

The use of electrical resistivity tomograms as a parameterization for the hydraulic characterization of a contaminated aquifer

Théo de Clercq, Abderrahim Jardani, Pierre Fischer, Laurent Thanberger, Tan Minh Vu, David Pitaval, Jean-Marie Côme, Philippe Begassat

▶ To cite this version:

Théo de Clercq, Abderrahim Jardani, Pierre Fischer, Laurent Thanberger, Tan Minh Vu, et al.. The use of electrical resistivity tomograms as a parameterization for the hydraulic characterization of a contaminated aquifer. Journal of Hydrology, 2020, 587, pp.124986 -. 10.1016/j.jhydrol.2020.124986 . hal-03490217

HAL Id: hal-03490217 https://hal.science/hal-03490217

Submitted on 20 May 2022 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Udapted 04-16-2020

Research Paper/

The use of electrical resistivity tomograms as a parameterization for the hydraulic characterization of a contaminated aquifer

Théo De Clercq^{*1,2}, Abderrahim Jardani¹, Pierre Fischer¹, Laurent Thanberger², Tan Minh Vu⁻¹, David Pitaval⁻³, Jean-Marie Côme⁻³, Philippe Begassat⁻⁴

*Corresponding author

(1) UNIROUEN, UNICEAN, UMR CNRS 6143 M2C Morphodynamique Continentale et Côtière at UFR Sciences et Techniques, Université de Rouen Place Emile Blondel 76130 Mont Saint Aignan, Normandie, France.

- (2) VALGO, 2 avenue Gutenberg 31128 Portet sur Garonne, Occitanie, France.
- (3) Burgeap GINGER, 143 Avenue de Verdun, 92442 Issy-les-Moulineaux, Ile de France, France.
- (4) ADEME, 20 Avenue du Grésillé, 49000 Angers, Pays de la Loire, France.

E-mails : theo.declercq@valgo.com, abderrahim.jardani@univ-rouen.fr; pierre.fischer@univrouen.fr; laurent.thannberger@valgo.com; minh-tan.vu@univ-rouen.fr; d.pitaval@groupeginger.com; jm.come@groupeginger.com; philippe.begassat@ademe.com.

1 **Conflict of interest**: None.

- 2 Key words: electrical resistivity tomogram; hydraulic tomography; hydrogeophysics; inversion;
- 3 inverse problem ; stochastic inversion.
- 4 Article Impact Statement: Use of electrical resistivity data in the hydraulic characterization of a
- 5 contaminated aquifer by inverting pumping hydraulic data.

6 Abstract:

Hydraulic characterization of a contaminated aquifer is an important step in depollution processes 7 8 because its hydraulic parameters control the choice and efficiency of the depollution protocol to be 9 adopted. The characterization presented in this article uses a 3D electrical resistivity imagery to identify the spatial heterogeneities of a contaminated aquifer under tidal influence. Indeed, we use a 10 3D resistivity model as a source of information to parameterize the reconstruction of the hydraulic 11 conductivity in 3D by inverting a set of hydraulic data acquired on the 13 monitored wells in 12 13 response to two pumping tests. This parameterization relies on the identification of the main electrofacies in the resistivity model in the saturated zone, which will then be exploited in the hydraulic 14 characterization to find their corresponding hydraulic conductivity values. 15

This strategy of parameterization permits to reduce the number of the hydraulic conductivity 16 parameters to be identified to eight hydro-facies, with a stochastic algorithm called the Adaptive 17 18 Metropolis Algorithm. The hydraulic responses associated with the pumping tests are obtained once the natural effect of the tide is removed. The hydraulic conductivity model has permitted to highlight 19 the main heterogeneities in the aquifer in which the hydraulic conductivity is ranging between $[10^{-4.6}]$, 20 10^{-2.8} m/s]. This range of variability reveals the permeable and smooth character of the aquifer in 21 22 which the presence of coarse sand and flint blocks enhances its transmissivity. These permeable 23 zones are electrically identified by resistive anomalies in the 3D electrical resistivity imaging.

- 24
- 25
- 26

27 Introduction:

The strong industrialization of the last century has led to an increase of contaminated sites that 28 29 currently represent a real threat to the health of the population and the quality of the ecosystem (air, 30 water, soil, flora and fauna). To address these environmental issues, several remediation technologies have been developed in order to remove contaminants or to reduce their spread in water resources; 31 32 among them, we cite: natural attenuation, in situ thermal desorption, in situ chemical oxidation or reduction, , hydraulic containment, and pump and treat (Yeung 2010; Zhang et al. 2017; Ossai et al. 33 2020). However, their applicability and effectiveness still strongly depend on the dynamic of the 34 aquifer, in other terms, to the hydraulic conductivity of soils. The groundwater flow and the 35 migration of contaminant plumes are conditioned by the spatial heterogeneity of the hydraulic 36 conductivity which can be sharply ranged even on a small scale and within the same geological 37 formations. In addition, the brownfields hydraulic conductivity field may be affected by the presence 38 of concrete foundations buried in the shallow aquifers. 39

In general, the characterization of the hydraulic conductivity is performed by means of traditional 40 pumping tests in which the analytical formulations of the groundwater flow equations, either in the 41 transient or steady states, are used to interpret the piezometric responses to water extraction, in order 42 to derive an average value of the hydraulic transmissivity (Theis 1935; Hantush 1961a, b). The 43 permeabilities can be progressively estimated with a permeameter test carried out on soils sampled 44 during drilling operations. However, both approaches neglect the heterogeneity of the hydraulic 45 46 properties in the aquifer, which leads to an inaccurate and incomplete understanding of contaminants transport during the remediation process. 47

48 The hydraulic tomography tool appears as an interesting and relevant option to deals with the 49 heterogeneous aquifers through a conjoint interpretation of a piezometric dataset associated with 50 multiple pumping tests conducted successively at various wells (Yeh et al., 1996; Kitanidis, 1997, Le

Borgne et al. 2004; Li et al. 2008). The tomogram of the hydraulic conductivity field, provided from a 51 hydraulic tomography technique, is the result of an optimization algorithm also called "inverse 52 algorithm" in which this field was chosen thanks to its ability to match the observed drawdown data. 53 54 Inversion algorithms can be deterministic or stochastic. They both rely on an iterative process in which the groundwater flow equations (forward problem) are solved numerically at each iteration, in 55 order to evaluate the mismatch between the observed and predicted hydraulic drawdown (Huang et 56 al. 2004). However, these inverse algorithms do not guarantee to get a unique solution for the 57 following reasons: i) the limited number of the hydraulic data to capture overall unknown parameters 58 59 (Zhou et al. 2016); ii) The strong sensitivity of the solution to the data noise (Ramos et al. 2017); iii) The numerical uncertainty of mathematical models that cannot describe all the physical 60 mechanisms involved in the experiment, to which it adds the numerical imperfections related to the 61 numerical tool (e.g., finite difference and finite element) used to solve the groundwater equation 62 (Berg and Illman 2015; Hochstetler et al. 2016). 63

64 Over the last few decades, several efforts have been made to deal with the ill-posedness and the uncertainties of the inverse problem via the incorporation of complementary information on the 65 unknown parameters in order to generate a realistic model (Zhou et al. 2014). This additional 66 information is referred as soft data or a priori model and can be deduced from various ways such as: 67 geological characterization (e.g, lithostratigraphic logs, grain size analyses on the soil cores) (Jardani 68 69 et al. 2012; Zhao et al. 2015), hydrogeological investigation (e.g. permeameter test on the soil cores, 70 tracer and slug experiments) (Sanchez-León et al. 2016) and geophysical prospections (e.g. Electrical 71 Resistivity Tomography ERT, Electromagnetic Very Low Frequency VLF, Georadar and Seismic methods) (Hyndman et al. 1994; Jardani et al. 2012). Among these attempts: Soueid Ahmed et al. 72 (2015) used the geometry of the geological structures identified by geophysical tomography as a 73 priori information in the inversion of pumping test data to image hydraulic parameters. Bohling et al. 74

(2007) applied cross-well georadar tomography to delineate the shape of the main hydro-facies in 75 which hydraulic conductivity values were then determined by analyzing pumping test data. GPR 76 velocity tomograms were used to support tracer test data for the prediction of hydraulic properties 77 (Dafflon and Barrash 2012). Jardani et al. (2013) combined the ERT, self-potential and salt 78 concentration data acquired during a salt tracer test to map the hydraulic conductivity field. Pollock 79 and Cirpka (2010) coupled hydrogeophysical inversion to synthetic salt tracer experiments. Doetsch 80 et al. (2010) proposed cross-gradient joint inversion of crosshole -seismic, ERT and radar to retrieve 81 the main geological units of a fluvial aquifer and their petrophysical parameters, as porosity. Gernez 82 83 et al. (2019) linked the anisotropic patterns of the inverted electrical resistivity to the spatial distribution of the hydraulic conductivity in an alluvial aquifer. 84

In this paper, we apply the zonation inversion methodology to image the spatial variability of the hydraulic conductivity field. This approach consists of two steps: first, we delineate in 3D the main geological structures of a contaminated aquifer by using ERT. In the second step, we predict the hydraulic conductivity of these structures by inverting the pumping tests data recorded in 13 wells with a Markov chain Monte Carlo-based algorithm.

90 Description of the experimental study site

In this manuscript, a hydrodynamic characterization is performed on an experimental site located in a former refinery within a shallow alluvial aquifer contaminated by hydrocarbons. The industrial activities on the site have begun in 1929 and have been stopped in April 2013. The set up of this experimental site aims to understand the degree of heterogeneity in the soil of the former refinery and the nature of the contaminants in order to experiment various remediation protocols. For that reason, 13 piezometers were implanted on a small area (60 m x 60 m) to record the hydraulic fluctuations, and to identify the degree and type of contamination in the aquifer (Fig.1).

Figure 1 : Map of spatial position of ERT profiles with 2m electrodes spacing, of the wells used in the hydraulic
 characterization and the boreholes drilled for OIP (Optical Image Profiler) characterization

The site is mostly covered by an anthropogenic layer of gravel and in some places, of asphalt and 101 concrete. This layer covers an alluvial formation composed mainly of fine sand (< 0.2 mm) and 102 medium sand (< 1 mm) from 1 to 5 meters' depth, and medium (< 1 mm) to gravel sands (< 2 mm) 103 between 5 and 8 meters depth. Preliminary geological investigations conducted on the site revealed 104 highly heterogeneous materials constituting the aquifer. The laboratory analysis performed on three 105 106 core samples indicate a quite constant porosity (from 28.9% to 24.6% between -7.2 and -10.5m), a hydraulic conductivity varying between [2.31x10⁻⁵ to 6.87x10⁻⁴ m/s] and a low quantity of clay. This 107 108 alluvial terrace relies on an altered chalk formation (below -8.5 meters), and both aquifers are hydraulically connected to the Seine River; which is under tidal influence (Jardani et al., 2012). 109 110 Consequently, the water table in the alluvial aquifer oscillates with time-varying amplitude.

The vertical geochemical profiles conducted on 12 wells with spacing measurement of 0.25 meters show that the water temperature is around 12 to 13°C with a vertical gradient of 0.13°C/m from 6 to 9 meters. The pH of the water is quite homogeneous between 6 and 7.5. The Redox potential fluctuates between -60 and -180 mV, which are high values. The absence of oxygen in groundwater is confirming the anaerobic conditions of the medium, which is also an index of intense process of hydrocarbon biodegradation (Sinke et al. 1998; Abbas et al. 2018). The electrical conductivity of the
water is quite homogeneous in the wells with values between 70 and 90 mS/m. All of these water
measurements were realized in wells without floating LNAPL (Light Non-Aqueous Phase Liquid)
layer and broadly indicate that the area is polluted with hydrocarbons and ongoing biodegradation
processes that are boosted by the tide fluctuations (Mercer and Cohen 1990; Sims et al. 1993; Lee et
al. 2001; Yadav and Hassanizadeh 2011).

The chromatographic analysis of LNAPL indicates a partial degradation of gasoline-diesel mixture. Moreover, the contaminant is approximately composed of 50% of light compounds (fewer than 10 carbon atoms) and the TPH (Total Petroleum Hydrocarbon) analyses confirm that the aliphatic fraction represents 80% of the total mass. Their dynamic viscosity is around 5 mm²/s while their density is varying between 820 and 830 kg/m³.

127 Geoelectrical investigations:

For the geophysical characterization, we performed 12 electrical resistivity profiles to get an idea on 128 the main heterogeneity in the shallow aquifer. Theses 2D profiles have been made with a Syscal Pro 129 resistivity meter and electrodes placed according to the Wenner schema with two meters as inter-130 electrodes distance. The stack values were fixed between 4 and 8 with a Vab maximum of 800mV 131 and an injection time of 500 ms. The distance between the profiles is about 10 meters with 5 profiles 132 133 oriented north-south and 7 profiles into east-west direction (Fig.1). The north-south profile were 46 134 to 64 meters long and the east-west profiles were 66 to 70 meters long for a total of 1811 quadrupoles inverted. The processing of the apparent electrical resistivity has been done in 3D using 135 ERT-Lab64 software, developed by Multi-Phase Technologies and Geostudi Astier. This software 136 relies on a Quasi-Newton inversion algorithm with a smoothness constraint and a forward problem 137 solved by finite elements technique with a 0.5 m mesh for a total of 1 909 476 elements (LaBrecque 138 et al. 1996). For the boundary conditions, we used an insulating condition at the air-ground interface 139

and zero potential on the rest of the boundaries The noisy data have been processed with a robust
weighting algorithm based on data variance iterative reweighting (LaBrecque et al. 1996; Morelli and
LaBrecque 1996). Most of these noises are due to the bad contacts between soil and electrodes in
some places covered by a 20 cm concrete layer. To improve the contact, we placed the electrodes in
30 cm hammer drilled holes.

The results of the 3D inversion of the 12 ERT profiles are obtained after 7 iterations, with a final 145 RMSE of 0.67 Ω .m. We only present the distribution of the resistivity in the saturated and capillary 146 zones of the alluvial layer (from 5 to 10 meters depth), which will be used in a second step as a guide 147 to predict the hydraulic conductivity field. As shown on the figure 2 and 3, this spatial distribution of 148 the resistivity is ranging from 5 to 180 Ω .m. On the 3D model, we can distinguish three anomalies 149 150 with high relative resistivity (> 35 Ω .m) and two anomalies with quite low resistivity (< 15 Ω .m). The 2D profile presented in figure 3, highlight these heterogeneities by crossing most of the 151 152 heterogeneities

If we compare the 3D model and one OIP (Optical Image Profiler) profiles, they are in the same 153 range of value (Fig. 3). This is because the 3D model integrates larger volumes of soil while the OIP 154 profiles are very local, with pores scale resistivity measurements. Indeed, those investigations 155 156 methods are quite different. Both graphs show an increasing trend with depth from 6 to 8m and then a higher value above 8 m in link to the altered chalk. Thus, we can say that the 3D model confirms 157 158 and completes the very local information from OIP profiles and water electrical conductivity of the 159 wells. We suspect that this slight heterogeneity in electrical resistivity may be associated with the three-dimensional distribution of the flint blocks that have centimeter sizes that affects the 160 hydrodynamic features of the aquifer. In the OIP profiles, the presence of flints is also at the origin 161 of the increase in local resistivity (Fig. 4). 162

Figure 2 : Resistivity (Ω .m) model from 3D inversion of 12 ERT profiles presented in Fig. 1

167

168 Figure 4 : Graph comparison of the 3D model of Electrical Conductivity versus OIP profile at B4 regarding with the cores granulometry

description; with FS : Fine Sand ; MS : Medium Sand ; CS : Coarse Sand ; CC : cracked chalk ; (F) : Flint.

170 Hydrogeological investigations

We dedicate this section to the hydraulic tomography of the alluvial aquifer which is considered here
as a semi-confined aquifer under tide influence. This characterization is based on a joint inversion of
the hydraulic responses recorded in 13 wells during two quasi-static pumping tests conducted on the
wells P16 (12 m³/h) and P13 (11.25 m³/h).

175 These hydraulic responses are also impacted with tide fluctuations, and therefore require a separation 176 of the natural and anthropogenic responses to keep only the pumping responses for the 177 tridimensional reconstruction of the spatial heterogeneity of the hydraulic conductivity field. The 178 approach used for such processing is developed in the next section.

179 Data Processing

180 In this study, we will have to remove the tidal component because it has a significant impact on the181 hydraulic head variations in comparison to the pumping effect. In fact, daily tides have an amplitude

of about 20 cm while the drawdown response is under the centimeter scale. To facilitate the removal of this impact, we decided to start the pumping test during the less curved part of the tide, at its midperiod of 6h10, for a pumping duration of 3 hours. Such a configuration makes it easier to process hydraulic data compared to a pumping at high- or low-tide momentum. The data processing relies on the reconstruction of the natural tide signature by fitting the data recorded before the pumping and after the recovery by predicting the coefficients of the general Fourier function with 5 terms, which has following form:

189
$$F(t) = \sum_{0}^{N} (a_N \cdot \cos(N * t * w) + b_N * \sin(N * t * w); \qquad (1)$$

190 With N indicating the number of terms of the general function set here as N=5.

191 This equation is formulated as a sum of cosines and sines functions with 5 coefficients that will be 192 determined by fitting the hydraulic data. To illustrate the effectiveness of the technique, we applied it 193 on a theoretical case in which the groundwater flow equation was solved in a COMSOL Multiphysics model with a 20 cm oscillatory tidal signal with a period of 12h20 imposed on the boundary 194 condition and a pumping test defined as a punctual source term for a duration of 3 hours. The model 195 196 has a homogenous hydraulic conductivity of 10^{-4} m/s and the same size as the study zone. The curve fitting technique allows to distinguish the 21 mm drawdown of the hydraulic level successfully as it is 197 shown in the figure 5.a and b. 198

199

Figure 5 : graphs showing the reconstruction of the tide signal without pumping to extract the pumping drawdowns. With 4a. the numerical
 example and 4.b.the real hydraulic level variation.

In order to extract a steady-state drawdown value for the inversion dataset, we calculate the drawdown mean values in the last 5 minutes before cutting off the power of the pump. The inversion will be made with these mean values.

205 Inversion process

206 We devoted this section to the introduction of the inverse theory used to interpret the hydraulic data 207 related to the pumping tests for inferring the hydraulic conductivity field in 3D. The wells are fully 208 screened in the alluvial aquifer, thus it does not provide three-dimensional information on hydraulic 209 head variations, especially on the Z-axis which remains an integrative data on the entire thickness of 210 the aquifer. To fill the gap in vertical data, we used the ERT as a source of information to delineate 211 the main heterogeneity of the field, which could correspond to variations in the hydraulic parameters. The values for the selections of the 8 electro-facies are calculated on the basis of 7 212 213 quantiles so that each electro-facies have the same size (Table 1).

Inferior value (Ω.m)	Electro-facies	Superior value (Ω.m)
	Electro-facie 1	< 8.84
8.84	Electro-facie 2	11.80
11.80	Electro-facie 3	14.92
14.92	Electro-facie 4	18.04
18.04	Electro-facie 5	21.34
21.34	Electro-facie 6	26.76
26.76	Electro-facie 7	35.84
35.84 <	Electro-facie 8	

214

Table 1 : upper and lower bound of the electro facies

In other words, we assume that the number and shape of electro-facies recovered in ERT remain the 215 same in hydro-facies, so that there is a correlation between the contrast (gradient) of electrical 216 reactivity and hydraulic conductivity. This hypothesis is based on the fact that the electrical 217 conductivity of the water in the study site is almost homogeneous. This strategy permits to guide the 218 inversion, to avoid the non-unicity of the solution and to reduce the number of parameters to 219 estimate. The limited number of unknown parameters pushed us to opt for a stochastic inversion by 220 using a MCMC algorithm. The inverse problem is formulated in a Bayesian framework in which the 221 posteriori probability function $\pi(\mathbf{md})$ is defined as a combination of the drawdown data of the 222 pumping test and a priori information on the hydraulic conductivity model to be predicted during 223 224 the inverse process (Tarantola 2005).

225
$$\pi(\mathbf{m}) \propto P(\mathbf{h}_{obs} | \mathbf{m}) P_0(\mathbf{m}),$$

226 With
$$P(\mathbf{h}_{obs}|\mathbf{m}) = \frac{1}{\left[\left(2\pi\right)^{N} \det \mathbf{\Gamma}_{h}\right]^{1/2}} \exp\left[-\frac{1}{2}\left(f(\mathbf{m}) - \mathbf{h}_{obs}\right)^{T} \mathbf{\Gamma}_{h}^{-1}\left(f(\mathbf{m}) - \mathbf{h}_{obs}\right)\right]$$

227
$$P_0(\mathbf{m}) = \frac{1}{\left[(2\pi)^M \det \mathbf{\Gamma}_{\mathbf{m}}\right]^{1/2}} \exp\left[-\frac{1}{2} \left(\mathbf{m} - \mathbf{m}_{\text{prior}}\right)^T \mathbf{\Gamma}_m^{-1} \left(\mathbf{m} - \mathbf{m}_{\text{prior}}\right)\right], \quad (2)$$

where $P_0(\mathbf{m})$ denotes the prior probability, function used as a complementary information to constrain the parameter \mathbf{m} in the prediction process of the model. Γ_m is the covariance matrix representing the degrees of confidence to the prior values \mathbf{m}_{prior} . $P(\mathbf{h}_{obs}|\mathbf{m})$ denotes the likelihood function in which a forward operator $f(\mathbf{m})$ is solved numerically to compute the effectiveness of the proposed model \mathbf{m} to fit the hydraulic data \mathbf{h}_{obs} . Γ_h is a diagonal covariance matrix to include uncertainties on the observed data. This inversion operator is based on a numerical resolution of the diffusion equation with Darcy groundwater flow in porous media.

235
$$\begin{cases} \nabla \cdot (-10^{-m} \cdot \nabla h) = Q , & \text{in 3D} \\ h = 0 m, & \text{at } \Gamma_D \end{cases}$$
(3)

236 Where h denotes the hydraulic head (in meter), Q is the hydraulic flux (m^3/s) and **m** is the vector 237 that contains the logarithms of the hydraulic conductivity K (in m/s).

We solve the diffusion equation on a pyramidal finite element mesh with COMSOL Multiphysics.
The meshing is defined as extremely fine with an automatic refinement around the boreholes.
Dirichlet boundary conditions were imposed on the boundaries, which were placed at 500 m from the investigated zone. The investigation zone is 60 by 60 meters with the hydraulic conductivity of the buffer fixed to 10^{-2.1} m/s.

The stochastic inversion was led with a large constraint on the hydraulic conductivity in which the interval of sampling was fixed between 10⁻⁸ and 1. To seek the best model that can reconstruct the hydraulic data and satisfy the constraints imposed by the prior information, we applied a stochastic approach which is based on a MCMC algorithm. This algorithm consists in a generation of an important number of random models using a proposal function. It then tests their efficiency in terms

of data-matching and toward the prior models by computing the posterior probability function. The 248 models tested with high probabilities are selected, otherwise they are rejected. The implementation of 249 such approach does not imply any derivative computation of the forward problem, as it is the case in 250 251 deterministic algorithms, which facilitates the implementation of such algorithm. However, their efficiency depends on the choice of the proposal density function that controls the random walk 252 from one last selected model to the generation of another new one. In this paper, we used Adaptive 253 Metropolis (AM) algorithm in which the covariance of Gaussian proposal function is iteratively 254 adapted from the previous models in order to improve the strategy of the sampling as following 255 256 (Haario et al. 2001) :

$$C_i = S_d Cov(X_0, X_1, \dots, X_{i-1}) + S_d \varepsilon I$$
⁽⁴⁾

258 Where $S_d = (2.4)^2 / d$, is a scaling coefficient with d the size of the unknown parameter to estimate, ε 259 is a small positive number and I is the identity matrix. The model proposed with the proposal 260 function will be accepted or rejected according to this following probability:

261
$$\alpha(m_{i-1}, m_p) = \min\left(1, \frac{\pi(m_p)}{\pi(m_{i-1})}\right)$$
(5)

Where π (x) is the unscaled density, m_p is the tested candidate when the *i*-1 previous candidate has already been tested. In the end, these acceptance criteria guarantee the selection of models that present high quality in the fitting of the piezometric data. In our case, 10 000 iterations were carried out and the inverse result is the mean of the last 25 selected models.

266 Results

267 The result is presented as a 3D model in terms of logarithm values of hydraulic conductivity (K in 268 m/s in Fig. 6). The inversion has been made on the mean drawdown value determined during the 269 last 5 minutes of pumping. The means, minimum and maximum value of these last 5 minutes of 270 pumping are shown on the figure 7.

The Root Mean Square Error (RMSE) of the inversion between all the measured and simulated 271 drawdown is 5.23 mm. The coefficient of determination is almost perfect, as the weight of the 272 pumping well drawdown is much more important compared to the small drawdown in the 273 observation wells, and the slope of the linear regression is near one (a=0.9995). These values have a 274 weaker fit if we focused on the observation wells drawdowns, but it can be related to the greater 275 uncertainty about the actual value of the smallest drawdown. Indeed, if we only focused on the 276 observation wells drawdown, the R² is about 0.73 with a slope near 0.9 (a=0.908). The RSME 277 becomes a bit bigger: 5.37 mm. 278

279

280 Figure 6 : Hydraulic conductivity (m/s) model after the stochastic inversion to reproduce the pumping drawdown

The small drawdowns are related to the low hydraulic connectivity, the large distance between observation and pumped wells, and the possibility that the pumped water is mainly coming from the underlying aquifer in the altered chalk.

Electro-facies	- Log(K)
Electro-facie 1	4.450
Electro-facie 2	4.710
Electro-facie 3	4.762

	· F 0 (0.4
285 Electro-ta	cie 5 2.684
Electro-fa	cie 6 3.095
Electro-fa	cie 7 3.278
287 Electro-fa	cie 8 3.269

- 288 289
- 290

Table 2: hydraulic conductivities of the 8 electro-facies

291 The 3D model reveals a spatial smooth 292 heterogeneity with a variation of only 2 orders of magnitude. The inverted values of hydraulic conductivity range (between 10^{-3} and 10^{-5} m/s as detailed in the table 2) are realist and in agreement 293 294 with the laboratory results range (between $4.76.10^{-4}$ to $2.31.10^{-5}$ m/s). There is an order of magnitude of difference between the lab result and our model. This can be linked to the size of the lab sample 295 which tends to decrease the measured value (Geotechnical Frontiers et al. 2017). Overall, the aquifer 296 can be considered as a permeable formation linked to the presence of the gravels and flint blocks 297 that have been revealed by their resistive signature in the electrical resistivity survey. As it is 298 confirmed by the results of the comparisons between the high electro-facies (5 to 8) that have 299 300 relative higher hydraulic conductivities (see table 2).

Figure 7 : graph of measured (d_field) versus simulated (d_model) drawdowns with the error bar representing the max and min drawdown
observed during the last 5 minutes of pumping.

In order to discuss further 3D hydraulic model obtained by stochastic inversion from the 3D electrical resistivity model, it was decided to perform trials of stepwise pumping in different wells in the study area. These pumping have been realized with an Electric Variable speed drive and a small pump. This device allows for stepwise pumping by varying the frequency (i.e. the flow rate) of the pump from 0.6 to 6.1 m³/h. Every pumping lasted about 30 minutes and 2 to 4 flow rates were tested depending on the observed drawdown in the pumped well.

The drawdown data have been treated as presented in data processing section in order to subtract the tide signal and then implemented in a software to treat stepwise pumping: *OUAIP*, created by the French institution "*Bureau des Ressources Géologiques et Minières (BRGM)*". We use the Theis function to simulate the pumping and the software provides an estimation of the transmissivity T (m^2/s) and Storativity required to fit the stepwise pumping drawdowns. There is an adjustment coefficient "E" to validate the fitting (the closest to 1, the better), also called the Nash coefficient. This Nash coefficient has values above 0.9 in our cases. To be able to compare the result, we have made the integration of the different hydraulic conductivity K of the 3D model on the thickness of the aquiferto get a transmissivity value at the localization of the different wells.

Wells	-log T	-log T
tested	model	classic
P6	2.57	2.93
P11	4.03	3.01
P14	3.75	3.70
B 4	2.53	2.41

319

320

321

322

323

325 If the P11 transmissivity from the pumping is one order of magnitude smaller compared to the value 326 found in the model, the three other values are convergent and validate the 3D stochastic inversion of 327 the hydraulic model.

328 Discussion and conclusion

The use of electrical resistivity data to characterize the spatial heterogeneities appeared as particularly suitable for determining the properties of the medium studied in our application case and allowed for an easier and more complete identification of its hydraulic properties. We tried to use this link to inverse hydraulic data on the basis of electrical resistivity heterogeneities. This does not mean that there is a direct relationship defined in this article between electrical resistivity and hydraulic conductivity (Mazac et al. 1990; Borner et al. 1996; Attwa and Ali 2018; Maurya et al. 2018; Weller and Slater 2019).

The advantages of the geophysics are well known. The 3D data of electrical resistivity provide a good and quick characterization of the heterogeneities of lithology in the aquifer. Indeed, the ERT is a useful non-invasive method for characterising the sub-surface soils in terms of their electrical properties. Electrical resistivity typically correlates with variations in lithology, water saturation,

³²⁴

Table 3 : comparison of classic versus 3D model values of - log Transmissivity

temperature, fluid conductivity and porosity. As we worked with the electrical variations in the 340 saturated zone, the variations observed in the electrical model only reflect the variations in lithology 341 and particularly the presence of the flint blocs in the discontinuous ways in the aquifer that have a 342 resistive signature in 3D ERT model. The use of quasi-static pumping data permitted to transform 343 these electrical conductivities into hydraulic conductivity while maintaining the knowledge of the 344 heterogeneities. Incorporating geophysics information also allowed to reduce the number of 345 hydraulic parameters to be inverted. Instead of working with a regular grid of unknown parameters 346 in the model, we only worked with 8 uniform zones. Naturally, the more zones we would define for 347 348 the inversion in the model, the longer the inversion would become without necessarily improving the result. Our 3D models integrating geophysical information made it possible to approach more 349 faithfully the vertical heterogeneities not displayable in 2 dimensions. Indeed, the classic pumping 350 tests data we used are integrative along the depths of the aquifers in which one pumps. An 351 alternative solution would be to use flowmeters in order to characterize the recharge zones according 352 353 to lithology (Kabala 1994; Paillet and Morin 1997; Li et al. 2008). In addition, pneumatic packers can be used to isolate a pumping over a fixed thickness of the aquifer to characterize a more 354 specified lithology of the aquifer (Levy et al. 1993; Bohling et al. 2007; Cardiff et al. 2013; Paradis 355 et al. 2016). But this would increase the number of pumping, and therefore the amount of water 356 pumped to be treated in the event of a contaminated aquifer. However, a supplementary amount of 357 data to be inverted would also allow for a better characterization of the aquifer. 358

Another problematic encountered in our field with hydraulic data was that the natural tide signals did not simplify the acquisition of the drawdowns in response to the pumping tests. Besides, the tidal coefficient influenced the drawdowns. In fact, the underlying altered chalk aquifer is the most direct link between the Seine river and the study area and the variations of exchanges between these two aquifer units in high tide coefficients or low tide coefficients affect the recharge rate and therefore the water table level in the aquifer while pumping. Performing a cross oscillatory pumping appears as
an interesting possible alternative as it makes it possible to extract the oscillatory variations data with
a Fourier Transform (Bakhos et al. 2014; Fischer et al. 2018) according to their known pumping-rate
frequency of oscillation.

Overall, we observed in this aquifer a high permeable structure with the hydraulic conductivity ranging from the [10^{-2.8}, 10^{-4.6}] and these slight variations seem dependent on the presence or absence of the flint blocs that heightened the transmissivity. The presence of the flints is electrically identified by the resistive values in the electrical resistivity model. The reconstruction is sufficient to determine the relative low and high hydraulic conductivity zones to better understand the aquifer behavior.

373 Acknowledgments

We gratefully thank the Normandy Region and ADEME for their financial support of this work andthe reviewers for their pertinent suggestions.

376 References:

Abbas M, Jardani A, Machour N, Dupont J-P (2018) Geophysical and geochemical characterisation of a
 site impacted by hydrocarbon contamination undergoing biodegradation. Near Surface Geophysics
 16:176–192. https://doi.org/10.3997/1873-0604.2017061

- Attwa M, Ali H (2018) Resistivity Characterization of Aquifer in Coastal Semi arid Areas: An Approach for
 Hydrogeological Evaluation. In: Groundwater in the Nile Delta. Springer International Publishing,
 Cham, pp 213–233
- Bakhos T, Cardiff M, Barrash W, Kitanidis PK (2014) Data processing for oscillatory pumping tests. Journal
 of Hydrology 511:310–319. https://doi.org/10.1016/j.jhydrol.2014.01.007
- Berg SJ, Illman WA (2015) Comparison of Hydraulic Tomography with Traditional Methods at a Highly
 Heterogeneous Site. Groundwater 53:71–89. https://doi.org/10.1111/gwat.12159

Bohling GC, Butler JJ, Zhan X, Knoll MD (2007) A field assessment of the value of steady shape hydraulic
 tomography for characterization of aquifer heterogeneities: A FIELD ASSESSMENT OF HYDRAULIC
 TOMOGRAPHY. Water Resour Res 43:. https://doi.org/10.1029/2006WR004932

Borner FD, Schopper JR, Weller A (1996) Evaluation of transport and storage properties in the soil and
 groundwater zone from induced polarization measurements. Geophys Prospect 44:583–601.
 https://doi.org/10.1111/j.1365-2478.1996.tb00167.x

- Cardiff M, Barrash W, Kitanidis PK (2013) Hydraulic conductivity imaging from 3-D transient hydraulic
 tomography at several pumping/observation densities: Hydraulic Tomography Imaging Resolution.
 Water Resour Res 49:7311–7326. https://doi.org/10.1002/wrcr.20519
- Dafflon B, Barrash W (2012) Three-dimensional stochastic estimation of porosity distribution: Benefits of
 using ground-penetrating radar velocity tomograms in simulated-annealing-based or Bayesian
 sequential simulation approaches: 3-D STOCHASTIC ESTIMATION OF POROSITY. Water Resour Res 48:.
 https://doi.org/10.1029/2011WR010916
- 400 Doetsch J, Linde N, Coscia I, et al (2010) Zonation for 3D aquifer characterization based on joint
 401 inversions of multimethod crosshole geophysical data. GEOPHYSICS 75:G53–G64.
 402 https://doi.org/10.1190/1.3496476
- Fischer P, Jardani A, Jourde H, et al (2018) Harmonic pumping tomography applied to image the
 hydraulic properties and interpret the connectivity of a karstic and fractured aquifer (Lez aquifer,
 France). Advances in Water Resources 119:227–244.
- 406 https://doi.org/10.1016/j.advwatres.2018.07.002
- 407 Geotechnical Frontiers, Brandon TL, Valentine RJ, et al (2017) Geotechnical Frontiers 2017. selected
 408 papers from sessions of Geotechnical Frontiers 2017, March 12-15, 2017, Orlando, Florida
- Gernez S, Bouchedda A, Gloaguen E, Paradis D (2019) Comparison Between Hydraulic Conductivity
 Anisotropy and Electrical Resistivity Anisotropy From Tomography Inverse Modeling. Front Environ Sci 7:67. https://doi.org/10.3389/fenvs.2019.00067

- 412 Haario H, Saksman E, Tamminen J (2001) An adaptive Metropolis algorithm. Bernoulli 223–242
- Hantush MS (1961a) Drawdown Around a Partially Penetrating Well. Journal of the Hydraulics Division
 83–98
- Hantush MS (1961b) Aquifer Tests on Partially Penetrating Wells. Journal of the Hydraulics Division 171–
 195
- Hochstetler DL, Barrash W, Leven C, et al (2016) Hydraulic Tomography: Continuity and Discontinuity of
 High- K and Low- K Zones: D. L. Hochstetler. Groundwater 54:171–185.
 https://doi.org/10.1111/gwat.12344
- Hohmann, G. W., 1988, Numerical modeling for electromagnetic methods in geophysics, in Nabighian,
 M. N., Eds., Electromagnetic methods in geophysics, 1: Society of Exploration Geophysicists, Invest. in
 Geophys., no. 3, 313-363.
- 423 Huang H, Hu BX, Wen X-H, Shirley C (2004) Stochastic inverse mapping of hydraulic conductivity and
- 424 sorption partitioning coefficient fields conditioning on nonreactive and reactive tracer test data:
 425 INVERSE MAPPING CONDITIONING ON TRACER DATA. Water Resour Res 40:.
- 426 https://doi.org/10.1029/2003WR002253
- Hyndman DW, Harris JM, Gorelick SM (1994) Coupled seismic and tracer test inversion for aquifer
 property characterization. Water Resour Res 30:1965–1977. https://doi.org/10.1029/94WR00950
- Jardani A, Dupont JP, Revil A, et al (2012) Geostatistical inverse modeling of the transmissivity field of a
 heterogeneous alluvial aquifer under tidal influence. Journal of Hydrology 472–473:287–300.
 https://doi.org/10.1016/j.jhydrol.2012.09.031
- Jardani A, Revil A, Dupont JP (2013) Stochastic joint inversion of hydrogeophysical data for salt tracer test
 monitoring and hydraulic conductivity imaging. Advances in Water Resources 52:62–77.
- 434 https://doi.org/10.1016/j.advwatres.2012.08.005
- Kabala ZJ (1994) Measuring distributions of hydraulic conductivity and specific storativity by the double
 flowmeter test. Water Resour Res 30:685–690. https://doi.org/10.1029/93WR03104
- P. K. Kitanidis, (1997) Introduction to Geostatistics: Applications in Hydrogeology, University Press,
 Cambridge, 1997, pp. 86-95.
- LaBrecque DJ, Miletto M, Daily W, et al (1996) The effects of noise on Occam's inversion of resistivity
 tomography data. GEOPHYSICS 61:538–548. https://doi.org/10.1190/1.1443980
- Le Borgne T, Bour O, de Dreuzy JR, et al (2004) Equivalent mean flow models for fractured aquifers:
- Insights from a pumping tests scaling interpretation : equivalent mean flow models. Water Resour Res
 40:. https://doi.org/10.1029/2003WR002436
- Lee C-H, Lee J-Y, Cheon J-Y, Lee K-K (2001) Attenuation of Petroleum Hydrocarbons in Smear Zones: A
 Case Study. J Environ Eng 127:639–647. https://doi.org/10.1061/(ASCE)0733-9372(2001)127:7(639)

446	Levy BS, Pannell LJ, Dadoly JP (1993) A pressure-packer system for conducting rising head tests in water
447	table wells. Journal of Hydrology 148:189–202. https://doi.org/10.1016/0022-1694(93)90259-C

- Li W, Englert A, Cirpka OA, Vereecken H (2008) Three-Dimensional Geostatistical Inversion of Flowmeter
 and Pumping Test Data. Ground Water 46:193–201. https://doi.org/10.1111/j.17456584.2007.00419.x
- Maurya PK, Balbarini N, Møller I, et al (2018) Subsurface imaging of water electrical conductivity,
 hydraulic permeability and lithology at contaminated sites by induced polarization. Geophysical
 Journal International 213:770–785. https://doi.org/10.1093/gji/ggy018
- Mazac O, Císlerová M, Kelly WE, et al (1990) 14. Determination of Hydraulic Conductivities by Surface
 Geoelectrical Methods. In: Geotechnical and Environmental Geophysics: Volume II, Environmental
 and Groundwater. Society of Exploration Geophysicists, pp 125–132
- 457 Mercer JW, Cohen RM (1990) A review of immiscible fluids in the subsurface: Properties, models,
 458 characterization and remediation. Journal of Contaminant Hydrology 6:107–163.
 459 https://doi.org/10.1016/0169-7722(90)90043-G
- 460 Morelli G, LaBrecque D (1996) Advances in ERT inverse modeling. European Journal of Environmental
 461 and Engineering Geophysics 1:171–186
- 462 Ossai IC, Ahmed A, Hassan A, Hamid FS (2020) Remediation of soil and water contaminated with
 463 petroleum hydrocarbon: A review. Environmental Technology & Innovation 17:100526.
 464 https://doi.org/10.1016/j.eti.2019.100526
- Paillet FL, Morin RH (1997) Hydraulic tomography in fractured bedrock aquifers using high-resolution
 borehole flowmeter measurements. Geological Society, London, Engineering Geology Special
 Publications 12:267–272. https://doi.org/10.1144/GSL.ENG.1997.012.01.23
- Paradis D, Gloaguen E, Lefebvre R, Giroux B (2016) A field proof-of-concept of tomographic slug tests in
 an anisotropic littoral aquifer. Journal of Hydrology 536:61–73.
- 470 https://doi.org/10.1016/j.jhydrol.2016.02.041
- 471 Pollock D, Cirpka OA (2010) Fully coupled hydrogeophysical inversion of synthetic salt tracer
- 472 experiments: fully coupled hydrogeophysical inversion. Water Resour Res 46:.
- 473 https://doi.org/10.1029/2009WR008575
- 474 Ramos G, Carrera J, Gómez S, et al (2017) A stable computation of log-derivatives from noisy drawdown
 475 data: computation of moisy log-derivatives. Water Resour Res 53:7904–7916.
 476 https://doi.org/10.1002/2017WP020811
- 476 https://doi.org/10.1002/2017WR020811
- 477 Sanchez-León E, Leven C, Haslauer CP, Cirpka OA (2016) Combining 3D Hydraulic Tomography with
 478 Tracer Tests for Improved Transport Characterization: E. Sanchez-León et al. Groundwater XX, no. X:
 479 XX-XX. Groundwater 54:498–507. https://doi.org/10.1111/gwat.12381
- 480 Sims JL, Sims RC, Dupont RR, et al (1993) In situ bioremediation of contaminated unsaturated subsurface
 481 soils
- 482 Sinke AJC, Dury O, Zobrist J (1998) Effects of a fluctuating water table: column study on redox dynamics
 483 and fate of some organic pollutants. Journal of Contaminant Hydrology 33:231–246.
- 484 https://doi.org/10.1016/S0169-7722(98)00072-2

- Soueid Ahmed A, Zhou J, Jardani A, et al (2015) Image-guided inversion in steady-state hydraulic
 tomography. Advances in Water Resources 82:83–97.
- 487 https://doi.org/10.1016/j.advwatres.2015.04.001
- Tarantola A (2005) Inverse Problem Theory and Methods for Model Parameter Estimation. Society for
 Industrial and Applied Mathematics
- Theis CV (1935) The relation between the lowering of the Piezometric surface and the rate and duration
 of discharge of a well using ground-water storage. Trans AGU 16:519.
- 492 https://doi.org/10.1029/TR016i002p00519
- Weller A, Slater L (2019) Permeability estimation from induced polarization: an evaluation of geophysical
 length scales using an effective hydraulic radius concept. Near Surface Geophysics 17:581–594.
 https://doi.org/10.1002/nsg.12071
- Yadav BK, Hassanizadeh SM (2011) An Overview of Biodegradation of LNAPLs in Coastal (Semi)-arid
 Environment. Water Air Soil Pollut 220:225–239. https://doi.org/10.1007/s11270-011-0749-1
- Yeh, T.-C. J., Jin, M. &Hanna, S. (1996) An iterative stochastic inverse method: conditional effective
 transmissivity and hydraulic head fields. Wat. Resour. Res. 32(1), 85-92
- Yeung AT (2010) Remediation Technologies for Contaminated Sites. In: Chen Y, Zhan L, Tang X (eds)
 Advances in Environmental Geotechnics. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 328–369
- Zhang S, Mao G, Crittenden J, et al (2017) Groundwater remediation from the past to the future: A
 bibliometric analysis. Water Research 119:114–125. https://doi.org/10.1016/j.watres.2017.01.029
- Zhao Z, Illman WA, Yeh T-CJ, et al (2015) Validation of hydraulic tomography in an unconfined aquifer: A
 controlled sandbox study: hydraulic tomography in an unconfined aquifer. Water Resour Res
 51:4137–4155. https://doi.org/10.1002/2015WR016910
- Zhou H, Gómez-Hernández JJ, Li L (2014) Inverse methods in hydrogeology: Evolution and recent trends.
 Advances in Water Resources 63:22–37. https://doi.org/10.1016/j.advwatres.2013.10.014
- Zhou Y, Lim D, Cupola F, Cardiff M (2016) Aquifer imaging with pressure waves-Evaluation of low-impact
 characterization through sandbox experiments: AQUIFER IMAGING WITH PRESSURE WAVES. Water
 Passauros Passauros 52:2141, 2156, https://doi.org/10.1002/2015WP017751
- 511 Resources Researches 52:2141–2156. https://doi.org/10.1002/2015WR017751
- 512