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We establish the long time existence of solutions for the "Boussinesq-Full dispersion" systems modeling the propagation of internal waves in a two-layer system. For the two-dimensional Hamiltonian case b = d > 0, a ≤ 0, c < 0, we study the global existence of small solutions of the corresponding system.

Introduction

This paper is concerned with a class of asymptotic models of internal waves arising in the so-called two-layer system. This idealized system, when it is at rest, consists of a homogeneous fluid of depth d 1 and density ρ 1 lying over another homogeneous fluid of depth d 2 and density ρ 2 > ρ 1 . The bottom on which both fluids rest is presumed to be horizontal and featureless while the top of fluid 1 is restricted by the rigid lid assumption, which is to say, the top is viewed as an impenetrable, bounding surface. Both of these require that the deviation of the interface be a graph over the flat bottom, actually parametrized by a scalar function ζ, see Figure below.

The Boussinesq-Full dispersion regime corresponds to µ ∼ 1, µ 2 ∼ 1 so that the wave amplitude is small only with respect to the upper layer.

It is shown in [START_REF] Bona | Asymptotic models for internal waves[END_REF] that in this Boussinesq-Full dispersion regime and in the absence of surface tension, the two-layers system is consistent with the three-parameter family of Boussinesq/FD systems

       (1 -bµ∆)∂ t ζ + 1 γ ∇ • (1 -ζ)v β - √ µ γ 2 |D| coth( √ µ 2 |D|)∇ • v β + µ γ a -1 γ 2 coth 2 ( √ µ 2 |D|) ∆∇ • v β = 0 (1 -dµ∆)∂ t v β + (1 -γ)∇ζ -2γ ∇(|v β | 2 ) + cµ(1 -γ)∆∇ζ = 0, (1.1) 
where ζ is the elevation of the wave, γ ∈ (0, 1), v β = (1 -βµ∆) -1 v (v being the horizontal velocity) and the constants a, b, c and d are defined as

a = 1 3 (1 -α 1 -3β), b = 1 3 α 1 , c = βα 2 , d = β(1 -α 2 ),
with α 1 ≥ 0, β ≥ 0 and α 2 ≤ 1.

Note that the parameters a, b, c, d are constrained by the relation a + b + c + d = 1 3 . The initial condition for (1.1) is imposed as follows

ζ| t=0 = ζ 0 , v β | t=0 = v 0 , (1.2) 
It is easily checked that (1.1) is linearly well posed when a ≤ 0, c ≤ 0, b ≥ 0, d ≥ 0.

(1.

3)

The local well-posedness of the Cauchy problem for (1.1) was established in [START_REF] The | On the Boussinesq-Full dispersion systems and Boussinesq-Boussinesq systems for internal waves[END_REF] in the following cases

(1) b > 0, d > 0, a ≤ 0, c < 0;

(2) b > 0, d > 0, a ≤ 0, c = 0;

(3) b = 0, d > 0, a ≤ 0, c = 0; (4) b = 0, d > 0, a ≤ 0, c < 0;

(5) b > 0, d = 0, a ≤ 0, c = 0, It turns out that (1.1) is hamiltonian when b = d. This fact has been used in [START_REF] Angulo Pava | Existence of solitary wave solutions for internal waves in two-layer systems[END_REF] in the one dimensional Hamiltonian case to establish the global existence of small solutions, by an easy extension of a similar result for the Boussinesq systems in [START_REF] Bona | Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media[END_REF]. We will go back to this issue for the two-dimensional Hamiltonian systems at the end of the paper.

The existence of one dimensional solitary waves for the Boussinesq -Full Dispersion systems in the Hamiltonian case was proven in [START_REF] Angulo Pava | Existence of solitary wave solutions for internal waves in two-layer systems[END_REF]. No such result seems to be known in the non-hamiltonian case.

In the present paper we will prove the long time existence for (1.1)-(1.2) that is existence on time scales of order 1/ for all cases stated in (1.3). This time scale is the one on which the Boussinesq-Full Dispersion systems are "good" approximations of the two-layer system in the relevant regime.

Similar results for the "abcd" class of Boussinesq systems were established in [START_REF] Ming | Long-time existence of solutions to Boussinesq systems[END_REF][START_REF] Saut | The Cauchy problem on large time for surface waves Boussinesq systems[END_REF][START_REF] Saut | The Cauchy problem on large time for surface waves Boussinesq systems II[END_REF][START_REF] Burtea | New long time existence results for a class of Boussinesq-type systems[END_REF][START_REF] Burtea | Long time existence results for bore-type initial data for BBM-Boussinesq systems[END_REF]. As in [START_REF] Saut | The Cauchy problem on large time for surface waves Boussinesq systems[END_REF][START_REF] Saut | The Cauchy problem on large time for surface waves Boussinesq systems II[END_REF] the proof of our main result is based on the derivation of a suitable symmetrizer.

In the two-dimensional Hamiltonian case b = d > 0, a ≤ 0, c < 0, we shall moreover establish the global existence of small solutions of (1.1)-(1.2) when = 1. This is as far as we know the first global existence result for this type of systems in the two-dimensional case. Similar results in the non-Hamiltonian case are not known, even in the one-dimensional case.

Before presenting the main results of this paper, we give the following definition of the functional spaces that will be used : Definition 1.1. For any s ∈ R, k ∈ N, µ ∈ (0, 1), the Banach space X s µ k (R n ) is defined as H s+k (R n ) equipped with the norm:

u 2 X s µ k = u 2 H s + µ k ∇ k u 2 H s .
The solutions to the Cauchy problem of (1.1) will belong to some space 

X s µ k (R n ) × X s µ k (R n ) with
(3) (k, k ) = (4, 3) for b > 0, d = 0, a ≤ 0, c < 0; (4) (k, k ) = (1, 2) for b > 0, d > 0, a ≤ 0, c = 0; (5) (k, k ) = (3, 4) for b = 0, d > 0, a ≤ 0, c < 0; (6) (k, k ) = (1, 3) for b = 0, d > 0, a ≤ 0, c = 0; (7) (k, k ) = (1, 1) for b = d = 0, a ≤ 0, c < 0; (8) (k, k ) = (0, 1) for b = d = 0, a ≤ 0, c = 0.
Remark 1.2. The cases ( 7) and ( 8) cannot occur for internal waves without surface tension but may occur for internal waves with a sufficiently large surface tension parameter.

We now state the main results of this paper. The first theorem concerns the long time existence for

(1.1)-(1.2). Theorem 1.1. Let t 0 > n 2 , n = 1, 2, s ≥ t 0 + 2 and a, b, c, d satisfy the condition (1.3). Assume that ζ 0 ∈ X s µ k (R n ), v 0 ∈ X s µ k (R n ) satisfy the (non-cavitation) condition 1 -εζ 0 ≥ H > 0, H ∈ (0, 1), (1.4) 
where (k, k ) is defined in Definition 1.2. Then there exist positive constants and µ (maybe depending on

ζ 0 X s µ k + v 0 X s µ k
and H), such that for any ≤ and µ ≤ µ, there exists T > 0 independent of and µ, such that

(1.1)-(1.2) has a unique solution (ζ, v β ) with (ζ, v β ) ∈ C([0, T / ]; X s µ k (R n ) × X s µ k (R n )). Moreover, max t∈[0,T / ] ( ζ X s µ k + v β X s µ k ) ≤ c( ζ 0 X s µ k + v 0 X s µ k ).
(1.5)

Here c = C(H -1 ) are nondecreasing functions of their argument. 

= d > 0, a ≤ 0, c < 0. Theorem 1.2. Let b = d > 0, a ≤ 0, c < 0. Assume that ζ 0 ∈ X 0 µ (R 2 ), v 0 ∈ X 0 µ (R 2 ).
Then there exist a positive constant 0 (maybe depending on ζ 0 X s µ k + v 0 X s µ k ), such that for any ≤ 0 and µ ∼ ,

(1.1)-(1.2) has a unique solution (ζ, v β ) with (ζ, v β ) ∈ C([0, ∞); X 0 µ (R 2 ) × X 0 µ (R 2 )). Moreover, max t∈[0,∞) ( ζ X 0 µ + v β X 0 µ ) ≤ C( ζ 0 X 0 µ + v 0 X 0 µ ). (1.6)
Here C is a universal constant which may change from line to line.

Corollary 1.1. Theorem 1.2 is in fact a global existence result for small solutions of (1.1) with ∼ µ ∼ 1 when b = d > 0, a ≤ 0, c < 0. Actually one reduces to this modified system with = µ = 1 by the change of variables 

ζ(t, X) = -1 ζ( √ µ -1 t, √ µ -1 X), v β (t, X) = -1 ṽβ ( √ µ -1 t, √ µ -1 X), X = (x, y).
(R n ) norm, 1 ≤ p ≤ ∞. The L 2 (R n ) inner product is denoted by (u | v) 2 def = R n u • vdx. For any k ∈ N, we denote f W k,∞ = k j=0 ∇ j f L ∞ .
The notation f ∼ g means that there exists a constant C such that 1 C f ≤ g ≤ Cf . f g and g f means that there exists a constant C such that f ≤ Cg. The condensed notation

A s = B s + C s s>s , is to say that A s = B s if s ≤ s and A s = B s + C s if s > s.
The Fourier transform of a tempered distribution u ∈ S is denoted by u, which is defined as follows

u(ξ) def = F(u)(ξ) = R n e ix•ξ u(x)dx.
We use F -1 (f ) to denote the inverse Fourier transform of f (ξ). If f and u are two functions defined on R n , the Fourier multiplier f (D)u is defined in term of Fourier transforms, i.e.,

f (D)u(ξ) = f (ξ)û(ξ).
We shall use notations

ξ def = (1 + |ξ| 2 ) 1 2 , Λ def = 1 -∆ 1 2 . If A, B are two operators, [A, B] = AB -BA denotes their commutator.
Throughout the paper, a, b, c, d ∈ R, γ ∈ (0, 1), µ 2 ∼ 1 are given parameters. We shall not show the dependence on such given parameters. C will always denote a universal constant which may be different from line to line but is independent of the parameters involved(say, µ and ). Otherwise, one uses the notation

C(λ 1 , λ 2 , • • • ) to denote a nondecreasing function of the parameters λ 1 , λ 2 , • • • .
The paper is organized as follows. In the remaining part of this Section we prove technical lemmas that will be used in the proofs of the main theorems. Section 3 is devoted to the proof of Theorem 1.1 which involves the symmetrization techniques used in our previous work [START_REF] Saut | The Cauchy problem on large time for surface waves Boussinesq systems[END_REF] (see also [START_REF] Saut | The Cauchy problem on large time for surface waves Boussinesq systems II[END_REF] on the Boussinesq (abcd) systems). In Section 4, we prove Theorem 1.2 by adapting the proof of a similar result for the Hamiltonian Boussinesq systems (see [START_REF] Bona | Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media[END_REF][START_REF] Hu | Global well-posedness of the BCL system with viscosity[END_REF]). Finally an Appendix is devoted to the proof of the equivalence of norms (3.8), (3.37) and (3.54).

2.2. Symmetrizer of (1.1). Here and in the following sections, we shall only deal with the twodimensional case, since the one-dimensional case is very similar and actually much simpler. For simplicity, we shall use v instead of v β and use the following notation

σ(D) def = √ µ 2 |D| coth( √ µ 2 |D|), A(D) def = 1 + aµ∆ + 1 γ µ µ 2 σ(D) + 1 γ 2 µ µ 2 σ(D) 2 . (2.1)
With such notations, we rewrite (1.1) as

     (1 -bµ∆)∂ t ζ + 1 γ ∇ • (A(D) -ζ)v = 0, (1 -dµ∆)∂ t v + (1 -γ)(1 + cµ∆)∇ζ - 2γ ∇(|v| 2 ) = 0. (2.2) If b > 0, d ≥ 0 or b = d = 0, letting g(D) = (1 -bµ∆)(1 -dµ∆) -1 , setting V = (ζ, v) T = (ζ, v 1 , v 2 ) T , then (2.
2) is equivalent after applying g(D) to the second equation to the condensed system

(1 -bµ∆)∂ t V + M (V , D)V = 0, (2.3) 
where

M (V , D) =   -γ v • ∇ 1 γ (A(D) -ζ)∂ 1 1 γ (A(D) -ζ)∂ 2 (1 -γ)g(D)(1 + cµ∆)∂ 1 -γ g(D)(v 1 ∂ 1 ) -γ g(D)(v 2 ∂ 1 ) (1 -γ)g(D)(1 + cµ∆)∂ 2 -γ g(D)(v 1 ∂ 2 ) -γ g(D)(v 2 ∂ 2 )   . (2.4)
When a, b, c, d satisfies the condition (1.3), the system (2.3) could be treated similarly to a symmetrizable hyperbolic system under some smallness assumption on and µ. The key point to solve (2.3) is to search a symmetrizer S V (D) of M (V , D) such that the principal part of iS V (ξ)M (V , ξ) is self-adjoint, and that of S V (ξ) is positive and self-adjoint under a smallness assumption on and µ. It is not difficult to find that:

(i) if b = d, g(D) = 1, S V (D) is defined by   γ(1 -γ)(1 + cµ∆) -v 1 -v 2 -v 1 A(D) -ζ 0 -v 2 0 A(D) -ζ   ; (2.5) (ii) if b = d, S V (D) is defined by γ(1 -γ)   γ(1 -γ)(1 + cµ∆) 2 g(D) -g(D) v 1 (1 + cµ∆) -g(D) v 2 (1 + cµ∆) -g(D) v 1 (1 + cµ∆) (A(D) -ζ)(1 + cµ∆) 0 -g(D) v 2 (1 + cµ∆) 0 (A(D) -ζ)(1 + cµ∆)   + 2   0 0 0 0 v 1 v 1 v 1 v 2 0 v 1 v 2 v 2 v 2   (g(D) -1).
(2.6) Note that S V (D) is not self-adjoint since at least its diagonal part is not.

Next we define the energy functional associated to (2.3) as

E s (V ) = (1 -bµ∆)Λ s V | S V (D)Λ s V 2 .
(2.7)

We shall show (see Appendix) that E s (V ) defined in (2.7) is actually a true energy functional equivalent to some X s µ k (R 2 ) norm.

Remark 2.1. When b = 0, d > 0, (2.2) is equivalent after applying (1 -dµ∆) to the first equation to the condensed system

(1 -dµ∆)∂ t V + M (V , D)V = 0, (2.8) 
with M (V , D) defined by

  -γ (1 -dµ∆)(v • ∇) 1 γ (1 -dµ∆) (A(D) -ζ)∂ 1 1 γ (1 -dµ∆) (A(D) -ζ)∂ 2 (1 -γ)(1 + cµ∆)∂ 1 -γ v 1 ∂ 1 -γ v 2 ∂ 1 (1 -γ)(1 + cµ∆)∂ 2 -γ v 1 ∂ 2 -γ v 2 ∂ 2   .
(2.9)

The symmetrizer S V (D) of M (V , D) is defined by

γ(1 -γ)   γ(1 -γ)(1 + cµ∆) 2 -v 1 (1 + cµ∆) -v 2 (1 + cµ∆) -v 1 (1 + cµ∆) (1 + cµ∆)[(A(D) -ζ)(1 -dµ∆)] 0 -v 2 (1 + cµ∆) 0 (1 + cµ∆)[(A(D) -ζ)(1 -dµ∆)]   +d 2 µ   0 0 0 0 v 1 v 1 v 1 v 2 0 v 1 v 2 v 2 v 2   ∆.
(2.10) We could also have defined the energy functional associated to (2.8) as

E s (V ) = (1 -dµ∆)Λ s V | S V (D)Λ s V 2 .
(2.11)

As for the previous choice, we shall show (see Appendix) that E s (V ) defined in (2.11) is actually a true energy functional equivalent to some X s µ k (R 2 ) norm. 2.3. Technical lemmas. We complete this section by recalling some useful well-known results. Firstly, we recall the tame product estimates in Sobolev spaces: if t 0 > n 2 (n = 1, 2) and s ≥ 0, one has (see [START_REF] Taylor | Pseudodifferential operators and nonlinear PDE[END_REF] Section 3.5)

f g H s f H t 0 g H s + f H s g H t 0 s>t0 , ∀f, g ∈ H s ∩ H t0 (R n ).
(2.12)

The following interpolation inequality will be also used frequently

µ θ 2 f H s+θ f 1-θ k H s µ k 2 f H s+k θ k f X s µ k , (2.13) 
where 0 < θ < k and s ≥ 0. We now present commutator estimates (see Theorems 3 and 6 in [START_REF] Lannes | Sharp estimates for pseudo-differential operators with symbols of limited smoothness and commutators[END_REF]).

Lemma 2.1. Let t 0 > n 2 , -t 0 < r ≤ t 0 + 1. Then for all s ≥ 0, f ∈ H t0+1 ∩ H s+r (R n ) and u ∈ H s+r-1 (R n ), there holds: [Λ s , f ]u H r ∇f H t 0 u H s+r-1 + ∇f H s+r-1 u H t 0 s>t0+1-r . (2.14) 
Concerning the Fourier multiplier g(D) for b, d > 0, b = d, we have the following lemma (see Lemma 2.3 in [START_REF] Saut | The Cauchy problem on large time for surface waves Boussinesq systems[END_REF]).

Lemma 2.2. Let b, d > 0 and b = d, s ∈ R, θ ≥ 0. Then (i) for all f ∈ H s (R n ), there hold min{1, ( b d ) θ } f H s ≤ g(D) θ f H s ≤ max{1, ( b d ) θ } f H s , (2.15) (g(D) -1)f H s ≤ |b -d| d f H s ; (2.16) (ii) let t 0 > n 2 , -t 0 < r ≤ t 0 + 1, for all f ∈ H t0+1 (R n ) and u ∈ H r-1 (R n ), there holds [g(D) θ , f ]u H r ≤ C f H t 0 +1 u H r-1 , (2.17) 
where C is a constant independent of µ.

We now state a useful lemma for the Fourier multiplier σ(D).

Lemma 2.3. Let θ ≥ 0. We have

(i) for all f ∈ H s (R n ), there holds µ θ 2 |D| θ f 2 L 2 ≤ σ(D) θ f 2 L 2 f 2 H θ , (2.18) (ii) let t 0 > n 2 , -t 0 < r + θ ≤ t 0 + 1, for all f ∈ H t0+1 (R n ) and u ∈ H r-1 (R n ), there holds [σ(D) θ , f ]u H r f H t 0 +1 u H r+θ-1 . (2.19) (iii) let -t 0 < r ≤ t 0 , θ = 1 2 , 1, we have [σ(D) θ g(D) 1 2 , f ]u H r f H t 0 +1 u H r+θ-1 .
(2.20)

Proof. (i). Recalling the definition of σ(D) in (2.1), by Plancherel theorem, using the fact that coth(s) ≥ 1, we have

σ(D) θ f 2 L 2 = (2π) -n R n √ µ 2 |ξ| coth( √ µ 2 |ξ|) 2θ | f (ξ)| 2 dξ ≥ (2π) -n R n √ µ 2 |ξ| 2θ | f (ξ)| 2 dξ, which implies σ(D) θ f 2 L 2 ≥ µ θ 2 |D| θ f 2 L 2 . (2.21)
This is the first part of (2.18). Since lim s→0 s coth(s) = 1 and lim s→+∞ coth(s) = 1, it is easy to get the second part of (2.18).

(ii). Recalling the Definition 9 of [START_REF] Lannes | Sharp estimates for pseudo-differential operators with symbols of limited smoothness and commutators[END_REF], one could check that σ(ξ) θ is a pseudo-differential operator of order θ. Indeed, on one hand, for |ξ| ≤ 1, we have

σ(ξ) θ = √ µ 2 |ξ| + 2 √ µ 2 |ξ| e 2 √ µ2|ξ| -1 θ ≤ (1 + √ µ 2 ) θ ,
which gives rise to sup

|ξ|≤1 |σ(ξ) θ | ≤ (1 + √ µ 2 ) θ . (2.22)
On the other hand, for 

|ξ| ≥ 1 4 , µ 2 ∼ 1 and β ∈ Z n ≥0 , it is easy to check sup |β|≤2+[ n 2 ]+n sup |ξ|≥ 1 4 ξ |β|-θ |∂ β ξ σ(ξ) θ | 1. ( 2 
(iii) Since [σ(D) θ g(D) 1 2 , f ]u = σ(D) θ [g(D) 1 2 , f ]u + [σ(D) θ , f ]g(D) 1 2 u, using (2.15), (2.17), (2.18) and (2.19), we have [σ(D) θ g(D) 1 2 , f ]u H r [g(D) 1 2 , f ]u H r+θ + f H t 0 +1 g(D) 1 2 u H r+θ-1 f H t 0 +1 u H r+θ-1 .
This is (2.20). We complete the proof of Lemma.

Long time existence for (1.1)-(1.2)

The goal of this section is to prove Theorem 1.1 that is the long time existence of solutions of (1.1)-(1.2). The proof follows the same approach used in [START_REF] Saut | The Cauchy problem on large time for surface waves Boussinesq systems[END_REF] that is to derive energy estimates on suitable symmetrizable linearized system and then use an iterative scheme.

3.1. Proof of Theorem 1.1. The proof of Theorem 1.1 relies heavily on the a priori energy estimates for (1.1). To do so, we assume

1 -ζ(t) L ∞ ≥ H 2 , √ (ζ(t), v(t)) W 1,∞ ≤ 1 for any t ∈ (0, t * ), (3.1) 
where t * will be taken at the end of the proof. Then we have the following a priori energy estimates.

Proposition 3.1. Let s ≥ t 0 + 2 and t 0 > n 2 with n = 1, 2. Assume that (ζ, v) are smooth solutions to (1.1). Then under the assumption (3.1), there exist small constants 1 > 0 and µ > 0 such that for all

≤ 1 , µ ≤ µ, d dt E s (V ) 1 + 2 E s (V ) E s (V ) 3 2 , (3.2) 
where E s (V ) is defined in (2.7) or (2.11).

Remark 3.1. Under the assumption 3.1, taking > 0 and µ > 0 sufficiently small, there will hold for any

≤ , µ ≤ µ E s (V ) ∼ E s (t) def = ζ(t) 2 X s µ k + v(t) 2 X s µ k , (3.3) 
where (k, k ) is defined in Definition 1.2. We shall use (3.3) to derive (3.2). The proof of (3.3) will be postponed to the Appendix for only three typical cases in two dimensional space.

Proof of Theorem 1.1. Assume that

E s (V ) ≤ 16E s (V 0 ), for any t ∈ [0, t * ], (3.4) 
where t * = T will be determined later on. Taking 2 = 1 4(Es(0))

1 2
, due to (3.2), (3.3) and (3.4), for any

≤ 2 , there exists a constant C 1 > 0 such that d dt E s (V ) 1 2 ≤ C 1 E s (V ),
which gives rise to

E s (V ) 1 2 ≤ E s (V 0 ) 1 2 1 -C 1 t E s (V 0 ) 1 2 ≤ 2 E s (V 0 ) 1 2 , (3.5) 
for any t

≤ T with T = 1 2C1(Es(V 0)) 1 2
. On the other hand, (3.3) implies there exists a constant

C 2 > 0 such that (E s (V 0 )) 1 2 ≤ C 2 (E s (0)) 1 2 . Taking T = 1 2C 1 C 2 (E s (0)) 1 2 ≤ T , t * = T / ,
we have that (3.5) holds for any t ≤ T / which improves the ansatz (3.4). Moreover, using (3.3) again, we deduce from (3.5) that for some

C 3 > 0, sup (0,T / ) E s (t) ≤ C 3 E s (0). (3.6)
By virtue of Sobolev inequality and (3.6), noticing that s ≥ t 0 + 2 > 3, there exists a constant

C 4 > 0 such that (ζ(t), v(t)) W 1,∞ ≤ C 4 (ζ(t), v(t)) H s ≤ C 4 C 1 2 3 E s (0) 1 2 . Taking 3 = min{ 1-H C4C 1 2 3 Es(0) 1 2 , 1 4C 2 4 C3Es(0) }, we have for any ≤ min{ 2 , 3 }, 1 -ζ L ∞ ≥ H > H 2 , √ (ζ(t), v(t)) W 1,∞ ≤ 1 2 , (3.7) 
which improves the ansatz (3.1). Then taking = min{ 1 , 2 , 3 }, we have for any ≤ and µ ≤ µ, energy estimate (3.6) holds for any t ∈ [0, T / ]. Thus, (1.5) is proved.

The existence and uniqueness of the solution can be verified by standard mollification method and the Cauchy-Lipschitz theorem. One could refer to [START_REF] Saut | The Cauchy problem on large time for surface waves Boussinesq systems[END_REF]. Now, we complete the proof of Theorem 1.1.

The rest of this section is devoted to prove Proposition 3.1. We only sketch the proof of three typical cases in two dimensional space, since the others could be treated in a similar way.

A priori estimates for the "general case

": b = d, b > 0, d > 0, a ≤ 0, c < 0. In this case, one could check that E s (V ) ∼ E s (t) def = ζ(t) 2 X s µ 3 + v(t) 2 X s µ 3 (3.8)
for any ≤ 1 and µ ≤ µ with 1 and µ being sufficiently small. We postpone the proof of (3.8) to Appendix.

A direct energy estimate shows that

d dt E s (V ) = (1 -bµ∆)Λ s ∂ t V | (S V (D) + S V (D) * )Λ s V 2 -bµ([S V (D) * , ∆]Λ s V | Λ s ∂ t V ) 2 + (1 -bµ∆)Λ s V | ∂ t S V (D)Λ s V 2 def = I + II + III, (3.9) 
where S V (D) * is the adjoint operator of S V (D).

Step 1. Estimate on I. Using (2.3), we have

I = -[Λ s , M (V , D)]V | (S V (D) + S V (D) * )Λ s V 2 -(S V (D) + S V (D) * ) M (V , D)Λ s V | Λ s V 2 def = I 1 + I 2 .
(3.10)

Step 1.1. Estimate on I 1 . Using (2.4) and (2.6), a direct calculation yields

[Λ s , M (V , D)]V | S V (D)Λ s V 2 = -(1 -γ) 2 γ g(D) [Λ s , v] • ∇ζ + [Λ s , ζ]∇ • v | (1 + cµ∆) 2 Λ s ζ 2 + 2 (1 -γ) g(D) [Λ s , v] • ∇ζ + [Λ s , ζ]∇ • v | v • (1 + cµ∆)Λ s v 2 + 2 (1 -γ) j=1,2 g(D) [Λ s , v] • ∂ j v | g(D) v j (1 + cµ∆)Λ s ζ + ζ(1 + cµ∆)Λ s v j 2 -(1 -γ) j=1,2 g(D) 1 2 (1 + cµ∆) [Λ s , v] • ∂ j v | g(D) 1 2 A(D)Λ s v j 2 - 3 γ j=1,2 g(D) [Λ s , v] • ∂ j v | v j v • (g(D) -1)Λ s v 2 def = I 11 + I 12 + I 13 + I 14 + I 15 .
(3.11)

For I 11 , integration by parts yields

|I 11 | g(D) [Λ s , v] • ∇ζ + [Λ s , ζ]∇ • v L 2 (1 + cµ∆)Λ s ζ L 2 + |c| µ g(D)∇ [Λ s , v] • ∇ζ + [Λ s , ζ]∇ • v L 2 (1 + cµ∆)∇Λ s ζ L 2 ,
By virtue of (2.15) and (2.14), noticing that s ≥ t 0 + 2 > 3, we have

g(D) [Λ s , v] • ∇ζ L 2 [Λ s , v] • ∇ζ L 2 v H t 0 +1 ζ H s + v H s ζ H t 0 +1 ζ H s v H s , g(D)∇([Λ s , v] • ∇ζ) L 2 v H t 0 +1 ζ H s+1 + v H s+1 ζ H t 0 +1 v H s ζ H s+1 + v H s+1 ζ H s . Similar estimates hold for g(D) [Λ s , ζ]∇ • v L 2 and g(D)∇ [Λ s , ζ]∇ • v L 2 . Since (1 + cµ∆)Λ s ζ L 2 ζ H s + µ ζ H s+2 , ∇(1 + cµ∆)Λ s ζ L 2 ζ H s+1 + µ ζ H s+3 ,
we have

|I 11 | ζ H s v H s ζ H s + µ ζ H s+2 + v H s • µ 1 2 ζ H s+1 + µ 1 2 v H s+1 • ζ H s µ 1 2 ζ H s+1 + µ 3 2 ζ H s+3
which along with (2.13) implies

|I 11 | v X s µ 3 ζ 2 X s µ 3 .
(3.12)

For I 14 , we first have

|I 14 | j=1,2 g(D) 1 2 (1 + cµ∆) [Λ s , v] • ∂ j v L 2 g(D) 1 2 A(D)Λ s v j L 2 .
Recalling that 2 , using (2.18) and (2.13), we have 

A(D) = 1 + aµ∆ + 1 γ µ µ2 σ(D) + 1 γ 2 µ µ2 σ(D)
A(D)f L 2 f L 2 + µ 1 2 ∇f L 2 + µ ∇ 2 f L 2 f X s µ 2 . ( 3 
| [Λ s , M (V , D)]V | S V (D)Λ s V 2 | (1 + v L ∞ ) 2 ζ X s µ 3 + v X s µ 3
3 .

The same estimate holds for

[Λ s , M (V , D)]V | S V (D) * Λ s V 2 . Using (3.8), we obtain |I 1 | 1 + 2 E s (V ) E s (V ) 3 2 . (3.15)
Step 1.2. Estimate on I 2 . In order to estimate I 2 , we first calculate S V (D)M (V , D)

def = A V (D) def = (a ij ) i,
j=1,2,3 as follows:

a 11 = -γ(1 -γ) 2 [(1 + cµ∆) 2 g(D)(v • ∇) + g(D) v • ∇(1 + cµ∆) 2 g(D) ] def = -γ(1 -γ) 2 (a 111 + a 112 ), a 12 = γ(1 -γ) 2 (1 + cµ∆) 2 g(D) (A(D) -ζ)∂ 1 + 2 (1 -γ)g(D) v • (1 + cµ∆)g(D)(v 1 ∇) def = a 121 + a 122 , a 13 = γ(1 -γ) 2 (1 + cµ∆) 2 g(D) (A(D) -ζ)∂ 2 + 2 (1 -γ)g(D) v • (1 + cµ∆)g(D)(v 2 ∇) a 21 = γ(1 -γ) 2 (A(D) -ζ)(1 + cµ∆) 2 g(D)∂ 1 + 2 (1 -γ)g(D) v 1 (1 + cµ∆)(v • ∇) + 2 (1 -γ)v 1 v • ∇(g(D) -1)g(D)(1 + cµ∆) def = a 211 + a 212 + a 213 , a 22 = -(1 -γ)g(D) v 1 (1 + cµ∆) (A(D) -ζ)∂ 1 -(1 -γ)(A(D) -ζ)(1 + cµ∆)g(D)(v ∂ 1 ) - 3 γ v 1 v • (g(D) -1)g(D)(v 1 ∇) def = a 221 + a 222 + a 223 , a 23 = -(1 -γ)g(D) v 1 (1 + cµ∆) (A(D) -ζ)∂ 2 -(1 -γ)(A(D) -ζ)(1 + cµ∆)g(D)(v ∂ 1 ) - 3 γ v 1 v • (g(D) -1)g(D)(v 2 ∇) def = a 231 + a 232 + a 233 a 31 = γ(1 -γ) 2 (A(D) -ζ)(1 + cµ∆) 2 g(D)∂ 2 + 2 (1 -γ)g(D) v 2 (1 + cµ∆)(v • ∇) + 2 (1 -γ)v 2 v • ∇(g(D) -1)g(D)(1 + cµ∆), a 32 = -(1 -γ)(A(D) -ζ)(1 + cµ∆)g(D)(v 1 ∂ 2 ) -(1 -γ)g(D) v 2 (1 + cµ∆) (A(D) -ζ)∂ 1 - 3 γ v 2 v • (g(D) -1)g(D)(v 1 ∇) def = a 321 + a 322 + a 323 , a 33 = -(1 -γ)g(D) v 2 (1 + cµ∆) (A(D) -ζ)∂ 2 -(1 -γ)(A(D) -ζ)(1 + cµ∆)g(D)(v ∂ 2 ) - 3 γ v 2 v • (g(D) -1)g(D)(v 2 ∇).
(3.16)

The expression of A V (D) shows that the principal part of iA V (D) is symmetric. Now, we estimate

S V (D)M (V , D)Λ s V | Λ s V 2 = A V (D)Λ s V | Λ s V 2 term by term.
For a 11 , we have

a 11 Λ s ζ | Λ s ζ 2 = -γ(1 -γ) 2 { a 111 Λ s ζ | Λ s ζ 2 + a 112 Λ s ζ | Λ s ζ 2 }.
Using the expression of a 111 , integrating by parts, we have

a 111 Λ s ζ | Λ s ζ 2 = g(D) 1 2 [cµ∆, v] • ∇Λ s ζ | g(D) 1 2 (1 + cµ∆)Λ s ζ 2 + [g(D) 1 2 , v] • ∇(1 + cµ∆)Λ s ζ | g(D) 1 2 (1 + cµ∆)Λ s ζ 2 + v • ∇g(D) 1 2 (1 + cµ∆)Λ s ζ | g(D) 1 2 (1 + cµ∆)Λ s ζ 2 .
(3.17)

Integration by parts yields that the last term in (3.17) equals

- 1 2 ∇ • vg(D) 1 2 (1 + cµ∆)Λ s ζ | g(D) 1 2 (1 + cµ∆)Λ s ζ 2
which along with (3.17) and (2.15) implies

| a 111 Λ s ζ | Λ s ζ 2 | µ [∆, v] • ∇Λ s ζ L 2 ζ X s µ 2 + [g(D) 1 2 , v] • ∇(1 + cµ∆)Λ s ζ L 2 ζ X s µ 2 + ∇v L ∞ ζ 2 X s µ 2 . Thanks to (2.17), we have [g(D) 1 2 , v] • ∇(1 + cµ∆)Λ s ζ L 2 v H t 0 +1 ζ X s µ 2 . Since µ [∆, v] • ∇Λ s ζ L 2 µ v H t 0 +2 ζ H s+1 + µ v H t 0 +1 ζ H s+2 using (2.13), we get | a 111 Λ s ζ | Λ s ζ 2 | v H t 0 +2 ζ 2 X s µ 3 v H s ζ 2 X s µ 3 .
The same estimate holds for

a 112 Λ s ζ | Λ s ζ 2 . Then we obtain | a 11 Λ s ζ | Λ s ζ 2 | v H t 0 +2 ζ 2 X s µ 3 v H s ζ 2 X s µ 3 . (3.18)
For a 12 and a 21 , we have

a 12 Λ s v 1 | Λ s ζ 2 + a 21 Λ s ζ | Λ s v 1 2 = (a * 12 + a 21 )Λ s ζ | Λ s v 1 2
, where a * 12 is the adjoint operator of a 12 . By the expression of a 12 , we first have

a * 121 = -γ(1 -γ) 2 ∂ 1 (A(D) -ζ)(1 + cµ∆) 2 g(D) a * 122 = -2 (1 -γ)∇ • v 1 (1 + cµ∆)g(D)(vg(D)
) . Due to the expression of a 21 , we have

a * 121 + a 211 = γ(1 -γ) 2 ∂ 1 ζ(1 + cµ∆) 2 g(D), which implies (a * 121 + a 211 )Λ s ζ | Λ s v 1 2 = γ(1 -γ) 2 (1 + cµ∆)g(D)Λ s ζ | (1 + cµ∆)(∂ 1 ζΛ s v 1 ) 2 . (3.19)
Noticing that s ≥ t 0 + 2 > 3, using (2.15) and (2.13), we have

| (a * 121 + a 211 )Λ s ζ | Λ s v 1 2 | ζ X t 0 +1 µ 2 ζ X s µ 2 v X s µ 2 ζ 2 X s µ 3 v X s µ 3 . (3.20) Since a * 122 = -2 (1 -γ)∇ • v 1 (1 + cµ∆)g(D)(v) -2 (1 -γ)∇ • v 1 (1 + cµ∆)g(D) v(g(D) -1) def = a * 122,1 + a * 122,2 , we have 1 2 (1 -γ) (a * 122,1 + a 212 ) = -∇v 1 • (1 + cµ∆)g(D)(v•) -v 1 (1 + cµ∆)g(D)(∇ • v•) + [g(D), v 1 ] (1 + cµ∆)(v • ∇) , (3.21) 
and

1 2 (1 -γ) (a * 122,2 + a 213 ) = -∇v 1 • (1 + cµ∆)g(D) v(g(D) -1) -v 1 (1 + cµ∆)g(D) ∇ • v(g(D) -1) -v 1 [(1 + cµ∆)g(D), v] • ∇(g(D) -1), (3.22) 
which long with (2.15), (2.16), (2.17) and (2.13) implies

(a * 122,1 + a 212 )Λ s ζ L 2 + (a * 122,2 + a 213 )Λ s ζ L 2 2 v 1 H t 0 +1 v X t 0 +1 µ 2 ζ X s µ 2
, where we used the formula

[(1 + cµ∆)g(D), v] = (1 + cµ∆) [g(D), v] + cµ[∆, v]g(D).
Since s ≥ t 0 + 2 > 3, using (2.13) again, we have

| (a * 122 + a 212 + a 213 )Λ s ζ | Λ s v 1 2 | 2 v 2 X t 0 +1 µ 2 ζ X s µ 2 v 1 H s 2 ζ X s µ 3 v 3 X s µ 3 . (3.23) 
Thanks to (3.20) and (3.23), we have

| a 12 Λ s v 1 | Λ s ζ 2 + a 21 Λ s ζ | Λ s v 1 2 | 1 + v X s µ 3 v X s µ 3 ζ 2 X s µ 3 + v 2 X s µ 3 .
(3.24)

The same estimate holds for

a 13 Λ s v 2 | Λ s ζ 2 + a 31 Λ s ζ | Λ s v 2 2 . For a 22 , we first estimate a 221 Λ s v 1 | Λ s v 1 2 .
Using the expression of a 221 , we have

- 1 1 -γ a 221 Λ s v 1 | Λ s v 1 2 = g(D) v 1 A(D)∂ 1 Λ s v 1 | Λ s v 1 2 + c µ g(D) v 1 ∆A(D)∂ 1 Λ s v 1 | Λ s v 1 2 -2 g(D) v 1 ζ∂ 1 Λ s v 1 | Λ s v 1 2 -c 2 µ g(D) v 1 ∆(ζ∂ 1 Λ s v 1 ) | Λ s v 1 2 def = B 11 + B 12 + B 13 + B 14 .
For B 11 , using the expression of A(D) in (2.1), we have

B 11 = g(D) 1 2 v 1 ∂ 1 Λ s v 1 | g(D) 1 2 Λ s v 1 2 + a µ g(D) 1 2 v 1 ∆∂ 1 Λ s v 1 | g(D) 1 2 Λ s v 1 2 + γ µ µ 2 g(D) 1 2 v 1 σ(D)∂ 1 Λ s v 1 | g(D) 1 2 Λ s v 1 2 + γ 2 µ µ 2 g(D) 1 2 v 1 σ(D) 2 ∂ 1 Λ s v 1 | g(D) 1 2 Λ s v 1 2 def = B 11,1 + B 11,2 + B 11,3 + B 11,4 .
A direct calculation shows that

γ 2 µ 2 µ B 11,4 = [g(D) 1 2 , v 1 ]σ(D) 2 ∂ 1 Λ s v 1 | g(D) 1 2 Λ s v 1 2 -[σ(D), v 1 ]σ(D)∂ 1 g(D) 1 2 Λ s v 1 | g(D) 1 2 Λ s v 1 2 + v 1 ∂ 1 σ(D)g(D) 1 2 Λ s v 1 | σ(D)g(D) 1 2 Λ s v 1 2 .
Integrating by parts for the last term of γ 2 µ2 µ B 11,4 , we see that it equals [START_REF] The | On the Boussinesq-Full dispersion systems and Boussinesq-Boussinesq systems for internal waves[END_REF]) and (2.18), we have

- 1 2 ∂ 1 v 1 σ(D)g(D) 1 2 Λ s v 1 | σ(D)g(D) 1 2 Λ s v 1 2 . Using (2.
|B 11,4 | µ [g(D) 1 2 , v 1 ]σ(D) 2 ∂ 1 Λ s v 1 L 2 + [σ(D), v 1 ]σ(D)∂ 1 g(D) 1 2 Λ s v 1 L 2 v 1 H s + µ ∂ 1 v 1 L ∞ v 1 2 H s+1 . (3.25) 
Thanks to (2.17), (2.19), (2.15) and (2.18), we have

[g(D) 1 2 , v 1 ]σ(D) 2 ∂ 1 Λ s v 1 L 2 v 1 H t 0 +1 σ(D) 2 ∂ 1 Λ s v 1 H -1 v 1 H s v 1 H s+2 , [σ(D), v 1 ]σ(D)∂ 1 g(D) 1 2 Λ s v 1 L 2 v 1 H t 0 +1 σ(D)∂ 1 g(D) 1 2 Λ s v 1 L 2 v 1 H s v 1 H s+2
which along with (2.13) and (3.25) imply

|B 11,4 | µ v 1 H s+2 • v 1 2 H s + µ v 1 2 H s+1 • v 1 H s v 1 3
X s µ 3 . Similar estimates hold for B 11,1 , B 11,2 and B 11,3 . Then we obtain

|B 11 | v 1 H s v 1 2 X s µ 2 v 1 3 X s µ 3 . (3.26) 
Following similar derivation as (3.26), we have

|B 12 | v 1 X t 0 +1 µ 2 v 1 2 X s µ 3 v 1 3 X s µ 3 , |B 13 | + |B 14 | 2 v 1 H t 0 +1 ζ H t 0 +2 v 1 2 X s µ 2 2 ζ H s v 1 H s v 1 2 X s µ 3 , which along with (3.26) imply | a 221 Λ s v 1 | Λ s v 1 2 | 1 + ζ X s µ 3 v 3 X s µ 3 . (3.27) 
Similarly, we have

| a 222 Λ s v 1 | Λ s v 1 2 | 1 + ζ X s µ 3 v 3 X s µ 3 , | a 223 Λ s v 1 | Λ s v 1 2 | 1 + 2 ζ 2 X s µ 3 v 3 X s µ 3 , which along with (3.27) implies | a 22 Λ s v 1 | Λ s v 1 2 | 1 + ζ X s µ 3 v 3 X s µ 3 .
(3.28)

The same estimate holds for a 33 Λ s v 2 | Λ s v 2 2 . For a 23 and a 32 , we have 

a 23 Λ s v 2 | Λ s v 1 2 + a 32 Λ s v 1 | Λ s v 2 2 = (a * 23 + a 32 )Λ s v 1 | Λ s v 2 2 ,
* 231 = (1 -γ)∂ 2 A(D) -ζ (1 + cµ∆) v 1 g(D) , a * 232 = (1 -γ)∂ 1 v 2 g(D)(1 + cµ∆) (A(D) -ζ)• , a * 233 = 3 γ ∇ • v 2 g(D)(g(D) -1)(vv 1 •) ,
which along with the expression of a 32 imply

a * 231 + a 321 = -2 (1 -γ)∂ 2 ζ(1 + cµ∆) v 1 g(D) + (1 -γ) A(D) -ζ (1 + cµ∆) ∂ 2 v 1 g(D) -(1 -γ)(A(D) -ζ)(1 + cµ∆) [g(D), v 2 ]∂ 2 , a * 232 + a 322 = (1 -γ)∂ 1 v 2 g(D)(1 + cµ∆) (A(D) -ζ)• -2 (1 -γ)v 2 (1 + cµ∆)g(D) ∂ 1 ζ• -(1 -γ)[g(D), v 2 ](1 + cµ∆) (A(D) -ζ)∂ 1 , a * 233 + a 323 = 3 γ {∇v 2 • g(D)(g(D) -1)(vv 1 •) + v 2 g(D)(g(D) -1) ∇ • (vv 1 )• + v 2 [g(D)(g(D) -1), v] • (v 1 ∇)}. (3.29)
Thanks to (2.1), (2.15), (3.13), (2.17) and (2.13), we have

| (a * 232 + a 322 )Λ s v 1 | Λ s v 2 2 | (A(D) -ζ)Λ s v 1 L 2 (1 + cµ∆)(∂ 1 v 2 Λ s v 2 ) L 2 + 2 v 2 (1 + cµ∆)g(D) ∂ 1 ζΛ s v 1 L 2 Λ s v 2 L 2 + ((A(D) -ζ)∂ 1 Λ s v 1 H -1 (1 + cµ∆) [g(D), v 2 ]Λ s v 2 H 1 1 + ζ H s + v 2 H s v 1 X s µ 2 v 2 2
X s µ 2 , where we also used the fact s ≥ t 0 + 2 > 3. Similar estimates hold for (a

* 231 + a 321 )Λ s v 1 | Λ s v 2 2 and (a * 233 + a 323 )Λ s v 1 | Λ s v 2 2 . Using (2.13), we have | a 23 Λ s v 2 | Λ s v 1 2 + a 32 Λ s v 1 | Λ s v 2 2 | 1 + ζ X s µ 3 + v X s µ 3 + 2 v 2 X s µ 3 v 3 X s µ 3 .
(3.30)

Thanks to (3.18), (3.24) and (3.28), we could obtain the estimate for

S V (D)M (V , D)Λ s V | Λ s V 2 = A V (D)Λ s V | Λ s V 2 . Since the same estimate holds for S V (D) * M (V , D)Λ s V | Λ s V 2 , using (3.8), we arrive at |I 2 | 1 + 2 E s (V ) E s (V ) 3 2 . 
(3.31)

Step 1.3. Estimate on I. Due to (3.15) and (3.31), we obtain

|I| 1 + 2 E s (V ) E s (V ) 3 2 . (3.32)
Step 2. Estimate on II. Thanks to the expression of S V (D), we have

|II| µ [∆, v]g(D)Λ s V H 1 (1 + cµ∆)Λ s ∂ t V H -1 + µ [∆, ζ]Λ s V H 1 (1 + cµ∆)Λ s ∂ t V H -1 + µ 2 i,j=1,2 [∆, v i v j ]Λ s V H 1 (g(D) -1)Λ s ∂ t V H -1 ,
which along with (2.15), (2.13) and (3.8), noticing that s ≥ t 0 + 2 > 3, we have

|II| 1 + V H s V 2 X s µ 2 ∂ t V X s-1 µ 2 1 + (E s (V )) 1 2 E s (V ) ∂ t V X s-1 µ 2 .
(3.33)

Step 3. Estimate on III. Thanks to the expression of S V (D), using (2.15) and (2.16), we have

|III| (1 -bµ∆)Λ s V L 2 ∂ t S V (D)Λ s V L 2 (1 + v H t 0 ) ∂ t V H t 0 V 2 X s µ 2 .
Due to (2.13) and (3.8), noticing that s ≥ t 0 + 2 > 3, we have

|III| 1 + (E s (V )) 1 2 E s (V ) ∂ t V H s-2 . (3.34)
Step 4. The a priori energy estimate. Thanks to (3.32), (3.33) and (3.34), we deduce from (3.9)

that d dt E s (V ) 1 + 2 E s (V ) E s (V ) 3 2 + 1 + (E s (V )) 1 2 E s (V ) ∂ t V X s-1 µ 2 . (3.35)
Going back to the equation (2.3), using (2.15), (2.12), (3.13), (2.13) and (3.8), we have

∂ t V X s-1 µ 2 ∼ (1 -bµ∆)∂ t V H s-1 M (V , D)V H s-1 1 + V H s V X s µ 2 1 + (E s (V )) 1 2 (E s (V )) 1 2 , which along with (3.35) implies d dt E s (V ) 1 + 2 E s (V ) E s (V ) 3 2 . (3.36)
This is exactly (3.2).

3.3.

A priori estimates for the case: b > 0, d = 0, a ≤ 0, c < 0. In this case, one could check that

E s (V ) ∼ E s (t) def = ζ(t) 2 X s µ 4 + v(t) 2 X s µ 3 (3.37)
for any ≤ 1 and µ ≤ µ with 1 and µ being sufficiently small. We postpone the proof of (3.37) to the Appendix.

Since the proof of (3.2) of this case is similar to that of case b = d, b > 0, d > 0, a ≤ 0, c < 0, we only sketch it.

A direct energy estimate shows that

d dt E s (V ) = (1 -bµ∆)Λ s ∂ t V | (S V (D) + S V (D) * )Λ s V 2 -bµ([S V (D) * , ∆]Λ s V | Λ s ∂ t V ) 2 + (1 -bµ∆)Λ s V | ∂ t S V (D)Λ s V 2 def = I + II + III, (3.38) 
where S V (D) * is the adjoint operator of S V (D).

Step 1. Estimate on I. Using (2.3), we have

I = -[Λ s , M (V , D)]V | (S V (D) + S V (D) * )Λ s V 2 -(S V (D) + S V (D) * ) M (V , D)Λ s V | Λ s V 2 def = I 1 + I 2 .
(3.39)

Step 1.1. Estimate on I 1 . Firstly, notice that (3.11) also holds for the present case with g(D) = 1-bµ∆. Similar derivation as (3.15), we have

|I 1 | 1 + ζ X s µ 4 + v X s µ 3 2 v X s µ 3 ζ 2 X s µ 4 + v 2 X s µ 3 1 + 2 E s (V ) E s (V ) 3 2 . 
(3.40)

Step 1.2. Estimate on I 2 . In order to estimate I 2 , we first calculate S V (D)M (V , D)

def = A V (D) def = (a ij ) i,
j=1,2,3 . We point out that a ij has the same expression as that in (3.16) with g(D) = 1 -bµ∆. Now, we estimate

S V (D)M (V , D)Λ s V | Λ s V 2 = A V (D)Λ s V | Λ s V 2 term by term.
Following similar derivation as that of case b = d, b > 0, d > 0, a ≤ 0, c < 0, integrating by parts, we first have 

| a 11 Λ s ζ | Λ s ζ 2 | v X s µ 3 ζ 2 X s µ 4 , | a 22 Λ s v 1 | Λ s v 1 2 | + | a 33 Λ s v 2 | Λ s v 2 2 | 1 + ζ X s µ 4 + v X s µ 3 2 v 3 X s µ 3 . ( 3 
| (a * 121 + a 211 )Λ s ζ | Λ s v 1 2 | ζ X t 0 +1 µ 2 ζ X s µ 4 v X s µ 2 ζ 2 X s µ 4 v X s µ 3 . ( 3 
+ a 212 + a 213 )Λ s ζ | Λ s v 1 2 | 2 v 1 H t 0 +1 v X t 0 +2 µ 2 ζ X s µ 4 v 1 X s µ 2 2 ζ X s µ 4 v 3 X s µ 3 , which along with (3.42) implies | a 12 Λ s v 1 | Λ s ζ 2 + a 21 Λ s ζ | Λ s v 1 2 | 1 + v X s µ 3 v X s µ 3 ζ 2 X s µ 4 + v 2 X s µ 3 .
(3.43)

The same estimate holds for

a 13 Λ s v 2 | Λ s ζ 2 + a 31 Λ s ζ | Λ s v 2 2 .
For a 23 and a 32 , there also holds (3.29) with g(D) = 1 -bµ∆. Then we get 

| a 23 Λ s v 2 | Λ s v 1 2 + a 32 Λ s v 1 | Λ s v 2 2 | 1 + ζ X s µ 4 + v X s µ 3 2 v X s µ 3 ζ 2 X s µ 4 + v 2
V (D)M (V , D)Λ s V | Λ s V 2 . The same estimate holds for S V (D) * M (V , D)Λ s V | Λ s V 2 . Using (3.37), we arrive at |I 2 | 1 + 2 E s (V ) E s (V )
|I| 1 + 2 E s (V ) E s (V ) 3 2 . 
(3.46)

Step 2. Estimate on II. Thanks to the expression of S V (D), we have

II = b (1 -γ)γµ [∆, v] • (1 -bµ∆)Λ s v | (1 + cµ∆)Λ s ∂ t ζ 2 + b (1 -γ)γµ [∆, v](1 -bµ∆)Λ s ζ | (1 + cµ∆)Λ s ∂ t v 2 + b (1 -γ)γµ [∆, ζ]Λ s v | (1 + cµ∆)Λ s ∂ t v 2 + b 2 2 µ 2 i,j=1,2 [∆, v i v j ]Λ s v j | ∆Λ s ∂ t v i 2 ,
which along with (2.13) implies

|II| v X t 0 +1 µ v X s µ 3 ∂ t ζ X s-1 µ 3 + v X t 0 +1 µ ζ X s µ 4 ∂ t v X s-1 µ 2 + ζ X t 0 +1 µ v X s µ 2 ∂ t v X s-1 µ 2 + 2 v H t 0 +1 v X t 0 +1 µ 2 v X s µ 2 ∂ t v X s-1 µ 2
.

Since s ≥ t 0 + 2 > 3, using (2.13) and (3.37), we obtain

|II| 1 + E s (V ) 1 2 E s (V ) ∂ t ζ X s-1 µ 3 + ∂ t v X s-1 µ 2
.

(3.47)

Step 3. Estimate on III. Thanks to the expression of S V (D), we have

III = -(1 -γ) (1 -bµ∆) 2 Λ s ζ | ∂ t v • (1 + cµ∆)Λ s v 2 -(1 -γ) (1 -bµ∆)Λ s v | (1 -bµ∆) ∂ t v(1 + cµ∆)Λ s ζ 2 -(1 -γ)γ (1 -bµ∆)Λ s v | ∂ t ζ(1 + cµ∆)Λ s v 2 -bµ i,j=1,2 (1 -bµ∆)Λ s v i | ∂ t (v i v j )(1 + cµ∆)Λ s v j 2 ,
which along with (2.13) implies

|III| ζ X s µ 4 v X s µ 3 ∂ t ζ H t 0 +1 + 1 + v H t 0 v 2 X s µ 3 ∂ t ζ H t 0 + ∂ t v H t 0 .
Since s ≥ t 0 + 2 > 3, using (2.13) and (3.37), we obtain

|III| 1 + E s (V ) 1 2 E s (V ) ∂ t ζ H s-1 + ∂ t v H s-1 . (3.48) 
Step 4. The a priori energy estimate. Thanks to (3.46), (3.47) and (3.48), we deduce from (3.38) that

d dt E s (V ) 1 + 2 E s (V ) E s (V ) 3 2 + 1 + (E s (V )) 1 2 E s (V ) ∂ t ζ X s-1 µ 3 + ∂ t v X s-1 µ 2 . ( 3.49) 
Going back to the equation (2.2), using (2.15), (2.12), (3.13) and (2.13), we have

∂ t ζ X s-1 µ 3 A(D) -ζ v X s-1 µ 1 + ζ X s µ v X s µ 3 , ∂ t v X s-1 µ 2 (1 + cµ∆)ζ X s µ 2 + v • v X s µ 2 ζ X s µ 4 + v 2 X s µ 3 ,
which along with (2.13) and (3.37) implies 

∂ t ζ X s-1 µ 3 + ∂ t v X s-1 µ 2 1 + (E s (V )) 1 2 (E s (V ))
d dt E s (V ) 1 + 2 E s (V ) E s (V ) 3 2 . (3.51) 
This is exactly (3.2).

3.4.

A priori estimates for the case: b = d = 0, a ≤ 0, c < 0. In this case, the equation (2.2) is equivalent to the following condensed system

∂ t V + M (V , D)V = 0, (3.52) 
where M (V , D) is defined in (2.4) with g(D) = 1. The symmetrizer S V (D) of M (V , D) is defined by (2.5).

Defining the associated energy functional as

E s (V ) def = Λ s V | S V (D)Λ s V 2 , (3.53) 
one could check that

E s (V ) ∼ E s (t) def = ζ(t) 2 X s µ + v(t) 2 X s µ , (3.54) 
for any ≤ 1 and µ ≤ µ with 1 and µ being sufficiently small. We postpone the proof of (3.54) to the Appendix.

A direct energy estimate shows that

d dt E s (V ) = Λ s ∂ t V | (S V (D) + S V (D) * )Λ s V 2 + Λ s V | ∂ t S V (D)Λ s V 2 def = I + II. (3.55) 
Step 1. Estimate on I. Thanks to (3.52), we have

I = -[Λ s , M (V , D)]V | (S V (D) + S V (D) * )Λ s V 2 -(S V (D) + S V (D) * ) M (V , D)Λ s V | Λ s V 2 def = I 1 + I 2 .
(3.56)

Step 1.1. Estimate on I 1 . By the expressions of M (V , D) and S V (D) in (2.4) and (2.5) with g(D) = 1, we first have

[Λ s , M (V , D)]V | S V (D)Λ s V 2 = -(1 -γ) [Λ s , v] • ∇ζ | (1 + cµ∆)Λ s ζ 2 -(1 -γ) [Λ s , ζ]∇ • v | (1 + cµ∆)Λ s ζ 2 + 2 γ [Λ s , v] • ∇ζ + [Λ s , ζ]∇ • v | v • Λ s v 2 + 2 γ j=1,2 [Λ s , v] • ∂ j v | v j Λ s ζ 2 - γ j=1,2 [Λ s , v] • ∂ j v | (A(D) -ζ)Λ s v j 2 def = I 11 + I 12 + I 13 + I 14 + I 15 .
For I 11 , integration by parts gives rise to

|I 11 | [Λ s , v] • ∇ζ L 2 Λ s ζ L 2 + µ ∇([Λ s , v] • ∇ζ) L 2 ∇Λ s ζ L 2 ,
which along with (2.14) implies

|I 11 | v X s µ ζ 2 X s µ . (3.57) 
Similar estimates hold for I 12 , I 13 , I 14 and I 15 . Then using (3.54), we obtain

|I 1 | 1 + v X s µ v X s µ ζ 2 X s µ + v 2 X s µ 1 + (E s (V )) 1 2 (E s (V )) 3 2 . 
(3.58)

Step 1.2. Estimate on I 2 . By the expressions of M (V , D) and S V (D) in (2.4) and (2.5) with g(D) = 1, we calculate S V (D)M (V , D) = (a ij ) i,j=1,2 as follows:

a 11 = -(1 -γ)[(1 + cµ∆)(v • ∇) + v • ∇(1 + cµ∆)], a 12 = (1 -γ)(1 + cµ∆) (A(D) -ζ)∂ 1 + 2 γ v 1 v • ∇, a 13 = (1 -γ)(1 + cµ∆) (A(D) -ζ)∂ 2 + 2 γ v 2 v • ∇, a 21 = (1 -γ)(A(D) -ζ)(1 + cµ∆)∂ 1 + 2 γ v 1 v • ∇, a 22 = - γ v 1 (A(D) -ζ)∂ 1 + (A(D) -ζ)(v 1 ∂ 1 ) , a 23 = - γ v 1 (A(D) -ζ)∂ 2 + (A(D) -ζ)(v 2 ∂ 1 ) , a 31 = (1 -γ)(A(D) -ζ)(1 + cµ∆)∂ 2 + 2 γ v 2 v • ∇ a 32 = - γ v 2 (A(D) -ζ)∂ 1 + (A(D) -ζ)(v 1 ∂ 2 ) , a 33 = - γ v 2 (A(D) -ζ)∂ 2 + (A(D) -ζ)(v 2 ∂ 2 ) . Now, we calculate S V (D) M (V , D)Λ s V | Λ s V 2 .
For a 11 , integration by parts gives rise to

a 11 Λ s ζ | Λ s ζ 2 = (1 -γ) ∇ • vΛ s ζ | Λ s ζ 2 -cµ (1 -γ) ∇ • v∇Λ s ζ | ∇Λ s ζ 2 + cµ (1 -γ) j=1,2 { ∂ j v • ∇Λ s ζ | ∂ j Λ s ζ 2 -∇ • (∂ j vΛ s ζ) | ∂ j Λ s ζ 2 }, which implies | a 11 Λ s ζ | Λ s ζ 2 | v X s µ ζ 2 X s µ . (3.59)
For a 22 , we first deal with one term involving A(D) as follows

- γ 3 µ µ 2 v 1 σ(D) 2 ∂ 1 Λ s v 1 | Λ s v 1 2 = γ 3 µ µ 2 { σ(D)Λ s v 1 | ∂ 1 [σ(D), v 1 ]Λ s v 1 2 + 1 2 ∂ 1 v 1 σ(D)Λ s v 1 | σ(D)Λ s v 1 2 },
which along with (2.18) and (2.19) implies

γ 3 µ µ 2 | v 1 σ(D) 2 ∂ 1 Λ s v 1 | Λ s v 1 2 | v 3 X s µ .
Similar estimate holds for the other terms in

a 22 Λ s v 1 | Λ s v 1 2 . Then we obtain | a 22 Λ s v 1 | Λ s v 1 2 | (1 + ζ X s µ ) v 3 X s µ . (3.60)
The same estimate holds for a 33 Λ s v 2 | Λ s v 2 2 . For a 12 and a 21 , it is easy to check that

a * 12 + a 21 = (1 -γ)∂ 1 ζ(1 + cµ∆) - 2 γ ∇ • (v 1 v), which implies | a 12 Λ s v 1 | Λ s ζ 2 + a 21 Λ s ζ | Λ s v 1 2 | ζ X t 0 +1 µ v X s µ ζ X s µ + 2 v 2 H t 0 +1 v H s ζ H s (1 + v X s µ ) ζ X s µ ζ 2 X s µ + v 2 X s µ .
(3.61)

The same estimate holds for

a 13 Λ s v 2 | Λ s ζ 2 + a 31 Λ s ζ | Λ s v 2 2 .
For a 23 and a 32 , it is easy to check that

a * 23 + a 32 = γ ∂ 1 v 2 A(D) - 2 γ ∂ 1 (v 2 ζ) • + γ A(D)(∂ 2 v 1 •) - 2 γ ∂ 2 (v 1 ζ) • .
Thanks to the expression of A(D) in (2.1), using (2.18) and (2.13), we get 

| a 23 Λ s v 2 | Λ s v 1 2 + a 32 Λ s v 1 | Λ s v 2 2 | (1 + ζ X s µ ) v 3 X s µ . ( 3 
V (D) M (V , D)Λ s V | Λ s V 2 .
The same estimate holds for S V (D) * M (V , D)Λ s V | Λ s V 2 . Then using (3.54), we obtain

|I 2 | 1 + (E s (V )) 1 2 (E s (V )) 3 2 , (3.63) 
which along with (3.58) implies

|I| 1 + (E s (V )) 1 2 (E s (V )) 3 2 . 
(3.64)

Step 2. Estimate on II. Thanks to the expression of S V (D) in (2.5), we have

II = -Λ s ζ | ∂ t v • Λ s v 2 -Λ s v | ∂ t vΛ s ζ 2 ,
which along with (3.54) implies

|II| ζ 2 H s + v 2 H s ∂ t ζ H s-2 + ∂ t v H s-2 E s (V ) ∂ t V H s-2 , (3.65) 
where we used the fact that s ≥ t 0 + 2.

Step 3. The a priori energy estimate. Thanks to (3.52), we have 

∂ t V H s-2 1 + ζ H s + v H s V X s µ ,
d dt E s (V ) 1 + (E s (V )) 1 2 
E s (V )

3 2 1 + 2 E s (V ) E s (V ) 3 2 . (3.66) 
This is exactly (3.2).

Remark 3.2. The a priori estimate (3.2) for the remain cases in Definition 1.2 can be treated in a similar way as the cases in this section.

4.

Global existence for the Hamiltionian case b = d > 0, a ≤ 0, c < 0

In this section, we shall prove Theorem 1.2 that is the global existence of solutions of (1.1) with b = d > 0, a ≤ 0, c < 0. We only discuss the two-dimensional case. The one-dimensional case follows in a similar way and actually it is considered in [START_REF] Angulo Pava | Existence of solitary wave solutions for internal waves in two-layer systems[END_REF]. 

δH δζ = (1 -γ)(1 + cµ∆)ζ - 2γ |v| 2 , δH δv = 1 γ (1 -ζ)v + aµ γ ∆v + 1 γ 2 µ µ 2 σ(D)v + 1 γ 3 µ µ 2 σ(D) 2 v. (4.1) 
Then we have we have for a ≤ 0, c < 0

H(ζ, v) def = 1 2 R 2 (1 -γ)|ζ| 2 + 1 γ (1 -ζ)|v| 2 -(1 -γ)cµ|∇ζ| 2 - aµ γ |∇v| 2 + 1 γ 2 µ µ 2 |σ(D) 1 2 v| 2 + 1 γ 3 µ µ 2 |σ(D)v| 2 dx.
H(ζ, v) ∼ ζ 2 X 0 µ + v 2 X 0 µ . However, condition (4.3) could not be conserved in X 0 µ since H 1 (R 2 ) is not embedding in L ∞ (R 2
) contrary the one-dimensional case. Thus, the Hamiltonian is not obviously positive.

Thanks to (2.2) and (4.1), we have

(1 -bµ∆)∂ t ζ = -∇ • δH δv , (1 -dµ∆)∂ t v = -∇ δH δζ . (4.4) 
Due to (4.4), when b = d, (2.2) is a Hamiltonian system that is given by

∂ t ζ v + J∇ ζ,v H(ζ, v) = 0. ( 4.5) 
where 

J = (1 -bµ∆) -1 0 ∇• ∇ 0 . Since H(ζ, v) is
d dt H(ζ, v) = ( δH δζ | ∂ t ζ) 2 + ( δH δv | ∂ t v) 2
which along with (4.4) implies

d dt H(ζ, v) = - δH δζ | (1 -bµ∆) -1 ∇ • δH δv 2 - δH δv | (1 -dµ∆) -1 ∇ δH δζ 2 .
Since b = d, integration by parts gives rise to (4.6). The lemma is proved. 

= d > 0, a ≤ 0, c < 0, µ ∼ . Assume that (ζ 0 , v 0 ) ∈ X 0 µ (R 2 ) × X 0 µ (R 2 ). Then (2.2)-(1.2) has a unique solution (ζ, v) on [0, T ] for some T > 0 so that (ζ, v) ∈ C(0, T ; X 0 µ (R 2 )×X 0 µ (R 2 )) and max [0,T ] ζ X 0 µ + v X 0 µ ≤ 2C 1 ζ 0 X 0 µ + v 0 X 0 µ , (4.7) 
where C 1 > 1 is a constant. Moreover, if T * is the lifespan to this solution and T * < ∞, then

lim inf t→T * ζ(t) X 0 µ + v(t) X 0 µ = ∞. (4.8) 
Proof. We divide the proof into several steps.

Step 1. Diagonalization of (2.2). Let λ ± (ξ) be the eigen values of system (2.2). Analysis on the linear part of (2.2) with b = d > 0 yields that

λ ± (ξ) = ±i 1 -γ γ A(ξ) 1 2 (1 -cµ|ξ| 2 ) 1 2 1 + bµ|ξ| 2 |ξ|, (4.9) 
where A(ξ) is a symbol of the Fourier multiplier A(D) that is defined in (2.1). Now, we diagonalize the system (2.2). Denoting by

ω 1 = ω 1 (ξ) = 1 γ A(ξ) 1 + bµ|ξ| 2 , ω 2 = ω 2 (ξ) = (1 -γ) 1 -cµ|ξ| 2 1 + bµ|ξ| 2 we have λ ± (ξ) = ±i √ ω 1 ω 2 |ξ|. (4.10) Letting W = |D| -1 curl v, Z ± = ζ ± ω 1 (D) ω 2 (D) 1 i|D| ∇ • v, (4.11) 
(2.2) is equivalent to

∂ t W = 0, ∂ t Z ± ± i|D| ω 1 (D)ω 2 (D)Z ± = f ± , (4.12 
) where

f ± = 1 γ 1 -bµ∆ ∇ • (ζv) ± 1 2γ ω 1 (D) ω 2 (D) i |D| 1 -bµ∆ (|v| 2 ). (4.13)
Step 2. Solutions to (4.12). Defining

W 0 = |D| -1 curl v 0 , Z ±,0 = ζ 0 ± ω 1 (D) ω 2 (D) 1 i|D| ∇ • v 0 ,
by virtue of Duhamel principle, the solutions to (4.12) are written as

W (t, x) = W 0 (x), Z ± (t, x) = e ∓it|D| √ ω1(D)ω2(D) Z ±,0 (x) + t 0 e ∓i(t-s)|D| √ ω1(D)ω2(D) f ± (s, x)ds. (4.14) 
Thanks to (4.11), we have

ζ = 1 2 (Z + + Z -), v = ∇ 2i|D| ω 2 (D) ω 1 (D) (Z + -Z -) + ∇ ⊥ |D| W, (4.15) 
where are zero-order pseudo-differential operators which satisfy

∇ ⊥ = (-∂ 2 , ∂ 1 ) T . Since A(ξ) = 1 -aµ|ξ| 2 + 1 γ µ µ 2 σ(ξ) + 1 γ 2 µ µ 2 σ(ξ) 2 , σ(ξ) = √ µ 2 |ξ| coth( √ µ 2 |ξ|), and 
lim |ξ|→0 σ(ξ) = 1, lim |ξ|→∞ σ(ξ) √ µ 2 |ξ| = 1, it is easy to check that ω 1 (ξ) L ∞ ξ + ω 2 (ξ) L ∞ ξ 1, ω 2 (ξ) ω 1 (ξ) L ∞ ξ + ω 1 (ξ) ω 2 (ξ) L ∞ ξ 1. ( 4 
ω 1 (D)f H s ∼ f H s , ω 2 (D)f H s ∼ f H s ω 2 (D) ω 1 (D) f H s ∼ f H s , ω 1 (D) ω 2 (D) f H s ∼ f H s , (4.17) 
for any s ∈ R and f ∈ H s (R 2 ). By virtue of Plancherel theorem and (4.16), or due to (4.17), we deduce from (4.11) and (4.15) that

W X 0 µ + Z + X 0 µ + Z -X 0 µ ∼ ζ X 0 µ + v X 0 µ . (4.18) 
Step 3. The a priori energy estimate. Thanks to (4.14), we first have

W X 0 µ = W 0 X 0 µ , (4.19) Z ± (t) X 0 µ Z ±,0 X 0 µ + t 0 f ± (s) X 0 µ dτ. (4.20) Now, we derive the bound of f ± X 0 µ ∼ f ± L 2 + √ µ ∇f ± L 2 .
Thanks to (4.13) and (4.17), we have

f ± L 2 1 -bµ∆ ∇ • (ζv) L 2 + |D| 1 -bµ∆ (|v| 2 ) L 2 √ µ ζv L 2 + |v| 2 L 2 √ µ v L 4 ζ L 4 + v 2 L 4 .
Since Ladyzhenskaya's inequality yields

v L 4 v 1 2 L 2 ∇v 1 2 L 2 , ζ L 4 ζ 1 2
L 2 ∇ζ 

ζ(t) 2 X 0 µ + v(t) 2 X 0 µ ≤ 1 c 3 H(ζ(t), v(t)) = 1 c 3 H(ζ 0 , v 0 ). ( 4 
ζ(t) X 0 µ + v(t) X 0 µ ≤ 1 c 3 H(ζ 0 , v 0 ) ≤ C ζ 0 X 0 µ + v 0 X 0 µ . (4.35)
This is exactly (1.6). We complete the proof of Theorem 1.2.

Final comments

So far we are not aware of a global existence result of large solutions to at least one of the Boussinesq-FD systems. Recall that for the Boussinesq (abcd) systems such a result is only known in the one-dimensional a = b = c = 0, d = 1 case, see [START_REF] Schonbek | Existence of solutions for the Boussinesq system of equations[END_REF][START_REF] Amick | Regularity and uniqueness of solutions of the Boussinesq system of equations[END_REF] and the comments in the survey article [START_REF] Lannes | From the swell to the beach : modelling shallow water waves, Nonlinearity to appear[END_REF].

Proving such a result for a Boussinesq -FD system is a challenging problem as is to prove the conjectured dichotomy for the life span T of solutions : either T = +∞, or T = O(1/ ). 6. Appendix 1. Proof of (3.8). By the definition of E s (V ) in (2.7) and the expression of S V (D) in (2.6), we have

E s (V ) = (1 -γ) 2 γ 2 g(D) 1 2 (1 -bµ∆) 1 2 (1 + cµ∆)Λ s ζ 2 L 2 + γ(1 -γ) (1 -bµ∆)Λ s v | (A(D) -ζ)(1 + cµ∆)Λ s v 2 -γ(1 -γ) (1 -bµ∆)Λ s ζ | g(D) v • (1 + cµ∆)Λ s v 2 -γ(1 -γ) (1 -bµ∆)Λ s v | g(D) v(1 + cµ∆)Λ s ζ 2 + 2 i,j=1,2 (1 -bµ∆)Λ s v i | v i v j (g(D) -1)Λ s v j 2 def = A 1 + A 2 + A 3 + A 4 + A 5 . (6.1)
2. Proof of (3.37). By the definition of E s (V ) in (2.7) and the expression of S V (D) in (2.6), noticing that in this case g(D) = 1 -bµ∆, we have

E s (V ) = (1 -γ) 2 γ 2 (1 -bµ∆)(1 + cµ∆)Λ s ζ 2 L 2 + γ(1 -γ) (1 -bµ∆)Λ s v | (A(D) -ζ)(1 + cµ∆)Λ s v 2 -γ(1 -γ) (1 -bµ∆) 2 Λ s ζ | v • (1 + cµ∆)Λ s v 2 -γ(1 -γ) (1 -bµ∆)Λ s v | (1 -bµ∆) v(1 + cµ∆)Λ s ζ 2 -bµ 2 i,j=1,2 (1 -bµ∆)Λ s v i | v i v j ∆Λ s v j 2 def = A 1 + A 2 + A 3 + A 4 + A 5 .
(6.11) Following similar derivation as (3.8), under the assumption (3.1), we have

A 1 ∼ ζ 2 X s µ 4 , v 2 X s µ 3 + (1 -µ 1 2 1 2 -µ) v 2 X s µ 2 A 2 v 2 X s µ 3 |A 3 | + |A 4 | + |A 5 | √ ζ 2 X s µ 4 + v 2 X s µ 3
Then for sufficiently small and η, we have

E s (V ) ∼ E s (t) def = ζ(t) 2 X s µ 4 + v(t) 2
X s µ 3 . This is exactly (3.37). (3.54). By the definition of E s (V ) in (3.53) and the expression of S V (D) in (2.5), we have

Proof of

E s (V ) = (1 -γ) (1 + cµ∆) 1 2 Λ s ζ 2 L 2 + Λ s v | (A(D) -ζ)Λ s v 2 -Λ s ζ | v • Λ s v 2 -Λ s v | vΛ s ζ 2 .
(6.12)

After similar derivation as (3.8) and (3.37), we get that (3.54) holds for sufficiently small and η. 

Definition 1 . 2 .

 12 k and k determined by a, b, c, d as follows : For any a, b, c, d satisfying (1.3), we define a pair of numbers (k, k ) def = (k(a, b, c, d), k (a, b, c, d)) according to the admissible sets of (a, b, c, d) s as follows: (1) (k, k ) = (3, 3) for b = d, b, d > 0, a ≤ 0, c < 0; (2) (k, k ) = (2, 2) for b = d > 0, a ≤ 0, c < 0 or b > 0, d = 0, a ≤ 0, c = 0;

Remark 1 . 3 . 1 , µ 2 ∼ 1 .

 13121 In Theorem 1.1, we only use the condition µ 1, We do not need the restriction µ ∼ . The second theorem is about the global existence for (1.1)-(1.2) in the Hamiltonian case b

X s µ 3 .

 3 (3.44) Thanks to (3.42), (3.43) and (3.44), we obtain the bound of S

  to (3.49) and (3.50), we get

  which along with (3.64), (3.65), (3.55) and (3.54) implies

4. 1 .

 1 Hamiltonian structure for the Boussinesq-Full dispersion system when b = d. Recalling (2.2), we search a function H = H(ζ, v) satisfying

(4. 2 ) 4 . 1 .

 241 Remark By the expression of H(ζ, v), and assuming that1 -ζ ≥ H > 0,(4.3)

4. 2 .Proposition 4 . 1 .

 241 Local existence of the solutions to (2.2) with b = d > 0, a ≤ 0, c < 0. In this subsection, we state the local existence and blow-up criteria for (2.2)-(1.2). Let b

. 16 )

 16 Actually, following similar derivation as g(D), one could check that ω 1 (D), ω 2 (D), ω1(D) ω2(D) and ω2(D) ω1(D)

2 L 2 }

 22 ≤ 0 , by virtue of (4.32) and (4.33), we have for any ≤ 0 andt ∈ [0, T 0 ], H(ζ(t), v(t)) ispositive and 0 ζ(t) 2 34) and the blow-up criteria (4.8) in Proposition 4.1 shows that for any ∈ (0, 0 ), the solution to (2.2)-(1.2) can always be extended till T * = ∞. Then (2.2)-(1.2) admits a unique solution on time interval [0, ∞) such that sup (0,∞)

  .62) Combining (3.59), (3.60), (3.61) and (3.62), we obtain the estimate for S

  a Hamiltonian of (2.2), we have the following conservation law for (2.2).

	Lemma 4.1. When b = d, the smooth solution (ζ, v) to (2.2) satisfies	
	d dt	H(ζ, v) = 0,	(4.6)
	where H(ζ, v) is a Hamiltonian defined by (4.2).	
	Proof. Thanks to (4.2) and (4.1), we have		

  Proof of Theorem 1.2. We shall use Proposition 4.1 and the conservation law (4.6) to establish the global theory for (2.2) with b = d > 0 and a ≤ 0, c < 0.Firstly, Proposition 4.1 shows that (2.2) with initial data (ζ 0 , v 0 ) admits a unique solutions(ζ, v) ∈ C([0, T ]; X 0 µ (R 2 ) × X 0 µ (R 2 )), for some T > 0. Due to (4.2) and (2.18), there exists a constant c 1 > 0 such that for any t ∈ [0, T ] By virtue of Ladyzhenskaya's inequality, there exists a constant c 2 > 0 such thatR 2 |ζ||v| 2 dx ≤ ζ L 2 v 2 L 4 ≤ c 2 ζ L 2 v L 2 ∇v L 2 ≤Noticing that µ ∼ , we deduce from (4.29) and (4.30) thatH(ζ(t), v(t)) ≥ c 3 ζ 2 L 2 + µ ∇ζ 2 L 2 + v 2 L 2 + 2µ(1 -ζ 2 L 2 ) ∇v 2 . Since solution (ζ, v) is continuous in time, there exists 0 < T 0 < T such that (4.2) and (4.31) implies that for any ≤ 0 and t ∈ [0, T 0 ], the Hamiltonian H(ζ(t), v(t)) is positive and

	4.3. H(ζ(t), v(t)) ≥	1 -γ 2	ζ 2 L 2 +	(1 -γ)|c| 2	µ ∇ζ 2 L 2 +	1 2γ	v 2 L 2 + c 1 µ ∇v 2 L 2 -	1 2γ R 2	|ζ||v| 2 dx. (4.29)
								1 2	v 2 L 2 +	1 2	c 2 2	2 ζ 2 L 2 ∇v 2 L 2 .	(4.30)
										L 2 ,	(4.31)
	for some constant c 3 > 0.					
	Taking 0 =	1 4 ζ0 2 L 2	, we have 0 ζ 0 2 0 ζ(t) 2 2 L 2 = 1 4 < 1 L 2 < 1 2 for any t ∈ [0, T 0 ],	(4.32)
	which along with							
									1
									2 L 2 ,
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we have

provided that ∼ µ. Whereas thanks to (4.13) and (4.17), we have

After similar derivation as (4.21), if ∼ µ, we have

Due to (4.21) and (4.22), we have

which along with (4.20) implies 

Step 4. Local existence and uniqueness. By virtue of the a priori energy estimate (4.25) and the standard contraction theorem, (2.2)

We omit the details here. One could refer to [START_REF] Hu | Global well-posedness of the BCL system with viscosity[END_REF].

Step 5. Proof of the blow-up criteria (4.8). We prove (4.8) by contradiction. Assume that when T * < ∞, there holds lim inf

Then there exists a constant M > 0 such that for any t ∈ [0, T * )

Taking

, by the definition of T * , (2.2) with initial data (ζ 0 , v 0 ) admits a unique solution

where T = T 0 + T 1

.

2) with initial data (ζ 0 , v 0 ) admits a unique solution on time interval [0, T ] with

This is a contradiction to the definition of T * . Now, we complete the proof of the proposition.

For A 1 , using (2.15), we have

For A 2 , using the expression of A(D) in (2.1), we first have

3) Integrating by parts, we have

which along with (3.1) and (2.13) implies that

X s µ 2 . Using (3.1), Sobolev inequality and Hölder inequality, we have

Then by virtue of (2.13), we have

Due to (2.18), we have

(6.5)

Similarly, using (2.13) and (2.18), we have

Using (2.13), we have

X s µ 3 , which along with (6.3), (6.4), (6.5) and (6.6) implies

For A 3 , A 4 and A 5 , using (2.15) and (2.16), we have

, which along with (3.1) and Sobolev inequality implies

(6.8)

Thanks to (6.1), (6.2), (6.7) and (6.8), we have

(6.9)

Taking and µ sufficiently small, we deduce from (6.9) that