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Abstract

The topic of the paper is accuracy analysis of acoustic propagation simulation in low Mach
number flows, by finite volume co-located discretisation methods of the time-dependent
compressible fluid Euler equations that use the concept of convection-pressure splitting
(CPS). These are algorithms that split the flux vectors into a part associated to the convec-
tion by the fluid particles, and a part associated to the propagation of the pressure waves.
For the convection part, the appropriate space discretisation is the upwind one. For the pres-
sure part, there are alternatives. We discern five types of algorithms that all are adapted for
use in low Mach number flows, and thus are considered as all Mach number algorithms.
We study the behaviour of the different types for the propagation of small pressure per-
turbations, of discontinuous or smooth shape, in low Mach number flows. We demonstrate
that four of the proposed algorithms of convection-pressure split type are dissipative for
such applications, although they are designed for low Mach number flows. The objective
of the paper is to analyse why some algorithms are appropriate for acoustic propagation
simulation and why some are not appropriate.

Key words: Convection-pressure split algorithms; All Mach number schemes; Co-located
finite volume method; Convective transport; Acoustic propagation

1 Introduction

Within the co-located finite volume method, there are two main categories of convection-
pressure split algorithms. One is by construction of face variables by which the pressure
flux vectors at the volume faces are composed. The other one is by direct construction
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of pressure flux vectors at the faces. Both methodologies belong to the family of approx-
imate Riemann solvers. Based on specific choices, existing algorithms can be grouped
into five types, which we detail in the paper. Because of their origin of approximate Rie-
mann solvers, these algorithms are not a priori suited for low Mach number problems.
An aspect with much attention in the literature is the adaptation for compressible fluid
flow in the low Mach number limit towards incompressible fluid flow. The pressure wave
propagation mechanism then disappears, which thus necessitates adaptation of the dis-
cretisation of the pressure flux part, in particular targeted to low diffusion. An aspect with
much less attention in the literature is that the resulting adapted algorithms for use in all
Mach number regimes also can be used for acoustic propagation in low Mach number
flows. But there is no guarantee that these algorithms are accurate for such applications.

The paper starts with a short discussion of the transport mechanisms of the time-dependent
Euler equations for a compressible fluid. This discussion is included because of its im-
portance for understanding the algorithms, although it can be found in many text books
on computational fluid mechanics, e.g. [1,2]. Then, a short discussion follows on the be-
haviour of the equations in the low Mach number hydrodynamic and acoustic limits. Next
is the concept of convection-pressure splitting, followed by the used implicit pressure-
correction time stepping method. The subsequent sections are on the choice of the con-
vection velocity and the discretisation of the pressure part of the equations. The adaptation
to low Mach number flows and the stability of the numerical solution of high Mach num-
ber flows with strong shocks are discussed. Five particular algorithms are chosen, which
are representative for the possible choices. Then follow sections with numerical results.
It is demonstrated by one-dimensional examples that all algorithms produce accurate re-
sults for shocks, contact discontinuities and expansion fans in steady and unsteady flows
at medium-high Mach number. It is further demonstrated that all algorithms are accurate
for low Mach number Riemann problems, but that only one is accurate for the propagation
of a smooth small pressure perturbation in a low Mach number flow. An explanation is
formulated for the dissipative solution by four of the algorithm types. The crucial ingre-
dient is the pressure diffusion term in the expression of the velocity at the cell faces. The
role of this diffusion is illustrated by a numerical one-dimensional experiment. Finally,
the good functioning of one of the algorithms is illustrated for propagation of a pressure
perturbation in a two-dimensional flow with very low Mach number.

2 The transport mechanisms in the Euler equations

We illustrate the propagation properties for one-dimensional flow. Most numerical results,
later in this paper, are also for one-dimensional flow. The 1-D system of Euler equations
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is

∂t


%

%v

%E

+ ∂x


%v

%vv + p

%Hv

 = 0, (1)

where %, v, p, E, H represent density, velocity, pressure, total energy and total enthalpy.
E = e + v2/2, H = h + v2/2 and %h = %e + p, where e and h are the internal energy
and the enthalpy. We further assume an ideal and perfect gas, satisfying as equations of
state p = %RT , h = cpT , and e = cvT , with γ = cp/cv, where R = cp − cv is the gas
constant, T is the temperature, cp and cv are the constant specific heats and γ the ratio of
the specific heats.

The conservation equations may be expanded into quasi-linear equations,

∂t%+ v∂x%+ %(∂xv) = 0,

%∂tv + %v∂xv + ∂xp = 0, (2)
∂tp+ v∂xp+ γp(∂xv) = 0.

By (∂xv) is indicated that this derivative represents, in multiple dimensions, the diver-
gence of the velocity. The other x−derivative is the gradient.

For an ideal and perfect gas, the velocity of sound is c =
√
γp/%, so that γp = %c2.

With respect to the vector of variables W = [%, v, p]T, these equations form the system
∂tW + A∂xW = 0, with the system matrix

A =


v % 0

0 v 1
%

0 γp v

 =


v % 0

0 v 1
%

0 %c2 v

 . (3)

The eigenvalues are v− c, v, and v+ c. The associated right and left eigenvector matrices
are

R = L−1 =


% 1 %

−c 0 c

%c2 0 %c2

 , L = R−1 =


0 − 1

2c
1

2%c2

1 0 − 1
c2

0 1
2c

1
2%c2

 . (4)

The coefficients of the transported combinations of increments of the variables (%, v, p)
are given by the left eigenvectors. The transported quantities are:

• with velocity v: δ%− 1

c2
δp or

δp

p
− γ δ%

%
, which means entropy ;
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• with velocity v − c: − δv +
δp

%c
; (5)

• with velocity v + c: δv +
δp

%c
. (6)

The transport with velocity v is by the fluid particles. Such transport is called advection
or convection. The quantities (5) and (6) are combinations of velocity perturbations and
pressure perturbations that are transported at the velocity of sound, superposed to the
motion of the fluid particles. The corresponding transport is called acoustic propagation
and it is said that the transported quantities move by waves.

In this paper, we study the behaviour of discrete forms of the Euler equations (1) at low
Mach number. For a general discussion on low Mach number aspects, we refer to Guil-
lard and Viozat [3], Guillard and Murrone [4], and Guillard and Nkonga [5]. Hereafter,
we illustrate the basic limit behaviour of the Euler equations, which is sufficient for the
purposes in this paper.

For analysis of the limit behaviour at low Mach number, reference values of density %r,
velocity vr (thought of as convective), pressure pr are introduced, from which a refer-
ence Mach number is defined by Mr = vr/

√
pr/%r. Reference values of length, lr, and

duration, tr, are also used, allowing for the definition of a reference Strouhal number
by Str = (lr/vr)/tr. Thus, the non-dimensional quasi-linear continuity, momentum and
energy equations are

Str∂t%+ v∂x%+ %(∂xv) = 0,

Str%∂tv + %v∂xv +
1

M2
r

∂xp = 0, (7)

Str∂tp+ v∂xp+ γp(∂xv) = 0.

To allow for a single length-scale, multiple time-scale analysis, a time variable able to
capture the fast acoustic waves is introduced by

τ =
t

Mr

.

It is then assumed that density can be expanded as

%(x, t,Mr) =
K∑
k=0

Mk
r %

(k)(x, t, τ) + o(MK
r ), K = 0, 1, 2, Mr → 0 ,

and that similar expansions hold for velocity v and pressure p. Substitution of these ex-
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pansions in Eqs. (7) gives, at the convective time scale,

Str∂t%
(0) + v(0)∂x%

(0) = 0,

Str%
(0)∂tv

(0) + %(0)v(0)∂xv
(0) + ∂xp

(2) = 0, (8)

(∂xv
(0)) = 0,

where it is assumed, for simplicity of exposition, that the zeroth-order pressure p(0)(t),
which is the thermodynamic pressure, is constant in space. Eqs. (8) are the equations of
the hydrodynamic low Mach number limit of the Euler equations (2) in quasi-linear form.
By this limit is meant that the flow is considered on a time scale adapted to the convection
velocity at a low Mach number obtained by a large velocity of sound. In particular, an in-
compressible flow obeys these equations. There is only transport by convection of density
and velocity and there is no propagation by waves; but pressure has to satisfy the compat-
ibility imposed by the divergence condition on the velocity. So, it is clear that algorithms
designed for the full set of Euler equations (2) cannot function without adaptations for the
reduced set (8) in the hydrodynamic low Mach number limit.

At the acoustic time scale, the zeroth-order density %(0)(x) is constant in time, and the
linear acoustic equations are obtained,

Str%
(0)∂τv

(0) + ∂xp
(1) = 0, (9a)

Str∂τp
(1) + γp(0)(∂xv

(0)) = 0. (9b)

By the acoustic limit is meant that the flow is considered on a time scale adapted to the
acoustic propagation at a low Mach number obtained by a small convection velocity. In
the hydrodynamic low Mach number limit, the pressure is the “hydrodynamic” pressure
M2

rp
(2), which thus changes, by a change of the velocity, proportional to the square of the

velocity. In the acoustic low Mach number limit, the pressure is the “acoustic” pressure
Mrp

(1), which changes linearly proportional to a change of the velocity.

3 The transport mechanisms in the conservation equations

The transport mechanisms in the conservative form of the set of equations (1) may be
identified by recomposing these equations from the expanded equations (2). But, they
may also be identified directly on the set of conservation equations by an analysis in the
style of the flux vector splitting analysis of Steger and Warming [6].

As intermediate variables we consider now W = [%,m, p]T , where m = %v. Then %E =
%e + 1

2
%v2 = 1

γ−1
p + 1

2
m2

%
and %H = %h + 1

2
%v2 = γ

γ−1
p + 1

2
m2

%
. The vector of the
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conservative variables and the flux vector are

U =


%

m

1
2
m2

%
+ 1

γ−1
p

 , F =


m

m2

%
+ p

1
2
m3

%2
+ γ

γ−1
mp
%

 .

The Jacobians are T = ∂WU and A = ∂WF . From the homogeneity of degree one of
both U and F with respect to the intermediate variables, it follows that U = TW and
F = AW . Thus F = AT−1U = TT−1AT−1U = TBT−1U with B = T−1A. The
matrices T and B are

T =


1 0 0

0 1 0

−1
2
v2 v 1

γ−1

 , B =


0 1 0

−v2 2v 1

−vc2 c2 v

 .

The eigenvalues of the matrix B are v − c, v, and v + c. The corresponding right and left
eigenvector matrices are

R = L−1 =


1 1 1

v − c v v + c

c2 0 c2

 , L = R−1 =


v
2c

− 1
2c

1
2c2

1 0 − 1
c2

− v
2c

1
2c

1
2c2

 .

A part of the matrix B can now be associated to convection by the part (v, v, v) of
the eigenvalues. Similarly, a part can be associated to acoustic propagation by the part
(−c, 0,+c) of the eigenvalues. This second part is usually called the pressure part. The
parts of B corresponding to convection and to pressure are

BC = R


v 0 0

0 v 0

0 0 v

L =


v 0 0

0 v 0

0 0 v

 ,

BP = R


−c 0 0

0 0 0

0 0 c

L =


−v 1 0

−v2 v 1

−vc2 c2 0

 .

The corresponding parts of the flux vector are

FC = TBCW =


%v

%vv

%v
3

2
+ vp

γ−1

 =


%

%v

%E

 v , FP = TBPW =


0

p

pv

 . (10)
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This splitting of the flux vector in convection and pressure parts is the one used by Zha
and Bilgen [7]. These authors claimed a new way of splitting, but, actually, it was already
derived by Steger and Warming [6]. But Steger and Warming made only a side remark,
because their emphasis was on splitting in positive and negative parts and not in convec-
tion and pressure parts. The practical use of convection-pressure splitting became only
clear by the work of Liou and Steffen [8]. The splitting by (10) is commonly called the
Zha-Bilgen splitting. We follow this practise and denote it by ZB-splitting. The system of
Euler equations (1) with the ZB-splitting is

∂t


%

%v

%E

+ ∂x




%

%v

%E

 v
+ ∂x


0

p

pv

 = 0. (11)

There are two other ways of convection-pressure splitting (CPS) in the literature. One is
the splitting by Liou and Steffen [8], called AUSM, which stands for Advection Upstream
Splitting Method, and one by Toro and Vázquez-Cendón [9]. These are:

∂t


%

%v

%H

− ∂t


0

0

p

+ ∂x




%

%v

%H

 v
+ ∂x


0

p

0

 = 0, (12)

∂t


%

%v

1
2
%v2

+ ∂t


0

0

1
γ−1

p

+ ∂x




%

%v

1
2
%v2

 v
+ ∂x


0

p

γ
γ−1

pv

 = 0. (13)

We denote these ways of splitting by LS-splitting and TV-splitting. They are somewhat
more complex than ZB-splitting, because they involve also splitting of the time-derivative
part. The properties of the convective parts may be analysed as for the ZB-splitting. But,
by similarity with the convective part of the ZB-splitting, one sees that the three propa-
gation speeds for the LS-splitting are (v, v, v). In the convective part of the TV-splitting,
the third equation is dependent on the two other ones and, again by analogy, one sees that
the propagation speeds of the system of the first two equations are (v, v). So, the convec-
tive parts of the three ways of splitting have a similar character. The experience of the
present authors is that the three ways of splitting do not react very differently to specific
discretisation choices in time and space. In this work, we use the ZB-splitting, because of
its simplicity, and we do not study the effects of the differences of the ways of splitting.
By the analogy of the convection parts in the three ways of splitting, we apply some ways
of discretisation illustrated in the literature for the LS-splitting or the TV-splitting to the
ZB-splitting.
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4 The implicit pressure-correction time-stepping method

We use the implicit pressure-correction method from our previous work [10,11] on the
combination of momentum interpolation and LS-splitting (AUSM), but adapted to the
ZB-splitting. A cell-centre finite volume space discretisation is used. With the convection-
pressure splitting (11), the convection part is discretised upwind for the transported quan-
tities, which requires the definition of a face velocity. Discretisation of the pressure part
either requires the definition of face velocity and face pressure, i.e. determination of a
face state, or an expression of the pressure flux vector at a face. We illustrate the pressure-
correction method applied to an algorithm with determination of a state, but adaptation to
an algorithm with determination of a flux vector can easily be done. So, we assume that
the velocity and the pressure at faces with subscript i+ 1/2 on iteration level k are avail-
able. We will detail possible choices in subsequent sections. The algorithm is presented
with time integration by first-order backward differencing (BDF1). This time integration
is also used in the numerical tests shown later, except for the acoustic wave tests, where
second-order backward differencing (BDF2) is used. Again, adaptation is easy. Second-
order space discretisation is obtained by second-order accurate extrapolated values on the
left-hand side and right-hand side of a cell face, denoted by (·)L and (·)R. Specifically, for
the face i+ 1/2:

φL = φi +
1

2
ψi(φ), φR = φi+1 −

1

2
ψi+1(φ),

with the symmetrically limited difference:

ψi(φ) = MinMod(φi − φi−1, φi+1 − φi).

We assume positive convection velocity so that for a convectively transported quantity, the
(·)L value is taken. We set τ = ∆t/∆x. A predicted quantity is denoted by the superscript
? and update values by the superscripts ′ and ′′. Time levels are denoted by the superscripts
n and n+1. The iteration level is by the superscript k. At the first iteration, values at level
k = 0 are these of the time level n.

4.1 Prediction step

• p?i = pki (no update of the pressure).

• %?i from the continuity equation by

%?i − %ni + τ
[
%?i +

1

2
ψi(%

k)
]
vki+1/2 − τ

[
%?i−1 +

1

2
ψi−1(%k)

]
vki−1/2 = 0. (14)
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• (%v)?i from the momentum equation by

(%v)?i −(%v)ni +τ
{

(%v)?i +
1

2
ψi[(%v)k]

}
vki+1/2−τ

{
(%v)?i−1 +

1

2
ψi−1[(%v)k]

}
vki−1/2

+ τ(pki+1/2 − pki−1/2) = 0. (15)

• v?i =
(%v)?i
%?i

, (%E)?i =
pki

γ − 1
+

1

2

[(%v)?i ]
2

%?i
.

The updates of density and momentum may be written as %′i = %?i − %ki and (%v)′i =
(%v)?i − (%v)ki . The equations (14) and (15) may be written as

(1 + τvki+1/2)%′i − τvki−1/2%
′
i−1 + ∆t Res (Cont)ki = 0, (16)

(1 + τvki+1/2)(%v)′i − τvki−1/2(%v)′i−1 + ∆t Res (Mom)ki = 0, (17)

where Res (Cont)ki and Res (Mom)ki are the residuals of the discretised continuity and
momentum equations at the iteration level k. Thus

∆t Res (Cont)ki = %ki − %ni + τ
[
%ki +

1

2
ψi(%

k)
]
vki+1/2− τ

[
%ki−1 +

1

2
ψi−1(%k)

]
vki−1/2,

∆t Res (Mom)ki = (%v)ki − (%v)ni + τ
{

(%v)ki +
1

2
ψi[(%v)k]

}
vki+1/2

− τ
{

(%v)ki−1 +
1

2
ψi−1[(%v)k]

}
vki−1/2 + τ(pki+1/2 − pki−1/2).

4.2 Momentum correction

With (%v)′′ = (%v)k+1−(%v)? and p′ = pk+1−pk, we derive from the momentum equation
(17) at cell i (combined update of momentum and pressure):(

1 + τvki+1/2

)
(%v)′′i + τ(p′i+1/2 − p′i−1/2) = 0.

Thus

(%v)′′i = −αki (p′i+1/2 − p′i−1/2), with αki =
τ

1 + τvki+1/2

. (18)

At a face i+ 1/2 we postulate

(%v)′′i+1/2 = −αki+1/2(p′i+1 − p′i), with αki+1/2 =
τ

1 + τvki+1

. (19)
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4.3 Correction step

In the energy equation, no correction is done for the kinetic energy. So,

(%E)k+1 − (%E)? = (%e)k+1 − (%e)k =
1

γ − 1
p′.

The convection flux term is written as

(%vE)k+1 =
(

1

2
%v2v

)?
+ (%ev)k+1.

The correction is derived by (double correction):

(%ev)k+1 ' (%ev)? + e?
[
(%v)k+1 − (%v)?

]
+ v?

[
(%e)k+1 − (%e)k

]
.

The correction of the pressure flux term is derived by (single correction):

(pv)k+1 ' (pv)? +
pk

%?

[
(%v)k+1 − (%v)?

]
.

Thus, the equation for pressure correction, derived from the energy equation, is

1

∆t

1

γ − 1
(pk+1 − pk) + ∂x

{
e?
[
(%v)k+1 − (%v)?

]}
+ ∂x

{
v?
[
(%e)k+1 − (%e)k

]}
+ ∂x

{
pk

%?

[
(%v)k+1 − (%v)?

]}

+

{
1

∆t
[(%E)? − (%E)n] + ∂x

(
1

2
%v2v

)?
+ ∂x (%ev)? + ∂x (pv)?

}
= 0.

By setting the face values of velocity back to the level k, the pressure-correction equations
are written as

Ci−1p
′
i−1 + Cip

′
i + Ci+1p

′
i+1 + ∆t Res (Ener)?i = 0, (20)

with

Ci−1 = − τ

γ − 1
vki−1/2 − ταki−1/2e

?
i−1 − ταki−1/2

pki−1/2

%?i−1/2

,

Ci =
1

γ − 1
+

τ

γ − 1
vki+1/2 + τ(αki+1/2e

?
i + αki−1/2e

?
i−1)

+ τ

αki+1/2

pki+1/2

%?i+1/2

+ αki−1/2

pki−1/2

%?i−1/2

 ,
Ci+1 = −ταki+1/2e

?
i − ταki+1/2

pki+1/2

%?i+1/2

,
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∆t Res (Ener)?i = [(%E)?i − (%E)ni ] + τ

{
1

2

[(%v)?i ]
2

%?i
+

1

2
ψi

(
1

2

[(%v)k]2

%k

)}
vki+1/2

− τ
{

1

2

[(%v)?i−1]2

%?i−1

+
1

2
ψi−1

(
1

2

[(%v)k]2

%k

)}
vki−1/2

+ τ
{

(%e)ki +
1

2
ψi
[
(%e)k

]}
vki+1/2 − τ

{
(%e)ki−1 +

1

2
ψi−1

[
(%e)k

]}
vki−1/2

+ τ(vki+1/2p
k
i+1/2 − vki−1/2p

k
i−1/2),

where e?i =
(%e)ki
%?i

=
1

γ − 1

pki
%?i

.

The coefficients of the updates in the equations (16), (17) and (20) require the face ve-
locities at the iteration level k. The face velocities are defined in any convection-pressure
splitting algorithm. We use the values of the particular method. The C-coefficients of
the pressure updates in the energy equation (20) require also face values of density and
pressure. For these quantities, we use arithmetic averages, thus %i+1/2 = 1

2
(%i + %i+1)

and pi+1/2 = 1
2
(pi + pi+1). The residuals of the equations are expressed according to the

particular method.

4.4 Updates

pk+1
i = pki + p′i, %k+1

i = %?i ,

(%v)k+1
i = (%v)?i + (%v)′′i = (%v)?i − αki (p′i+1/2− p′i−1/2),with p′i+1/2 =

1

2
(p′i + p′i+1),

vk+1
i =

(%v)k+1
i

%k+1
i

, (%E)k+1
i = (%E)?i +

p′i
γ − 1

.

5 Determination of the face state with characteristic equations

With an approximate Riemann solver by determination of a face state, a possible approach
is to determine the face velocity in the convection part of Eq. (11) and the face velocity
and face pressure in the pressure part of Eq. (11) by the quantities in the star-region in
between the characteristic paths by the extreme propagation velocities. The characteristic
paths are sketched in Fig. 1. The sketch is made with positive convection speed and con-
vection speed lower than the speed of sound. The primitive variables are used for state
definition. The star-region is the region between the leftmost and rightmost characteristic
paths. These are paths of pressure waves, either expansions or compressions, across which
density, velocity and pressure change. The star-region consists of two parts with states
W∗L and W∗R divided by a path across which a density jump is possible: %∗L 6= %∗R, but
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no difference in velocity and pressure: v∗L = v∗R = v∗, and p∗L = p∗R = p∗ (contact
discontinuity). The characteristic equations along the pressure wave paths are

dp− %c dv = 0 along dtx = v − c ; dp+ %c dv = 0 along dtx = v + c.

Fig. 1. Solution for star-values with characteristic equations.

The states WL and W∗L can be connected by a line parallel to a characteristic path with
speed v + c. Then, by taking frozen values of % and c on the left-hand state,

p∗ + %LcLv∗ = pL + %LcLvL. (21)

Similarly, the states WR and W∗R can be connected by a line parallel to a characteristic
path with speed v − c. Then,

p∗ − %RcRv∗ = pR − %RcRvR. (22)

The solution of the set (21) and (22) is

v∗ =
%LcLvL + %RcRvR

%LcL + %RcR

− pR − pL

%LcL + %RcR

, (23)

p∗ =
%RcRpL + %LcLpR

%LcL + %RcR

− %LcL%RcR

%LcL + %RcR

(vR − vL). (24)

By taking the sum of Eqs. (21) and (22), the expression of the star-pressure may also be
written as

p∗ =
1

2
(pL + pR)− 1

2
%RcR(vR − v∗) +

1

2
%LcL(vL − v∗). (25)

6 Determination of the face state with Rankine-Hugoniot equations

Fig. 2 is a sketch of the characteristic paths in the x− t plane with the propagation speeds
v − c, v and v + c, estimated by SL, S∗ and SR. The star-region values of the conserved
variables at the left-hand and right-hand sides of the contact discontinuity are denoted by
U∗L and U∗R. For derivation of relations across the paths, control volumes are chosen that
connect the states on each side.

12



Fig. 2. Solution for star-values with Rankine-Hugoniot equations.

By integration of the Euler equations on the control volume at the left-hand side of the
t−axis, the balance is

(U∗L − UL)(0− SL) + F∗L − FL = 0 or F∗L − FL = SL(U∗L − UL). (26)

The balance on the rightmost control volume is

(U∗R − UR)(SR − S∗) +
(

1− S∗
SR

)
(FR − F∗R) = 0

or F∗R − FR = SR(U∗R − UR). (27)

The balance on the middle control volume is

(U∗L − U∗R)
(

1− S∗
SR

)
(S∗ − 0) +

(
1− S∗

SR

)
(F∗R − F∗L) = 0

or F∗R − F∗L = SR(U∗R − U∗L). (28)

The equations (26)-(28) are called the Rankine-Hugoniot conditions across the paths.
They are derived here for particular choices of the signs of v− c, v and v+ c, but, clearly,
they are generally valid.

Eq. (28) has an exact solution for velocity and pressure:

v∗L = v∗R = S∗ = v∗ and p∗L = p∗R = p∗.

The set of equations (26) and (27) do not generally allow exact solutions for the states U∗L
and U∗R with a priori chosen approximations of SL and SR. For exact solutions, SL and
SR have to be eigenvalues of the Jacobian matrices relating the flux vector differences
and the state vector differences. With K either L or R, the Jacobian matrices A∗K are
obtained from F∗K−FK = A∗K(U∗K−UK). The eigenvalues may be expressed with Roe-
averaged state variables, but their expression needs knowledge of the state U∗K , which is
not available at the start of a discretisation. Toro [2,12] determines the star states from the
continuity equation and the momentum equation, thus not satisfying the energy equation.
These equations are

%∗Kv∗ − %KvK = SK(%∗K − %K) or %∗K(SK − v∗) = %K(SK − vK), (29)
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%∗Kv∗v∗ − %KvKvK + p∗ − pK = SK(%∗Kv∗ − %KvK). (30)
The momentum balance may be written as

%∗Kv∗(SK − v∗)− %KvK(SK − vK) = p∗ − pK .

After substitution of the mass balance, this is

%K(SK − vK)(v∗ − vK) = p∗ − pK . (31)

Because SL is an approximation of vL − cL and SR is an approximation of vR + cR, the
equations (31) are similar to the characteristic equations (21) and (22). The solution of
the set of the two equations (31) is similar to (23) and (24):

v∗ =
%L(vL − SL)vL + %R(SR − vR)vR

%L(vL − SL) + %R(SR − vR)
− pR − pL

%L(vL − SL) + %R(SR − vR)
, (32)

p∗ =
%R(SR − vR)pL + %L(vL − SL)pR

%L(vL − SL) + %R(SR − vR)
− %L(vL − SL)%R(SR − vR)

%L(vL − SL) + %R(SR − vR)
(vR−vL). (33)

With SR = vR + cR and SL = vL − cL, the equations (23) and (24) are recovered. Again,
the pressure may be expressed by adding the two equations (31) into

p∗ =
1

2
(pL + pR)− 1

2
%R(SR − vR)(vR − v∗) +

1

2
%L(vL − SL)(vL − v∗). (34)

The expressions of the star values of velocity and pressure are now in a more general form
than with the method in the previous section, but the obtained equations are still charac-
teristic equations. A possible choice of the propagation speeds of the pressure waves is

SR = max {vR + cR, vM + cM} , SL = min {vL − cL, vM − cM} , (35)

where vM and cM are quantities of an intermediate state between the states L and R. These
allow taking into account the variation of the wave speeds across the wave paths. This way,
it is avoided that an expansion fan is seen as a discontinuity, thus as an expansion shock.
Typically, Roe-averages are used for the intermediate state, but AUSM-averages may be
used as well.

In order to simplify the writing of the expressions, we define, as done by Kitamura and
Shima [13],

αR = %R(SR − vR) > 0 and αL = %L(vL − SL) > 0. (36)

The expressions of the star-values become

v∗ =
αLvL + αRvR

αL + αR

− pR − pL

αL + αR

, (37)

p∗ =
αRpL + αLpR

αL + αR

− αLαR

αL + αR

(vR − vL), (38)

p∗ =
1

2
(pL + pR)− 1

2
αR(vR − v∗) +

1

2
αL(vL − v∗). (39)
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7 Convection-pressure splitting with characteristic equations

An example of a method with convection-pressure splitting and face values of velocity
and pressure by characteristic equations is the one by Toro and Vázquez-Cendón [9].
They take the face velocity and face pressure equal to the star-quantities (37) and (38),
with αL = %LcL and αR = %RcR. The convection part is expressed with the face velocity
and and upwinded vector of conserved variables by choosing the state L or R depending
on the sign of the transporting velocity. Hereafter, we use the term simple upwinding
for this type of upwinding. With the face velocity and pressure, the pressure part of the
equations is expressed. We take this method as a basic one, but for testing we use a more
elaborated version, discussed in the next section.

Toro and Vázquez-Cendón maintain the expressions (37) and (38) for positive v − c or
negative v + c. But, it seems more accurate to use face values from the leftmost state
(vL and pL) for v − c > 0 and from the rightmost state (vR and pR) for v + c < 0.
They do not consider this possibility. Their argument is that the propagation speeds in the
pressure part of the equations are −c, 0, c, thus with fixed negative sign for the leftmost
wave and fixed positive sign for the rightmost one. They interpret the guaranteed subsonic
character of the pressure part of the equations as a justification for taking the star values
as face values in a convection-pressure split algorithm. They even use a reduced value of
the speed of sound, c′ =

√
(γ − 1)p/%, because −c′, 0, c′, are the propagation speeds of

the system of equations with the convection part set to zero. We follow the choice of the
face values by the star values, because it is consistent in the sense that these values are in
between the left-hand (L) and right-hand (R) values at the face. We also follow the choice
for simple upwinding, because, again, it is consistent. But, based on the analysis of the
propagation speeds in section 3, we take the physical expression of the speed of sound.
The current study focuses on the qualities of discrete schemes for propagation of acoustic
perturbations in flows with very low Mach number. For subsonic flows, the expressions
(37)-(39) for face values are certainly justified. For high Mach number flows, there may
be an advantage in taking supersonic flow conditions into account. But, we will illustrate
by examples that the expressions in the form (37)-(39), together with simple upwinding,
function perfectly for high Mach number flows.

In the current study, we call a method with face velocity and face pressure by the ex-
pressions (37) and (38), or (37) and (39), with the coefficients by the expressions (35)
and (36), or simplifications thereof, as a method using characteristic equations, and we
denote it by CHAR-CPS-ZB. As an example, we take the recent method by Kitamura and
Shima [13], although they call their method as being of HLLC-type (see section 12 on the
HLL-method). The method uses the expressions (37) and (39) as basis. But adaptations
are necessary for low Mach number flows and for high Mach number flows on structured
grids with strong shocks aligned with cell faces of one type and other cell faces aligned
with the flow. The term shock stability is often used for referring to the problem with
high Mach number flows. We employ this terminology hereafter. We use the method of
Kitamura and Shima as an example for the discussion on the necessary adaptations in the
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next sections. Afterwards, we apply the same principles to the other methods.

8 Adaptation of the characteristic expressions for the hydrodynamic low Mach
number limit

As shown in section 2, the pressure should scale with the velocity squared in the hydro-
dynamic low Mach number limit. But in the expressions (38) and (39), the pressure is
linearly dependent on the velocity difference. In order to obtain the correct scaling, the
coefficient of the velocity difference should be made proportional to the local velocity.
Kitamura and Shima [13] realise this scaling by preconditioning of the speed of sound.
With K either L or R, they define

c̃K = fc(M̂K)cK , M̂K = min
{

1,
√
M2

K +M2
co

}
and fc(M̂K) = M̂K(2−M̂K), (40)

where Mco is a cut-off Mach number, and MK = VK/cK is a local Mach number defined
with the modulus VK of the multi-dimensional velocity (in multiple dimensions). With

S̃R = max {vR + c̃R, vM + c̃M} , S̃L = min {vL − c̃L, vM − c̃M} ,
α̃R = %R(S̃R − vR) > 0, α̃L = %L(vL − S̃L) > 0, (41)

the expressions used by Kitamura and Shima are

v∗ =
α̃LvL + α̃RvR

α̃L + α̃R

− pR − pL

αL + αR

, (42)

p∗ =
1

2
(pL + pR)− 1

2
α̃R(vR − v∗) +

1

2
α̃L(vL − v∗). (43)

These expressions are weighted averages with an added difference term which acts as a
diffusor and dissipator.

The rescaling of the αL and αR coefficients in the pressure expression (43) is essential.
The velocity difference term added to the face pressure causes an artificial viscosity term
in the momentum equation (or momentum equations in multiple dimensions), which has
a large coefficient in low Mach number flows without the rescaling. With the rescaling,
it is strongly reduced. The multi-dimensional Mach number ensures that the artificial
viscosity stays high in the transversal direction of a high Mach number flow. This is meant
to improve the shock stability. But, for ensuring shock stability, it looks more elegant
to us to add specific terms with this purpose. Moreover, Kitamura and Shima do not
obtain guaranteed shock-stability. We opt for the recently proposed shock-stability terms
by Chen et al. for use with an AUSM [14]. We will also use this method as the example of
an AUSM. The shock- stability terms by Chen et al. can be used with any algorithm that
is prone to shock instability and are switched off in smooth low Mach number flows. So,
for the analysis of propagation of smooth acoustic perturbations in flows with very low
Mach number, we do not need the shock-stability terms, which is an important advantage.
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With the role on shock stability removed from the face pressure expression (43), the
multi-dimensionality of the Mach number definition is not needed anymore. Therefore,
we change the Mach number MK in (40) into the one-dimensional Mach number on the
face, MK = vK/cK . Further, we want to avoid a cut-off Mach number, but the expression
of the face velocity (42) may then become singular. However, by using preconditioned val-
ues of the sound speed, the first part of the right-hand side of Eq. (42) is only marginally
changed. Therefore, we take the unaltered expression (37), which is, to our understand-
ing, well suited as well, and we set the cut-off Mach number Mco = 0. So, we consider
the changes that we make to the method of Kitamura and Shima as minor ones.

The pressure difference term in the velocity expression (37) or (42) is necessary for avoid-
ing a checkerboard type oscillation in the pressure field by creating a diffusion term in the
continuity equation and the energy equation, which are the pressure-determining equa-
tions. This necessity, which is known as the necessity for pressure-velocity coupling,
comes from the central type discretisation of the pressure flux and becomes quite criti-
cal in a flow in the hydrodynamic low Mach number limit.

Li and Gu [15] studied the literature on coupling-formulations with upwind methods.
There is very broad experience with the AUSM-type flux vector splitting and with the
Roe-type flux-difference splitting. Based on the available experience, Li and Gu formu-
lated two rules. The first concerns the pressure-velocity coupling. The face velocity should
be connected to the pressure difference across the face assuring a pressure-velocity cou-
pling such that a checkerboard oscillation of pressure is avoided at the limit of small
velocity. The order of magnitude of the coefficient of ∆p is ideally between (1/c) and
(1). A coefficient of order (1/c) is marginal and may lead to a weak form of checkerboard
oscillation. A coefficient of order (1), or larger, avoids the checkerboard oscillation but
may cause a rather large artificial viscosity in the numerical result. The pressure-velocity
coupling does not have to be present in all equations. Li and Gu judge that it is the easiest
to realise it in the continuity equation.

The second rule of Li and Gu concerns the face pressure expression. Usually, a diffusion
term appears by a term proportional to the velocity difference across the face. Very often,
this term does not have the correct scaling for the hydrodynamic low Mach number limit.
The coefficient of the velocity difference is often of order (c) and it should be reduced
to order (v) or lower. This deficiency can mostly be repaired by multiplication of the
difference term by a suitable function of the local Mach number. We conclude that the
expressions (37) and (43) satisfy the rules of Li and Gu.

In the tests of the method denoted by CHAR-CPS-ZB, we use the star values as face
values and use simple upwinding, as in the method of Toro and Vázquez-Cendón [9].
Moreover, also following Toro and Vázquez-Cendón, we take αL = %LcL and αR = %RcR,
and thus α̃L = %Lc̃L and α̃R = %Rc̃R, in the expressions (37) and (43) for face velocity
and face pressure. There is ambiguity with the choice of the upwinding for face velocity
equal to zero, but it has no effect because the convection flux is then zero. The pressure
part of the flux vector is expressed with v1/2 and p1/2. Kitamura and Shima [13] take
more accurate values of the face velocity, the face pressure and the upwinded vector of
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conserved variables. For this goal, they use expressions that are also used in a HLLC-
method (see section 12 on the HLL-method). But their method is not a pure HLL-method
in the sense of Toro [2,12].

With the star values of v∗ and p∗, the corresponding vectors of conserved variables are

U∗K =

(
%∗K , %∗Kv∗,

1

2
%∗Kv

2
∗ +

1

γ − 1
p∗

)T

, K = L,R. (44)

The densities %∗K are determined by the equations (29). The face values of velocity and
pressure may then be defined by

v1/2 = vL and p1/2 = pL if 0 < SL, v1/2 = v∗ and p1/2 = p∗ if SL ≤ 0 ≤ SR,

v1/2 = vR and p1/2 = pR if SR < 0. (45)

The vector of conserved variables at the face may be defined by

U1/2 = UL if 0 < SL, U1/2 = U∗L if SL ≤ 0 ≤ v∗,

U1/2 = U∗R if v∗ ≤ 0 ≤ SR, U1/2 = UR if SR < 0. (46)

Again, the convection flux is zero for v∗ = 0. We do not consider the more detailed
definitions (44)-(46) used by Kitamura and Shima [13] and we take the simple defini-
tions by Toro and Vázquez-Cendón [9]. We will demonstrate by test examples that the
simple definitions satisfy the basic requirements for approximate Riemann solvers. The
more detailed definitions may improve the accuracy for high Mach number flows, but in
the essential tests in the current research on acoustic propagation, they are anyhow not
activated.

9 Adaptation of the characteristic expressions for the acoustic low Mach number
limit

For small pressure and velocity differences, the limit equations of (37) and (43) are

v∗ =
1

2
(vL + vR)− 1

2

pR − pL

% c
, (47)

p∗ =
1

2
(pL + pR)− 1

2
fc(M̂)% c(vR − vL), (48)

where M̂ , % and c are values between these at the positions L and R. These equations
apply to a flow that is nearly incompressible because all differences over a small distance
become then small.

In the acoustic low Mach number limit, the view is with the speed of sound as the unity
value and the flow velocity as very small. By (47) one sees that the velocity expressions
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(37) and (42) then introduce a pressure diffusion term with a rather large coefficient in
the continuity equation and the energy equation. So, one may expect possibility of rather
strong damping in the discrete solution of propagating pressure waves in a low Mach
number flow. We will illustrate later that this is the case. Thus, for use in the acoustic low
Mach number limit, the coefficient of the pressure difference in a face velocity expression
should be lowered. However, this is in conflict with the necessity for a sufficiently large
coefficient in the hydrodynamic low Mach number limit. It means that it is not possible
to satisfy both requirements by a manipulation which is only based on a Mach number.
So, with most methods, adaptation to the acoustic low Mach number limit is not targeted.
The face value expressions that are adapted for the hydrodynamic low Mach number limit
can be used for the simulation of acoustic propagation, but Eq. (47) makes clear that
low-diffusion and low-dissipation solutions can only be obtained with smooth pressure
perturbations, a large number of grid points along the perturbation, and high accuracy of
the space discretisation, as demonstrated by Kitamura and Shima [13] and also by Shima
and Kitamura [16] with a method called SLAU (see section 11 on SLAU).

10 Convection-pressure splitting with AUSM

The basic expressions of face velocity and face pressure of an AUSM (Advection Up-
stream Splitting Method) are by interpolation between left-hand and right-hand values on
a face. The interpolation is done with polynomials formed by factors m + 1, m, m − 1,
where m is a Mach number. The use of these factors is inspired by the propagation speeds
v + c, v and v − c of the characteristic quantities. For the definition of the face Mach
number, first, a common speed of sound c1/2 at the face 1/2 is defined. The expressions
of the AUSM+ by Liou [17] are

vAUSM+

1/2 = c1/2M1/2, with c1/2 = min {c̃L, c̃R} , (49)

where c̃K = (c†K)2/max{c†K ,|vK|}, (c†K)2 = 2γ−1
γ+1

HK , MK = vK/c1/2, with K for L or
R and H the total enthalpy. The interpolation polynomials are

M1/2 = f+
M(ML) + f−M(MR), p1/2 = f+

p (ML)pL + f−p (MR)pR. (50)

The polynomials of AUSM+ are listed by Liou [17]. Their main behaviour is

f+
M = 0 for M ≤ −1, f+

M(M ' 0) =
3

8
+

1

2
M +O(M4), f+

M = M for M ≥ 1,

f−M = M for M ≤ −1, f−M(M ' 0) = −3

8
+

1

2
M +O(M4), f−M = 0 for M ≥ 1,

f+
p = 0 for M ≤ −1, f+

p (M ' 0) =
1

2
+

15

16
M +O(M3), f+

p = 1 for M ≥ 1,

f−p = 1 for M ≤ −1, f−p (M ' 0) =
1

2
− 15

16
M +O(M3), f−p = 0 for M ≥ 1.
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For low Mach number, the interpolated Mach number is approximately the average Mach
number. The face velocity is thus also approximately the average of the left-hand and
right-hand values at the face. There is no contribution by a pressure difference. Thus, for
use at low Mach number, a pressure difference has to be added. Examples of such terms
are those of the AUSM+-up by Liou [18] or those of the SLAU of Shima and Kitamura
[19] and SLAU2 by Kitamura and Shima [20].

For low Mach number, the interpolated pressure is approximately the average pressure
with a term proportional to the velocity difference vL − vR added, thus of form (38).
Insight in the structure of the pressure interpolation formula is gained by writing the
expression (50), with the short notations fp+

L and fp−R, as

p1/2 =
1

2
(pL + pR) +

1

2
(fp

+
L − fp

−
R)(pL − pR) +

1

2
(fp

+
L + fp

−
R − 1)(pL + pR). (51)

For low Mach number, this expression is approximately

p1/2 =
1

2
(pL + pR)− 15

16

v

c1/2

(pR − pL)− 15

16

p

c1/2

(vR − vL), (52)

where v and p are values in between those at states L and R. The second term in the right
hand-side of (51) is a pressure-diffusion term with a small coefficient. The third term in
the right hand-side of (51) is a velocity-diffusion term with a coefficient of order %c1/2,
which is not small. Therefore, this term has to be damped for use in a low Mach number
flow. Examples of damping methods are by manipulation of the polynomial coefficients
with the AUSM+-up by Liou [18] or by multiplication with a function which becomes
small for small Mach number in the SLAU of Shima and Kitamura [19] and SLAU2 by
Kitamura and Shima [20].

As an example, we take here the recent method by Chen et al. [14]. The Mach number
interpolation is

M1/2 = f+
M(ML) + f−M(MR)− 1

2
(1− fM)(1− g)

pR − pL

%1/2c
2
1/2

. (53)

The corresponding face velocity is

v1/2 = vAUSM+

1/2 − 1

2
(1− fM)(1− g)

pR − pL

%1/2c1/2

, (54)

where

%1/2 =
1

2
(%L + %R), fM =

1

2

[
1− cos(πM̂)

]
, M̂ = min{1,max{|ML| ,|MR|}}. (55)

The factor (1 − fM) approaches unity in a low Mach number flow and it becomes zero
for a high value of the Mach number associated to the velocity component normal to the
face. The function g is a shock-detector function, which approaches unity at the position
of a strong shock and approaches zero in smooth flows. We detail it in section 14 on
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shock stability. Thus, by the factor (1−fM)(1−g) the pressure-diffusion term is active in
smooth low Mach number flows and the coefficient of the pressure-diffusion term has the
correct magnitude according to the first rule by Li and Gu. The pressure diffusion term
is near to zero in a high Mach number flow, also on a face aligned with the flow due to
the multi-dimensional function g. This strong reduction of the pressure difference term
improves the shock-stability (see section 14).

The pressure interpolation in the method of Chen et al. is the AUSM-formula (51) with
the third term damped and an added velocity diffusion term for shock stability (pds):

p1/2 =
1

2
(pL +pR)+

1

2
(fp

+
L−fp

−
R)(pL−pR)+

1

2
(fp)(fp

+
L +fp

−
R−1)(pL +pR)+pds, (56)

where fp = fM . There is actually a cut-off Mach number in the expression of fp by Chen
et al., but we do not use it in our later tests. We detail the shock-stability term in section
14. But in our later tests, it is not needed and we set it to zero.

We denote the method with the expressions (54)-(56) by AUSM-CPS-ZB.

11 Convection-pressure splitting with SLAU

In the SLAU-method (Simple Low-dissipation Advection Upstream method) by Shima
and Kitamura [19] and the SLAU2 by Kitamura and Shima [20], the expression of the
mass flux is derived from the Roe flux-difference splitting method:

ṁ1/2 =
1

2
(%LvL + %RvR)− 1

2

%L |vL|+ %R |vR|
%L + %R

(%R − %L)− χ1

2

pR − pL

c
, (57)

with c = 1
2
(cL + cR). There is actually a factor multiplying the first two terms in the

right- hand side, but it is not written here because it is only different from unity for a very
strong supersonic expansion fan and we do not have such phenomenon in the tests that
we present later.

In one dimensional flow, the χ-factor is

χ = (1− M̂1/2)2, with M̂1/2 = min

1,
1

c

√
1

2
(v2

L + v2
R)

 . (58)

For use with ZB-splitting, a face velocity is needed, which we may derive from (57) as

v1/2 =
%LvL + %RvR

%L + %R

− %L |vL|+ %R |vR|
%L + %R

%R − %L

%R + %L

− χ pR − pL

(%L + %R)c1/2

, (59)

where χ = (1− M̂1/2)2, with M̂1/2 = min
{

1,
∣∣∣M1/2

∣∣∣} , (60)

and where we take the AUSM+ expressions (49) and (50) of c1/2 and M1/2.
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In a low Mach number flow, the χ-factor (58) is near to unity. The pressure difference
term in the face velocity expression (59) is thus similar to that of the AUSM-method (54).

The face pressure expression is (56):

p1/2 =
1

2
(pL + pR) +

1

2
(fp

+
L − fp

−
R)(pL− pR) +

1

2
(fp)(fp

+
L + fp

−
R− 1)(pL + pR), (61)

with fp(M1/2) = 1−(1−M̂1/2)2 = M̂1/2(2−M̂1/2), and M̂1/2 = min
{

1,
∣∣∣M1/2

∣∣∣} . (62)

The shock-stability term in Eq. (56) may be added for high Mach number flows. The face
pressure expression of SLAU2 is slightly different:

p1/2 =
1

2
(pL + pR) +

1

2
(fp

+
L − fp

−
R)(pL− pR) +

√
1

2
(v2

R + v2
L)(fp

+
L + fp

−
R− 1)%1/2c1/2.

We denote the method defined by the expressions (59)-(62) by SLAU-CPS-ZB. The es-
sential difference with the AUSM-method of the previous section is the expression of the
face velocity (59).

12 Convection-pressure splitting with the HLL-method

In the basic HLL-method, a contact discontinuity is ignored. With a unique state in the
star-region, U∗ = U∗L = U∗R, the Rankine-Hugoniot equations (26) and (27) become

F∗ − FL = SL(U∗ − UL) and F∗ − FR = SR(U∗ − UR). (63)

These equations determine uniquely the vectors U∗ and F∗. The solution is

U∗ =
SRUR − SLUL

SR − SL

− FR − FL

SR − SL

and F∗ =
SRFL − SLFR

SR − SL

+
SRSL(UR − UL)

SR − SL

. (64)

In a HLL-method, the face flux vector is

F1/2 = FL if 0 < SL ; F1/2 = F∗ if SL ≤ 0 ≤ SR ; F1/2 = FR if SR < 0.

The star-region state vector U∗ is not used for the discretisation. Moreover, F∗ 6= F (U∗).
By ignoring the contact discontinuity, a HLL-algorithm is dissipative for a contact dis-
continuity. In multiple dimensions, there is also possible discontinuity of the velocity
components in the tangential direction in the flux vector on a face, called shear disconti-
nuities. These discontinuities are transported convectively. The basic HLL-method is also
dissipative for the shear discontinuities.

The contact discontinuity is taken into account in the HLLC-method, and in multiple di-
mensions, also discontinuities of the tangential velocity components. With the state vec-
tors (44), the flux vectors in the star region are constructed by the Rankine-Hugoniot
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equations (26) and (27):

F∗L = FL + SL(U∗L − UL) and F∗R = FR + SR(U∗R − UR).

This way, a consistent approximation of the Rankine-Hugoniot equations across the wave
paths is assured. The choice of the face flux vector is by

F1/2 = FL if 0 < SL ; F1/2 = F∗L if SL ≤ 0 < v∗ ;

F1/2 = F∗R if v∗ < 0 ≤ SR ; F1/2 = FR if SR < 0.

There is ambiguity for v∗ = 0. The average of F∗L and F∗R may then be taken.

With a convection-pressure split method, the HLL-procedure is only applied to the pres-
sure flux part. We use the formulation proposed by Mandal and Panwar [21], with a small
change of the transporting velocity in the convection part. The convection part of the flux
is defined by flux vector upwinding:

FC,1/2 =


%L

(%v)L

1
2
(%v2)L + 1

γ−1
pL

 v1/2 for v1/2 ≥ 0. (65)

Instead of the expression of Mandal and Panwar, we take the AUSM+ face velocity [17]
as transporting velocity. The replacement of the face velocity is a detail, but we feel safer
by a face velocity that is a smooth function of the Mach number at the face. The pressure
part of the flux is defined by HLL, but with % replaced with p/c2 in the dissipation term
proportional to UR − UL:

Fp,1/2 =
SRFp,L − SLFp,R

SR − SL

+
SRSL

SR − SL



1

c2
(pR − pL)

1

c2
[(pv)R − (pv)L]

1

2c2
[(pv2)R − (pv2)L] +

1

γ − 1
(pR − pL)

 ,
(66)

with c = (cL + cR)/2, SR = max{0, vR + cR, ṽ + c̃} and SL = min{0, vL − cL, ṽ − c̃},
where ṽ and c̃ are Roe-averages.

We denote the method with the expressions (65) and (66) by HLLP-CPS-ZB. The let-
ter P is added to refer to the replacement of density by pressure in the diffusive part of
the pressure flux vector expression (66). This replacement is done for obtaining exact
representation of a contact discontinuity. This way, the diffusion of the contact disconti-
nuity of the original HLL-method is removed. In multiple dimensions, the diffusion of the
shear discontinuities is maintained. This diffusion has a role in the shock-stability of the
method, as we discuss in section 14.
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Mandal and Panwar [21] demonstrate good functioning of HLLP-CPS-ZB for 1-D Rie-
mann problems and 2-D high Mach number problems. In the later tests, we use the method
as described above, with SR = vR+cR and SL = vL−cL. We remark that the interpretation
of Toro and Vázquez-Cendón [9] is that the pressure wave propagation in a convection-
pressure splitting method is superposed to the convection motion, and thus the choice of
the propagation speeds may also be SR = cR , SL = −cL and then c2 = cLcR. With
the last choices, the expressions (66) become similar to these of a characteristic method
(37)-(38). Thus, also these last choices function well.

By definition of four factors,

TR =
SR

SR − SL

, TL =
SL

SR − SL

, TM =
SRSL

SR − SL

, TA =
TM

c2
,

Fp,1/2 has as components


0 + TA(pR − pL)

TRpL − TLpR + TA [(pv)R − (pv)L]

TR(pv)L − TL(pv)R + TA
2

[(pv2)R − (pv2)L] + TM
γ−1

(pR − pL)

 . (67)

With the HLLP method, the stepping method is still as described in section 4, but with the
residuals defined by

%ki − %ni + τ
[
%ki +

1

2
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k)
]
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2
ψi−1(%k)

]
vki−1/2

+ τ(TA)ki+1/2

([
pki+1 −

1

2
ψi+1(pk)

]
−
[
pki +

1

2
ψi(p

k)
])

− τ(TA)ki−1/2

([
pki −

1

2
ψi(p

k)
]
−
[
pki−1 +

1

2
ψi−1(pk)

])
,

(%v)ki −(%v)ni +τ
{

(%v)ki +
1

2
ψi[(%v)k]

}
vki+1/2−τ

{
(%v)ki−1 +

1

2
ψi−1[(%v)k]

}
vki−1/2

+ τ(TR)ki+1/2

[
pki +

1

2
ψi(p

k)
]
− τ(TL)ki+1/2

[
pki+1 −

1

2
ψi+1(pk)

]
− τ(TR)ki−1/2

[
pki−1 +

1

2
ψi−1(pk)

]
+ τ(TL)ki−1/2

[
pki −

1

2
ψi(p

k)
]

+ τ(TA)ki+1/2

({
(pv)ki+1 −

1

2
ψi+1[(pv)k]

}
−
{

(pv)ki +
1

2
ψi[(pv)k]

})
− τ(TA)ki−1/2

({
(pv)ki −

1

2
ψi[(pv)k]

}
−
{

(pv)ki−1 +
1

2
ψi−1[(pv)k]

})
,
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In the limit for small velocity, the effective mass flux in the continuity equation becomes
%v − ∆p

2c
. The dissipation term realises a weak pressure-velocity coupling. In principle, it

is sufficient. The continuity equation term in the pressure flux may thus stay

TA(pR − pL). (68)

In the momentum equation, the momentum flux becomes %vv + p − 1
2c

(p∆v + v∆p).
The coupling of the pressure difference to the velocity is as in the continuity equation.
The effective face pressure is p − p

2c
∆v. With p ∼ % c2, this may also be written as

p − 1
2
% c∆v. The coefficient of ∆v does not have the correct order of magnitude in the

hydrodynamic low Mach number limit. This may be cured by p − fp(M) p
2c

∆v. So, an
adapted momentum equation term in the pressure flux is

TRpL − TLpR + TAv(pR − pL) + fp(M1/2)TAp(vR − vL).

Li and Gu [15] actually suggest (with the substitution of % by p/c2, which is not done by
Li and Gu):

TRpL − TLpR + TAfp(M1/2) [(pv)R − (pv)L] , (69)

because they do not consider splitting of the (pv) term. Our numerical tests show that
both modifications function equally well. This means that the coupling of the pressure
difference to the face velocity is not essential in the momentum equation. Therefore, we
take the expression (69) by Li and Gu.

25



In the energy equation, the flux becomes

%
1

2
v2v +

1

γ − 1
pv + pv − 1

2c

[
1

2
v2∆p+ p v∆v

]
− 1

γ − 1

c

2
∆p.

The combination of the first term and the fourth term shows a mass flux similar to that
of the continuity equation. The combination of the second and third term with the fifth
and sixth term shows a face pressure of the form p − p

2c
∆v and a face velocity of the

form v − c
2p

∆p. The face pressure does not have the correct scaling for pressure-velocity
coupling. Thus, the fifth term has to be multiplied by fp(M). The face velocity has the
correct form because it may also be written as v − 1

2
∆p
% c

. Again, if we do not consider
splitting of the term ∆(pv2), the adapted expression of the energy term in the pressure
flux is

TR(pv)L − TL(pv)R +
TA

2
fp(M1/2)

[
(pv2)R − (pv2)L

]
+

TM

γ − 1
(pR − pL). (70)

Li and Gu [15] do not propose any change to the energy difference term ∆(%E) in the
diffusive part of the energy equation, but they do not use convection-pressure splitting and
they do not consider splitting of differences in the diffusive parts in several components.
The low Mach number adaptation by Eq. (70) in the energy equation is done here with
the HLLP-CPS-ZB in order to be consistent with the low Mach number adaptation in the
momentum equation (69).

In the later numerical tests, the HLLP-CPS-ZB is defined by the convection part (65) with
v1/2 according to the AUSM+ definition, and the pressure flux part by the components
(68), (69) and (70) with fp(M1/2) and M1/2 according to Eq. (62).

Li and Gu [15] demonstrate good functioning of the HLL, with their adaptation for low
Mach number, for a Riemann problem and for steady state 2-D low Mach number flows.
Sun et al. [22] demonstrate good functioning of the HLLP-CPS-TV with the low Mach
number adaptation of Li and Gu for Riemann problems, steady state 2-D low Mach num-
ber flows and steady state 2-D high Mach number flows.

13 Convection-pressure splitting with momentum interpolation

The characteristic expressions (37)-(38) are the solutions of the momentum equations
(31). This means that one of the equations (37)-(38) may be replaced by a discretised
momentum equation. Because there is a problem with obtaining the correct scaling of
the expression of the face velocity (37) in the same way for the hydrodynamic and the
acoustic low Mach number limits, a practical approach is to maintain the expression of
the face pressure in the form (39), or a variant thereof, and to replace the expression of
the face velocity by a discretised time-dependent momentum equation. By discretisation
of the momentum equation at a face, a relation is then obtained between the face velocity
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and the pressure difference across the face. This may then serve as expression of the
face velocity. If the discretisation of the momentum equation is done in the same way
as for the quantities at the cell centres, the discrete equation has then automatically the
correct scaling for all flow types. This requires thus a time-accurate discretisation of the
momentum equation at a face.

In the acoustic low Mach number limit, the Euler equations (9) are

%∂tv + ∂xp = 0 and %∂tp+ γp(∂xv) = 0. (71)

Thus, for time-accuracy in the acoustic low Mach number limit, the time-dependent term
and the pressure gradient term in the momentum equation have to discretised locally at the
face. The result is then that the face velocity components become dynamic quantities that
evolve in time together with the quantities in the cell centres. There are some methods
of this type, including our own method [10,11]. Other examples are by Ong and Chan
[23], and by Xiao et al., Denner et al. and Bartholomew et al. [24–26]. A method by Li
and Gu [27] is similar, but the face velocity at the old time level is interpolated with as
consequence that the face velocity is not completely time accurate.

We use here our own methodology. The face pressure is

p1/2 =
1

2
(pL + pR)− 1

2
fp(M1/2)%1/2c1/2(vR − vL), (72)

where M1/2 and c1/2 are the Mach number and the velocity of sound of the AUSM+,
by Eqs. (49) and (50), and the scaling factor fp(M1/2) is by Eq. (62). The face pressure
expression is simpler than the one of the MIAU scheme presented in our previous work
[11].

For the construction of the face velocity, the momentum equation is discretised in a pre-
liminary way by using the face velocity of the AUSM+ scheme into
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The face velocity vki+1/2 is then obtained by interpolation:

Bk
i+1/2 = Aki+1/2(%v)??i+1/2 +

1

∆x
(pki+1 − pki ) +

1

∆t
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Aki+1/2 =
1

2

(
Aki + Aki+1

)
, Bk

i+1/2 =
1

2

(
Bk
i +Bk

i+1

)
, vki+1/2 =

(%v)??i+1/2
1
2
(%kL + %kR)i+1/2

.
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The essence of the time-accurate interpolation (74) is that the pressure gradient term and
the inertia term are not interpolated, but discretised directly on the face. We remark that
for use of the preliminary discretisation (73) in the interpolated formula (74), expressions
of the face pressure in the preliminary discretisation are not necessary. The method by
momentum interpolation is denoted by TAMI-CPS-ZB, where the acronym TAMI means
time-accurate momentum interpolation.

14 Shock stability

Low-diffusion upwind schemes are susceptible to anomalies in the flow downstream of a
strong shock aligned with cell faces of one type on structured grids and other cell faces
aligned with the flow. Common deficiencies are odd-even transversal oscillations down-
stream of a moving shock and the carbuncle perturbation of the shock in a steady hyper-
sonic blunt body flow. These phenomena, called shock anomalies or shock instabilities,
are discussed an analysed by many authors.

The causes of the anomalies are not yet fully understood, but recent research on the topic
results in certitude about two aspects. First, the velocity difference term in the face pres-
sure expression and the pressure difference term in the face velocity expression drive
towards instability. The second aspect is the necessity for sufficient damping of coupled
pressure and velocity perturbations in the transversal direction.

Recently, Fleischmann et al. [28] obtained shock stability of the Roe-method by decreased
velocity difference in the effective face pressure by preconditioning the velocity of sound.
This is thus similar to the reduction of the velocity difference terms in the expression
of the face pressure (43). A pure Roe-method is shock-unstable, but by reduction of the
velocity difference, the method may thus become shock-stable. The proposed reduction
by Fleischmann et al. is similar to that by Li and Gu [15,29] and that by Rieper [30], but
their motivation was not shock stability but high accuracy in the hydrodynamic low Mach
number limit. Obviously, the remedy is the same for both aspects. The explanation is that
a small velocity difference in the normal direction of a cell face, approximately aligned
with the flow, can cause a large change of the cell centre pressure by a large coefficient of
the velocity difference in a face pressure expression of form (39). The perturbation of the
pressure may then cause a large change of the velocity component perpendicular to the
face by a face velocity expression of form (37). The two coupling mechanisms create the
possibility for a coupled pressure and velocity oscillation in a direction transversal to the
flow. By reduction of one of the coupling coefficients, the tendency towards oscillations
is reduced.

The explanation thus means that shock instability may also be cured by lowering the
coefficient of the pressure difference term in a face velocity expression of form (37). It
was shown by Ren et al. [31] that this is correct. Also the SLAU-method by Shima and
Kitamura [19], the SLAU2 by Kitamura and Shima [20] become shock-stable by lowering
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the coefficient of the pressure difference term in the face velocity expression.

Reduction of the coupling between the face velocity and the pressure difference across
the face or reduction of the coupling between the face pressure and the velocity difference
across the face is, however, not a guarantee for obtaining shock stability. E.g., the method
of Kitamura and Shima [13] based on characteristic equations, which we take as an ex-
ample, adapted for low Mach number flows by reduction of the velocity difference term
in the face pressure expression, is not shock-stable for flows at very high Mach number.
That lowering the coupling between the face velocity and the pressure difference does not
guarantee shock-stability was demonstrated by Li et al. [32] for the Roe-method. These
observations demonstrate that also sufficient damping of the coupled velocity and pres-
sure perturbations is necessary. Some additional damping may thus be necessary, which
has to be tailored for minimisation of dissipation [32]. A further aspect is that lowering
the coupling between face velocity and pressure difference improves the shock-stability,
but increases the tendency towards expansion shocks, as demonstrated by Li et al. [33] for
the Roe-method. Thus, the way of reducing the coupling has to take this possible effect
into account [33].

Insight into the necessary damping has been obtained by comparison of the shock-stable
HLL-method and the shock-unstable HLLC-method. The difference between the flux ex-
pressions of both methods shows terms that diffuse the contact discontinuity and the shear
discontinuities. The shear diffusion was found to be crucial. A shock unstable HLLC-
method may thus be stabilised by adding shear diffusion. Examples of such methods are
those of Shen et al. [34], Chen et al. [35], and Simon and Mandal [36]. The HLLEM may
be stabilised in a similar way. The HLLEM is an accurate method by adding anti-diffusion
terms for the contact discontinuity and the shear discontinuities to the basic HLL. By
adding the full terms, the HLLEM is shock-unstable, but by limiting the anti-diffusion
terms for shear in the vicinity of strong shocks, a shock-stable method is obtained. Ex-
amples are the methods by Xie et al. [37,38]. The method by Mandal and Panwar [21],
described in section 12, is shock-stable, because the replacement of density by pressure
in the diffusive part of the pressure flux vector removes the diffusion of a contact discon-
tinuity, but keeps the diffusion of shear discontinuities. A similar method is by Sun et al.
[22].

We detail here the formulation by Chen et al. [35], which they use to stabilise the AUSM
[14]. The terms for addition to the momentum fluxes through a face perpendicular to the
x−direction in 2-D are

pdsx = −γ%1/2c1/2(fp
+
L fp

−
R)(g)(vxR−vxL), pdsy = −γ%1/2c1/2(fp

+
L fp

−
R)(g)(vyR−vyL),

where vx and vy denote the x− and y−components of the velocity, and pdsx and pdsy are
added to the momentum equation in x−direction and y−direction, respectively. There
is thus diffusion added in normal direction and in tangential direction on all faces. The
diffusion in tangential direction is essential. The one in normal direction is added for
robustness. The factor (fp

+
L fp

−
R) ensures that the additions are only done for a subsonic

velocity component perpendicular to the face and the g−function ensures that the terms
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are only added in the vicinity of a strong shock. The g−function is

g =
1

2
[1 + cos(πh)], with h = min

k
{hk}, hk = min

{
pLk

pRk

,
pRk

pLk

}
,

where k indicates all the faces of the cells adjacent to the face where the pressure is
evaluated. In vicinity of shocks, the g−function approaches unity, but for smooth flow, it
is very small. Further, by the factor (1− fM)(1− g) in the face velocity expression (54),
the pressure difference term is set to a small value in vicinity of a strong shock, which
reduces the mechanism of shock instability.

15 Numerical results for steady flows

In order to demonstrate that the proposed methods all function well for steady flows at
medium-high and high Mach numbers, we show results of one-dimensional flows with a
stationary contact discontinuity or a stationary shock.

15.1 Stationary contact discontinuity

The initial data are listed in Table 1. We take N = 200 cells and CFL(cL) = 500.

%L (kg/m3) vL (m/s) pL (Pa) %R (kg/m3) vR (m/s) pR (Pa) tf (s)

1.0 0 100 000 0.5 0 100 000 10

Table 1
Settings for the stationary contact discontinuity test of Sec. 15.1.
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Fig. 3. Stationary contact discontinuity: CHAR-CPS-ZB.

The result of CHAR-CPS-ZB is shown in Fig. 3. The contact discontinuity is exactly
represented. The results of the other algorithms are identical (not shown).
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15.2 Stationary shock

The initial data are listed in Table 2. We take N = 1 000 cells and CFL(vL) = 0.5.

%L (kg/m3) vL (m/s) pL (Pa) %R (kg/m3) vR (m/s) pR (Pa) tf (s)

1.4 1 400 19 600 8.0 245 2 283 400 0.05

Table 2
Settings for the stationary shock test of Sec. 15.2.

The result of HLLP-CPS-ZB is shown in Fig. 4. The results are similar by the other
algorithms (not shown).
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Fig. 4. Stationary shock: HLLP-CPS-ZB.

16 Numerical results for Riemann problems at medium-high Mach number

We study two cases, chosen from the list of test cases by Toro [2]. The first is the modified
Sod test, with a right travelling shock wave, a right travelling contact discontinuity and a
left travelling expansion wave. The second is a similar case, but with a very strong right
travelling shock wave, and a strong right travelling contact discontinuity.

16.1 Modified Sod test

The initial data are listed in Table 3. We take N = 1 000 cells and CFL(vL) = 0.5.

The results of AUSM-CPS-ZB and TAMI-CPS-ZB are shown in Fig. 5 and Fig. 6. In the
AUSM-result, there is a slight oscillation in the flow downstream of the contact disconti-
nuity. The reason is that the Mach number has different values upstream and downstream
of the moving contact discontinuity. This leads to an interpolated pressure by Eq. (56) that
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%L (kg/m3) vL (m/s) pL (Pa) %R (kg/m3) vR (m/s) pR (Pa) tf (s)

1 0.75 1 0.125 0 0.1 0.2

Table 3
Settings for the modified Sod test of Sec. 16.1.

is not exactly equal to the upstream and downstream values of the pressure. The results of
the two other algorithms are similar to the result of TAMI-CPS-ZB (not shown).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

Density (kg/m
3
)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  0.2  0.4  0.6  0.8  1

Mach number

Fig. 5. Modified Sod test: AUSM-CPS-ZB.
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Fig. 6. Modified Sod test: TAMI-CPS-ZB.

16.2 Strong shock tube

The initial data are listed in Table 4. We take N = 1 000 cells and CFL(vL) = 0.5.

The result of SLAU-CPS-ZB is shown in Fig. 7. The results of CHAR-CPS-ZB, AUSM-
CPS-ZB and TAMI-CPS-ZB are similar (not shown). The HLLP-CPS-ZB does not con-
verge with all dissipation terms set at second order accuracy in Eq. (66). A Solution some-
what more diffusive than the one shown in Fig. 7 was obtained by setting the pressure dis-
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%L (kg/m3) vL (m/s) pL (Pa) %R (kg/m3) vR (m/s) pR (Pa) tf (s)

1 0 1 000 1 0 0.01 1.2× 10−2

Table 4
Settings for the strong shock tube test of Sec. 16.2.

sipation term in the continuity equation and in the energy equation to first order accuracy,
thus: TA(pi+1 − pi) and TM

γ−1
(pi+1 − pi).
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Fig. 7. Strong shock tube: SLAU-CPS-ZB.

17 Numerical results for a Riemann problem at low Mach number

The test case is a Riemann problem at a very low Mach number and with very weak ex-
pansion waves. It is similar to a case suggested by Guillard and Murrone [4], but modified
such that the pressure changes and velocity changes stay small. We opt for small changes
because these are the most challenging for an approximate Riemann solver.

The initial data are listed in Table 5. We take N = 1 000 cells and CFL(vL + cL) = 0.5
and 10−2.

%L (kg/m3) vL (m/s) pL (Pa) %R (kg/m3) vR (m/s) pR (Pa) tf (s)

25 0.200 10 000.00 25 0.202 10 000.85 0.01

Table 5
Settings for the low Mach number Riemann problem of Sec. 17.

The results of CHAR-CPS-ZB are shown in Figs. 8 and 9 for two values of the CFL num-
ber. The algorithm remains stable for the low value of the CFL number. The results are
almost identical for AUSM-CPS-ZB, SLAU-CPS-ZB and HLLP-CPS-ZB (not shown).

The results of TAMI-CPS-ZB with the same CFL numbers are shown in Figs. 10 and
11. For CFL = 0.5, the result is almost identical to the result of the other methods, but
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Fig. 8. Low Mach number Riemann problem: CHAR-CPS-ZB, with CFL(vL + cL) = 0.5.
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Fig. 9. Low Mach number Riemann problem: CHAR-CPS-ZB, with CFL(vL + cL) = 10−2.

with low CFL number, oscillations occur around the expansion waves. The pressure is
obtained from the energy equation (20). There are two mechanisms of pressure diffusion
in this equation. A first is by pressure-velocity coupling. This diffusion has the form of
the terms with coefficients (τα) in the C-factors of the system matrix of the energy equa-
tion. With the CHAR-, AUSM-, SLAU- and HLLP-methods, the diffusion coefficients
are proportional to τ , because the coupling coefficients of the pressure difference in the
face velocity expressions (37), (54) and (66) are of the order of unity. Because the energy
balance by Eq. (20) is multiplied with the time step, the coefficient of the pressure dif-
fusion due to pressure-velocity coupling is of order unity, independent of the time step.
With the TAMI-method, the coupling coefficient of the pressure difference term in the
expression of the face velocity by Eq. (74) is of the order τ . The pressure diffusion due
to pressure-velocity coupling is thus proportional to the time step. It becomes thus small
for small time step. The second mechanism of pressure diffusion is by the upwinding of
the convection term. This diffusion has the form of the terms with coefficients (τv) in the
C-factors of the system matrix of the energy equation. This diffusion becomes thus small
for small velocity. The very small pressure diffusion by the TAMI-method for small time
step and small velocity thus makes that it is not meaningful to use TAMI-CPS-ZB with a
small CFL number in a flow with small convection velocity.
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Fig. 10. Low Mach number Riemann problem: TAMI-CPS-ZB. CFL(vL + cL) = 0.5.
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Fig. 11. Low Mach number Riemann problem: TAMI-CPS-ZB. CFL(vL + cL) = 10−2.

18 Numerical results for acoustic propagation in one dimension

The background flow is of constant density %0 = 1.2046 kg/m3, velocity v0 = 3.0886 ×
10−2 m/s and pressure p0 = 101 300 Pa. The corresponding Mach number is 10−4. A
Gaussian pulse is generated at t = 0 by

%0 = %0 + (δ%)0, v0 = v0 + (δv)0, p0 = p0 + (δp)0,

where

(δp)0 = 200 exp

[
−(x− 0.2)2

2σ2

]
(Pa), σ = 2× 10−2 m,

(δ%)0 = (δp)0/c2
0, (δv)0 = (δp)0/(%0c0), with c0 =

√
γp0/%0.

The computational domain is the interval [0, 5] (m) divided into 2 500 cells of equal
length. CFL(v0 + c0) = 0.5 and the solution is shown at tf = 11.07 ms. The pulse is
discretised by about 60 cells.

The results by SLAU-CPS-ZB and HLLP-CPS-ZB are shown in Figs. 12 and 13. The
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results by CHAR-CPS-ZB and AUSM-CPS-ZB are comparable (not shown). The dissi-
pation of the pressure pulse by these methods is obvious. The result by TAMI-CPS-ZB is
shown in Fig. 14. There is no visible dissipation; only a small dispersion. The explanation
of the dissipation by the CHAR-, AUSM-, SLAU- and HLLP-methods is that the face
velocity expressions (37), (54) and (66) are of the form

vi+1/2 = v − 1

2

pR − pL

% c
, (75)

where the overbar values are forms of averages of left-hand side and right-hand side values
at the face. The coupling of the face velocity with the pressure difference causes the dissi-
pation. With TAMI-CPS-ZB, the face velocity, for small convection velocity, is obtained
from the time-dependent momentum equation on the face, which, in space-discretised
form, is

∂t(%v)i+1/2 +
pi+1 − pi

∆x
= 0. (76)

The only dissipation associated with this equation comes from the time discretisation
and the space discretisation. The result shown in Fig. 14 thus proves the advantage by
obtaining the face velocity in a time-accurate way by the discretisation of a momentum
equation on the face.

A countereffect of the construction of the pressure-velocity coupling by the time-accurate
discretisation of the momentum equation at a face (76) is, as discussed in the previous
section, that the coupling disappears for small time step. It is thus not possible to use
TAMI-CPS-ZB with a small CFL number based on the velocity of sound.
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Fig. 12. One-dimensional acoustic pulse: SLAU-CPS-ZB.

That the pressure difference term in the algebraic expression of the face velocity by the
CHAR-, AUSM-, SLAU- and HLLP-methods is the cause of the dissipation is demon-
strated by the result shown in Fig. 15, obtained with the SLAU-method, by setting the
χ-factor in the expression of the face velocity (59) to 10−2. The reduction of the dissipa-
tion is obvious. But, clearly, the quality of the solution is not yet that by the time-accurate
momentum interpolation method. Moreover, it is not possible to obtain a better result than
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Fig. 13. One-dimensional acoustic pulse: HLLP-CPS-ZB.
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Fig. 14. One-dimensional acoustic pulse: TAMI-CPS-ZB.
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Fig. 15. One-dimensional acoustic pulse: variant of SLAU-CPS-ZB, with χ = 10−2.

shown in Fig. 15, because oscillations appear in the solution with a lower value of the χ-
factor. Another aspect is that lowering the coefficient of the pressure difference term in the
face velocity expression is not a practical method for problems of acoustic propagation in
low Mach number flows, because this coefficient has to be large enough for application to
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low Mach number flows in the hydrodynamic low Mach number limit.

19 Two-dimensional acoustic pulse propagation in a low Mach number flow

A two-dimensional Gaussian acoustic pulse is given at t = 0 by

%0 = %0 + (δ%)0, u0 = u0, v
0 = v0, p

0 = p0 + (δp)0,

where

(δp)0 = A exp
{
−α

[
(x′)2 + (y′)2

]}
(Pa),

with A = 200, α = 1/σ2, x′ = x− 0.5, y′ = y − 0.5,

(δ%)0 = (δp)0/c2
0, c0 =

√
γp0/%0,

%0 = 1.2046 kg/m3, u0 = v0 = 3.0886× 10−3 m/s, p0 = 101 300 Pa.

The exact solution of the initial value problem given by the Euler equations linearized
around the uniform mean flow is (see Ref. [39]):

%(x′, y′, t) =
A

2αc2
0

∫ ∞
0

exp

(
− ξ

2

4α

)
cos(ξc0t) j0(ξη) ξ dξ,

u(x′, y′, t) =
A(x′ −Mxc0t)

2αηρ0c0

∫ ∞
0

exp

(
− ξ

2

4α

)
sin(ξc0t) j1(ξη) ξ dξ,

v(x′, y′, t) =
A(y′ −Myc0t)

2αηρ0c0

∫ ∞
0

exp

(
− ξ

2

4α

)
sin(ξc0t) j1(ξη) ξ dξ,

p(x′, y′, t) = c2
0%(x′, y′, t),

where

η =
√

(x′ −Mxc0t)2 + (y′ −Myc0t)2,

and j0 and j1 are the first kind cylindrical Bessel functions of orders zero and one, respec-
tively. Here, Mx = My = v0/c0 = 9×10−6. The computational domain is a square of side
[0, 1] (m), divided into 500 × 500 cells forming a regular Cartesian grid. The numerical
method is the 2-D direct extension of the one detailed in section 4, with an alternate direc-
tion procedure for solving the pentadiagonal system obtained from the energy equation.

The pressure distributions obtained with TAMI-CPS-ZB at four time instants are shown
in Fig. 16 for σ = 0.05 and CFL(v0 + c0) = 10. The velocity distributions at tf = 1 ms
on the line y = 0.5 obtained by TAMI-CPS-ZB and CHAR-CPS-ZB, and the analytical
solution, are shown in Fig. 17. The accuracy of both methods is good. In Fig. 18 is shown
similarly the pressure distribution by TAMI-CPS-ZB at tf = 1 ms for σ = 0.02, thus with
a narrower initial pulse. The corresponding velocity distributions at tf = 1 ms on the line
y = 0.5 by TAMI-CPS-ZB and CHAR-CPS-ZB, and the analytical solution, are shown
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in Fig. 19. The solution by the TAMI-method is very accurate but the solution of the
CHAR-method shows some diffusion. The comparison of both results proves the benefit
of using the time-accurate momentum interpolation method. The observation in Fig. 17 is
that CHAR-CPS-ZB is able to produce an accurate result, but that this requires sufficient
smoothness of the acoustic perturbation and a sufficiently fine space discretisation of the
perturbation. This is in accordance with the statement by Kitamura and Shima [13] on the
accuracy of CHAR-CPS-ZB for acoustic propagation. With the result shown in Fig. 19,
it is clear that the requirements on smoothness of the acoustic perturbation and the space
resolution are much less severe with TAMI-CPS-ZB.
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(c) tf = 0.66 ms.
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Fig. 16. Two-dimensional acoustic pulse test. Evolution of the pressure distribution (Pa), by
TAMI-CPS-ZB, at tf = 0, 0.33, 0.66 and 1 ms; σ = 0.05.
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Fig. 17. Two-dimensional acoustic pulse test; u−velocity on y = 0.5 by TAMI-CPS-ZB,
CHAR-CPS-ZB and linearized Euler equations at tf = 1 ms; σ = 0.05.
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Fig. 18. Two-dimensional acoustic pulse test. Pressure distribution (Pa), by TAMI-CPS-ZB at
tf = 1 ms; σ = 0.02.
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Fig. 19. Two-dimensional acoustic pulse test; u−velocity on y = 0.5 by TAMI-CPS-ZB,
CHAR-CPS-ZB and linearized Euler equations at tf = 1 ms; σ = 0.02.

20 Conclusion

Five types of finite volume co-located convection-pressure split discretisation methods of
the time-dependent compressible Euler equations, adapted to low Mach number flows,
were tested on acoustic propagation in low Mach number flow. All algorithms belong to
the broad family of approximate Riemann solvers and are constructed for time-accurate
representation of Riemann problems and for low diffusion in the low Mach number limit
towards incompressible fluid flow. All algorithms function well for problems with shocks,
contact discontinuities and expansion fans for problems at medium-high Mach number.
They are all accurate for low Mach number Riemann problems. But the accuracy for
acoustic propagation in a low Mach number flow differs between the four methods with
the face velocity defined by an algebraic relation containing a pressure diffusion term and
the method with definition of the face velocity by the time-accurate discretisation of the

40



momentum equation at the face. The accuracy of the methods by algebraic face velocity
definition (CHAR-, AUSM-, SLAU-, HLLP-methods) is lower, although the face velocity
expression is derived by considering a time-dependent Riemann problem and the obtained
expressions are time-accurate for Riemann problems. Only the method with time-accurate
momentum interpolation (TAMI-method) for the definition of the face velocity proves to
be genuinely accurate for acoustic propagation in low Mach number flows. An essential
difference between the momentum interpolation method and the other ones is that the face
velocity is a dynamic quantity which evolves in time in the same way as the cell-centre
quantities. This feature is the key for obtaining accurate solutions of acoustic propagation
in low Mach number flows.
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