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We study the so-called Hyperbolic Mean Curvature (HMC) flow introduced by LeFloch and Smoczyk in 2008 for the evolution of a closed hypersurface moving in the direction of its mean curvature vector. This flow stems from a geometrically natural action consisting of a kinetic energy and an internal energy. We study the initial value problem for this flow in the case of an entire graph (in arbitrary dimension) and we establish the existence of a (singular) self-similar solution and its nonlinear stability in a suitably weighted Sobolev space by relying on Nash-Moser iterations.

1 Introduction

Formulation of the problem The hyperbolic flow of interest

We are interested in the Hyperbolic Mean Curvature flow of a closed hypersurface moving in the direction of its mean curvature vector. This flow was introduced by LeFloch and Smoczyk in [START_REF] Lefloch | The hyperbolic mean curvature flow[END_REF] and can be described as follows. Let F : [0, T ] × M -→ R n+1 be a smooth family of immersions of an orientable manifold M of dimension n into R n+1 , and let ν be the unit normal vector defined along the hypersurface and chosen to be inward pointing (when the manifold is compact without boundary). In local coordinates (x i ) i=1,2,...,n , we can write

F i := ∇ i F := dF ∂ ∂x i = ∂F ∂x i , ν = F 1 ∧ . . . ∧ F n |F 1 ∧ . . . ∧ F n | .
For this hypersurfacen, let us introduce the total kinetic energy defined by

K(t) := 1 2 M | d dt F | 2 dµ t
and the total internal energy defined by

V (t) := 1 2 M |∇F | 2 dµ t = n 2 M dt.
Then, the action of interest reads

S(F ) := T 0 (K(t) -V (t)) dt = T 0 M 1 2 | d dt F | 2 - n 2 dµ t dt.
The Euler-Lagrange equation associated with this functional is as follows:

d 2 dt 2 F = eHν -∇e, (1.1) 
d dt F t=0 = 0,
in which H denotes the mean curvature of the hypersurface, ν is the unit normal, and e is the local energy density, with

|∇F | 2 = g ij < ∇ i F, ∇ j F >= g ij g ij = n e := 1 2 | d dt F | 2 + |∇F | 2 = 1 2 | d dt F | 2 + n . (1.
2)

The case of entire graphs

For an entire graph, we assume that F has the form F (t, x) = x(t), u(t, x(t)) (1.3) for a time dependent family of height functions u : [0, T ) × M -→ R and a family of diffeomorphisms x(t) = (x 1 (t), . . . , x n (t)) defined on the hyperplane

M = Z ⊥ = {(x 1 , . . . , x n+1 ) ∈ R n+1 : x n+1 = 0}.
The hyperbolic mean curvature flow for graphs over a flat hypersurface Z ⊥ is governed by the quasilinear wave equation

-u tt + (e( u t w )g ij + u 2 t w 2 (g ij -δ ij ))u ij + 2 u t w 2 δ ij u i u tj = 0, (1.4) 
where u tt := ∂ 2 u ∂t 2 , u tj := ∂ 2 u ∂t∂x j and

w := 1 + |Du| 2 = 1 + δ ij u i u j , g ij := δ ij -w -2 δ ik δ jl u k u l , e := 1 2 (| d dt F | 2 + n) = 1 2 u 2 t 1 + |Du| 2 + n .
(

1.5)

There exists a function σ and b = (u i ) i=1,...,n such that equation (1.4) recasting in a form of nonlinear hyperbolic system ∂σ ∂t -∂ ∂x j e(σ) b i w δ i,j = 0,

∂b i ∂t - ∂ ∂x i (σw) = 0,
which has a conservation form and is endowed with the entropy function

E(σ, b) = 1 2 (σ 2 + n) 1 + δ i,j b i b j .
Local-in-time well-posed is known for the graph equaton (1.4).

Theorem 1.1 (LeFloch and Smoczyk [START_REF] Lefloch | The hyperbolic mean curvature flow[END_REF]). Given any s > 1+ n 2 . and initial data (σ(0, x), b(0, x)) ∈ H s+1 (R n ) × H s (R n ), the graph equation (1.4) admits a classical solution u : [0,

T ) × R n → R in L ∞ ([0, T ), H s+1 (R n )) ∩ Lip([0, T ), H s (R n )).

Main result

In view of the above theorem, it is natural to investigate whether singular solutions do exist and whether they are stable. In this paper, we study the stability of self-similar singular solutions to the graph equation (1.4). We set |x| = r and u(t, x) = v(t, r) and the quasilinear wave equation (1.4) reduces to

-v tt + 1 2 ( v 2 t 1 + v 2 r + n)(v rr + n r v r - v rr v 2 r + r -1 v 3 r 1 + v 2 r ) - v 2 t (v rr v 2 r + r -1 v 3 r ) (1 + v 2 r ) 2 + 2 v t v tr v r 1 + v 2 r
= 0, t ∈ (0, T ).

(1.6)

We supplement equation (1.6) with an initial data, say v(0, r) = v 0 (r), v t (0, r) = v 1 (r), r ∈ (0, T ].

(1.7)

Let Ω = (0, T ) × (0, T -t) be the right-angled triangle domain.

If v(t, r) is a solution of (1.6)-(1.7), there exists an exact scaling invariance so that v(t, r) can be mapped to another solution given by v µ (t, r) = µv( t µ , r µ ), with µ > 0.

(1.8)

Under this acaling the conserved energy

E(u) = ∞ 0 ( 1 2 v 2 t + n 2 4 v 2 r + F (v t , v r ))rdr,
where

F (v t , v r ) = v 2 t 2(1 + v 2 r ) (v rr + n r v r - v rr v 2 + r -1 v 3 r 1 + v 2 r ) - n(v rr v 2 + r -1 v 3 r ) 2(1 + v 2 r ) - v 2 t (v rr v 2 r + r -1 v 3 r ) (1 + v 2 r ) 2 + 2 v t v tr v r 1 + v 2 r , (1.9) 
can be transformed as E(u µ ) = µE(u).

In general, the scaling (1.8) invariant Sobolev spaces are H sn × H sn-1 with the index s n = 1 + n 2 corresponds to the critical regularity. So we have an energy-supercritical case for any n ≥ 3. One expects smooth finite energy initial data to lead to finite time blow-up, and the blow up behavior should be described by the self-similar blow-up solution.

Namely, we will study the local behavior of self-similar solutions in the backward light-cone L T := {(t, r), t ∈ (0, T ), r ∈ (0, T -t]}.

We are in a position to state the main result in the present paper.

Theorem 1.2.

• Let κ ∈ (0, 1]. For any dimension n ≥ 3, the radial graph equation (1.6) admits a family of self-similar solutions

v T (t, r) = κ(T -t)φ( r T -t ) (1.10)
defined in the backward light-cone L T with φ( r T -t ) ∈ C ∞ ((0, 1]) and (φ(0), φ (0)) = (0, φ 1 ) (with φ 1 = 0).

• Furthermore, let k ≥ 3 be a fixed positive constant, and be a small positive constant and consider any v 0 , v 1 ∈ C ∞ ((0, T )) in (1.7). If

(v 0 , v 1 ) -(v T (0, •), v T t (0, •)) H k ((0,T ))×H k-1 ((0,T )) < , (1.11) 
then there exist small positive constants κ 0 and T such that for any fixed κ ∈ (0, κ 0 ], the problem (1.6)-(1.7) with the boundary condition v| ∂L T ≡ 0 and v r | ∂L T ≡ 0 admits a unique solution v = v(t, r) satisfying for all t ∈ (0, T )

(v(t, •), v t (t, •)) -(v T (t, •), v T t (t, •) H k ((0,T ))×H k-1 ((0,T )) |T -t| 2 .
(1.12)

Thoughout this paper, we denote the usual norm of L 2 ((0, T )) and H k ((0, T )) by • L 2 ((0,T )) and • H k ((0,T )) , respectively. For all real number k ≥ 0 and all γ ≥ 1, we introduce the weighted Sobolev space

H γ,k (Ω) := {v ∈ D (Ω)/(T -t) -γ v ∈ H k ((0, T ))}, (1.13) 
equipped with the norm

v H γ,k (Ω) := (T -t) -γ ∂ k v H k ((0,T )) , which is equivalent to the norm (T -t) -γ v H k ((0,T )) . The space L p γ ((0, T )) is the set of mea- surable functions v such that (T -t) -2γp v belongs to L p ((0, T )). The space L 2 ((0, T ); H γ,k (Ω)) is equipped with the norm v 2 L 2 ((0,T );H γ,k (Ω)) := T 0 v(t, •) 2 H γ,k (Ω) dt.
Furthermore, we introduce the function space

C l γ := 2 i=0 C i ((0, T ); H γ,l-i (Ω)) with the norm v 2 C l γ := sup t∈(0,T ) 2 i=0 ∂ i t v 2 H γ,l-i (Ω) ,
For convenience, we denote the weighted space H γ,k (Ω) by H γ,k . In Theorem 1.2, the solution v(t, r) is a regular solution of (1.6) in Ω. More precisely, the solution takes the form

v(t, r) = κ(T -t)φ( r T -t ) + w(t, r),
where w(t, r) satisfies one dimensional quasilinear wave equation with singular coefficient The equation for w is a quasilinear wave equation, and there is no special structure in nonlinear term. Although the linearized equation at self-similar solution κ(T -t)φ( r T -t ) is no "loss of derivative", there is "loss of derivative" in solving nonlinear equation. To overcome this difficulty, we have to rely on Nash-Moser iteration technique to construct an approximation solution w(t, r) in weighted Sobolev space H γ,k (Ω). Moreover, there should be a boundary condition on the right-angled triangle domain Ω. Here we supplement the boundary condition v| ∂L T ≡ 0 and v r | ∂L T ≡ 0. This is an important condition for getting suitable energy estimates to linearized equation. 

, ν(T -ν -1 t)φ( ν -1 r T -ν -1 t
) is also a solution of the radial graph equation (1.6). This implies that the blow up time can advance the time T . Remark 1.4. In fact, w(t, r) H 2,k (Ω) < ∞, that is, w(t, r) H k ((0,T )) |T -t| 2 . The order 2 of T -t is determined by energy estimates of linearized equation when we deal with the singular coefficient 1 T -t . Hence, the self-similar solution (T -t)φ( r T -t ) is stable in the sense that there exists an open set of radial initial data that leads to a solution which converges to φ as t → T - in the backward light-cone of the blow up point (t, r) = (T, 0). Remark 1.5. In Theorem 1.2, we impose a condition on the existence time T of solution to (1.4), i.e. T is required as a small parameter. It is a natural condition. Because the existence of solution is short time smooth as pointed out in [START_REF] Lefloch | The hyperbolic mean curvature flow[END_REF].

Here we deal with the case of dimensional n ≥ 3. When n = 2, there is degenerate in the coefficient n 2 -y 2 of linear operator, where y = r T -t ∈ [0, 1]. Obviously, y = 1 is the degenerate point. Hence it is still open problem on the case of two dimension to (1.4).

Further background

Hyperbolic mean curvature flow is a geometric and physical model describing the motion of closed hypersurface in Riemann manifold. One of simple application is an idealized mathematical model for a moving soap bubble. This flow is different from classical mean curvature flow, the motion of equation of it is hyperbolic equations. LeFloch and Smoczyk [START_REF] Lefloch | The hyperbolic mean curvature flow[END_REF] first established a hyperbolic mean curvature flow (1.1), which is a strickly hyperbolic equation when the tangential part vanishing. Local well-posed of classical solution and global existence of weak solution were given. Meanwhile, the solution is short time smooth. There exist many results on the local existence of smooth solutions and other properties of solutions; see [START_REF] He | Hyperbolic mean curvature flow[END_REF][START_REF] Nguyen | On smoothness of timelike maximal cylinders in three-dimensional vacuum spacetimes[END_REF][START_REF] Notz | Closed hypersurfaces driven by mean curvature and inner pressure[END_REF][START_REF] Yan | The motion of closed hypersurfaces in the central force fields[END_REF]. The analysis of singularities is an important topic in the study of nonlinear hyperbolic PDEs. There are many works on the analysis of singularities for the mean curvature flow [START_REF] Chen | Two-dimensional graphs moving by mean curvature flow[END_REF][START_REF] Colding | Rigidity of generic singularities of mean curvature flow[END_REF][START_REF] Colding | Uniqueness of blowups and Lojasiewicz inequalities[END_REF][START_REF] Colding | The singular set of mean curvature flow with generic singularities[END_REF][START_REF] Li | The blow-up locus of heat flows for harmonic maps[END_REF]. In the present paper, we study the existence of self-similar blow up solutions to the graph equation (1.4) of hyperbolic mean curvature flow (1.1). In dealing with the nonlinear stability of self-similar to quasilinear wave equation (1.4), we can not use the semigroup method [START_REF] Donninger | On stable self-similar blow up for equivariant wave maps[END_REF][START_REF] Donninger | On stable self-similar blow up for equivariant wave maps: the linearized problem[END_REF]. Since there is a loss of derivative in dealing with nonlinear terms, the fixed point theory cannot be applied. This means that it does not work when we transform this problem into asymptotic stability problem in self-similar coordinates. So we have to use Nash-Moser iteration scheme to overcome this difficulty, as was used also in [START_REF] Yan | The motion of closed hypersurfaces in the central force fields[END_REF].

The organization of this paper is as follows. In Section 2, we show the existence of self-similar solutions to equation (1.4). In section 3, we first analyze the linearized graph equation (1.4) around the self-similar solution, which is a quasilinear wave equation with singular coefficients. Then the local existence of solution and some useful energy estimates of it are given. Then the nonlinear stability is proven by a Nash-Moser iteration scheme.

2 Existence of self-similar solutions

Objective

In this section, we prove there exists a self-similar solution to equation (1.4). It is natural to look for self-similar solutions of the form

v(t, r) = κ(T -t)φ( r T -t ), (2.1) 
where T is a positive constant, and κ ∈ (0, 1]. We deal with the case of κ = 1. When κ ∈ (0, 1), it can be directly derived by using the same process of proof with the case of κ = 1. So we discuss it in the last of this section. Inserting the Ansatz (2.1) with κ = 1 into (1.6) by observing

∂ t v(t, r) = -φ(ρ) + ρφ (ρ), ∂ tt v(t, r) = (T -t) -1 ρ 2 φ (ρ), ∂ r v(t, r) = φ (ρ), ∂ rr v(t, r) = (T -t) -1 φ (ρ), ∂ tr v(t, r) = (T -t) -1 ρφ (ρ), the profile function φ satisfies a quasilinear ODE ( n 2 -y 2 )φ + n 2 2y φ + 1 2 (-φ + yφ ) 2 1 + φ 2 (φ + ny -1 φ - φ φ 2 + y -1 φ 3 1 + φ 2 ) - nφ φ 2 + ny -1 φ 3 2(1 + φ 2 ) - (-φ + yφ ) 2 (φ φ 2 + y -1 φ 3 ) (1 + φ 2 ) 2 + 2φ (-φ + yφ )((y -1)φ + y 2 φ ) 1 + φ 2 = 0, (2.2) 
with initial data

φ(0) = φ 0 = 0, φ (0) = φ 1 = 0, (2.3) 
where y = r T -t and = d dy . Obviously, equation (2.2) is singular at y = 0, this is due to the breakdown of spherical coordinates at the origin. We concern with the existence of smooth solutions in y ∈ [0, 1]. The mth derivative of solution to (2.2) at origin has the form

∂ m ∂r m φ( r T -t )| r=0 = (T -t) -m d m φ dy m (0).
Note that the closed interval y ∈ [0, 1] correponds to the interior of the past light cone of the point (t, r) = (T, 0). Hence every self-similar solution φ(y) ∈ C ∞ ([0, 1]) is an example of a singularity developing in finite time from smooth initial data.

A priori estimate

Obviously, (2.2) can be rewritten as

( n 2 -y 2 )φ + n 2 2y φ + [(-φ + yφ ) 2 (1 -2φ 2 ) + ((2y 3 -n)φ 2 -2yφ φ)(1 + φ 2 )]φ 2(1 + φ 2 ) 2 + (-φ + yφ ) 2 2y(1 + φ 2 ) (nφ - φ 3 1 + φ 2 ) - nφ 3 2y(1 + φ 2 ) + (-φ + yφ ) 2 φ 3 y(1 + φ 2 ) 2 + 2(y -1)φ 2 (-φ + yφ ) 1 + φ 2 = 0, (2.4) 
which has a singularity at y = 0. This singularity correspond to the outgoing light cone {(t, r) : |r| = t, t > 0} and the incoming light cone {(t, r) : |r| = -t, t < 0} respectively. By the self-similar tranformation, the backward light-cone L T is transformed into LT := {(t, y), t ∈ (0, T ), y ∈ [0, 1]}.

We are now giving a priori estimate on φ (y) and φ (y) for y ∈ [0, 1].

Lemma 2.1. Assume that φ(y) is a local solution of (2.4) with y ∈ (0, 1). Then φ (y) and yφ (y) are bounded with y ∈ (0, 1). Furthermore, lim y→0 + φ(y) and lim y→0 + φ (y), lim y→1 -φ(y) and lim y→1 -φ (y) exist.

Proof. Let y 0 ∈ (0, 1) be near 1, and y 0 ∈ (0, 1) be near 0. To prove this result, we only need to prove φ (y) is bounded in (0, y 0 ), [y 0 , y 0 ] and (y 0 , 1), repectively. First, we show that |φ | is bounded in [y 0 , y 0 ]. For al ỹ ∈ [y 0 , y 0 ], we consider the interval B 1 = (ỹ -δ, ỹ + δ) with 0 < δ 1. In the interval B 1 , multiplying both sides of (2.4) with φ , we get

d dy (( n 2 -y 2 )|φ | 2 ) + (y + n 2 2y )|φ | 2 + [(-φ + yφ ) 2 (1 -2φ 2 ) + ((2y 3 -n)φ 2 -2yφ φ)(1 + φ 2 )]φ φ 2(1 + φ 2 ) 2 + (-φ + yφ ) 2 2y(1 + φ 2 ) (n|φ | 2 - |φ | 4 1 + φ 2 ) - n|φ | 4 2y(1 + φ 2 ) + (-φ + yφ ) 2 |φ | 4 y(1 + φ 2 ) 2 + 2(y -1)|φ | 3 (-φ + yφ ) 1 + φ 2 = 0. (2.5)
By the definition of derivative, for all y ∈ B 1 , there exists a small positive constant δ < m 1 such that my ∈ B 1 , and

|φ (y)| < | φ ((m + 1)y) -φ (y) my | + δ ≤ |φ ((m + 1)y)| + |φ (y)| my + δ. (2.6) 
We observe that it follows from the inequality ab ≤ a p p + b q q with a, b > 0 and 

1 p + 1 q = 1 that |φ 2 (y)φ (y)| ≤ 2 3 |φ| 3 + 1 3 |φ | 3 , (2.7 
+ |(φ (y)) 2 (-φ(y) + yφ (y)) 2 | my +δ|(-φ(y) + yφ (y)) 2 φ (y)| ≤ c m -1 ,δ (|φ| 3 + |φ | 3 + |φ| 4 + |φ | 4 ), (2.9) 
where c m -1 ,δ is a positive constant depending on m -1 and δ.

Similarly,

| (φ -yφ ) 2 φ φ 2 2(1 + φ 2 ) 2 | ≤ c m -1 ,δ (|φ| 4 + |φ| 6 + |φ | 2 + |φ | 4 + |φ | 6 ), (2.10) 
| ((2y 3 -n)φ 2 -2yφ φ)φ φ 2(1 + φ 2 ) | ≤ c m -1 ,δ (|φ| 4 + |φ| 6 + |φ | 2 + |φ | 4 + |φ | 6 ), (2.11) 
Thus by (2.9)-(2.11), we have

| [(-φ + yφ ) 2 (1 -2φ 2 ) + ((2y 3 -n)φ 2 -2yφ φ)(1 + φ 2 )]φ φ 2(1 + φ 2 ) 2 | ≤ c m -1 ,δ (|φ| 2 + |φ| 4 + |φ | 2 + |φ | 4 + |φ | 6 ).
(2.12)

Again by Young's inequality and the inequality ab ≤ a p p + b q q with a, b > 0 and 1 p + 1 q = 1, we can derive

| (-φ + yφ ) 2 2y(1 + φ 2 ) (n|φ | 2 - |φ | 4 1 + φ 2 )| |φ| 2 + |φ | 2 + |φ| 4 + |φ | 4 , (2.13) 
| n|φ | 4 2y(1 + φ 2 ) | |φ | 4 , (2.14) 
| (-φ + yφ ) 2 |φ | 4 y(1 + φ 2 ) 2 | |φ| 2 + |φ| 4 + |φ | 6 , (2.15) 
| 2(y -1)|φ | 3 (-φ + yφ ) 1 + φ 2 | |φ| 4 + |φ | 4 . (2.16)
Hence, by (2.5) and (2.12)-(2.16), there exists a positive constant c m -1 ,δ depending on m -1 and δ such that

d dy (( n 2 -y 2 )|φ | 2 ) ≤ c m -1 ,δ |φ| 2 + |φ | 2 + |φ| 4 + |φ | 4 + |φ | 6 .
(2.17)

Since n ≥ 3, n 2 -y 2 > 0. Integrating (2.17) over (ỹ -δ, y) with y ∈ (ỹ -δ, ỹ + δ), ( n 2 -y 2 )|φ (y)| 2 -( n 2 -y 2 )|φ (ỹ -δ)| 2 ≤ c m -1 ,δ y ỹ-δ |φ| 2 + |φ | 2 + |φ| 4 + |φ | 4 + |φ | 6 dy ≤ c m -1 ,δ ỹ+δ ỹ-δ |φ| 2 + |φ | 2 + |φ| 4 + |φ | 4 + |φ | 6 dy.
(2.18)

Using Poincaré inequality, it follows from (2.18) that

( n 2 -y 2 )|φ | 2 ≤ ( n 2 -y 2 )||φ (ỹ -δ)| 2 + c m -1 ,δ ỹ+δ ỹ-δ |φ | 2 + |φ | 4 + |φ | 6 dy + c m -1 ,ỹ,δ , (2.19) 
where c m -1 ,ỹ,δ is a positive constant depending on m -1 , ỹ and δ. Since it needs φ(ỹ

-δ) = 0 in the proof of Poincaré inequality, c m -1 ,ỹ,δ appears in (2.19). Integrating (2.19) over (ỹ -δ, ỹ + δ), we derive φ 2 0 ≤ 2δ|φ (ỹ -δ)| 2 + 2δc m -1 ,ỹ,δ ( φ 2 0 + φ 4 0 + φ 6 0 ) + 2δc m -1 ,ỹ,δ , (2.20) 
where c m -1 ,ỹ,δ is a positive constant depending on m -1 , ỹ and δ. Let z = φ 2 0 > 0. Inequality (2.20) gives us

P 0 (z) := -2δc m -1 ,ỹ,δ (z + z 2 + z 3 ) + z -c m -1 ,ρ,δ,|φ(ỹ-δ)| ≤ 0, (2.21) 
where c m -1 ,ỹ,δ,|φ(ỹ-δ)| is a positive constant depending on m -1 , ỹ, δ and |φ(ỹ -δ)|.

Since we have chosen 0 < δ < m 1, there exists a suitable δ such that 2δc m -1 ,ỹ,δ < 1. Furthermore, there is a greatest root z0 of the function of P 0 (z) such that z ≤ z0 , i.e. φ 2 0 ≤ z0 . So for any y ∈ (ỹ -δ, ỹ + δ), it holds

|φ| = | y ỹ-δ φ dy + φ(ỹ -δ)| ≤ | ỹ+δ ỹ-δ φ dy| + |φ(ỹ -δ)| ≤ φ 0 + |φ(ỹ -δ)| ≤ z 1 2 0 + |φ(ỹ -δ)|, which means there exists a positive constant M 0 such that |φ| ≤ M 0 . (2.22)
On the other hand, combining with (2.17) and (2.22), we have

d dy |φ | 2 (φ ) 6 + (φ ) 4 + (φ ) 2 + M 4 0 + M 2 0 , (2.23) Thus by (2.23), 2|φ | 2 d dy |φ | 2 ((φ ) 6 + (φ ) 4 + (φ ) 2 + M 4 0 + M 2 0 ) |φ | 2 , (2.24)
and an integration of (2.24) yields

|φ | 2 ỹ-δ ds (s 3 + s 2 + s + M 4 0 + M 2 0 ) y ỹ-δ |φ | 2 dy z0 . (2.25) Note that +∞ ỹ-δ ds (s 3 + s 2 + s + M 4 0 + M 2 0 ) = +∞.
Hence (2.25) holds only for 

|φ | ≤ M 0 , y ∈ (ỹ -δ, ỹ + δ). ( 2 
|φ | ≤ M i , y ∈ B i ,
Thus we conclude that there exists a positive constant

M = max{M 0 , M 1 , . . . , M N } such that |φ | ≤ M i , y ∈ [y 0 , y 0 ].
Next we prove φ is bounded in (0, y 0 ) and (y 0 , 1). For any y ∈ (0, y 0 ) or y ∈ (y 0 , 1), we claim that

|φ (y)| ≤ max{z 0 , |φ (y 0 )|}, (2.27) 
where z 0 is a positive constant such that the polynomial with order 6

P 1 (z) := a 1 z 6 + a 2 z 5 + a 3 z 4 + a 4 z 3 + a 5 z 2 + a 6 z + a 7 ≤ 0 holds for |z| ≤ z 0 . a i (i = 1, 2, . . . , 7 
) denote the coefficients, and a 1 , a 7 > 0. Assume there exists y 1 such that |φ (y 1 )| > |φ (y 0 )| with y 1 > y 0 . Then there must be |φ (y)| ≤ z 0 for all y ∈ [y 0 , y 1 ]. To prove this, assume that there exists a point y 2 ∈ (y 0 , y 1 ] such that |φ (y 2 )| = sup y∈[y 0 ,y 1 ] |φ (y)|. For a sufficient small positive constant δ and for all y ∈ (y 2 -δ, y 2 ], it follows from (2.5) that

0 ≤ d dρ (( n 2 -y 2 )|φ | 2 ) = -(y + n 2 2y )|φ | 2 - [(-φ + yφ ) 2 (1 -2φ 2 ) + ((2y 3 -n)φ 2 -2yφ φ)(1 + φ 2 )]φ φ 2(1 + φ 2 ) 2 - (-φ + yφ ) 2 2y(1 + φ 2 ) (n|φ | 2 - |φ | 4 1 + φ 2 ) + n|φ | 4 2y(1 + φ 2 ) - (-φ + yφ ) 2 |φ | 4 y(1 + φ 2 ) 2 - 2(y -1)|φ | 3 (-φ + yφ ) 1 + φ 2 , which gives (y + n 2 2y )|φ | 2 + [(-φ + yφ ) 2 (1 -2φ 2 ) + ((2y 3 -n)φ 2 -2yφ φ)(1 + φ 2 )] (1 + φ 2 ) 2 d dy |φ | 2 + (-φ + yφ ) 2 |φ | 2 2y(1 + φ 2 ) (n - |φ | 2 1 + φ 2 ) - n|φ | 4 2y(1 + φ 2 ) + (-φ + yφ ) 2 |φ | 4 y(1 + φ 2 ) 2 + 2(y -1)|φ | 3 (-φ + yφ ) 1 + φ 2 ≤ 0, y ∈ (y 2 -δ, y 2 ],
which means that

(y + n 2 2y )|φ | 2 + [(-φ + yφ ) 2 (1 -2φ 2 ) + ((2y 3 -n)φ 2 -2yφ φ)(1 + φ 2 )] (1 + φ 2 ) 2 d dy |φ | 2 - n|φ | 4 2y(1 + φ 2 ) + 2(y -1)|φ | 3 (-φ + yφ ) 1 + φ 2 ≤ 0, y ∈ (y 2 -δ, y 2 ]. (2.28)
By setting z := |φ |, the inequality (2.28) tells us that there exists a polynomial with order 6 such that

P 1 (z) = a 1 z 6 + a 2 z 5 + a 3 z 4 + a 4 z 3 + a 5 z 2 + a 6 z + a 7 ≤ 0, (2.29) 
where

a 1 = y + n(n -1) 2y + 2sgn(φ )y(y -1), a 2 = 2(1 -y)φ, a 3 = 2y + n 2 y -(n + y 2 ) dz 2 dy + 2sgn(φ )(y -1)y, a 4 = [2sgn(φ )y dz 2 dy + 2(1 -y)]φ - n 2y , a 5 = y + n 2 2y + (y 2 -n 2 -φ 2 + 2y 3 ) dz 2 dy , a 6 = -2yφ(1 + y) dz 2 dy , a 7 = φ 2 dz 2 dy . Note that y ∈ [0, 1], n ≥ 3 and dz 2 dy > 0 in (y 2 -δ, y 2 ]
. The coefficients a 1 > 0 and a 7 > 0. Thus if z is unbounded, then inequality (2.29) does not hold. Hence there exists a positive constant z 0 such that (2.29) holds for |z| ≤ z 0 , i.e. |φ | ≤ z 0 . So (2.27) holds, and |φ | is bounded in (0, 1).

To see the boundedness of |φ | in [δ.1), by (2.4) and the boundedness of |φ | in [δ, 1), we have

y|( n 2 -y 2 ) + [(-φ + yφ ) 2 (1 -2φ 2 ) + ((2y 3 -n)φ 2 -2yφ φ)(1 + φ 2 )] 2(1 + φ 2 ) 2 ||φ | ≤ c, (2.30) 
where c denotes a postive constant.

So |φ | is bounded in [δ, 1) for 0 < δ 1. Otherwise, if |φ | is unbounded for y ∈ (0, δ), (2.30) means that |φ | is at most |φ | ∼ y -1+ν for ν > 0. Because if |φ | ∼ y -1 or |φ | ∼ y -ν with ν > 1, then |φ | is unbounded in (0, δ).
This contradicts with |φ | being bounded in (0, 1). Hence, yφ is bounded in (0, 1).

Since φ is integrable on (0, δ) and (1 -δ, 1) with 0 < δ 1, lim ρ→0 + φ(ρ) and lim ρ→1 -φ(ρ) exist and we denote them by φ 0 + and φ 1 -, respectively. Equation (2.4) can be rewritten as

y( n 2 -y 2 )φ = Φ(y, φ, φ ), (2.31) 
where

Φ(y, φ, φ ) = - n 2 2 φ - y[(-φ + yφ ) 2 (1 -2φ 2 ) + ((2y 3 -n)φ 2 -2yφ φ)(1 + φ 2 )]φ 2(1 + φ 2 ) 2 - (-φ + yφ ) 2 2(1 + φ 2 ) (nφ - φ 3 1 + φ 2 ) + nφ 3 2(1 + φ 2 ) - (-φ + yφ ) 2 φ 3 (1 + φ 2 ) 2 - 2y(y -1)φ 2 (-φ + yφ ) 1 + φ 2 .
(2.32)

To see lim y→0 + φ (y) existence, let φ 0 + = lim inf y→0 + φ (y) and φ

0 + = lim sup y→0 + φ (y), if φ 0 + < φ 0 + , then we can take y = 0, φ = φ 0 + and φ = (φ * ) 0 + ∈ ( φ 0 + , φ 0 + ) in (2.32) such that Φ(0, φ 0 + , (φ * ) 0 + ) = - n 2 2 (φ * ) 0 + - φ 2 0 + 2(1 + ((φ * ) 0 + ) 2 ) (n(φ * ) 0 + + 2((φ * ) 0 + ) 3 1 + ((φ * ) 0 + ) 2 ) + n((φ * ) 0 + ) 3 2(1 + ((φ * ) 0 + ) 2 ) = 0.
Without loss of generality, assume Φ(0, φ 0 + , (φ * ) 0 + ) > 0. By the continuity of Φ and 1+φ 2 > 0, we get φ > 0 with φ (y) = (φ * ) 0 + in y ∈ (0, δ). This means φ is an increasing function in y ∈ (0, δ). Thus there must be φ (y) > (φ * ) 0 + or φ (y) ≤ (φ * ) 0 + for all y ∈ (0, y * ), where y * is a point in (0, δ). Both cases contradict with φ 0 + < (φ * ) 0 + < φ 0 + . So φ 0 + = φ 0 + , i.e. lim y→0 + φ (y) existence. Using the same process, we can obtain the existence of lim y→1 -φ (y) by observing (2.31). Consequently, let y → 0 + in (2.31),

- n 2 2 φ (0 + ) - φ 2 (0 + ) 2(1 + (φ (0 + )) 2 ) (nφ (0 + ) + 2(φ (0 + )) 3 1 + (φ (0 + )) 2 ) + n(φ (0 + )) 3 2(1 + (φ (0 + )) 2 ) = 0.

Existence of solutions to a nonlinear ODE

Assume that φ is a solution of (2.4) with initial data (2.3). Multiplying both sides of (2.4) by y α with α > 1, then integrating it,

φ (y) = y -α-1 ( n 2 -y 2 ) -1 y 0 s α [F (s, φ, φ , φ ) -( n 2 2 + 2s 2 )φ + (α + 1)( n 2 -s 2 )]ds, (2.33)
where

F (s, φ, φ , φ ) = - s[(-φ + sφ ) 2 (1 -2φ 2 ) + ((2s 3 -n)φ 2 -2sφ φ)(1 + φ 2 )]ψ 2(1 + φ 2 ) 2 - (-φ + sφ ) 2 2(1 + φ 2 ) (nφ - φ 3 1 + φ 2 ) + nφ 3 2(1 + φ 2 ) - (-φ + sφ ) 2 φ 3 (1 + φ 2 ) 2 - 2s(s -1)φ 2 (-φ + sφ ) 1 + φ 2 . (2.34) Let ψ(y) = φ (y) -φ 0 . Then ψ(0) = 0 and φ(y) = φ 0 + φ 0 y + y 0 ψ(s)ds. Define L(ψ) := y -α-1 ( n 2 -y 2 ) -1 y 0 s α [F (s, φ 0 + φ 0 s + s 0 ψ(s )ds , ψ, ψ ) -( n 2 2 + 2s 2 -(α + 1)( n 2 -s 2 ))ψ]ds. (2.35)
So finding the solution of (2.33) is equivalent to finding the fixed point ψ(y) of

L(ψ(y)) = ψ(y). (2.36) Lemma 2.2. Equation (2.36) with smooth initial data (2.3) has a unique solution φ ∈ C 2 ((0, 1])∩ C 1 ([0, 1]). Moreover, for a fixed 0 < µ 1, the solution φ ∈ C ∞ ([µ, 1]).
Proof. Recall that φ = φ 0 + φ 0 s + s 0 ψ(s )ds . By Lemma 2.1, there is a postive constant M 0 depending on n, α, φ 0 , φ 0 and the bound of |φ|, |φ | and yφ (y) in [0, 1] such that

|F (s, φ, ψ, ψ ) -( n 2 2 + 2s 2 -(α + 1)( n 2 -s 2 ))ψ| = | - [(-φ + sψ) 2 (1 -2ψ 2 ) + ((2s 3 -n)ψ 2 -2sψφ)(1 + ψ 2 )]ψ 2(1 + ψ 2 ) 2 - (-φ + sψ) 2 2(1 + ψ 2 ) (nψ - ψ 3 1 + ψ 2 ) + nψ 3 2(1 + ψ 2 ) - (-φ + sψ) 2 ψ 3 (1 + ψ 2 ) 2 - 2(s -1)ψ 2 (-φ + sψ) 1 + ψ 2 -( n 2 2 + 2s 2 -(α + 1)( n 2 -s 2 ))ψ| ≤ M 0 , which gives (for n ≥ 3) |L(ψ)| ≤ M 0 |y -α-1 ( n 2 -y 2 ) -1 y 0 s α ds| ≤ M 0 ( n 2 -1) -1 (1 + α) -1 .
So there exists a

M 1 = M 0 ( n 2 -1) -1 (1 + α) -1 such that L(ψ) ∈ C M 1 ([0, 1]) := {ψ ∈ C 2 ([0, 1]) : |ψ| ≤ M 1 }.
If there are ψ 1 and ψ 2 in C M 1 ([0, 1]), then by (2.35) and Lemma 2.1, direct computation shows that

|F (s, φ 1 , ψ 1 , ψ 1 ) -F (s, φ 2 , ψ 2 , ψ 2 )| ≤ | - [(-φ 1 + sψ 1 ) 2 (1 -2ψ 2 1 ) + ((2s 3 -n)ψ 2 1 -2sψ 1 φ 1 )(1 + ψ 2 1 )]ψ 1 2(1 + ψ 2 1 ) 2 + [(-φ 2 + sψ 2 ) 2 (1 -2ψ 2 2 ) + ((2s 3 -n)ψ 2 2 -2sψ 2 φ 2 )(1 + ψ 2 2 )]ψ 2 2(1 + ψ 2 2 ) 2 | +| - (-φ 1 + sψ 1 ) 2 2(1 + ψ 2 1 ) (nψ 1 - ψ 3 1 1 + ψ 2 1 ) + (-φ 2 + sψ 2 ) 2 2(1 + ψ 2 2 ) (nψ 2 - ψ 3 2 1 + ψ 2 2 )| +| nψ 3 1 2(1 + ψ 2 1 ) - nψ 3 2 2(1 + ψ 2 2 ) | + | - (-φ 1 + sψ 1 ) 2 ψ 3 1 (1 + ψ 2 1 ) 2 + (-φ 2 + sψ 2 ) 2 ψ 3 2 (1 + ψ 2 2 ) 2 | +| - 2(s -1)ψ 2 1 (-φ 1 + sψ 1 ) 1 + ψ 2 1 + 2(s -1)ψ 2 2 (-φ 2 + sψ 2 ) 1 + ψ 2 2 | |φ 1 -φ 2 | + |ψ 1 -ψ 2 |, which gives |L(ψ 1 ) -L(ψ 2 )| ≤ y -α-1 ( n 2 -y 2 ) -1 y 0 s α [|F (s, φ 0 + φ 0 s + s 0 ψ 1 (s )ds , ψ 1 , ψ 1 ) -F (s, φ 0 + φ 0 s + s 0 ψ 2 (s )ds , ψ 2 , ψ 2 )| +| n 2 2 + 2s 2 -(α + 1)( n 2 -s 2 )||ψ 1 -ψ 2 |]ds y -α-1 ( n 2 -y 2 ) -1 y 0 s α ( s 0 |ψ 1 -ψ 2 |ds + |ψ 1 -ψ 2 |)ds 1 α + 1 ψ 1 -ψ 2 .
So we can choose a suitable positive constant α such that

|L(ψ 1 ) -L(ψ 2 )| ≤ β ψ 1 -ψ 2 ,
where β ∈ (0, 1) is a positive constant depending on α -1 .

Hence by Banach fixed point theorem, there is a unique solution ψ ∈ C 2 ([0, 1]) such that (2.36) holds.

To see the smoothness of solution in [µ, 1] with a fixed 0 < µ 1, by (2.4),

φ = -( n 2 -y 2 ) -1 [ n 2 2y φ + [(-φ + yφ ) 2 (1 -2φ 2 ) + ((2y 3 -n)φ 2 -2yφ φ)(1 + φ 2 )]φ 2(1 + φ 2 ) 2 + (-φ + yφ ) 2 2y(1 + φ 2 ) (nφ - φ 3 1 + φ 2 ) - nφ 3 2y(1 + φ 2 ) + (-φ + yφ ) 2 φ 3 y(1 + φ 2 ) 2 + 2(y -1)φ 2 (-φ + yφ ) 1 + φ 2 ],
it is obviously that there is no singular point in the right hand side of above equation, and which is smooth in [µ, 1]. So we conculde that φ is smooth in [µ, 1].

Lemma 2.3. The self-similar profile φ(y) of (2.4) has at least 1th derivative at the origin diverges as t → T -.

Proof. Since quasilinear ODE (2.4) has intial data (2.3), the solution constructed in Lemma 2.2 is a non-trivial solution. Moveover, the solution can not be of the form φ(y) = c 0 + c 1 y, where c 0 and c 1 = 0 are two constants. By contradition, one can substitute it into (2.4), then

1 2y [n 2 c 1 + c 2 0 1 + c 2 1 (nc 1 - c 3 1 1 + c 2 1 ) - nc 3 1 1 + c 2 1 + 2c 2 0 c 3 1 (1 + c 2 1 ) 2 ] + 2(y -1)c 2 0 c 2 1 1 + c 2 1 = 0,
which is not possible unless c 1 = 0. This contradicts with c 1 = 0.

Remark 2.4. Lemma 2.3 tells us that

∂ ∂r v( r T -t )| r=0 = (T -t) -1 dφ dy (0) = c 1 (T -t) -1 -→ ∞, as t → T -.

Regularity property near y = 0

Since there are singular coefficients in the nonlinear term of equation (2.2), we have to analyze the smooth property of solution to equation (2.2) near y = 0.

Lemma 2.5. Let β > 1. Assume that φ is a solution of equation (2.2) with y ∈ (0, µ), for a fixed 0 < µ 1. Then φ(y) is smooth at least as y β+1 in (0, µ).

Proof. We make a rescaling to check the smoothness of φ(y) near 0. Let φ = y -β φ , then φ = -βy -β-1 φ + y -β φ and φ = y 0 s β φdy by φ 0 = 0, for β > 1. Substituting φ into equation (2.2), we get a first order ODE

y β ( n 2 -y 2 ) φ + y β-1 [β( n 2 -y 2 ) + n 2 2 β] φ + (- y 0 s β φds + y β+1 φ) 2 (1 -2y β φ2 )(βy β-1 φ + y β φ) 2(1 + y 2β φ2 ) 2 + [(2y 3 -n)y 2β φ2 -2y β+1 φ y 0 s β φds](βy β-1 φ + y β φ) 2(1 + y 2β φ2 ) + (- y 0 s β φds + y β+1 φ) 2 2(1 + y 2β φ2 ) (ny β-1 φ - y 3β-1 φ3 1 + y 2β φ2 ) - ny 3β-1 φ 2(1 + y 2β φ2 ) + y 3β-1 (- y 0 s β φds + y β+1 φ) 2 φ3 1 + y 2β φ2 + 2(y -1)y 2β φ2 (- y 0 s β φds + y β+1 φ) 1 + y 2β φ2 = 0,
which combining with φ bounded gives y β+1 φ y β φ, f or y ∈ (0, µ).

From above inequality, we know that φ ∼ y. Thus y -β φ = φ ∼ y. Hence φ near y = 0 is smooth at least as y β+1 .

Remark 2.6. Since there is a singular coefficient y -1 in the right hand side of equation (2.2), the solution φ (y) may be not smooth near y = 0. If the smooth initial data φ(0, r) = φ 0 = 0, using the same proof process in Lemma 2.5, we can show φ behaves as y -1 near y = 0.

Obviously, this means that φ is not smooth at y = 0. To get the smoothness of βth derivative φ (β) , by setting φ(0, r) = φ 0 = 0, then Lemma 2.5 tells us that φ (β) (y) is smooth at least as y for β ∈ N + . Now we conclude our main result in this section.

Theorem 2.7. The quasilinear ODE (2.2) with smooth initial data (2.3) has a unique smooth solution φ ∈ C ∞ ((0, 1]).

Furthermore, we take self-similar solutions of the form

v(t, r) = κ(T -t)φ( r T -t ),
where T is a positive constant, and κ ∈ (0, 1) is a positive constant which can be seen as a parameter. Inserting this Ansatz into (1.6), the profile function φ satisfies a quasilinear ODE

( n 2 -y 2 )φ + n 2 2y φ + κ 2 2 (-φ + yφ ) 2 1 + φ 2 (φ + ny -1 φ - κ 2 (φ φ 2 + y -1 φ 3 ) 1 + κ 2 φ 2 ) - nκ 2 (φ φ 2 + y -1 φ 3 ) 2(1 + κ 2 φ 2 ) - κ 4 (-φ + yφ ) 2 (φ φ 2 + y -1 φ 3 ) (1 + κ 2 φ 2 ) 2 + 2κ 2 φ (-φ + yφ )((y -1)φ + y 2 φ ) 1 + κ 2 φ 2 = 0, (2.37) 
with smooth initial data (2.3). Then using the similar proof of Theorem 2.7, we obtain the following result.

Theorem 2.8. Let κ ∈ (0, 1). The quasilinear ODE (2.37) with smooth initial data (2.3) has a unique smooth solution φ ∈ C ∞ ((0, 1]).

3 Nonlinear stability of self-similar solutions

Preliminaries

In this section, we study the nonlinear stability of self-similar solution of radial type graph equation (1.6) to hyperbolic mean curvature flow (1.1). We solve this problem inside backward light cone

L T := {(t, r), t ∈ (0, T ), r ∈ (0, T -t]},
and do not transform it into asymptotic stability of φ(y) under self-similar coordinates. In self-similar coordinates, the backward light cone L T is transformed into an infinite cylinder and the blow up point is shifted towards ∞. Then the stability of self-similar solution is equivalent to the asymptotic stability of steady solution. One can see R.Donninger [START_REF] Donninger | On stable self-similar blow up for equivariant wave maps[END_REF] for this idea on the stability of self-similar solutions to wave map. Otherwise, if we consider the stability of self-similar solution under self-similar coordinates, there are some troubles in solving global existence of one dimensional quasilinear wave equation. In order to overcome "loss of derivative", we have to study the stability of self-similar solution in backward light cone L T by using Nash-Moser iteration technique in weighted Sobolev space H 2,1 . Due to the involved structure of the equation (1.6), it is hard to carry out analysis of the linearized equation. So we have to get rid of the fraction term (1 + v 2 r ) 2 by multiplying both sides of equation (1.6) by ( 

1 + v 2 r ) 2 , equation (1.6) is transformed into -v tt + n 2 v rr + n 2 2r v r -v tt v 2 r (2 + v 2 r ) + 1 2 v 2 t (v rr + n r v r -2v rr v 2 r + n -3 r v 3 r ) + n 2 v 2 r (v rr + 2n -1 r v r + n -1 r v 3 r ) + 2v t v tr v r (1 + v 2 r ) = 0. ( 3 
where the nonlinear term f (φ, φ , φ , w t , w tt , w r , w rr , w tr , t, r) depends on the the coefficients φ, φ ,φ and singular coefficients 1 T -t and 1 r , which means that it is degenerate at the blow up point (t, r) = (T, 0). It contains the quadratic terms w 2 r , w 2 t , w tt w r , w t w rr , w t w r , w r w rr and w t w tr the cubic terms w 3 r , w tt w 2 r , w 2 t w rr , w r w 2 t , w 2 r w rr , w t w 2 r , w t w r w rr and w t w r w tr , the four terms w 4 r , w tt w 3 r , w 2 t w 2 r , w t w rr w 2 r , w 2 t w r w rr , w t w 3 r , w tr w 3 r , w t w 3 r and w t w tr w 2 r , the five terms w 5 r , w tt w 4 r , w rr w 2 t w 2 r , w 2 t w 3 r and w t w tr w 3 r . Moreover, it satisfies |f (φ, φ , φ , w t , w tt , w r , w rr , w tr , t, r)|

( 1 T -t + 1 r ) (|w r | 2 + |w r | 3 + |w r | 4 + |w r | 5 + |w r | 6 + |w r | 8 + w 2 t + w 4 t + w 2 tt + w 2 tr + w 4 tr ) , (3.3 
) which is proven in Appendix, and the coefficients

a(t) = 1 + κφ (2 + κ 2 φ 2 ), (3.4) b(t, r) = 1 2 [n + κ 2 (φ - r T -t φ ) 2 (1 -2κ 2 φ 2 ) + nκ 2 φ 2 ], (3.5) 
c(t, r) = n 2 2r -4κ 2 r 2 (T -t) 3 φ φ (1 + κ 2 φ 2 ) + nκ 2 2r (φ -r T -t φ ) 2 -2κ 4 T -t φ φ (φ -r T -t φ ) 2 + 3κ 4 (n-3) 2r (φ -r T -t φ ) 2 φ 2 + nκ 2 T -t φ φ + 3κ 2 n(2n-1) 2r φ 2 + 5κ 4 n(n-1) 2r φ 4 + 2κ 2 r (T -t) 2 (-φ + r T -t φ )φ (1 + 3κ 2 φ 2 ), (3.6) 
d(t, r) = κ 2 T -t φ (-φ + r T -t φ )(1 + 2κ 2 φ 2 ) + nκ 2 r φ (-φ + r T -t φ ) + κ 4 (n-3) r φ 3 (-φ + r T -t φ ) + 2κ 2 r (T -t) 2 φ φ (1 + κ 2 φ 2 ), (3.7) e(t, r) = 2κ 2 φ (-φ + r T -t φ )(1 + κ 2 φ 2 ). (3.8) 
Remark 3.1. The coefficients 1 T -t and 1 r in the nonlinear terms of the equation (3.2) imply unboundedness of L T . Thus we have to construct an approximation solution to overcome the "loss of derivative" and the singular coefficients.

Energy estimate for the linearized graph equation

We denote the Fréchet derivative by D. Linearizing the nonlinear equation (3.2) around w, the linearized operator of (3.2) is given by 

L[w](h) := -a(t)h tt + b(t, r)h rr + c(t, r)h r + d(t, r)h t + e(t,
T 0 T 0 D w f (φ, φ , φ , w t , w tt , w r , w rr , w tr , t, r)hdrdt T 0 T -t 0 ( 1 T -t + 1 r )(h t + h tt + h r + h rr + h tr )drdt. (3.10) 
The proof of (3.10) is postponed to the Appendix. Consider the linearized equation

L[w](h)(t, r) = f (t, r), (3.11) 
with the initial data h(0, r) = 0, h t (0, r) = 0, (3.12)

and the boundary condition

h(t, r)| ∂Ω ≡ 0, (3.13) 
where

f (t, r) ∈ H γ,k (Ω) for γ ≥ 1 and k ≥ 2. Obviously, ∂Ω = {r = T -t} ∪ {t = 0} ∪ {r = 0}, r = T -t is the hypotenuse of right-angled triangle domain Ω = (0, T ) × (0, T -t].
The boundary condition (3.13) means that the higher derivatives of h(t, r) is also zero on ∂Ω, i.e.

∂ k h(t, r)| ∂Ω ≡ 0, k = 0, 1, 2, . . . , (3.14) 
where ∂ denotes ∂ t or ∂ r .

We need to carry out some priori estimates of linearized equation (3.11). Let 0 < R < 1 and k ≥ 3 be two fixed positive constant. Define

B R := {w ∈ C k 2 : w C k 2 ≤ R < 1}
, then we carry out some propri estimates of linearized equation (3.11) with initial data (3.12). Lemma 3.2. Assume that f (t, r) ∈ C k 2 and w ∈ B R . Let h be a regular solution to equation (3.11) with initial data (3.12) and boundary condition (3.13), then there holds

T 0 T -t 0 1 (T -t) 2 (|h t | 2 + |h r | 2 )drdt T 0 T -t 0 |f | 2 drdt.
(3.15)

Proof. Taking the inner product of the linearized equation (3.11) with e -1 T -t h t by observing (3.9), we get

- 1 2 d dt [e -1 T -t a(t)|h t | 2 + e -1 T -t b(t, r)|h r | 2 ] + d dr (e -1 T -t b(t, r)h t h r + 1 2 e -1 T -t e(t, r)|h t | 2 ) +e -1 T -t (d(t, r) + a (t) 2 - a(t) 2(T -t) 2 - 1 2 ∂ r e(t, r))|h t | 2 +e -1 T -t 1 2 (∂ t b(t, r) - b(t, r) (T -t) 2 )|h r | 2 = -e -1 T -t (c(t, r) -∂ r b(t, r))h r h t -e -1 T -t h t D w f (φ, φ , φ , w t , w tt , w r , w rr , w tr )h + f (t, r)e -1 T -t h t , (3.16)
where D w f (φ, φ , φ , w t , w tt , w r , w rr , w tr )h is given in (3.10). We should observe that the terms 1 T -t and 1 r caused some troubles when carrying out propri estimates. There are singular at point (r, t) = (0, T ). Since we consider nonlinear stability of self-similar solutions in function space C k 2 , the coefficient 1 T -t can be seen as the weighted. For the coefficient 1 r , if there is a term like 1 r w, then by using the initial data condition (3.12) and w ∈ B R , we have 1 r w ≈ w r with r near 0. Next we estimate each term in right hand sides of (3.16). By (3.5), direct computation shows that

∂ r b(t, r) = κ 2 φ T -t [r(φ - r T -t φ )(1 -2κ 2 φ 2 ) -2κφ (φ - r T -t φ ) 2 + nφ ],
which combining with (3.6), using Young's inequality and Hardy's inequality, r T -t ∈ [0, 1] and φ ∈ C 2 ([0, 1]), for any r ∈ (0, δ) with δ 1, we derive

T 0 T -t 0 e -1 T -t |(c(t, r) -∂ r b(t, r))h r h t |dr T -t 0 e -1 T -t | 1 r h r h t + 1 T -t h r h t |drdt T 0 T -t 0 e -1 T -t [|h rr h t | + 1 T -t (|h r | 2 + |h t | 2 )]drdt T 0 T -t 0 e -1 T -t [ d dt |h r | 2 + d dr |h r h t | + 1 T -t (|h r | 2 + |h t | 2 )]drdt T 0 T -t 0 e -1 T -t 1 T -t (|h r | 2 + |h t | 2 )drdt, (3.17) for any r ∈ [δ, T -t], note that T is a small constant, there is 1 T -t > 1 and T 0 T -t 0 e -1 T -t |(c(t, r) -∂ r b(t, r))h r h t | T 0 T -t 0 e -1 T -t | 1 r h r h t + 1 T -t h r h t |drdt T 0 T -t 0 e -1 T -t |h r h t + 1 T -t (|h r | 2 + |h t | 2 )|drdt T 0 T -t 0 1 T -t e -1 T -t (|h r | 2 + |h t | 2 )drdt. (3.18)
Moreover, for any r ∈ (0, δ), we have

T 0 T -t 0 |2[- 5r 2 (T -t) 3 φ φ - r 2 (T -t) 3 φ (2 + φ 2 ) + n -3 2r φ (-φ + r T -t φ ) 2 + n 2(T -t) φ + 1 T -t φ (-φ + r T -t φ ) 2 + 3n(2n -1) 2r φ + 5n(n -1) r φ 3 + 6r (T -t) 2 φ φ (-φ + r T -t φ )]e -1 T -t w r h t h r |drdt w rr L ∞ (0,T ) T 0 T -t 0 (1 + 1 T -t )e -1 T -t h t h r drdt T 0 T -t 0 1 T -t e -1 T -t (|h t | 2 + |h r | 2 )drdt, (3.19) 
and for any r 

∈ [δ, T -t), T 0 
T -t 0 |2[- 5r 2 (T -t) 3 φ φ - r 2 (T -t) 3 φ (2 + φ 2 ) + n -3 2r φ (-φ + r T -t φ ) 2 + n 2(T -t) φ + 1 T -t φ (-φ + r T -t φ ) 2 + 3n(2n -1) 2r φ + 5n(n -1) r φ 3 + 6r (T -t) 2 φ φ (-φ + r T -t φ )]e -1 T -t w r h t h r |drdt w r L ∞ (0,T ) T 0 T -t 0 (1 + 1 T -t )e -1 T -t h t h r drdt T 0 T -t 0 1 T -t e -1 T -t (|h t | 2 + |h r | 2 )drdt. ( 3 
T -t 0 e -1 T -t h t D w f (φ, φ , φ , w t , w tt , w r , w rr , w tr )hdrdt T 0 T -t 0 e -1 T -t 1 T -t (|h t | 2 + |h r | 2 )drdt, ( 0 
T -t 0 1 2 d dt [e -1 T -t a(t)|h t | 2 + e -1 T -t b(t, r)|h r | 2 ]drdt - T 0 T -t 0 d dr (e -1 T -t b(t, r)h t h r + 1 2 e -1 T -t e(t, r)|h t | 2 )drdt + T 0 T -t 0 e -1 T -t (-d(t, r) - a (t) 2 + a(t) 2(T -t) 2 + 1 2 ∂ r e(t, r))|h t | 2 drdt + T 0 T -t 0 e -1 T -t 1 2 (-∂ t b(t, r) + b(t, r) (T -t) 2 )|h r | 2 drdt T 0 T -t 0 e -1 T -t ( 1 T -t + 1)(|h t | 2 + |h r | 2 ) + e -1 T -t |f | 2 drdt. (3.23) 0 
On one hand, by (3.8), direct computation shows that

∂ r e(t, r) = 2κ 2 T -t φ (-φ + r T -t φ )(1 + κ 2 φ 2 ) + 2κ 2 T -t φ (-(1 + r T -t )φ + r T -t φ )(1 + κ 2 φ 2 ) + 4κ 4 T -t φ 2 φ (-φ + r T -t φ ). (3.24)
So by (3.4), (3.7) and (3.24), we have 2 is the leading term when we choose a suitable small positive contant T < 1. For a sufficient small postive constant κ, the leading term in (3.25) 

-d(t, r) - a (t) 2 + a(t) 2(T -t) 2 + 1 2 ∂ r e(t, r) = - κ 2 T -t φ (-φ + r T -t φ )(1 + 2κ 2 φ 2 ) - κ 2 n r φ (-φ + r T -t φ ) - κ 4 (n -3) r φ 3 (-φ + r T -t φ ) - 2κ 2 r (T -t) 2 φ φ (1 + κ 2 φ 2 ) - κr 2(T -t) 2 φ (2 + κ 2 φ 2 ) -κφ (1 + κ 2 r (T -t) 2 φ φ ) + 2 (T -t) 2 (1 + κ 2 φ (2 + φ 2 )) + κ 2 T -t φ (-φ + r T -t φ )(1 + κ 2 φ 2 ) + κ 2 T -t φ (-(1 + r T -t )φ + r T -t φ )(1 + κ 2 φ 2 ) + 2κ 2 T -t φ 2 φ (-φ + r T -t φ ). (3.25) Since φ ∈ C ∞ ((0, 1]) and w ∈ B R , it is obviously that 1 (T -t)
is 2 (T -t) 2 (1 + κφ (2 + κ 2 φ 2 )) > 0.
Thus there are a small positive constant T > 0 and a sufficient small κ > 0 such that

-d(t, r) - a (t) 2 + a(t) 2(T -t) 2 + 1 2 ∂ r e(t, r) -c > 0, (3.26) 
where c denotes a fixed positive constant.

On the other hand,

∂ t b(t, r) = - κ 2 r 2 (T -t) 3 φ (φ - r T -t φ )(1 -2κφ ) - κ 4 r (T -t) 2 φ φ (φ - r T -t φ ) 2 + κ 2 nr (T -t) 2 φ φ . which gives b(t, r) (T -t) 2 -∂ t b(t, r) = 1 2(T -t) 2 [n + κ 2 (φ - r T -t φ ) 2 (1 -2κ 2 φ 2 ) + nκ 2 φ 2 ] + κ 2 r 2 (T -t) 3 φ (φ - r T -t φ )(1 -2κφ ) + κ 4 r (T -t) 2 φ φ (φ - r T -t φ ) 2 - κ 2 nr (T -t) 2 φ φ . (3.27) 
Obviously, the leading term in (3.27) is n (T -t) 2 for a sufficient small postive constant κ, φ ∈ C ∞ ((0, 1]) and w ∈ B R . So there is a small positive constant T such that

b(t, r) (T -t) 2 -∂ t b(t, r) -c > 0, (3.28) 
where c denotes a fixed positive constant. Moreover, for a sufficient small postive constant κ, it follows from Lemma 2.1 that

a(t) > 0, b(t, r) > 0. (3.29) 
So using (3.12)-(3.13), (3.26) and (3.28), there are a small positive contant T and a sufficient small postive constant κ such that

T 0 [e -1 r a(T -r)|h t (T -r, r)| 2 + e -1 r b(T -r, r)|h r (T -r, r)| 2 ]dr - T 0 T -t 0 ∂ r (e -1 T -t b(t, r)h t (t, r)h r (t, r) + 1 2 e -1 T -t e(t, r)|h t (t, r)| 2 )drdt + T 0 T -t 0 e -1 T -t [(-d(t, r) - a (t) 2 + a(t) 2(T -t) 2 + 1 2 ∂ r e(t, r) -c)|h t | 2 + 1 2 (-∂ t b(t, r) + b(t, r) (T -t) 2 -c)|h r | 2 ]drdt < C T 0 T -t 0 e -1 T -t |f | 2 drdt, (3.30) 
where we use 

T 0 T -t 0 h(t, r)drdt = T 0 T -r 0 h(t,
T -t 0 e -1 T -t [(-d(t, r) - a (t) 2 + a(t) 2(T -t) 2 + 1 2 ∂ r e(t, r) -c)|h t | 2 + 1 2 (-∂ t b(t, r) + b(t, r) (T -t) 2 -c)|h r | 2 ]drdt ≤ C T 0 T -t 0 e -1 T -t |f | 2 drdt, 0 
and, combining with (3.26) and (3.28),

T 0 T -t 0 e -1 T -t 1 (T -t) 2 (|h t | 2 + |h r | 2 ) -C|f | 2 drdt < 0.
Hence, for a small T > 0, we can obtain (3.15) in the triangular domain (0, T ) × (0, T -t].

Next we plan to carry out higher order derivative estimates to the solution h of equation (3.31). For a fixed constant k ≥ 1, we denote mix derivatives of the time and spatial variable by ∂ t ∂ k r by D k+1 . Applying D k+1 to both sides of (3.11) to get

-a(t)∂ tt D k+1 h -a (t)h tt + b(t, r)∂ rr D k+1 h + c(t, r)∂ r D k+1 h + d(t, r)∂ t D k+1 h +e(t, r)∂ tr D k+1 h + D w f (φ, φ , φ , w t , w tt , w r , w rr , w tr )D k+1 h = f , (3.31 
) where D w f (φ, φ , φ , w t , w tt , w r , w rr , w tr )h is given in (3.10), and

f = D k+1 f - k 1 +k 2 =k+1, k 2 ≤k (D k 1 d(t, r))∂ t D k 2 h - k 1 +k 2 =k+1, k 2 ≤k (D k 1 e(t, r))∂ tr D k 2 h - k 1 +k 2 =k+1, k 2 ≤k (D k 1 b(t, r))∂ rr D k 2 h - k 1 +k 2 =k+1, k 2 ≤k (D k 1 c(t, r))∂ r D k 2 h - k 1 +k 2 =k+1, k 2 ≤k (D k 1 D w f (φ, φ , φ , w t , w tt , w r , w rr , w tr ))D k 2 h.
From the structure of equation (3.31), it is easy to see that the left hand side of (3.31) has the same structure with (3.11). This means that we can employ the method of getting Lemma 3.2 to derive higher energy estimates of h. The following is our result. Lemma 3.3. Assume that f (t, r) ∈ C k 2 and w ∈ B R . Let h be a regular solution to equation (3.31) with initial data (3.12) and boundary condition (3.13), then there holds

T 0 T -t 0 1 (T -t) 2 (|D k+1 h t | 2 + |D k+1 h r | 2 )drdt T 0 T -t 0 |D k+1 f (t, r)| 2 drdt.
(3.32)

Proof. Taking the inner product of the linearized equation (3.31) with e -1 T -t D k+1 h t , we get

- 1 2 d dt e -1 T -t a(t)|∂ t D k+1 h| 2 + e -1 T -t b(t, r)|∂ r D k+1 h| 2 + d dr e -1 T -t b(t, r)(∂ t D k+1 h)(∂ r D k+1 h) + 1 2 e -1 T -t e(t, r)|∂ t D k+1 h| 2 +e -1 T -t d(t, r) + a (t) 2 - a(t) 2(T -t) 2 - 1 2 ∂ r e(t, r) |∂ t D k+1 h| 2 +e -1 T -t 1 2 ∂ t b(t, r) - b(t, r) (T -t) 2 |∂ r D k+1 h| 2 = -e -1 T -t c(t, r) -∂ r b(t, r) (∂ r D k+1 h)(∂ t D k+1 h) + a (t)e -1 T -t h tt ∂ t D k+1 h -e -1 T -t (∂ t D k+1 h)D w f (φ, φ , φ , w t , w tt , w r , w rr , w tr )D k+1 h + f e -1 T -t ∂ t D k+1 h. (3.33)
We observe that the highest order in any the component of f is k + 1 but k 2 ≤ k. So similar to get (3.23), observing w ∈ B R and φ ∈ C ∞ , applying Young's inequality and sup b>0

1 (T -t) b e -1
T -t = (be -1 ) b to each term in the right hand side of (3.33), there exists a positive constant c such that

- 1 2 d dt e -1 T -t a(t)|∂ t D k+1 h| 2 + e -1 T -t b(t, r)|∂ r D k+1 h| 2 + d dr e -1 T -t b(t, r)(∂ t D k+1 h)(∂ r D k+1 h) + 1 2 e -1 T -t e(t, r)|∂ t D k+1 h| 2 +e -1 T -t d(t, r) + a (t) 2 - a(t) 2(T -t) 2 - 1 2 ∂ r e(t, r) -c |∂ t D k+1 h| 2 +e -1 T -t 1 2 ∂ t b(t, r) - b(t, r) (T -t) 2 -c |∂ r D k+1 h| 2 e -1 T -t |D k+1 f | 2 , (3.34) 
where we choose e -1 T -t as a weighted function to absorb the effect of 1 (T -t) b for any fixed constant b > 0.

Recall that (3.26) and (3.28), there exists a small T > 0 such that

-d(t, r) - a (t) 2 + a(t) 2(T -t) 2 + 1 2 ∂ r e(t, r) -c > 0, b(t, r) (T -t) 2 -∂ t b(t, r) -c > 0,
which combing with (3.12) and (3.14), then integrating (3.34) over the right-angled triangle domain (0, T ) × (0, T -t], we get

T 0 T -t 0 [e -1 T -t (- a (t) 2 -d(t, r) + a(t) 2(T -t) 2 + 1 2 ∂ r e(t, r) -c)|D k+1 h t | 2 +( 1 2 ∂ t (-b(t, r)e -1 T -t ) -ce -1 T -t )|D k+1 h r | 2 ]drdt < C T 0 T -t 0 e -1 T -t |D k+1 f (t, r)| 2 drdt,
which gives (3.32).

Existence of solutions to the linearized graph equation

Theorem 3.4. Let k ≥ 3 be a fixed constant. Assume that f (t, r) ∈ C k 2 , φ ∈ C ∞ and w ∈ B R . Then equation (3.11) with intial data (3.12) and boundary condition (3.13) admits a unique solution

h ∈ C k 2 = 2 i=0 C i ((0, T ); H 2,k-i (Ω)).
Moreover, it satisfies that

h(t, r) C k 2 ≤ f (t, r) C k 2 . (3.35) 
Proof. Since b(t, > 0 in (3.5), the linearized equation (3.11) is a strictly hyperbolic linear equation. Thus we can take a standard fixed point iteration process. Let h = (h, h t ). Then linearized equation (3.11) can be rewritten as

∂ t h + A(t, r) h = F (t, r),
where F (t, r) = (0, f (t, r)) and the matrix A(t, r) is

A(t, r) := 0 1 A 1 (t, r) A 2 (t, r) ,
the coefficients A 1 (t, r) and A 2 (t, r) are determinded by (3.9). By the standard fixed point iteration and a priori estimate (3.32), one can prove the approximation problem 

h(m) = h0 - t 0 (A(s, r) h(m-1) + F (s, r))dt has a Cauchy sequence { h(m) } m∈Z + in C k 2 ,
≤ f (t, r) C k 2 .
For the existence of solution for general linear wave equation, see [START_REF] Sogge | Lectures on Nonlinear Wave Equations[END_REF].

A nonlinear perturbation theory

In what follows, we are to deal with the nonlinear equation by constructing a Nash-Moser iteration scheme. This scheme has been used in [START_REF] Yan | The motion of closed hypersurfaces in the central force fields[END_REF] with initial data w(0, r) = w 0 (r), w r (0, r) = w 1 (r). For convenience, we assume that w(0, r) = 0, w r (0, r) = 0.

(3.38) Remark 3.5. If the initial data is not zero, i.e.

w(0, r) = w 0 (r), w r (0, r) = w 1 (r).

We introduce an auxiliary function w(t, r) = w(t, r) -w 0 (r) -tw 1 (r), then we have vanishing initial data w(0, r) = 0, wr (0, r) = 0, and the equation (3.36) is equivalent to -a(t) wtt + b(t, r) wrr + c(t, r) wr + d(t, r) wt + e(t, r) wtr +b(t, r)(w 0 + tw 1 ) + c(t, r)(w 0 + tw 1 ) + d(t, r)w 1 + e(t, r)w 1 + f (φ, φ , φ , w t , w tt , w r , w rr , w tr , t, r) = 0, with w(t, r) = w(t, r) + (w 0 (r) + tw 1 (r)).

In lth iteration step, the error term e (l) (t, r) should be

e (l) (t, r) = -a(t) w(l) tt + b(t, r) w(l) rr + c(t, r) w(l) r + d(t, r) w(l) t + e(t, r) w(l)
tr +b(t, r)(w 0 + tw 1 ) + c(t, r)(w 0 + tw 1 ) + d(t, r)w 1 + e(t, r)w 1 + f (φ, φ , φ , w 0 , w 1 ),

where f (φ, φ , φ , w 0 , w 1 ) is the term containing all the terms w 0 and w 1 , which is from the nonlinear term f (φ, φ , φ , w t , w tt , w r , w rr , w tr , t, r). In the rest steps, there are the same with the zero initial data case, and the convergence of approximation scheme holds.

Define J (w) := -a(t)w tt + b(t, r)w rr + c(t, r)w r + d(t, r)w t + e(t, r)w tr + f (φ, φ , φ , w t , w tt , w r , w rr , w tr , t, r), (3.39) if we construct a w(t, r) ∈ B R such that J (w) = 0, then w(t, r) is a regular solution of quasilinear wave equation (3.36) with initial data (3.38). In fact, we treat the initial value problem (3.36)-(3.38) iteratively as a small perturbation of the initial value problem for a linear hyperbolic system. Linearizing (3.39), we obtain the linearized operator

D w J (w)h = L[w](h),
where

L[w](h) is defined in (3.9). Define R[w](h) := J (w + h) -J (w) -D w J (w)h.
Then the following tame estimate holds.

Lemma 3.6. Let k ≥ 1 be a fixed postive constant. Assume that φ ∈ C ∞ ((0, 1)) and w ∈ B R . There is

R[w](h) C k 2 h 2 C k+4 2 , h ∈ B R . (3.40) 
Proof. For any w ∈ B R , by (3.3), we have

w p H 2,k ≤ w 2 H 2,k ,
and the order of leading term in R[w](h) is 2, and we only need to obtain the lowest exponent of h with the highest order of derivatives 2 for convenience. There is bad coefficient 1 r in R[w](h). Obviously, this coefficient is singular at r = 0. Due to the zero initial data and Hardy's inequality, we can get T -t 0 h rr drdt. Thus this causes the highest order of derivatives changed into 3. Hence applying Young's inequality, we can obtain our result by direction computation. Lemma 3.6 tells us that there is a loss of derivatives in the nonlinear terms. Now we introduce a family of smooth operators (see [START_REF] Alinhac | Existence d'ondes de raréfaction pour des systèmes quasi-linéaires hyperboliques multidimensionnels[END_REF][START_REF] Hörmander | The boundary problems of physical geodesy[END_REF]), which takes the following important properties. Proposition 3.7. There is a family {Π θ } θ≥1 of smoothing operators in the space H γ,k (Ω) acting on the class of functions vanishing in the past such that

Π θ w H γ,k 1 (Ω) ≤ c θ (s 1 -s 2 ) + w H γ,k 2 (Ω) , k 1 , k 2 ≥ 0, (3.41) Π θ w -w H γ,k 1 (Ω) ≤ c θ s 1 -s 2 w H γ,k 2 (Ω) , 0 ≤ k 1 ≤ k 2 , d dθ Π θ w H γ,k 1 (Ω) ≤ c θ s 1 -s 2 -1 w H γ,k 2 (Ω) , k 1 , k 2 ≥ 0,
where c is a positive constant and (k 1 -k 2 ) + := max(0, k 1 -k 2 ). Moreover, there is another family of smoothing operators acting on functions defined on the boundary ∂Ω, which satisfying above three properties with norm • H γ,k (∂Ω) .

In our iteration scheme, we set

θ = N l = 2 l , l = 0, 1, 2, . . . , (3.42) 
then by (3.41), we have Assume that a suitable "0th step" approximation solution w (0) = 0 of (3.44) has been chosen.

Π N l w H γ,k 1 N k 1 -k 2 l w H γ.k 2 , k 1 ≥ k 2 > 0, γ ≥ 1. ( 3 
The "lth step" approximation solution is denoted by

w (l) = w (0) + l i=1 h (i) .
Then we want to construct the "l + 1th step" approximation solution w (l+1) . By (3.44), it holds

J N l+1 (w (l) + h (l+1) ) = e (l) + ∂ w (l) J N l+1 (w (l) )h (l+1) + R l+1 = e (l+1) , (3.45) 
where e (l) := -a(t)w

(l) tt + b(t, r)w (l) rr + c(t, r)w (l) r + d(t, r)w (l) 
t + e(t, r)w

(l) tr + Π N l f (φ, φ , φ , w (l) t , w (l) 
tt , w (l) r , w (l) rr , w

tr , t, r).

(3.46)

D w (l) J N l+1 (w (l) )h (l+1) = L[w (l) ](h), (3.47) R l+1 = R[w (l) ](h) := J (w (l) + h) -J (w (l) ) -D w (l) J (w (l) )h, (3.48) 
The following result is a direct application of Theorem 3.4, which gives the existence of the "l + 1 th" step approximation solution.

Lemma 3.8. There exists a solution h (l+1) of the initial value problem

D w (l) J N l+1 (w (l) )h (l+1) + e (l) = 0, h (l+1) 0 = 0, h (l+1) 1 
= 0, where e (l) defined in (3.46). Furthermore, it holds 

||h (l+1) || C k 2 ||e (l) || C k 2 . (3.49) For 3 ≤ k < k 0 ≤ k, set k l := k + k - k 2 l , (3.50) 
k l+1 := k l -k l+1 = k - k 2 l+1 . ( 3 
w ∞ = w (0) + ∞ l=1 h (l) ∈ C k 0 2 .
Proof. The proof is based on the induction. For any l = 0, 1, 2, . . ., we claim that there exists a constant 0 < s < 1 such that

||h (l+1) || C k l+1 2 < s 2 l < 1, (3.53) ||e (l+1) || C k l+1 2 ≤ s 2 l+1 , (3.54) 
w (l+1) ∈ B R . (3.55)
We choose a fixed sufficient small w (0) > 0 such that

||w (0) || C k 0 2 1, ||e (0) || C k 0 2 1. (3.56)
For the case l = 0, by (3.49), we have 

||h (1) || C k 1 2 ||e (0) || C k 1 2 ||e 0 || C k 0 2 < 1, ( 3 
||e (1) || C k 1 2 ≤ ||R 1 || C k 1 2 ||h (1) || 2 C k 1 2 ||e (0) || 2 C k 0 2 . ( 3 
(l+1) || C k l+1 2 ||R l+1 || C k l+1 2 2 3(l+1) ||h (l+1) || 2 C k l+1 2 2 3(l+1) ||e (l) || 2 C k l+1 2 1+2 2 3(l+1)+2•3l ||e (l-1) || 2 2 C k l-1 2 
. . .

(24 ||e (0) || C k 0 2 ) 2 l+1 ,
which implies that we can choose a fixed sufficient small > 0 such that 0 < 24 ||e (0) || C k 0 2 < 1, then (3.53)-(3.55) holds. Here we use the fact that 2 3(l+1)+2•3l+2 2 •3(l-1)+...+3•2 l < 24 2 l+1 . Therefore, we derive the error term lim l→+∞ ||e (l) || C k 0 2 = 0, which implies that system (3.36) with zero initial data has a solution

w ∞ = w 0 + ∞ l=1 h (l) ∈ C k 0 2 .
Next we prove the uniqueness of w ∞ . Assume that there exist two solutions of equation (3.36) with the zero initial data. We denote two solutions of (3.36) 

A Appendix

This appendix gives the proof of (3.3) and (3.10). To see (3.3), direct computation shows that f (φ, φ , φ , w t , w tt , w r , w rr , w tr , t, r) = f 1 + f 2 + f 3 + f 4 + f 5 , (A.1)

where Proof. Note that (T, 0) is the blow-up point and r T -t ∈ (0, 1] in backward light cone. Singular coefficients are 1 T -t and 1 r in (A.1). Since φ ∈ C ∞ ((0, 1]) and its smooth property near y = 0 in Lemma 2.5, φ, φ and φ are bounded in (0, 1]. Hence this result can be directly obtained by applying Young's inequality to estimate each terms in (A.1).

f 1 = (1 -
Again by direct computation, we have D w f (φ, φ , φ , w t , w tt , w r , w rr , w tr , t, r)h = A 1 (t, r)h t + A 2 (t, r)h tt + A 3 (t, r)h r +A 4 (t, r)h 

Remark 1 . 3 .

 13 Here κ is a positive parameter taking values in (0, 1]. The solution v(t, r) = κ(T -t)φ( r T -t ) is different with the scaling invariance of solution in (1.8). By the scaling invariance

  .20) Thus using the same idea of getting (3.17)-(3.20), and (3.10), for r ∈ (0, 1), by (3.12)-(3.13) and integration by parts, T

  r)dtdr in the right-angled triangle domain (0, T ) × (0, T -t], and C is a positive constant. Furthermore, by (3.14), (3.29) and (3.30), T

Lemma 3 . 9 .

 39 .51) By (3.50)-(3.51), it follows thatk 0 > k 1 > . . . > k l > k l+1 > . . . . (3.52) For φ ∈ C ∞ ((0, 1)), there exists a positive constant k 0 ≥ 3 such that the quasilinear wave equation (3.36) with zero initial data (3.38) admits a unique solution

  .57) using (3.40), (3.43), (3.48) and (3.49), it holds

2 < 1 , 2 ≤l+1 2 ||e (l) || C k l 2 <

 21222 .58) Thus (3.57)-(3.58) gives (3.53) l=0 -(3.55) l=0 by choosing suitable small > 0. Also we get w (1) ∈ B R . Assume that (3.53)-(3.55) holds for l, i.e. ||h (l) || C k l ||e (l) || C k l s 2 l , (3.59) w (l) ∈ B R . Next we prove (3.53)-(3.55) holds for l + 1. Using (3.49) and (3.59), we have ||h (l+1) || C k cs 2 l < 1. (3.60) On the other hand, by (3.43), (3.48) and (3.49), observing that N l = 2 l , there exists a fixed postive constant k 0 ≥ 3 such that ||e

2 1+2 2 3 ( 2 C k l 2 .k 0 2 ,|| R|| C k 0 2 -

 232222 one hand, by (3.61)-(3.63), it holds L[w 2 ](ψ) = -R, (3.64) and, using the same method as for deriving (3.49), hand, by (3.43), (3.48) and (3.49) and (3.64)-(3.65), we derive l+1)+2•3l || R|| 2 . . (24 ) 2 l+1 || R|| 2 l+1C so for a suitable small > 0, and observing ψ ∈ B R , we get lim l→+∞ → 0, which gives the uniqueness of w ∞ .

φ 2 )w r +κ( 1 T 3 r + 2 ( 1 -κ 2 φ 2 -φ + κ 3 T 2 + 4 rφ 2 + κ( 1 Tw 2 r w 2 t- 2 t+ 2 r + w 3 r w t +2κw 2 r 0 T -t 0 D

 21321232421222200 rr + A 5 (t, r)h tr , whereA 1 (t, r) := 2 κ( n 2r φ + 1 2(T -t) φ + κ 2 T -t φ 2 φ + κ 2 (n-3) 2r φ 3 ) + ( n 2r + 2κ 2 T -t φ φ + 3κ 2 (n-3) 2r -t φ + 3(n-3) 2r φ )w 2 r + (n-3) 2r w κφ w r -2w 2 r )w rr w t +κ (-φ + r T -t φ )( n r -2κφ -4κ 2 T -t φ φ + 3κ 2 (n-3) r φ 2 + κ( 2 T -t φ + 3(n-3) r φ -2 κ )w r + n-3 r w 2 r ) + 2r (T -t) 2 φ (3κ 2 φ 2 + φ w r + w 2 r ) w r + κ(1 -2κ 2 φ 2 )(-φ + r T -t φ )w rr +2 κφ + κ 3 φ 2 (-3φ + ( 3r T -t + 1)φ ) + (1 + 3κ 2 φ 2 )w r + 3κφ w 2 r + w 3 r w tr , A 2 (t, r) := -κφ (4κ 2 φ 2 + κφ + 4) -(2 + 5κ 2 φ 2 )w r -4κφ w 2 r -w 3 r w r , A 3 (t, r) := 2 -κ 2 r 2 (T -t) 3 φ (2 + φ + κ 2 φ 2 ) + ( κ 3 (n-3) 2r -t φ )(-φ + r T -t φ ) 2 + κn 2(T -t) φ + 3κn(2n-1) 2r φ (1 + 5κ 2 (n-1) 3(2n-1) φ 2 ) + 6κ 3 r (T -t) 2 φ φ (-φ + r T -t φ ) w r +3 -4κr 2 (T -t) 3 φ + κ 2 (n-3) 2r (-φ + r T -t φ ) 2 + n(2n-1)2r+ 5κ 2 n(n-1) r φ 2κ 2 r (T -t) 2 φ (-φ + r T -t φ ) w 2 r +4κ -r 2 (T -t) 3 φ + 5κ 3 n(n-1) +κ (-φ + r T -t φ ) n r -4κ 2 T -t φ φ + 3κ 2 (n-3) r φ 2 + 2κ( 2 T -t φ + 3(n-3) r φ ) +4w rr (κφ -w r ) + 3(n-3) r w 2 r + 12r (T -t) 2 φ φ w r + 6r (T -t) 2 φ w 2 r w t +2 n 2r + 2κ 2 T -t φ φ + 3κ 2 (n-3) 2r -t φ + 3(n-3) 2r φ )w r -(κφ + w r )w rr +3(n-3) 2r κφ (4κ2 φ 2 + κφ + 4) + 2(2 + 5κ 2 φ 2 -3κφ w r -w 2 r )w r w tt + κφ (n -2(-φ + κ 2 r T -t φ ) 2 ) + 2( n 2 -κ 2 (-φ + r T -t φ ) 2 )w r w rr +2 (1 + 3κ 2 φ 2 )w t + 3κ (-φ + r T -t φ )(2κφ + w r ) + w t (κ -1 w r + 2φ ) w r w tr , A 4 (t, r) := κ(-φ + r T -t φ ) 1 -2κ 2 φ 2 -4κφ w r -2w 2 r w t + 1 -κ 2 φ 2 -2κφ w r -w 2 r w κφ (n -2(-φ + κ 2 r T -t φ ) 2 ) + ( n 2 -κ 2 (-φ + r T -t φ ) 2 )w r w r , A 5 (t, r) := 2 κφ + κ 3 φ 2 (3(-φ + r T -t φ ) + φ ) + (1 + 3κ 2 φ 2 )w r + 3κφ w (-φ + r T -t φ )(3κφ + w r ).Lemma A.2. Let φ ∈ C ∞ ((0, 1]) and w ∈ B R . Then one has T w f (φ, φ , φ , w t , w tt , w r , w rr , w tr , t, r)hdrdt t + h tt + h r + h rr + h tr )drdt.

  number and B i denotes an open interval. As getting (2.26), we can prove in each B i , there holds

.26) Furthermore, by Heine-Borel's theorem, [y 0 , y 0 ] ⊂ N i=1 B i with i = 1, 2, . . . , N , N is a finite

  r)h tr +D w f (φ, φ , φ , w t , w tt , w r , w rr , w tr , t, r)h,(3.9) where the linearized term D w f (φ, φ , φ , w t , w tt , w r , w rr , w tr , t, r) depends on the the coefficients φ, φ ,φ , singular coefficients 1 T -t and 1 r and the linear term coefficients w r , w t , w rr , w tt , w tr , the quadratic term coefficients w 2 r , w 2 t , w tt w r , w t w rr , w t w r , w r w rr and w t w tr the cubic term coefficients w 3 r , w tt w 2 r , w 2 t w rr , w r w 2 t , w 2 r w rr , w t w 2 r , w t w r w rr and w t w r w tr , the four term coefficients w 4 r , w tt w 3 r , w 2 t w 2 r , w t w rr w 2 r , w 2 t w r w rr , w t w 3 r , w tr w 3 r , w t w 3 r and w t w tr w 2 r , it satisfies that

  T -t h t D w f (φ, φ , φ , w t , w tt , w r , w rr , w tr )hdrdt

		T		T -t	e -1			
	0		0					
	0	T	0	T -t	e -1 T -t	1 T -t	(|h t | 2 + |h r | 2 )drdt.	(3.22)
	Integrating (3.16) over the triangular domain (0, T ) × (0, T -t], by (3.17)-(3.18) and (3.19)-
	(3.20), for any r ∈ (0, T -t),				

.21) and for any r ∈ [δ, T -t) T

  whose limit is h which solves the linearized equation (3.11). The estimate (3.35) is directly from the estimate (3.32) by observing f (t, r) C k 0

  tt + b(t, r)w rr + c(t, r)w r + d(t, r)w t + e(t, r)w tr + f (φ, φ , φ , w t , w tt , w r , w rr , w tr , t, r) = 0,(3.36) where f (φ, φ , φ , w t , w tt , w r , w rr , w tr , t, r) is defined in (3.2). So by (3.10), we have |f (φ, φ , φ , w t , w tt , w r , w rr , w tr , t, r)| | 2 + |w r | 3 + |w r | 4 + |w r | 5 + |w r | 6 + |w r | 8

	we get the following one dimensional quasilinear wave equation
	-a(t)w ( T -t 1	+	1 r	t + w 4 t + w 2 tt + w 2 tr + w 4 tr ) |w r + w 2	(3.37)
					. Rescaling in (3.2) amplitude as
				w(t, r) → w(t, r),	> 0,

  tt + b(t, r)w rr + c(t, r)w r + d(t, r)w t + e(t, r)w tr + Π N l f (φ, φ , φ , w t , w tt , w r , w rr , w tr , t, r).

	.43)
	We approximate (3.39) by
	J N l (w) := -a(t)w (3.44)

  by w 1 and w 2 in B R , respectively. Letψ = w 1 -w 2 ∈ B R . Then ψ satisfies -a(t)ψ tt + b(t, r)ψ rr + c(t, r)ψ r + d(t, r)ψ t + e(t, r)ψ tr + Π N l [f (φ, φ , φ , (w 1 ) t , (w 1) tt , (w 1 ) r , (w 1 ) rr , (w 1 ) tr , t, r) -f (φ, φ , φ , (w 2 ) t , (w 2 ) tt , (w 2 ) r , (w 2 ) rr , (w 2 ) , (w 2 ) tt , (w 2 ) r , (w 2 ) rr , (w 2 ) tr , t, r) -D w 2 f (φ, φ , φ , (w 1 ) t , (w 2 ) tt , (w 2 ) r , (w 2 ) rr , (w 2 ) tr , t, r)ψ].

tr , t, r)] = 0.

(3.61) Define L[w 2 ](ψ) := -a(t)ψ tt + b(t, r)ψ rr + c(t, r)ψ r + d(t, r)ψ t + e(t, r)ψ tr + Π N l D w 2 f (φ, φ , φ , (w 1 ) t , (w 2 ) tt , (w 2 ) r , (w 2 ) rr , (w 2 ) tr , t, r)ψ,

(3.62)

and R := Π N l [f (φ, φ , φ , (w 1 ) t , (w 1 ) tt , (w 1 ) r , (w 1 ) rr , (w 1 ) tr , t, r)

-f (φ, φ , φ , (w 2 ) t

  2κ 2 φ 2 )(-κφ + κr T -t φ )w rr + (-κφ + κr T -t φ )( n r -4κ 2 T -t φ φ + 3κ 2 (n-3) -t) 2 φ φ 2 w r w t + ( κ 2(T -t) φ + nκ 2r φ + κ 3 T -t φ 2 φ + κ 3 (n-3) -κ 2 φ 2 )w rr +( n 2r + 2κ 2 T -t φ φ + 3κ 2 (n-3) 2r φ 2 -2κφ w rr -w rr w r + n-3 2r w 2 r )w r w 2 t f 2 = -κφ (4κ 2 φ 2 + κφ + 4)w r + (2 + 5κ 2 φ 2 )w 2 r + 4κφ w 3 r + w 4 r w tt , f 3 = -5κ 2 r 2 (T -t) 3 φ φ -κr 2 (T -t) 3 φ (2 + κ 2 φ 2 ) + κ 3 (n-3) 2κr (T -t) 2 φ w r w t w 2 r , f 4 = κφ (n -2κ 2 (-φ + r T -t φ ) 2 ) + ( n 2 -κ 2 (-φ + r T -t φ ) 2 )w r -4κ 2 φ (-φ + rT -t φ )w t w r w rr , andf 5 = 6φ 2 κ 3 (-φ + r T -t φ ) + (1 + 2κ)φ + 2(1 + 3κ 2 φ 2 )w r w t + 6κ 2 φ (-φ + r T -t φ + w t )w 2 For φ ∈ C ∞ ((0, 1]) one has |f (φ, φ , φ , w t , w tt , w r , w rr , w tr , t, r)| | 2 + |w r | 3 + |w r | 4 + |w r | 5 + |w r | 6 + |w r | 8 + w 2 t + w 4 t + w 2 tt + w 2 tr + w 4 tr .

						r	φ 2 )
		+ 6κ 3 r (T 2r	φ 3 )
		+(-κr 2 (T -t) 3 φ + 5κ 4 n(n-1) 2r	φ 4 )w 4 r + n(n-1) 2r w 5 r + (1 2r φ (-φ + r T -t φ ) 2 + nκ 2(T -t) φ
		+ κ 3 T -t φ (-φ + r T -t φ ) 2 + 3κn(2n-1) 2r	φ + 5κ 3 n(n-1)
	(	1 T -t	+	1 r	) |w r

r φ 3 + 6κ 3 r (T -t) 2 φ φ (-φ + r T -t φ ) w 2 r + -4κr 2 (T -t) 3 φ + κ 2 (n-3) 2r (-φ + r T -t φ ) 2 + n(2n-1) 2r + 5κ 2 n(n-1) r φ 2 + 2κ 2 r (T -t) 2 φ (-φ + r T -t φ ) w 3 r +κ 2 (-φ + r T -t φ )( 2 T -t φ + 3(n-3) r φ -2κw rr ) + 6r (T -t) 2 φ φ + κ( 1 T -t φ + 3(n-3) 2r φ )w t + κ(n-3) r (-φ + r T -t φ ) + r +2κ(-φ + r T -t φ + κ -1 w t )w 3 r w tr .

Lemma A.1.
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Proof. Since φ ∈ C ∞ ((0, 1]) and w ∈ B R , by H 1 ((0, T )) ⊂ L ∞ ((0, T )), we derive

Similarly, we can estimate each terms in D w f (φ, φ , φ , w t , w tt , w r , w rr , w tr , t, r)h. Hence by observing 1 T -t and 1 r are singular coefficient coefficients, the result holds in backward light cone.