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Introduction

Let X be a separable infinite-dimensional Fréchet space and T an operator on X. We say that T is hypercyclic if there exists a vector x in X such that Orbpx, T q :" tT n x : n ě 0u is dense in X, or equivalently, such that for every non-empty open set U , the set N T px, U q :" tn ě 0 : T n x P U u is infinite. Birkhoff [START_REF] Birkhoff | Surface transformations and their dynamical applications[END_REF] showed that T is hypercyclic if and only if T is topologically transitive, i.e. for every non-empty open sets U, V , there exists n ě 0 such that T n U X V ‰ H. In particular, if T is invertible, it follows that T is hypercyclic if and only if T ´1 is hypercyclic.

Several variants of hypercyclicity have been deeply investigated during last years. For instance, Bayart and Grivaux [START_REF] Bayart | Hypercyclicité : le rôle du spectre ponctuel unimodulaire[END_REF][START_REF] Bayart | Frequently hypercyclic operators[END_REF] introduced the notion of frequent hypercyclicity in 2004 and the notion of U-frequent hypercyclicity was introduced by Shkarin [START_REF] Shkarin | On the spectrum of frequently hypercyclic operators[END_REF] in 2009. An operator T is said to be frequently hypercyclic if there exists a vector x in X such that for every non-empty open set U , dens N T px, U q ą 0, and an operator T is said to be U-frequently hypercyclic if there exists a vector x in X such that for every non-empty open set U , dens N T px, U q ą 0. No Birkhoff-type characterization is known for frequent hypercyclicity while for Ufrequent hypercyclicity, a Birkhoff-type characterization was given by Bonilla and Grosse-Erdmann [START_REF] Bonilla | Upper frequent hypercyclicity and related notions[END_REF].

An important open question posed in [START_REF] Bayart | Frequently hypercyclic operators[END_REF] and which can also be found in [START_REF] Bayart | Difference sets and frequently hypercyclic weighted shifts[END_REF][START_REF] Guirao | Open problems in the geometry and analysis of Banach spaces[END_REF] consists in determining if the inverse of a frequently hypercyclic operator is still frequently hypercyclic. This question is also open for U-frequently hypercyclic operators and was posed explicitly by Grosse-Erdmann [START_REF] Grosse-Erdmann | Frequently hypercyclic bilateral shifts[END_REF]. In fact, we know thanks to Bayart and Ruzsa [START_REF] Bayart | Difference sets and frequently hypercyclic weighted shifts[END_REF] that if T is invertible and frequently hypercyclic then T ´1 is U-frequently hypercyclic. However, it is not clear if the inverse of a frequently hypercyclic operator is frequently hypercyclic or if the inverse of a U-frequently hypercyclic operator is U-frequently hypercyclic. Although we have a Birkhoff-type characterization for U-frequent hypercyclicity, it is not obvious to determine if the topological characterization of U-frequent hypercyclicity passes to its inverse. Note that for the reiterative hypercyclicity introduced in [START_REF] Bès | Recurrence properties of hypercyclic operators[END_REF] and relying on the upper Banach density, Bonilla and Grosse-Erdmann [START_REF] Bonilla | Upper frequent hypercyclicity and related notions[END_REF] have shown that the inverse of a reiteratively hypercyclic operator is reiteratively hypercyclic.

We focus in this paper on the case of U-frequently hypercyclic operators and show that there exists an invertible U-frequently hypercyclic operator whose inverse is not U-frequently hypercyclic. Since such a counterexample cannot be provided by bilateral weighted shifts on p pZq [START_REF] Bayart | Difference sets and frequently hypercyclic weighted shifts[END_REF] or on c 0 pZq [START_REF] Grosse-Erdmann | Frequently hypercyclic bilateral shifts[END_REF], we will consider operators of C-type which have been introduced in [START_REF] Menet | Linear chaos and frequent hypercyclicity[END_REF] in order to exhibit a chaotic operator that is not U-frequently hypercyclic and which have been deeply investigated in [START_REF] Grivaux | Linear dynamical systems on Hilbert spaces: typical properties and explicit examples[END_REF]. In this last paper, these operators have allowed to exhibit, among others, frequently hypercyclic operators which are not ergodic or U-frequently hypercyclic operators which are not frequently hypercyclic on Hilbert spaces. However, each of these counterexamples were not invertible and it will be necessary to adapt several results relating on operators of C-type in order to obtain the desired counterexample.

We refer the reader to the recent books [START_REF] Bayart | Dynamics of linear operators[END_REF][START_REF] Grosse-Erdmann | Linear chaos[END_REF] for more information on linear dynamics.

Invertible operators of C-type

An operator of C-type is associated to four parameters v, w, ϕ, and b, where v " pv n q ně1 is a sequence of non-zero complex numbers such that we have ř ně1 |v n | ă 8; w " pw k q kě1 is a sequence of complex numbers which is both bounded and bounded below, i.e. 0 ă inf kě1 |w k | ď sup kě1 |w k | ă 8, and such that inf ně0 |W n | ą 0 where W n " ś bnăjăbn`1 w j , ϕ is a map from N into itself, such that ϕp0q " 0, ϕpnq ă n for every n ě 1, and the set ϕ ´1plq " tn ě 0 : ϕpnq " lu is infinite for every l ě 0; b " pb n q ně0 is a strictly increasing sequence of positive integers such that b 0 " 0 and b n`1 ´bn is a multiple of 2pb ϕpnq`1 ´bϕpnq q for every n ě 1.

Definition 2.1. The operator of C-type T v,w,ϕ,b on p pNq is defined by

T v,w,ϕ,b e k " $ ' & ' % w k`1 e k`1 if k P rb n , b n`1 ´1q, n ě 0, v n e b ϕpnq ´W ´1 n e bn if k " b n`1 ´1, n ě 1, ´W ´1 0 e 0 if k " b 1 ´1.
An important characteristic of operators of C-type is that every finite sequence is periodic for these operators. Indeed, if T is an operator of C-type associated to pb n q then for every k P rb n , b n`1 q, we can compute that T 2pbn`1´bnq e k " e k (see [START_REF] Grivaux | Linear dynamical systems on Hilbert spaces: typical properties and explicit examples[END_REF]Lemma 6.4]).

We start by stating sufficient conditions on parameters v and w so that an operator of C-type associated to v and w is invertible. where m n " mintm ě 0 : ϕ m pnq " 0u.

Proof. We first prove that T v,w,ϕ,b is injective. Let x P p pNq. Assume that T v,w,ϕ,b x " 0. For every n ě 0, for every k P rb n , b n`1 ´1q, we then have w k`1 x k " 0 and thus x k " 0. On the other hand, for every n ě 0, we have

´W ´1 n x bn`1´1 `ÿ mě1:ϕpmq"n v m x bm`1´1 " 0.
Let C " sup n |W n |. Assume that there exists n 0 such that |x bn 0 `1´1 | " ε ą 0. Then we deduce that there exists n 1 ą n 0 such that ϕpn 1 q " n 0 and

|x bn 1 `1´1 | ě 2 n0 |v n1 |2 n1 |W n0 | ´1|x bn 0 `1´1 | ě C ´1ε2 n0 |v n1 |2 n1 .
By repeating this argument, we get an increasing sequence pn k q such that

|x bn k `1 ´1| ě C ´kε2 n0 ´śk j"1 |v nj | ¯2n k ą C ´kε2 n0 ´śk j"1 1 C2 n j ¯2n k ÝÝÝÑ kÑ8 8.
This is then impossible than x belongs to p pNq and we deduce that T v,w,ϕ,b x " 0 if and only if x " 0.

Since the operator T v,w,ϕ,b is injective, we can now easily check that ' for every n ě 0, every k P pb n , b n`1 q, where m n " mintm ě 0 : ϕ m pnq " 0u. It remains to show that T v,w,ϕ,b is surjective. Let z P p pNq. It suffices to show that the sequence pT ´1 v,w,ϕ,b P r0,bn`1´1s zq n is a Cauchy sequence, where P ri,js z " ř j k"i z k e k . We have for every N ě n,

T ´1 v,w,ϕ,b e k " 1 w k e k´1 ; ' T ´1 v,
}T ´1 v,w,ϕ,b P r0,b N `1´1s z ´T ´1 v,w,ϕ,b P r0,bn`1´1s z} " › › › b N `1 ´1 ÿ k"bn`1 z k T ´1 v,w,ϕ,b e k › › › ď › › › N ÿ l"n`1 b l`1 ´1 ÿ k"b l `1 z k 1 w k e k´1 › › › `› › › N ÿ l"n`1 z b l T ´1 v,w,ϕ,b e b l › › › ď 1 inf k |w k | }P rbn`1,b N `1´1s z} `N ÿ l"n`1 |z b l | ˜ml ´1 ÿ m"0 ´m ź s"0 |v ϕ s plq | ¯´m`1 ź s"0 |W ϕ s plq | ¯¸`› › › › › N ÿ l"n`1 W l z b l e b l`1 ´1› › › › › ď 1 inf k |w k | }P rbn`1,b N `1´1s z} `}z} 8 N ÿ l"n`1 m l ´1 ÿ m"0 C 2 l `C}P rbn`1,b N `1´1s z} ď `1 inf k |w k | `C˘} P rbn`1,b N `1´1s z} `}z} 8 N ÿ l"n`1 m l C 2 l ď `1 inf k |w k | `C˘} P rbn`1,b N `1´1s z} `}z} 8 N ÿ l"n`1 Cl 2 l
since m l ď l for every l ě 1. The sequence pT ´1 v,w,ϕ,b P r0,bn`1´1s zq n is thus a Cauchy sequence and we deduce that T v,w,ϕ,b is surjective. It now follows from the open mapping theorem that T ´1 v,w,ϕ,b is continuous. The counterexample that we will construct will be an operator of C-type with a specific structure that is called operator of C `-type.

Definition 2.3 ([8, Definition 6.6]). An operator of C-type T v,w,ϕ,b is said to be an operator of C `-type if for every integer k ě 1, ϕpnq " n ´2k´1 for every n P r2 k´1 , 2 k q, so that ϕpr2 k´1 , 2 k qq " r0, 2 k´1 q; -the blocks rb n , b n`1 q with n P r2 k´1 , 2 k q, all have the same size, which we denote by ∆ pkq :

b n`1 ´bn " ∆ pkq for every n P r2 k´1 , 2 k q;

-the sequence v is constant on the interval r2 k´1 , 2 k q: there exists v pkq such that v n " v pkq for every n P r2 k´1 , 2 k q;

-the sequences of weights pw bn`i q 1ďiă∆ pkq are independent of n P r2 k´1 , 2 k q: there exists a sequence pw pkq i q 1ďiă∆ pkq such that w bn`i " w pkq i for every 1 ď i ă ∆ pkq and every n P r2 k´1 , 2 k q.

We will now consider that T is an operator of C `-type such that for every k ě 1,

v pkq " 2 ´τ pkq and w pkq i " $ ' ' ' ' ' ' ' ' ' ' & ' ' ' ' ' ' ' ' ' ' % 1 2 if 1 ď i ď δ pkq 2 if δ pkq ă i ď 2δ pkq 1 if 2δ pkq ď i ă ∆ pkq ´2δ pkq ´2η pkq 1 2 if ∆ pkq ´2δ pkq ´2η pkq ď i ă ∆ pkq ´δpkq ´2η pkq 1 if ∆ pkq ´δpkq ´2η pkq ď i ă ∆ pkq ´δpkq ´ηpkq 2 if ∆ pkq ´δpkq ´ηpkq ď i ă ∆ pkq ´ηpkq 1 if ∆ pkq ´ηpkq ď i ă ∆ pkq
where pτ pkq q kě1 , pδ pkq q kě1 and pη pkq q kě1 are three strictly increasing sequences of positive integers satisfying 4δ pkq `2η pkq ă ∆ pkq for every k ě 1.

Since W n " 1 for every n ě 0, it follows from Proposition 2.2 that T is invertible if (2.1) τ pkq ě 2 k
since we then get that for every n P r2 k´1 , 2 k q, v n " 2 ´τ pkq ď 2 ´2k ă 1 2 n . We will discuss in the following sections our choice of weights pw pkq i q 1ďiă∆ pkq and we will see that under some conditions on the parameters τ pkq , δ pkq , η pkq and ∆ pkq , the operator T is not U-frequently hypercyclic whereas its inverse is U-frequently hypercyclic.

Let A ą maxt1, lim inf k δ pkq η pkq u and

C " ÿ lă2 k 0 b l`1 ´1 ÿ j"b l m l ´1 ÿ m"0 ´m ź s"0 v ϕ s plq ¯2δ pk 0 q }T ´1} b l`1 ´j´1 .
We consider c ą 0 such that

(3.1) c}x} k0 ÿ s"0 pk 0 `1q s`1 C s ă ε and k 1 ą k 0 such that 2∆ pk0q ă 1 6 η pk1q , ∆ pk0q ă δ pk1q , δ pk1q {η pk1q ă A, (3.2 
) 2 ∆ pk 0 q `δpk 0 q 2 δ pk 1 q ´τ pk 1 q ă c and

˜k0 ÿ s"0 pk 0 `1q s C s ¸}x} 2 δ pk 0 q b 2 k 0 2 δ pk 1 q ´τ pk 1 q ă ε.
We then let n " δ pk1q `2N ∆ pk0q where N is the positive integer satisfying η pk1q δpk1q ă 2N ∆ pk0q ď η pk1q `δpk1q `2∆ pk0q and we show that there exists z P X 0 with }z} ă ε such that }T ´n´m z ´T ´mx} ă ε for every 0 ď m ď 1 6A n. It will then follow from Theorem 3.1 that T ´1 is U-frequently hypercyclic.

We first prove that for every k ď k 0 , every x "

ř 2 k ´1 l"2 k´1 ř b l`1 ´1 j"b l xj e j (
where, in the case of k " 0, the sum ř 2 k ´1 l"2 k´1 means ř 0 l"0 ), there exists z such that }z} ď c}x} and

T ´nz " x `ỹ `» - 2 k ´1 ÿ l"2 k´1 b l`1 ´1 ÿ j"b l xj pv pk1q q ´1 ´bl`1 ´1 ź i"j`1 w i ∆pk 1 q ´1 ź i"∆ pk 1 q ´bl`1 `j`1´2N ∆ pk 0 q w pk1q i ¯´1 e b 2 k 1 ´1 `l`1 `j´b l`1 ´2N ∆ pk 0 q fi fl
with }ỹ} ď C}x} and ỹ P spante j : 0 ď j ă b 2 k´1 u if k ě 1 and ỹ " 0 if k " 0.

To this end, we set

z " ´2k ´1 ÿ l"2 k´1 b l`1 ´1 ÿ j"b l xj pv pk1q q ´1 ´δpk 1 q `j´b l`1 ź i"1 w pk1q i ¯´b l`1 ´1 ź i"j`1 w i ¯eb 2 k 1 ´1`l `δpk 1 q `j´b l`1 ,
which is well-defined since b l`1 ´j ď ∆ p kq ď ∆ pk0q ă δ pk1q . In view of our choice of weights w, it follows from (3.2) that }z} ď }x}2 τ pk 1 q 2 ´δpk 1 q `∆p kq 2 δ p kq ď 2 ∆ pk 0 q `δpk 0 q 2 δ pk 1 q ´τ pk 1 q }x} ď c}x} and by definition of T ´1, we have

T ´δpk 1 q z " x `ỹ `» - 2 k ´1 ÿ l"2 k´1 b l`1 ´1 ÿ j"b l xj pv pk1q q ´1 ´bl`1 ´1 ź i"j`1 w i ∆pk 1 q ´1 ź i"∆ pk 1 q ´bl`1 `j`1 w pk1q i ¯´1 e b 2 k 1 ´1 `l`1 `j´b l`1 fi fl
where if k " 0, we have ỹ " 0 and if k ě 1, we have ỹ "

2 k ´1 ÿ l"2 k´1 b l`1 ´1 ÿ j"b l m 2 k 1 ´1`l ´1 ÿ m"1 « xj ´m ź s"1 v ϕ s p2 k 1 ´1`lq bl`1 ´1 ź i"j`1 w i ¯T ´bl`1 `j`1 e b ϕ m`1 p2 k 1 ´1 `lq`1 ´1ff " 2 k ´1 ÿ l"2 k´1 b l`1 ´1 ÿ j"b l m 2 k 1 ´1`l ´1 ÿ m"1 xj ´m´1 ź s"0 v ϕ s plq ¯´b l`1 ´1 ź i"j`1 w i ¯T ´bl`1 `j`1 e b ϕ m plq`1 ´1 " 2 k ´1 ÿ l"2 k´1 b l`1 ´1 ÿ j"b l m l ´1 ÿ m"0 xj ´m ź s"0 v ϕ s plq ¯´b l`1 ´1 ź i"j`1 w i ¯T ´bl`1 `j`1 e b ϕ m`1 plq`1 ´1.
Therefore, since n " δ pk1q `2N ∆ pk0q , by using the periodicity of finite sequences, we have

T ´nz " x `ỹ `» - 2 k ´1 ÿ l"2 k´1 b l`1 ´1 ÿ j"b l xj pv pk1q q ´1´bl`1 ´1 ź i"j`1 w i ∆pk 1 q ´1 ź i"∆ pk 1 q ´bl`1 `j`1´2N ∆ pk 0 q w pk1q i ¯´1 e b 2 k 1 ´1`l`1 `j´b l`1 ´2N ∆ pk 0 q fi fl
and by definition of C, }ỹ} ď }x}

2 k ´1 ÿ l"2 k´1 b l`1 ´1 ÿ j"b l m l ´1 ÿ m"0 ´m ź s"0 v ϕ s plq ¯2δ p kq }T ´1} b l`1 ´j´1
ď }x}

2 k 0 ´1 ÿ l"0 b l`1 ´1 ÿ j"b l m l ´1 ÿ m"0 ´m ź s"0 v ϕ s plq ¯2δ pk 0 q }T ´1} b l`1 ´j´1 " C}x}.
We are now able to construct a vector z such that }z} ă ε and such that }T ´n´m z ´T ´mx} ă ε for every

0 ď m ď 1 6A n. Let u 0 " R k0 pxq where R k pxq " ř 2 k ´1 l"2 k´1 ř b l`1 ´1 j"b l
x j e j . We know that there exist z 0 and y 0 such that }z 0 } ď c}u 0 }, such that

T ´nz 0 " u 0 `y0 `2k 0 ´1 ÿ l"2 k 0 ´1 b l`1 ´1 ÿ j"b l u 0 j pv pk1q q ´1 ´bl`1 ´1 ź i"j`1 w i ∆pk 1 q ´1 ź i"∆ pk 1 q ´bl`1 `j`1´2N ∆ pk 0 q w pk1q i ¯´1 e b 2 k 1 ´1`l`1 `j´b l`1 ´2N ∆ pk 0 q
and such that }y 0 } ď C}u 0 } and y 0 P spante j : 0 ď j ă b 2 k 0 ´1 u. By repeating, this argument, we can obtain two families pz k q 0ďkďk0 and py k q 0ďkďk0 such that if we let u k " R k0´k pxq ´řk´1 s"0 R k0´k y s then }z k } ď c}u k } and

T ´nz k " u k `yk `2k 0 ´k ´1 ÿ l"2 k 0 ´k´1 b l`1 ´1 ÿ j"b l u k j pv pk1q q ´1 ´bl`1 ´1 ź i"j`1 w i ∆pk 1 q ´1 ź i"∆ pk 1 q ´bl`1 `j`1´2N ∆ pk 0 q w pk1q i ¯´1 e b 2 k 1 ´1 `l`1 `j´b l`1 ´2N ∆ pk 0 q
and such that }y k } ď C}u k }, y k P spante j : 0 ď j ă b 2 k 0 ´k´1 u and y k0 " 0.

We remark that

k0 ÿ k"0 u k " k0 ÿ k"0 ˜Rk0´k pxq ´k´1 ÿ s"0 R k0´k y s " x ´k0 ÿ k"0 k´1 ÿ s"0 R k0´k y s " x ´k0´1 ÿ s"0 k0 ÿ k"s`1 R k0´k y s " x ´k0´1 ÿ s"0 y s
and thus if we let z " ř k0 k"0 z k , we get

T ´nz " x`k 0 ÿ k"0 2 k 0 ´k ´1 ÿ l"2 k 0 ´k´1 b l`1 ´1 ÿ j"b l u k j pv pk1q q ´1 ´bl`1 ´1 ź i"j`1 w i ∆pk 1 q ´1 ź i"∆ pk 1 q ´bl`1 `j`1´2N ∆ pk 0 q w pk1q i ¯´1 e b 2 k 1 ´1`l`1 `j´b l`1 ´2N ∆ pk 0 q .
We start by proving that }z} ă ε. Since }u 0 } ď }x} and since for every

1 ď k ď k 0 , }u k } ď }x} `k´1 ÿ s"0 }y s } ď }x} `k´1 ÿ s"0 C}u s },
we can deduce that for every 0 ď k ď k 0 , }u k } ď ´řk s"0 pk `1q s C s ¯}x} and it follows from (3.1) that

}z} ď k0 ÿ k"0 }z k } ď c k0 ÿ k"0 }u k } ď c}x}pk 0 `1q k0 ÿ s"0 pk 0 `1q s C s ă ε.
Moreover, for every 0 ď m ď 1

6A n, we have

}T ´n´m z ´T ´mx} ď › › › › › › k0 ÿ k"0 2 k 0 ´k ´1 ÿ l"2 k 0 ´k´1 b l`1 ´1 ÿ j"b l u k j pv pk1q q ´1 ´bl`1 ´1 ź i"j`1 w i ∆pk 1 q ´1 ź i"∆ pk 1 q ´bl`1 `j`1´2N ∆ pk 0 q w pk1q i ¯´1 T ´me b 2 k 1 ´1`l`1 `j´b l`1 ´2N ∆ pk 0 q › › › › › › ď › › › › › › k0´1 ÿ k"0 2 k 0 ´k ´1 ÿ l"2 k 0 ´k´1 b l`1 ´1 ÿ j"b l ˜k0 ÿ s"0 pk 0 `1q s C s ¸}x}2 τ pk 1 q 2 δ pk 0 q ´∆pk 1 q ´1 ź i"∆ pk 1 q ´bl`1 ´m`j`1´2N ∆ pk 0 q w pk1q i ¯´1 e b 2 k 1 ´1`l`1 `j´b l`1 ´2N ∆ pk 0 q ´m› › › › › › ď k0´1 ÿ k"0 2 k 0 ´k ´1 ÿ l"2 k 0 ´k´1 b l`1 ´1 ÿ j"b l ˜k0 ÿ s"0 pk 0 `1q s C s ¸}x}2 τ pk 1 q 2 δ pk 0 q 2 ´δpk 1 q ď ˜k0 ÿ s"0 pk 0 `1q s C s ¸}x} 2 δ pk 0 q b 2 k 0 2 δ pk 1 q ´τ pk 1 q ă ε by (3.2)
where we could replace ´ś∆ pk 1 q ´1 i"∆ pk 1 q ´bl`1 ´m`j`1´2N ∆ pk 0 q w pk1q i ¯´1 by 2 ´δpk 1 q because for every 0 ď k ă k 0 , every 2 k0´k´1 ď l ă 2 k0 ´k, every b l ď j ă b l`1 , we have

∆ pk1q ´bl`1 ´m `j `1 ´2N ∆ pk0q ď ∆ pk1q ´2N ∆ pk0q ď ∆ pk1q ´δpk1q ´ηpk1q
by choice of N and

∆ pk1q ´bl`1 ´m `j `1 ´2N ∆ pk0q ě ∆ pk1q ´bl`1 ´1 6A n `bl ´2N ∆ pk0q ě ∆ pk1q ´∆pk0q ´1 6A pδ pk1q `2N ∆ pk0q q ´2N ∆ pk0q ě ∆ pk1q ´1 6 η pk1q ´1 6A δ pk1q ´p1 `1 6A qpη pk1q `δpk1q `2∆ pk0q q ě ∆ pk1q ´δpk1q ´7 6 η pk1q ´2 6A δ pk1q ´1 6A η pk1q ´p1 `1 6A q 1 6 η pk1q ě ∆ pk1q ´δpk1q ´´7 6 `2 6 `1 6A `1 6 `1 36A ¯ηpk1q since δ pk1q η pk1q ă A ą ∆ pk1q ´δpk1q ´2η pk1q .
We have thus succeeded in constructing a vector z P X 0 with }z} ă ε such that }T ´n´m z ´T ´mx} ă ε for every 0 ď m ď 1 6A n and we can therefore conclude that T ´1 is U-frequently hypercyclic by using Theorem 3.1.

Before showing in the next section that under some additional conditions, T is not U-frequently hypercyclic, we try to motivate our choice of weights w. If we look at the previous proof, we can already remark that ' the first block of 1{2 of w (1 ď i ď δ pkq ), which gives a block of 2 if we consider 1{w, allowed us to construct a vector z with small norm; ' the last block of 2 of w (∆ pkq ´δpkq ´ηpkq ď i ă ∆ pkq ´ηpkq ), which gives a block of 1{2 if we consider 1{w, allowed us to approach x; ' the second block of 1 (∆ pkq ´δpkq ´2η pkq ď i ă ∆ pkq ´δpkq ´ηpkq ) allowed us to follow the orbit of x during η pkq iterates.

Now, if we want to have a chance that T is not U-frequently hypercyclic, it is necessary that Theorem 3.1 does not apply to T . If we proceed as for T ´1, we can remark that roughly speaking, if n P r2 k´1 , 2 k q, the last block of 1 of w (∆ pkq ´ηpkq ď i ă ∆ pkq ) induces that we have to wait at least η pkq iterates before a small coordinate in rb n , b n`1 q brings big coordinates in the block rb ϕpnq , b ϕpnq`1 q under the action of T . Moreover, we will get a good approximation during at most 2δ pkq iterates because of block of 2 for δ pkq ă i ď 2δ pkq . In view of Theorem 3.1, we can then hope that if δ pkq {η pkq tends to 0, T may not be U-frequently hypercyclic. These two facts have motivated our choice to end w with a big block of 1 and to put a block of 2 directly after the first block of 1 2 . Finally, the second block of 1{2 (∆ pkq ´2δ pkq ´2η pkq ď i ă ∆ pkq ´δpkq ´2η pkq ) was added to have W n " 1 and thus an invertible operator if v n is sufficiently small.

T is not U-frequently hypercyclic

We now show that the operator T is not U-frequently hypercyclic under convenient conditions on η pkq , δ pkq , τ pkq and ∆ pkq . Conditions implying that an operator of C-type is not U-frequently hypercyclic have been developed in [START_REF] Grivaux | Linear dynamical systems on Hilbert spaces: typical properties and explicit examples[END_REF]. Unfortunately, these conditions are not sufficiently general to be applied at our operator T .

We start by generalizing Lemma 6.11 in [START_REF] Grivaux | Linear dynamical systems on Hilbert spaces: typical properties and explicit examples[END_REF]. Given x P p pNq and l ě 0, we will denote in this section

P l x " b l`1 ´1 ÿ i"b l x i e i and X " 8 ÿ l"0 b l`1 ´1 ÿ i"b l ´bl`1 ´1 ź s"i`1
w s ¯xi e i .

Lemma 4.1. Let T be an operator of C-type on p pNq and x P p pNqzt0u. Suppose that there exist -a constant C ą 0, -a non-increasing sequence pβ l q lě1 of positive real numbers with ř lě1 ? β l ď 1, -a non-decreasing sequence pN l q lě1 of positive integers tending to infinity, -a sequence pR l q lě1 with N l ď R l ă inf jP Ť kě1 ϕ ´k plq N j and R l ă b l`1 ´bl , -a sequence pL l q lě1 with p L l N l q tending to 0, such that the following conditions are satisfied:

(1) }P n x} ď }P n X} for every n ě 0;

(2) sup jě0 }P n T j P l x} ď Cβ l }P l X} for every l ě 1 and every 0 ď n ă l;

(2') }P n T j P l x} ď Cβ l }P rb l`1 ´j,b l`1 q X} for every l ě 1, every j ď R l and every 0 ď n ă l; (3) sup (5) for every l ě 1, every N l ď j ď R l , every j `Ll ď k ď R l ,

}P l T k P rb l`1 ´j,b l`1 q x} ě }P rb l`1 ´j,b l`1 q X}.
Then there exists ε ą 0 such that

dens N T `x, Bp0, εq c ˘ě lim inf lÑ8 inf kěR l # 0 ď j ď k : }P l T j P l x} ě 2C}P l X} ( k `1 .
Proof. Let x P p pNqzt0u. If x is periodic then there exists ε ą 0 such that dens N T px, Bp0, εq c q " 1.

Without loss of generality, we can thus assume that x is not periodic. In particular, x ´P0 x ‰ 0 and we can find l 0 ě 1 such that

}P l0 x} ě a β l0 }x ´P0 x} since ř lě1 ? β l ď 1. Let ε ă mintC, 1{2u}P l0 X}.
There exists a strictly increasing sequence of integers pl n q ně1 such that if we set j n´1 :" min " j ě 0 :

ÿ ląln´1 }P ln´1 T j P l x} ą C}P ln´1 X} * , then j n´1 ą N ln l n P ď kě1 ϕ ´kpl n´1 q and }P ln X} ě 1 a β ln }P ln´1 X} for every n ě 1
and, in addition, if j n´1 ď R ln then (4.1)

}P rb ln `1 ´jn´1,bl n `1 q X} ě 1 a β ln }P ln´1 X}.
Indeed, if we assume that l 1 , . . . , l n´1 have been chosen then j n´1 is well-defined in view of assumption (4) and we can consider for l n an index satisfying

}P ln´1 T jn´1 P ln x} ą C a β ln }P ln´1 X}.
In particular, we have l n P Ť kě1 ϕ ´kpl n´1 q. Moreover, by (2), we get

}P ln X} ě 1 Cβ ln }P ln´1 T jn´1 P ln x} ě 1 a β ln }P ln´1 X}
and if j n´1 ď R ln , we get by (2')

}P rb ln`1 ´jn´1,bl n`1 q X} ě 1 Cβ ln }P ln´1 T jn´1 P ln x} ě 1 a β ln }P ln´1 X}.
On the other hand, for every 0 ď j ď N ln , it follows from (1) and (3) that

}P ln´1 T j P ln x} ď Cβ ln }P ln x} ď Cβ ln }x ´P0 x} ď Cβ ln a β l0 }P l0 x} ď Cβ ln a β l0 }P l0 X} ď C a β ln }P l0 X} ď C a β ln }P ln´1 X} since for every k ď n´1, }P l k X} ě 1 a β l k }P l k´1 X} ě }P l k´1
X} and thus }P ln´1 X} ě }P l0 X}. This implies that j n´1 ą N ln .

For any integer s ě 1, we denote by n s the smallest integer such that s belongs to rj ns´1 , j ns q. We remark that n s tends to infinity as s tends to infinity. We divide the study of the ratio # 0 ď j ď s : }T j x} ě ε ( s `1 into two cases: R ln s ď s or s ă R ln s .

' Case 1: R ln s ď s.

Since for every j ě 0 and n ě 0,

}T j x} ě }P n T j x} ě }P n T j P n x} ´ÿ ląn }P n T j P l x},
we have by definition of j n }T j x} ě }P ln T j P ln x} ´C }P ln X} for every 0 ď j ă j n .

Therefore, for every s ě 1, we have Cβ l }P l x} since j ď s ă R ln s ă inf lP Ť kě1 ϕ ´k pln s q N l . Since inf lP Ť kě1 ϕ ´k pln s q N l tends to infinity and ř lě1 β l ă 8, there exists s 0 such that for every s ě s 0 , if s ă R ln s , we have for every j ns´1 ď j ď s }T j x} ě }P ln s T j P rb ln s `1 ´jns´1,bl ns `1q x} ´ε.

0 ď j ď s : }T j x} ě ε ( Ą 0 ď j ď s : }T j x} ě C}P l0 X} ( Ą 0 ď j ď s : }T j x} ě C}P ln s X} ( Ą 0 ď j
Therefore, for every s ě s 0 satisfying s ă R ln s , since R ln s´1 ă N ln s ď j ns´1 ď s ă R ln s , we have 

#t0 ď j ď s : }T j x} ě εu s `1 ě #t0 ď j ă
N ln s `1 inf kěR l ns ´1 # 0 ď j ď k : }P ln s´1 T j P ln s´1 x} ě 2C}P ln s´1 X} ( k `1 ě ˆinf ląln s ´1 N l ´Ll N l `1 ˙inf kěR l ns ´1 # 0 ď j ď k : }P ln s ´1 T j P ln s´1 x} ě 2C}P ln s´1 X} ( k `1 .
Since l ns Ñ 8 as s Ñ 8 and L l {N l Ñ 0 as l Ñ 8, we deduce from two cases that dens N T `x, Bp0, εq c ě lim inf lÑ8 « ˆinf

l 1 ąl N l 1 ´Ll 1 N l 1 `1 ˙inf kěR l # 0 ď j ď k : }P l T j P l x} ě 2C}P l X} ( k `1 ff " lim inf lÑ8 inf kěR l # 0 ď j ď k : }P l T j P l x} ě 2C}P l X} ( k `1 .
In order to apply Lemma 4.1 to our operator T , we will use the following two propositions. Proposition 4.2 ([8, Proposition 6.12]). Let T be an operator of C-type on p pNq and let pC n q ně0 be a sequence of positive numbers with 0 ă C n ă 1. Assume that

|v n | . sup jPrb ϕpnq ,b ϕpnq`1 q ´j ź s"b ϕpnq `1 |w s | ¯ď C n for every n ě 1.
Then, for any x P p pNq, we have for every l ě 1 and every 0 ď n ă l,

(1)

sup jě0 }P n T j P l x} ď C l pb l`1 ´bl q p´1 p }P l X} and (2)
sup jďN }P n T j P l x} ď C l pb l`1 ´bl q p´1 p }P rb l`1 ´N,b l`1 q X} for every 1 ď N ď b l`1 ´bl . Proposition 4.3 ([8, Proposition 7.13]). Let T be an operator of C-type on p pNq and let x P p pNq. Fix l ě 0. Suppose that there exist three integers 0 ď k

0 ă k 1 ă k 2 ď b l`1 ´bl such that |w b l `k| " 1 for every k P pk 0 , k 1 q Y pk 2 , b l`1 ´bl q and b l`1 ´1 ź s"b l `k0`1 |w s | " 1.
Then we have for every J ě 0,

1 J `1 # ! 0 ď j ď J : }P l T j P l x} ě }P l X}{2 ) ě 1 ´4`k 2 ´k1 `k0 ˘´1 J `1 `1 b l`1 ´bl
¯Ẅe are now able to state sufficient conditions on parameters pη pkq q k , pδ pkq q k , pτ pkq q k and p∆ pkq q k so that our operator T is not U-frequently hypercyclic. Proposition 4.4. If the sequence pγ k q kě1 , defined by γ k :" 2 ´τ pkq `∆pkq ˘1´1 p for every k ě 1, is a non-increasing sequence satisfying ř kě1 2 k γ 1{2 k ď 1, and if the following conditions hold true: 4δ pkq `3η pkq ď ∆ pkq ď η pk`1q , lim kÑ8 η pkq {∆ pkq " 0 and lim kÑ8 δ pkq {η pkq " 0 then T is not U-frequently hypercyclic.

Proof. It suffices to show that if x is a hypercyclic vector for T then x is not U-frequently hypercyclic for T . To this end, we will show that Lemma 4.1 can be applied to x by considering β l " 4 γ k , N l " η pkq , R l " ∆ pkq ´2δ pkq ´2η pkq , L l " 2δ pkq and C " 1{4 for every l P r2 k´1 , 2 k q, every k ě 1. It will then remain to show that

lim inf lÑ8 inf kěR l # 0 ď j ď k : }P l T j P l x} ě }P l X}{2 ( k `1 " 1.
We can already remark that pβ l q is a non-increasing sequence with ř lě1 ? β l ď 1, that pN l q is a non-decreasing sequence tending to infinity, that pR l q satisfies N l ď R l ă inf jP Ť n ϕ ´n plq N j and R l ă b l`1 ´bl , and that pL l q satisfies L l N l Ñ 0. Moreover, we have:

(1) Since ś b l`1

´1

w"i`1 |w s | ě 1 for every l ě 0, every b l ď i ă b l`1 , we have }P n x} ď }P n X} for every n ě 0;

(2) We have for every k ě 1 and every n P r2 k´1 , 2 k q, |v n | ¨sup Therefore, if we set C n " 2 ´τ pkq for every n P r2 k´1 , 2 k q, Proposition 4.2 implies that for every k ě 1, every l P r2 k´1 , 2 k q and every 0 ď n ă l, sup jě0 }P n T j P l x} ď 2 ´τ pkq `∆pkq ˘1´1 p }P l X} ď β l 4 }P l X};

(2') We also deduce from Proposition 4.2 that }P n T j P l x} ď β l 4 }P rb l`1 ´j,b l`1 q X} for every l ě 1, every j ď b l`1 ´bl and every 0 ď n ă l; (3) Since w pkq i " 1 if ∆ k ´ηpkq ď i ă ∆ pkq , it follows from Proposition 4.2 and from the definition of X that for every l ě 1 and every 0 ď n ă l, (5) Let k ě 1, l P r2 k´1 , 2 k q, η pkq ď j ď ∆ pkq ´2δ pkq ´2η pkq and j `2δ pkq ď s ď ∆ pkq ´2δ pkq ´2η pkq . We need to show that }P l T s P rb l`1 ´j,b l`1 q x} ě }P rb l`1 ´j,b l`1 q X}.

If i P r∆ pkq ´j, ∆ pkq q, we get

P l T s e b l `i " ´´∆ pkq ´1 ź ν"i`1
w pkq ν ¯´i`s´∆ pkq ź ν"1 w pkq ν ¯eb l `i`s´∆ pkq .

Therefore, since i `s ´∆pkq ě ∆ pkq ´j `j `2δ pkq ´∆pkq ě 2δ pkq and i `s ´∆pkq ď ∆ pkq ´1 `∆pkq ´2δ pkq ´2η pkq ´∆pkq ď ∆ pkq ´2δ pkq ´2η pkq ´1, we have ś i`s´∆ pkq ν"1 w pkq ν " 1 and thus the desired inequality.

We deduce from Lemma 4.1 that there exists ε ą 0 such that dens N T `x, Bp0, εq c ˘ě lim inf lÑ8 inf JěR l # 0 ď j ď J : }P l T j P l x} ě }P l X}{2 ( J `1 .

Since the assumptions of Proposition 4.3 are satisfied for k 0 " 2δ pkq , k 1 " ∆ pkq 2δ pkq ´2η pkq and k 2 " ∆ pkq ´ηpkq , we deduce that for every J ě 0, every k ě 1, and every l P r2 k´1 , 2 k q, 1 J `1 # ! 0 ď j ď J : }P l T j P l x} ě }P l X}{2

) ě 1´p16δ pkq `4η pkq q ´1 J `1 `1 ∆ pkq ¯.

Therefore, for every k ě 1 and every l P r2 k´1 , 2 k q, we get ) " 1.

The vector x is thus not U-frequently hypercyclic since dens N T `x, Bp0, εq c ˘" 1 and thus dens N T `x, Bp0, εq ˘" 0.

Theorem 4.5. Let 1 ď p ă 8. There exists an invertible operator T on p pNq such that T is U-frequently hypercyclic and T ´1 is not U-frequently hypercyclic.

Proposition 2 . 2 . 1 2W

 221 If sup ně0 |W n | ă 8 and |v n | ă n sup ně0 |Wn| for every n ě 1, then the operator of C-type T v,w,ϕ,b is invertible on p pNq (1 ď p ă 8) and ' for every n ě 0, every k P pb n , b n`1 q, T ´1 v,w,ϕ,b e k " 1 w k e k´1 ; ' T ´1 v,w,ϕ,b e 0 " ´W0 e b1´1 ; ' for every n ě 1, T ´1 v,w,ϕ,b e bn " ´mn´1 ÿ ϕ l pnq ¯eb ϕ m`1 pnq`1 ´1 ´Wn e bn`1´1

W

  w,ϕ,b e 0 " ´W0 e b1´1 ; ' for every n ě 1, T ´1 v,w,ϕ,b e bn " ´mn´1 ÿ ϕ l pnq ¯eb ϕ m`1 pnq`1 ´1 ´Wn e bn`1´1

  0ďjďN l }P n T j P l x} ď Cβ l }P l x} for every l ě 1 and every 0 ď n ă l; (4) sup jě0 ř ląn }P n T j P l x} ą C}P n X} for every n ě 0;

j

  P rb ϕpnq ,b ϕpnq `1q j ź s"b ϕpnq`1 |w s | ď 2 ´τ pkq .

4 }P l x}; ( 4 )

 44 }P n T j P l x} ď β l 4 }P rb l`1 ´Nl ,b l`1 q X} ď β l Since xis hypercyclic, we have sup jě0 ř ląn }P n T j P l x} " 8;

) ě 1

 1 ď J : }P l T j P l x} ě }P l X}{2 ´p16δ pkq `4η pkq q ´1 ∆ pkq ´2δ pkq ´2η pkq `ď J : }P l T j P l x} ě }P l X}{2

  ď s : }P ln s T j P ln s x} ě 2C}P ln s X} ( since j ď s ă j ns . It follows that if R ln s ď s then # 0 ď j ď s : }T j x} ě ε ( }P ln s T j P ln s x} ě 2C}P ln s X} ( }P ln s T j P ln s x} ě 2C}P ln s X} ( }T j x} ě }P ln s T j P ln s x} ´ÿ lP Ť kě1 ϕ ´k pln s q }P ln s T j P l x} ě }P ln s T j P rb ln s `1 ´jns´1,bl ns `1q x} ´ÿ lP Ť kě1 ϕ ´k pln s q

	s	`1	ě	# 0 ď j ď s : s	`1
			ě inf kěR ln s	k	`1	.
	' Case 2: s ă R ln s .			
	It follows from (3) that for every j ns´1 ď j ď s

# 0 ď j ď k :

  }P ln s´1 T j P ln s´1 x} ě 2C}P ln s´1 X} ( }P ln s T j P rb ln s `1 ´jns´1,bl ns `1q x} ě 2εu ´1 # 0 ď j ď k : }P ln s´1 T j P ln s´1 x} ě 2C}P ln s´1 X} ´1 # 0 ď j ď k : }P ln s´1 T j P ln s´1 x} ě 2C}P ln s´1 X} ´1 # 0 ď j ď k : }P ln s´1 T j P ln s´1 x} ě 2C}P ln s´1 X} }P ln s´1 T j P ln s´1 x} ě 2C}P ln s ´1 X} (

	ě	j ns´1 s `1	inf kěR l ns ( k `1
		`#tj ns´1 `Lln s ď j ď s : }P rb ln s `1 ´jns´1,bl ns `1q X} ě 2εu s `1	(by (5))
	ě	j ns´1 s `1	inf kěR l ns ( k `1
		`#tj ns´1 `Lln s ď j ď s : s `1	}P l ns´1 X} ? β ln s	ě 2εu	(by (4.1))
	ě	j ns´1 s `1	inf kěR l ns ( k `1
		`s ´jns´1 ´Lln s s `1	(since }P ln s ´1 X} ě }P l0 X} ą 2ε)
	ě	s ´Lln s s `1	inf kěR l ns´1	# 0 ď j ď k : k	`1
	ě	N ln s ´Lln s	
				j ns´1 : }T j x} ě εu s `1	`#tj ns´1 ď j ď s : }T j x} ě εu s `1
	ě	# 0 ď j ă j ns´1 : s	`1
		`#tj s `1

ns´1 ď j ď s :

The authors were supported by the grant ANR-17-CE40-0021 of the French National Research Agency ANR (project Front). 1

The inverse of T is U-frequently hypercyclic

In [START_REF] Grivaux | Linear dynamical systems on Hilbert spaces: typical properties and explicit examples[END_REF], a criterion for U-frequent hypercyclicity based on the study of periodic points has been given. We will use this one to determine under which conditions the inverse of T is U-frequently hypercyclic.

Theorem 3.1 ([8, Theorem 5.14]). Let T P BpXq. Assume that there exist a dense linear subspace X 0 of X with T pX 0 q Ď X 0 and X 0 Ď PerpT q, and a constant α P p0, 1q such that the following property holds true: for every x P X 0 and every ε ą 0, there exist z P X 0 and n ě 1 such that

(1) }z} ă ε;

(2) }T n`k z ´T k x} ă ε for every 0 ď k ď nα. Then T is chaotic and U-frequently hypercyclic.

We will apply this theorem to T ´1. We recall that every finite sequence is a periodic point of T and thus a periodic point of T ´1. Moreover, it follows from Proposition 2.2 that

where if j " b n `i with n P r2 k´1 , 2 k q and i P r1, ∆ pkq q,

Let n P r2 k´1 , 2 k q. Roughly speaking, the first block of 2 (for 1 ď i ď δ pkq ) will allow that the action of T ´1 on the coordinate e bn`δ pkq brings big coordinates in the blocks rb ϕ m pnq , b ϕ m pnq`1 q, at least if δ pkq is bigger than τ pkq . However, this approximation will be only acceptable when the effect of the coordinate e bn`δ pkq in the block rb n , b n`1 q will be sufficiently small. This will happen after δ pkq `ηpkq additional iterates thanks to the block of 1{2 for ∆ pkq ´δpkq ´ηpkq ď i ă ∆ pkq ´ηpkq and will last during η pkq additional iterates. In other words, when we will apply Theorem 3.1 to T ´1, the integer n will be of the order of 2δ pkq `ηpkq and the good approximation will last during a sufficiently long time if η pkq is not too small compared to δ pkq . Proposition 3.2. If lim δ pkq ´τ pkq " 8 and if lim inf k δ pkq η pkq ă 8, then T ´1 is U-frequently hypercyclic.

Proof. Let X 0 be the set of finite sequences, x P X 0 and ε ą 0. We choose k 0 ě 1 such that x may be written as

Proof. In view of Propositions 3.2 and 4.4, it suffices to show that there exists increasing sequences of parameters pτ pkq q, pδ pkq q, pη pkq q and p∆ pkq q satisfying ' τ pkq ě 2 k for every k ě 1 (see (2.1)); ' lim k δ pkq ´τ pkq " 8; ' the sequence pγ k q kě1 , defined by γ k :" 2 ´τ pkq `∆pkq ˘1´1 p , is a non-increasing sequence satisfying ř kě1 2 k γ 1{2 k ď 1; ' 4δ pkq `3η pkq ď ∆ pkq ď η pk`1q for every k ě 1; ' lim kÑ8 η pkq {∆ pkq " 0; ' lim kÑ8 δ pkq {η pkq " 0.

We can compute that the following choice of parameters satisfies each of these conditions if the constant C is chosen sufficiently large:

, δ pkq " 2 Ck 2 `1, η pkq " 2 2Ck 2 `1 and ∆ pkq " 2 2Ck 2 `k`4 .