∣∣∣∣
6

2δ+1 L(δ)√
3− 4δ

(
p̃2 − p̃1

) 3−4δ
2
∥∥ψ′′∥∥ 3

2
−δ

L∞(p̃1,p̃2)
min
[p̃1,p̃2]

{
− ψ′′

}− 3
2
∥∥U ′∥∥

L2(R)
ω−δ

+
2δ−1L(δ)

1− δ
(
p̃2 − p̃1

)2−2δ ‖U‖L∞(R)

×
(∥∥ψ′′∥∥ 5

2
−δ

L∞(p̃1,p̃2)

∥∥ψ(3)
∥∥
L∞(p̃1,p̃2)

min
[p̃1,p̃2]

{
− ψ′′

}− 7
2

+
1

3

∥∥ψ′′∥∥ 7
2
−δ

L∞(p̃1,p̃2)

∥∥ψ(3)
∥∥
L∞(p̃1,p̃2)

min
[p̃1,p̃2]

{
− ψ′′

}− 9
2

)
ω−δ .

379

We end this section by providing an explicit and uniform bound for os-380

cillatory integrals of type (9) in the case where there is no stationary point381

inside the support of the amplitude, making the decay with respect to ω382

faster. As above, the estimate involves the L2-norm of the first derivative of383

the amplitude.384

The proof of the following result lies on classical arguments (as those in [28,385

Chap. VIII, Sec. 1, Proposition 2]) combined with Cauchy-Schwarz inequali-386

ty.387
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Theorem 3.4. Let p1, p2, p̃1 and p̃2 be finite real numbers such that
[p1, p2] ⊂ (p̃1, p̃2). Suppose that ψ ∈ C2(R,R) : R −→ R is a concave function
such that |ψ′| > 0 on [p1, p2]. And assume that U ∈ C1(R,C) is a function
satisfying

suppU ⊆ [p1, p2] .

Then we have for all ω > 0,∣∣∣∣∫
R
U(p) eiωψ(p) dp

∣∣∣∣ 6 (C7(ψ, p1, p2)
∥∥U ′∥∥

L2(R)
+ C8(ψ, p1, p2)

∥∥U∥∥
L∞(R)

)
ω−1 ,

where

• C7(ψ, p1, p2) := (p2 − p1)
1
2 min

{∣∣ψ′(p1)
∣∣, ∣∣ψ′(p2)

∣∣}−1

;

• C8(ψ, p1, p2) := min
{∣∣ψ′(p1)

∣∣, ∣∣ψ′(p2)
∣∣}−1

.

Proof. Let ω > 0. Since ψ′ is monotonic and has a constant sign on [p1, p2],
we have

∀ p ∈ [p1, p2]
∣∣ψ′(p)∣∣ > min

{∣∣ψ′(p1)
∣∣, ∣∣ψ′(p2)

∣∣} =: mp1,p2(ψ
′) > 0 .

Hence we are allowed to integrate by parts as follows:∫
R
U(p) eiωψ(p) dp =

∫ p2

p1

U(p) eiωψ(p) dp = −i
∫ p2

p1

(
U

ψ′

)′
(p) eiωψ(p) dp ω−1 .

Moreover we have∣∣∣∣−i ∫ p2

p1

(
U

ψ′

)′
(p) eiωψ(p) dp

∣∣∣∣
6

∣∣∣∣∫ p2

p1

U ′(p)ψ′(p)−1 eiωψ(p) dp

∣∣∣∣+

∫ p2

p1

∣∣∣U(p)ψ′′(p)ψ′(p)−2
∣∣∣ dp

6
∥∥U ′∥∥

L2(R)

∥∥(ψ′)−1
∥∥
L2(p1,p2)

+
∥∥U∥∥

L∞(R)

∫ p2

p1

∣∣∣ψ′′(p)ψ′(p)−2
∣∣∣ dp ;

as in the preceding proof, we have applied Cauchy-Schwarz inequality to
the first integral. Now the hypotheses ψ′′ 6 0 and ψ′ is monotonic with a
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constant sign allow to carry the following computations out:∫ p2

p1

∣∣∣ψ′′(p)ψ′(p)−2
∣∣∣ dp =

∣∣∣∣−∫ p2

p1

ψ′′(p)ψ′(p)−2 dp

∣∣∣∣
=
∣∣∣ψ′(p2)−1 − ψ′(p1)−1

∣∣∣
6 mp1,p2(ψ

′)−1 .

Furthermore, we have∥∥(ψ′)−1
∥∥
L2(p1,p2)

6 mp1,p2(ψ
′)−1 (p2 − p1)

1
2 .

Consequently we obtain∣∣∣∣∫
R
U(p) eiωψ(p) dp

∣∣∣∣ 6 (mp1,p2(ψ
′)−1 (p2 − p1)

1
2

∥∥U ′∥∥
L2(R)

+mp1,p2(ψ
′)−1

∥∥U∥∥
L∞(R)

)
ω−1 .

388

4. Proofs of the main results389

This section is devoted to the proofs of the results stated in Section 2.390

4.1. Proof of Theorem 2.2391

The proof of Theorem 2.2 is inspired by the one of [3, Theorem 5.2]: it392

consists mainly in rewriting wisely the solution formula (6) as an oscillatory393

integral with respect to time and in applying then a version of the stationary394

phase method.395

In the present paper, the expansions in cones with arbitrary origin are396

obtained thanks to a space-time shift in the integral defining (6). And the397

explicitness of the error bounds with respect to the origin of the cones is398

achieved thanks to the new generic remainder estimates given in Theorems399

3.3 and 3.4; this allows the application of Plancherel theorem in the present400

setting.401

Proof of Theorem 2.2. The cases t > t0 and t < t0 are distinguished for the402

sake of readability.403

404
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Case 1: t > t0
We rewrite the solution formula as an oscillatory integral by proceeding as
follows1

uf (t, x) =
1

2π

∫
R
Fu0(p) e−itf(p)+ixp dp

=

∫
R

1

2π
Fu0(p) e−it0f(p)+ix0p e

i(t−t0)
(
x−x0
t−t0

p− f(p)
)
dp

=

∫
R

Uf (p, t0, x0) ei(t−t0)Ψf (p,t,x,t0,x0) dp

=: If (t, x, u0, t0, x0) .

We note that the amplitude

Uf (p, t0, x0) :=
1

2π
Fu0(p) e−it0f(p)+ix0p ,

which is actually the Fourier transform of 1
2π
uf (t0, . + x0), is a C∞-function

(with respect to the variable p) whose support is included in [p1, p2]. The
phase function

Ψf (p, t, x, t0, x0) :=
x− x0

t− t0
p − f(p)

is a C∞-function on R which is strictly concave since we have supposed f ′′ > 0
in this section.
Now we remark that the existence of a stationary point for the phase inside
the interval Ĩ := (p̃1, p̃2) depends on the value of x−x0

t−t0 : it exists and is unique

if and only if x−x0
t−t0 ∈ f

′(Ĩ). In this case, the stationary point p0(t, x) is given
by

p0(t, x) = (f ′)−1

(
x− x0

t− t0

)
.

Let us now distinguish two sub-cases to apply Theorem 3.3 and Theorem 3.4.405

• Case x−x0
t−t0 ∈ f ′

(
Ĩ
)
. In this case, the stationary point belongs to Ĩ.

Hence we are allowed to apply Theorem 3.3 to the oscillatory integral

1In [3, 9], the parameters t0 and x0 are implicitly equal to 0. Allowing these parameters
to be arbitrary produces a space-time shift in the solution formula and permits to consider
cones with arbitrary origin.
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If (t, x, u0, t0, x0) with ω = t− t0:∣∣∣∣∣If (t, x, u0, t0, x0)

− 1√
2π

e−i
π
4 e−itf(p0(t,x))+ixp0(t,x) Fu0

(
p0(t, x)

)√
f ′′
(
p0(t, x)

) (t− t0)−
1
2

∣∣∣∣∣
6

1

2π

(
C5(Ψf , δ, p̃1, p̃2)

∥∥∥∂p [Fu0(·) e−it0f(·)+ix0·
] ∥∥∥

L2(R)

+ C6(Ψf , δ, p̃1, p̃2)
∥∥Fu0

∥∥
L∞(R)

)
(t− t0)−δ ,

with δ ∈
(

1
2
, 3

4

)
and the constants C5(Ψf , δ, p̃1, p̃2), C6(Ψf , δ, p̃1, p̃2) > 0

are defined in Theorem 3.3. Since we have

∂2
pΨf (p, t, x, t0, x0) = −f ′′(p) , ∂3

pΨf (p, t, x, t0, x0) = −f (3)(p) ,

and since the constants C5(Ψf , δ, p̃1, p̃2) and C6(Ψf , δ, p̃1, p̃2) depend
only on the second and third derivatives (with respect to p) of the
phase, we can claim that these constants depend on f rather than
Ψf . Furthermore, Plancherel theorem and standard properties of the
Fourier transform provide∥∥∥∂p [Fu0(.)e−itf(·)+ix0·

] ∥∥∥
L2(R)

=
√

2π
∥∥∥x 7−→ xF−1

[
Fu0(.)e−it0f(·)+ix0·

]
(x)
∥∥∥
L2(R)

=
√

2π
∥∥∥x 7−→ xF−1

[
Fu0(.) e−it0f(·)](x+ x0)

∥∥∥
L2(R)

=
√

2π
∥∥∥x 7−→ (x− x0)F−1

[
Fu0(.) e−it0f(·)](x)

∥∥∥
L2(R)

=
√

2π
∥∥∥x 7−→ (x− x0)uf (t0, x)

∥∥∥
L2(R)

.
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Hence we obtain finally∣∣∣∣∣∣uf (t, x)− 1√
2π

e−i
π
4 e−itf(p0(t,x))+ixp0(t,x) Fu0

(
p0(t, x)

)√
f ′′
(
p0(t, x)

) (t− t0)−
1
2

∣∣∣∣∣∣
6

(
1√
2π

C5(−f, δ, p̃1, p̃2)
∥∥(.− x0)uf (t0, .)

∥∥
L2(R)

+
1

2π
C6(−f, δ, p̃1, p̃2)

∥∥u0

∥∥
L1(R)

)
(t− t0)−δ ,

where we have used the classical estimate
∥∥Fu0

∥∥
L∞(R)

6 ‖u0‖L1(R).406

• Case x−x0
t−t0 /∈ f ′

(
Ĩ
)
. As previously, we rewrite the solution formula as

the oscillatory integral If (t, x, u0, t0, x0). Here the phase Ψf (., t, x, t0, x0)
has no stationary point inside the interval Ĩ = (p̃1, p̃2) and one has

∀ p ∈ [p1, p2]
∣∣∣∂pΨf (p, t, x, t0, x0)

∣∣∣ =

∣∣∣∣x− x0

t− t0
− f ′(p)

∣∣∣∣ > mĨ(f) > 0 ,

where mĨ(f) := min
{
f ′(p1) − f ′(p̃1), f ′(p̃2) − f ′(p2)

}
. Consequently

we can apply Theorem 3.4 which provides∣∣uf (t, x)
∣∣ 6 ( 1√

2π
C7(−f, p̃1, p̃2)

∥∥(.− x0)uf (t0, .)
∥∥
L2(R)

+
1

2π
C8(−f, p̃1, p̃2)

∥∥u0

∥∥
L1(R)

)
(t− t0)−1 ,

where the constants C7(−f, p̃1, p̃2), C8(−f, p̃1, p̃2) > 0 are defined in407

Theorem 3.4.408

Case 2: t < t0
Here we have

uf (t, x) =

∫
R

1

2π
Fu0(p) e−it0f(p)+ix0p e

i(t−t0)
(
x−x0
t−t0

p− f(p)
)
dp

=

∫
R

1

2π
Fu0(p) e−it0f(p)+ix0p e

i(t0−t)
(
x−x0
t−t0

p− f(p)
)
dp

=

∫
R

Uf (p, t0, x0) ei(t0−t)Ψf (p,t,x,t0,x0) dp .
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Following the arguments and computations of the preceding case t > t0, we
obtain∣∣∣∣∣∣uf (t, x)− 1√

2π
e+iπ

4 e−itf(p0(t,x))+ixp0(t,x) Fu0

(
p0(t, x)

)√
f ′′
(
p0(t, x)

) (t0 − t)−
1
2

∣∣∣∣∣∣
6

(
1√
2π

C5(−f, δ, p̃1, p̃2)
∥∥(.− x0)uf (t0, .)

∥∥
L2(R)

+
1

2π
C6(−f, δ, p̃1, p̃2)

∥∥u0

∥∥
L1(R)

)
(t0 − t)−δ ,

for all (t, x) ∈ (−∞, t0)× R such that x−x0
t−t0 ∈ f

′(Ĩ), and

∣∣uf (t, x)
∣∣ 6 ( 1√

2π
C7(−f, p̃1, p̃2)

∥∥(.− x0)uf (t0, .)
∥∥
L2(R)

+
1

2π
C8(−f, p̃1, p̃2)

∥∥u0

∥∥
L1(R)

)
(t0 − t)−1 ,

for all (t, x) ∈ (−∞, t0) × R such that x−x0
t−t0 /∈ f ′

(
Ĩ
)
, leading to the desired409

estimates.410

4.2. Proof of Corollary 2.5411

This subsection is devoted to the proof of Corollary 2.5. It is based on412

a combination between Theorem 2.2 and the following Lemma 4.2.1. This413

lemma gives the minimum of the function (t0, x0) 7−→
∥∥(.− x0)uf (t0, .)

∥∥2

L2(R)
414

which is involved in the error estimates in Theorem 2.2. This function is415

actually the moment of order 2 of the function x 7−→
∣∣uf (t0, x + x0)

∣∣2 for416

fixed (t0, x0) ∈ R2.417

Lemma 4.2.1. Assume that the hypotheses of Theorem 2.2 are satisfied and
assume in addition that ‖u0‖L2(R) = 1. Then the function g : R2 −→ R+

defined by

g(t0, x0) =
∥∥(.− x0)uf (t0, .)

∥∥2

L2(R)

has a global minimum at (t∗, x∗) ∈ R2 with

• t∗ = arg min
τ∈R

V
(
uf (τ, .)

)
;

• x∗ =M1

(
uf (t

∗, .)
)
.
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Proof. For fixed t0 ∈ R, differentiating twice the function g(t0, .) with respect
to its second argument shows that

∂2
x0
g(t0, x0) = 2 > 0 .

Hence g(t0, .) is a polynomial function of degree 2 whose unique global mini-
mum is

x̃(t0) =

∫
R
x
∣∣uf (t0, x)

∣∣2 dx =M1

(
uf (t0, .)

)
.

It follows that

g
(
t0, x̃(t0)

)
=

∫
R

(
x−M1

(
uf (t0, .)

))2 ∣∣uf (t0, x)
∣∣2 dx = V

(
uf (t0, .)

)
.

Lemma Appendix A.3 assures that t0 ∈ R 7−→ V
(
uf (t0, .)

)
∈ R+ is a poly-

nomial of degree 2 whose leading coefficient is Vf ′
(

1√
2π
Fu0

)
. Since we have

by simple calculations,

Vf ′
(

1√
2π
Fu0

)
=Mf ′ 2

(
1√
2π
Fu0

)
−Mf ′

(
1√
2π
Fu0

)2

=
1

2π

∫
R

(
f ′(p)−Mf ′

(
1√
2π
Fu0

))2 ∣∣Fu0(p)
∣∣2 dp ,

and since f is supposed to be strictly convex in this paper, the leading coeffi-
cient Vf ′

(
1√
2π
Fu0

)
is necessarily positive. Thus t0 ∈ R 7−→ g

(
t0, x̃(t0)

)
∈ R+

has a global minimum at a certain t∗ ∈ R, i.e.,

t∗ = arg min
τ∈R

V
(
uf (τ, .)

)
.

Finally we define
x∗ := x̃(t∗) =M1

(
uf (t

∗, .)
)
.

418

Remark 4.2.2. The polynomial nature of t0 ∈ R 7−→ g
(
t0, x̃(t0)

)
∈ R+

permits to derive the following formula for t∗:

t∗ =
1

Vf ′
(

1√
2π
Fu0

) (− 1

2π
=
(∫

R
f ′(p)Fu0(p)

(
Fu0

)′
(p) dp

)
+Mf ′

(
1√
2π
Fu0

)
M1(u0)

)
. (14)
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Furthermore, from Lemma Appendix A.1, we have

M1

(
uf (t

∗, .)
)

=Mf ′

(
1√
2π
Fu0

)
t∗ +M1(u0) ;

inserting formula (14) into the preceding equality provides

x∗ =
1

Vf ′
(

1√
2π
Fu0

)(− 1

2π
=
(∫

R
f ′(p)Fu0(p)

(
Fu0

)′
(p) dp

)
×Mf ′

(
1√
2π
Fu0

)
+Mf ′2

(
1√
2π
Fu0

)
M1(u0)

)
.

We are now in position to prove Corollary 2.5.419

Proof of Corollary 2.5. We apply Theorem 2.2 with t0 = t∗ and x0 = x∗,
where t∗ and x∗ are defined in Lemma 4.2.1, to the solution formula (6). This
provides the time-asymptotic expansions appearing in (7) and (8) together
with the error bounds in which the following term appears:∥∥(.− x∗)uf (t∗, .)

∥∥
L2(R)

=
√
g(t∗, x∗) ,

where g : R2 −→ R is defined in Lemma 4.2.1. By the definitions of t∗ and
x∗, we obtain

g(t∗, x∗) =

∫
R
(x− x∗)2

∣∣uf (t∗, x)
∣∣2 dx = V

(
uf (t

∗, .)
)

= min
τ∈R
V
(
uf (τ, .)

)
.

Further it is clear that minimising the two families of (t0, x0)-dependent error420

bounds given in inequalities (7) and (8) is equivalent to minimising the func-421

tion g. By Lemma 4.2.1, the parameter (t∗, x∗) minimises these two families,422

which ends the proof.423

4.3. Proof of Theorem 2.6424

We prove Theorem 2.6 in this last subsection. This will be done in two425

main steps: for arbitrary (t0, x0) ∈ R2, we first compute the mean position426

of the term Hf (t, ., u0, t0, x0) defined in the statement of Theorem 2.6 and427

compare it to the mean position of the solution (6); a similar study for the428

variances is carried out. Theorem 2.6 is finally a direct consequence of these429

two studies.430

431

In the first proposition, we compute the mean position of Hf (t, ., u0, t0, x0)432

for all t 6= t0.433
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Proposition 4.3.1. Let (t0, x0) ∈ R2. Assume that the hypotheses of The-
orem 2.2 are satisfied and assume in addition that ‖u0‖L2(R) = 1. Then for
all t ∈ R\{t0}, we have

M1

(
Hf (t, ., u0, t0, x0)

)
= x0 +Mf ′

(
1√
2π
Fu0

)
(t− t0) .

Proof. Let t ∈ R\{t0}. First of all, we note that

x0 + f ′(p1)(t− t0) < x0 + f ′(p2)(t− t0) ⇐⇒ t > t0 .

Hence using the definition of Hf (t, x, u0, t0, x0) given in Theorem 2.6, we have∫
R
x
∣∣∣Hf (t, x, u0, t0, x0)

∣∣∣2 dx
=
sgn(t− t0)

2π

∫ x0+f ′(p2)(t−t0)

x0+f ′(p1)(t−t0)

x

∣∣Fu0

(
p0(t, x)

)∣∣2
f ′′
(
p0(t, x)

) dx |t− t0|−1

=
1

2π

∫ x0+f ′(p2)(t−t0)

x0+f ′(p1)(t−t0)

x

∣∣Fu0

(
p0(t, x)

)∣∣2
f ′′
(
p0(t, x)

) dx (t− t0)−1 .

We make now the change of variable x = x0 + f ′(p)(t − t0) to obtain the
desired result:∫

R
x
∣∣∣Hf

(
t, x, u0, t0, x0

)∣∣∣2 dx
=

1

2π

∫ p2

p1

(
x0 + f ′(p)(t− t0)

)∣∣Fu0(p)
∣∣2 dp

= x0 +Mf ′

(
1√
2π
Fu0

)
t−Mf ′

(
1√
2π
Fu0

)
t0 ;

note that we have used the fact that 1
2π

∥∥Fu0

∥∥2

L2(p1,p2)
= 1, which is a direct434

consequence of the assumption ‖u0‖L2(R) = 1.435

In the following result, we prove that the mean positions of the solution436

of equation (5) and of the term Hf (t, ., u0, t0, x0) are equal if and only if x0437

is equal to the mean position of uf (t0, .).438

Proposition 4.3.2. Let (t0, x0) ∈ R2. Assume that the hypotheses of The-
orem 2.2 are satisfied and assume in addition that ‖u0‖L2(R) = 1. Then for
all t ∈ R\{t0}, we have

M1

(
uf (t, .)

)
=M1

(
Hf (t, ., u0, t0, x0)

)
⇐⇒ x0 =M1

(
uf (t0, .)

)
.
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Proof. Let t ∈ R\{t0}. According to Propositions 4.3.1 and Appendix A.1,
we have

• M1

(
uf (t, .)

)
=M1(u0) +Mf ′

(
1√
2π
Fu0

)
t ;

• M1

(
Hf (t, ., u0, t0, x0)

)
= x0 +Mf ′

(
1√
2π
Fu0

)
(t− t0) .

Hence these two mean positions are equal if and only if

M1(u0) = x0 −Mf ′

(
1√
2π
Fu0

)
t0 ,

which is equivalent to x0 =M1

(
uf (t0, .)

)
.439

Remark 4.3.3. The definitions of t∗ and x∗ from Corollary 2.5 and the440

preceding proposition assure that the mean positions of uf (t, .) and the term441

Hf (t, ., u0, t
∗, x∗) are equal for all t 6= t∗.442

In the two following results, we focus on the variances of the solution443

uf (t, .) and of the term Hf (t, ., u0, t0, x0) for all t 6= t0. We give firstly a444

formula for the difference between the two variances for arbitrary (t0, x0).445

Proposition 4.3.4. Let (t0, x0) ∈ R2. Assume that the hypotheses of The-
orem 2.2 are satisfied and assume in addition that ‖u0‖L2(R) = 1. Then for
all t ∈ R\{t0}, we have

V
(
uf (t, .)

)
− V

(
Hf (t, ., u0, t0, x0)

)
= 2

(
1

2π
=
(∫

R
f ′(p)Fu0(p)

(
Fu0

)′
(p) dp

)
−Mf ′

(
1√
2π
Fu0

)
M1(u0)

+ Vf ′
(

1√
2π
Fu0

)
t0

)
t+ V(u0)− Vf ′

(
1√
2π
Fu0

)
t 2
0 . (15)

Proof. Let t ∈ R\{t0}. Similarly to the arguments employed in the proof of
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Proposition 4.3.1, we have

M2

(
Hf (t, ., u0, t0, x0)

)
=

1

2π

∫ x0+f ′(p2)(t−t0)

x0+f ′(p1)(t−t0)

x2

∣∣Fu0

(
p0(t, x)

)∣∣2
f ′′
(
p0(t, x)

) dx (t− t0)−1

=
1

2π

∫ p2

p1

(
x0 + f ′(p)(t− t0)

)2∣∣Fu0(p)
∣∣2 dp

= x 2
0 +Mf ′2

(
1√
2π
Fu0

)
(t− t0)2 + 2x0Mf ′

(
1√
2π
Fu0

)
(t− t0) .

Moreover, applying Proposition 4.3.1 gives

M1

(
Hf (t, ., u0, t0, x0)

)2

= x 2
0 +Mf ′

(
1√
2π
Fu0

)2

(t− t0)2 + 2x0Mf ′

(
1√
2π
Fu0

)
(t− t0) .

It follows:

V
(
Hf (t, ., u0, t0, x0)

)
=

(
Mf ′2

(
1√
2π
Fu0

)
−Mf ′

(
1√
2π
Fu0

)2
)

(t− t0)2

= Vf ′
(

1√
2π
Fu0

)
(t− t0)2 .

Using the formula for V
(
uf (t, .)

)
from Proposition Appendix A.3, we obtain

finally

V
(
uf (t, .)

)
− V

(
Hf (t, ., u0, t0, x0)

)
= Vf ′

(
1√
2π
Fu0

)
t2 + 2

(
1

2π
=
(∫

R
f ′(p)Fu0(p)

(
Fu0

)′
(p) dp

)
−Mf ′

(
1√
2π
Fu0

)
M1(u0)

)
t+ V(u0)

− Vf ′
(

1√
2π
Fu0

)
(t− t0)2

= 2

(
1

2π
=
(∫

R
f ′(p)Fu0(p)

(
Fu0

)′
(p) dp

)
−Mf ′

(
1√
2π
Fu0

)
M1(u0)

+ Vf ′
(

1√
2π
Fu0

)
t0

)
t+ V(u0)− Vf ′

(
1√
2π
Fu0

)
t 2
0 .

446
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In view of the preceding result, the difference between the variances of447

uf (t, .) and Hf (t, ., u0, t0, x0) is an affine function with respect to t. Conse-448

quently the unique way to make this difference constant is to choose t0 in449

such way that the leading coefficient is equal to 0. It turns out that the450

unique t0 satisfying this property is the one minimising the variance of the451

solution (6), namely t∗ introduced in Corollary 2.5.452

Proposition 4.3.5. Let (t0, x0) ∈ R2. Assume that the hypotheses of The-
orem 2.2 are satisfied and assume in addition that ‖u0‖L2(R) = 1. Then we
have the following equivalence:

∃C ∈ R ∀ t ∈ R\{t0} V
(
uf (t, .)

)
− V

(
Hf (t, ., u0, t0, x0)

)
= C

⇐⇒ t0 = t∗ := arg min
τ∈R

V
(
uf (τ, .)

)
.

In particular, we have
C = min

τ∈R
V
(
uf (τ, .)

)
.

Proof. According to Proposition 4.3.4, the difference between the variances
of uf (t, .) and Hf (t, ., u0, t0, x0) is constant if and only if

t0 =
1

Vf ′
(

1√
2π
Fu0

) (− 1

2π
=
(∫

R
f ′(p)Fu0(p)

(
Fu0

)′
(p) dp

)
+Mf ′

(
1√
2π
Fu0

)
M1(u0)

)
,

which is equal to t∗ according to Remark 4.2.2. By evaluating equality (15)453

at t∗, we obtain for all t ∈ R\{t∗},454

V
(
uf (t, .)

)
− V

(
Hf (t, ., u0, t

∗, x0

)
= V(u0)− Vf ′

(
1√
2π
Fu0

)
(t∗)2 . (16)

36



We note now that

V
(
uf (t

∗, .)
)

= Vf ′
(

1√
2π
Fu0

)
(t∗)2 + 2

(
1

2π
=
(∫

R
f ′(p)Fu0(p)

(
Fu0

)′
(p) dp

)
−Mf ′

(
1√
2π
Fu0

)
M1(u0)

)
t∗ + V(u0)

= Vf ′
(

1√
2π
Fu0

)
(t∗)2 − 2Vf ′

(
1√
2π
Fu0

)
(t∗)2 + V(u0)

= −Vf ′
(

1√
2π
Fu0

)
(t∗)2 + V(u0) . (17)

From equalities (16) and (17), it follows finally

V
(
uf (t, .)

)
− V

(
Hf (t, ., u0, t

∗, x0

)
= V

(
uf (t

∗, .)
)

= min
τ∈R
V
(
uf (τ, .)

)
,

the last equality being obtained by the definition t∗ = arg min
τ∈R

V
(
uf (τ, .)

)
.455

Theorem 2.6 can be now proved in a straightforward way.456

Proof of Theorem 2.6. Let t ∈ R\{t∗}. According to Proposition 4.3.2 (and
Remark 4.3.3), we have

M1

(
uf (t, .)

)
=M1

(
Hf (t, ., u0, t

∗, x∗)
)
,

and Proposition 4.3.5 assures that

V
(
uf (t, .)

)
− V

(
Hf (t, ., u0, t

∗, x∗)
)

= min
τ∈R
V
(
uf (τ, .)

)
,

which ends the proof.457

Appendix A. Mean position and variance of the free wave packet458

In this appendix, we give the formulas for the mean position and the459

variance of the wave packet defined in (1). The proofs we propose here are460

substantially based on the fact that the wave packet is defined via the Fourier461

transform, permitting to apply some properties of this transform.462

463

We begin with the formula for the mean position.464
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Proposition Appendix A.1. Suppose that u0 ∈ S(R). Then for all t ∈ R,
we have

M1

(
uf (t, .)

)
=Mf ′

(
1√
2π
Fu0

)
t+M1(u0) .

Proof. For t ∈ R, we have∫
R
x
∣∣uf (t, x)

∣∣2 dx =

∫
R
xuf (t, x)uf (t, x) dx

=
1

2π

∫
R
F
[
x 7→ xuf (t, x)

]
(p)F

[
x 7→ uf (t, x)

]
(p) dp

=
i

2π

∫
R
∂pF

[
x 7→ uf (t, x)

]
(p)F

[
x 7→ uf (t, x)

]
(p) dp ;

(A.1)

the second and third equalities have been obtained by applying Plancherel
theorem and basic properties of the Fourier transform. Using now the formula
(1), we obtain for all p ∈ R,

• ∂pF
[
x 7→ uf (t, x)

]
(p) = e−itf(p)

(
− itf ′(p)Fu0(p) + (Fu0)′(p)

)
;

• F
[
x 7→ uf (t, x)

]
(p) = eitf(p)Fu0(p) .

By combing the two last equalities with (A.1) and by using again basic pro-
perties of the Fourier transform, it follows∫

R
x
∣∣uf (t, x)

∣∣2 dx
=

i

2π

∫
R

(
− itf ′(p)Fu0(p) + (Fu0)′(p)

)
Fu0(p) dp

=
1

2π

∫
R
f ′(p)

∣∣Fu0(p)
∣∣2 dp t +

i

2π

∫
R
(Fu0)′(p)Fu0(p) dp

=
1

2π

∫
R
f ′(p)

∣∣Fu0(p)
∣∣2 dp t +

1

2π

∫
R
F
[
x 7→ xu0(x)

]
(p)Fu0(p) dp

=
1

2π

∫
R
f ′(p)

∣∣Fu0(p)
∣∣2 dp t +

∫
R
x
∣∣u0(x)

∣∣2 dx ,
leading finally to the desired equality.465
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Remark Appendix A.2. The preceding formula is actually an extension
of the well-known Ehrenfest theorem [22, Proposition 3.19] to the family of
dispersive equations of type (5). We recall that Ehrenfest theorem in the
setting of the free Schrödinger equation (3) gives the following formula for
the mean position of a free particle:

M1

(
uS(t, .)

)
=M1

(
1√
2π
Fu0

)
t+M1(u0) .

The formula for the variance is provided in the following result.466

Proposition Appendix A.3. Suppose that u0 ∈ S(R). Then for all t ∈ R,
we have

V
(
uf (t, .)

)
= Vf ′

(
1√
2π
Fu0

)
t2 + 2

(
1

2π
=
(∫

R
f ′(p)Fu0(p)

(
Fu0

)′
(p) dp

)
−Mf ′

(
1√
2π
Fu0

)
M1(u0)

)
t+ V(u0) .

Proof. Following the computational arguments of the proof of Proposition
Appendix A.1, we have for all t ∈ R,∫

R
x2
∣∣uf (t, x)

∣∣2 dx =

∫
R

∣∣xuf (t, x)
∣∣2 dx

=
1

2π

∫
R

∣∣∣F[x 7→ xuf (t, x)
]
(p)
∣∣∣2 dp

=
1

2π

∫
R

∣∣∣∂pF[x 7→ uf (t, x)
]
(p)
∣∣∣2 dp

=
1

2π

∫
R

∣∣∣− itf ′(p)Fu0(p) + (Fu0)′(p)
∣∣∣2 dp . (A.2)

Inserting the following relation

∀ p ∈ R (Fu0)′(p) = −iF
[
x 7→ xu0(x)

]
(p)
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into (A.2) and expanding then the square of the absolute value provides∫
R
x2
∣∣uf (t, x)

∣∣2 dx =
1

2π

∫
R
f ′(p)2

∣∣Fu0(p)
∣∣2 dp t2 +

∫
R
x2
∣∣u0(x)

∣∣2 dx
− 1

π

∫
R
<
(
i f ′(p)Fu0(p)

(
Fu0

)′
(p)
)
dp t

=Mf ′2

(
1√
2π
Fu0

)
t2 + M2(u0)

+
1

π
=
(∫

R
f ′(p)Fu0(p)

(
Fu0

)′
(p) dp

)
t .

Now by using Proposition Appendix A.1, we have

M1

(
uf (t, .)

)2

=Mf ′

(
1√
2π
Fu0

)2

t2 +M1(u0)2 + 2Mf ′

(
1√
2π
Fu0

)
M1(u0) t ,

which leads finally to

V
(
uf (t, .)

)
=M2

(
uf (t, .)

)
−M1

(
uf (t, .)

)2

=Mf ′2

(
1√
2π
Fu0

)
t2 + M2(u0)

+
1

π
=
(∫

R
f ′(p)Fu0(p)

(
Fu0

)′
(p) dp

)
t

−Mf ′

(
1√
2π
Fu0

)2

t2 −M1(u0)2 − 2Mf ′

(
1√
2π
Fu0

)
M1(u0) t

= Vf ′
(

1√
2π
Fu0

)
t2 + V(u0)

+ 2

(
1

2π
=
(∫

R
f ′(p)Fu0(p)

(
Fu0

)′
(p) dp

)
−Mf ′

(
1√
2π
Fu0

)
M1(u0)

)
t .

467
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