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Abstract

We propose a controller that robustly stabilizes an interconnection of Ordinary Differential Equations with two hyperbolic
linear Partial Differential Equations. The proposed design guarantees closed-loop asymptotic stability as well as robustness to
small delays. The result is obtained through a backstepping approach. A boundary observer is also derived, yielding an output
feedback controller with several calibration parameters.
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1 Introduction

In this paper, we consider the problem of stabilizing the
interconnection of a system of two first-order linear hy-
perbolic Partial Differential Equations (PDE) with Or-
dinary Differential Equations (ODE). More precisely,
the interconnection features a controlled, scalar ODE
coupled at one boundary of the spatial domain with the
PDE, which we call the proximal boundary. At the distal
boundary the other ODE is uncontrolled and may have
a vector state. This situation is schematically depicted
on Figure 1.

Such systems arise in many practical applications involv-
ing delay or transport phenomena, due to lumped phys-
ical elements or actuation and measurement dynamics.
If the lumped dynamics are not taken explicitly into ac-
count in the controller design, e.g. by assuming they can
be inverted or canceled, it could easily lead to robustness
issues. This is illustrated in this paper by a discussion
on delay robustness.

Specific examples of this kind of systems include the:
control of mining shaft elevators [20], hydraulic flow-
lines with lumped elements [13], control of loaded heavy
chains with actuation dynamics [19].

Of particular interest are the modeling and control of
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Control input

   ω0 = a0ω0+b0v(0,t)+U(t)
u(0,t)= c0ω0+d0v(0,t)

.    ω1 = A1ω1+B1u(1,t)
v(1,t)= C1ω1+d1u(1,t)

.

Scalar ODE ODEHyperbolic PDEs

u

vσ+−   σ−+

Fig. 1. Schematic description of the considered system. The
black dotted arrows represent transport phenomena while
the red arrows represent couplings.

torsional and axial vibrations in deep drilling systems.
The hyperbolic PDE models the propagation of torsional
and axial waves along the long (typically several thou-
sand meters), slender drill string [1–3]. At the surface
boundary, an electric motor applies a torque (the control
input) to the so-called top drive, which has a large iner-
tia and is responsible for the first-order dynamics at this
boundary. At the bottom of the well, the drillstring is
rigidly connected to the Bottom Hole Assembly (BHA),
which consist of heavy collar sections that can be rep-
resented as a lumped element. Ignoring the lumped dy-
namics in this system leads to controllers which are not
usable in practice. This is evident when considering the
commercially available controllers [11,15,16].

Several contributions focus on ODE-PDE-ODE inter-
connections such as the one considered in this paper.
In [5], a backstepping approach is used to design a sta-
bilizing full-state feedback controller for actuator dy-
namics of arbitrary order. Using the design of [10], the
PDE in-domain coupling terms are canceled and the dis-
tal ODE is stabilized. Then, using an additional step
of backstepping, the proximal wave reflection is entirely
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canceled and the influence of the PDE onto the state of
the controlled ODE is entirely canceled. In an ideal set-
ting, this control strategy efficiently stabilizes the plant
regardless of the magnitude of coupling terms and of the
natural time scales of the ODEs. However, as pointed
out in [17,14,4] it is likely to have zero delay robustness
margin, i.e. to result in an unstable system in the pres-
ence of arbitrarily small delays. In [20], a similar strat-
egy is employed in the particular case where actuator
dynamics are of second-order. In [9], these results is im-
proved, in particular by alleviating some restrictions on
the controlled ODE, and an observer is designed, rely-
ing on a measurement of the boundary value of one of
the PDEs. Again, the proximal reflection of the PDE is
entirely canceled, leading to a stable cascade, but to a
non-robust design.

The main contribution of this paper is an output feed-
back law that:

(1) stabilizes the plant depicted in Figure 1,
(2) is robust to small actuator delays,
(3) has tunable design parameters.

Our approach builds on the result from [5]. We pro-
pose small modifications of the design that “robustify”
the controller: rather than canceling the entire proximal
wave reflection, we assign it the dynamics of a high-pass
filter. The resulting target system dynamics take the
form of a cascade of the distal ODE into a first-order
neutral system, which, when stable, is shown to be w-
stable in the sense of [7,12]. Further, we propose an ob-
server relying on collocated (proximal) measurements.

The paper is organized as follows: In Section 2 we de-
fine the problem and the notations used thoughout the
paper. Then, in Section 3, we design the controller and
prove its robustness properties. In Section 4 we design
the observer and formulate the main result, i.e. the out-
put feedback control law. Finally, we illustrate the de-
sign with numerical simulations on a toy problem in Sec-
tion 5.

2 Problem setup and notations

In this paper, we consider the problem of stabilizing the
following interconnection

ω̇0 =a0ω0 + b0v(t, 0) + U(t) (1)

u(t, 0) =c0ω0(t) + d0v(t, 0) (2)

ut(t, x) =− λ(x)ux(t, x) + σ++(x)u(t, x) + σ+−(x)v(t, x)
(3)

vt(t, x) =µ(x)vx(t, x) + σ−+(x)u(t, x) + σ−−(x)v(t, x)
(4)

v(t, 1) =C>1 ω1(t) + d1u(t, 1) (5)

ω̇1 =A1ω1 +B1u(t, 1) (6)

with λ, µ ∈ C1([0, 1],R∗+), ω0 ∈ R, (u, v) ∈ L2((0, 1),R)
and ω1 ∈ Rn, using solely the measurement of

the (scalar) ODE state at x = 0, i.e.

y(t) = ω0(t) (7)

under the following assumptions

A1 The pair (A1, B1) (resp. (A1, C1)) is stabilizable
(resp.detectable). We denote κ̌1 (resp. Ľ1) a set of
control (resp. observer) gains such that A1 +B1κ̌1
(resp. A1 + Ľ1C1 i) is Hurwitz.

A2 The reflection coefficients d0, d1 satisfy

R < 1 (8)

where

R = exp

[∫ 1

0

σ++(x)

λ(x)
dx+

∫ 0

1

σ−−(x)

µ(x)
dx

]
|d0d1|

(9)

A3 The proximal ODE has an effect on the rest of the
system, i.e. c0 6= 0. Conversely, the PDE states have
an effect on the proximal ODE, i.e. b0 6= 0.

Assumption A2 is a necessary and sufficient condition
for the existence of a stabilizing controller robust to at
least small delays [17]. Indeed, when it is not satisfied,
the open-loop system features an infinite number of poles
in the Right-Half Plane. We first design a full-state feed-
back controller taking the form

U(t) = k0ω0(t) + k1ω1(t) +K0v(t, 0) +K1u(t, 1)

+

∫ 1

0

[K(y)u(t, y) + L(y)v(t, y)]dy, (10)

before designing the observer.

3 Controller: design and robustness

3.1 Control design

The controller is based on a backstepping design similar
to [5]. More precisely, we map the system to the following
target system

η̇0(t) = p̌η0(t) + d0
p̌− ž
c0

β(t, 0) (11)

α(t, 0) = c0η0(t) + d0β(t, 0) (12)

αt(t, x) + λ(x)αx(t, x) = σ++(x)α(t, x) (13)

βt(t, x)− µ(x)βx(t, x) = σ−−(x)β(t, x) (14)

β(t, 1) = d1α(t, 1). (15)

ω̇1(t) = (A1 −B1κ̌
>
1 )ω1(t) +B1α(t, 1)

(16)

where p̌, ž and κ̌1 are control design parameters. The
main difference with [5] is that we cancel here the ODE
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term in (15) but not the PDE boundary reflection term
in (12). Besides, we introduce the degrees of liberty p̌
and ž. To do so, we consider the following backstepping
transformation.

α(t, x) = u(t, x)−
∫ 1

x

Kuu(x, y)u(t, y)dy

−
∫ 1

x

Kuv(x, y)v(t, y)dy −Gu(x)>ω1(t) (17)

β(t, x) = v(t, x)−
∫ 1

x

Kvu(x, y)u(t, y)dy

−
∫ 1

x

Kvv(x, y)v(t, y)dy −Gv(x)>ω1(t),

(18)

where the transformation kernels are defined by the fol-
lowing set of well-posed [5] equations

λ(x)Kuu
x (x, y) + λ(y)Kuu

y (x, y) =

[σ++(x)−σ++(y)−λ′(y)]Kuu(x, y)−σ+−(y)Kuv(x, y)
(19)

λ(x)Kuv
x (x, y)− µ(y)Kuv

y (x, y) =

[σ++(x)−σ−−(y)+µ′(y)]Kuv(x, y)−σ−+(y)Kuu(x, y)
(20)

Kuv(x, x) =− σ+−(x)

λ(x) + µ(x)
(21)

λKuu(x, 1) =µ(1)d1K
uv(x, 1) +Gu(x)>B1 (22)

λ(x)G′u(x) =(σ++(x)In −A>1 )Gu(x)

− µ(1)Kuv(x, 1)C>1 (23)

Gu(1) =− κ̌1 (24)

where In is the identity matrix of size n, and

− µ(x)Kvu
x (x, y) + λ(y)Kvu

y (x, y) =

[σ−−(x)−σ++(y)−λ′(y)]Kvv(x, y)−σ−+(y)Kvv(x, y)
(25)

− µ(x)Kvv
x (x, y)− µ(y)Kvv

y (x, y) =

[σ−−(x)−σ−−(y)+µ′(y)]Kvv(x, y)−σ+−(y)Kvu(x, y)
(26)

Kvu(x, x) =
σ−+(x)

λ(x) + µ(x)
(27)

µd1K
vv(x, 1) = λKvu(x, 1)−Gv(x)>B1 (28)

µG′v(x) = −(σ−−(x)In −A>1 )Gv(x)

+ µ(1)Kvv(x, 1)C1 (29)

Gv(1) = −d1κ̌1+C1. (30)

With the following variable change for ω0

η0(t) = ω0(t)

−c−10

∫ 1

0

[
K̃α(y)u(t, y) + K̃β(y)v(t, y)

]
dyc−10 G̃>ω1(t)

(31)

where

K̃α(y) = Kuu(0, y)− d0Kvu(0, y) (32)

K̃β(y) = Kuv(0, y)− d0Kvv(0, y) (33)

G̃ = Gu(0)− d0Gv(0). (34)

In [5], the transformationω0 → η0 contains an additional
term−d0v(t, 0) that is used to cancel the reflecting wave
from the PDE at x = 0. Rather, here, Equation (31)
maps (2) to the following boundary condition

α(t, 0) = d0β(t, 0) + c0η0(t). (35)

This choice is made to ensure delay robustness of the
controller, as proved in Section 3.2.2. Indeed, cancel-
ing entirely the reflecting wave of the PDE at the left
boundary will cause the delay robustness margin to be
exactly zero when R ≥ 0.5, in (9), as detailed in [17,4].
Moreover, the choices made in [5,9] requires computing
the time derivative of the PDE state at the boundary,
or equivalently, its spatial derivative, resulting in both
cases an acausal design necessitating approximations in
the implementation. As will be made clear, this is not
a requirement here. Plugging (17), (18), (31) into (1)
yields

η̇0(t) = U(t) + [a0 − λ(0)K̃α(0)]ω0(t)

− c−10

[
G̃>A1 + C>1 µ(1)K̃β(1)

]
ω1(t)

+
[
b0 + c−10

(
µ(0)K̃β(0)− λ(0)d0K̃α(0)

)]
v(t, 0)

+ c−10

[
−G̃>b1 + λ(1)K̃α(1)− µ(1)d1K̃β(1)

]
u(t, 1)

− c−10

∫ 1

0

[
λ(y)K̃ ′α(y) + λ′(y)K̃α(y) + σ++(y)K̃α(y)

+σ−+(y)K̃β(y)
]
u(t, y)dy

− c−10

∫ 1

0

[
−µ(y)K̃ ′β(y) + λ′(y)K̃β(y) + σ−−(y)K̃β(y)

+σ+−(y)K̃α(y)
]
v(t, y)dy (36)

which, using the inverse backstepping transformations
yields an expression of the form

η̇0(t) = U(t) +A0η0(t) +B0β(t, 0) + D̃1ω1(t)

+B1α(t, 1)−
∫ 1

0

M(y)α(t, y)dy+

∫ 1

0

N(y)β(t, y)dy.

(37)
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whereA0,B0,B1,D̃1,M andN are given in Appendix A.
Equation (37), which is the open-loop dynamics of η0 in
the target system coordinates, will prove useful in the
w-stability analysis in the next section while (36) is used
to express the control law in the original coordinates.
More precisely, we propose a control law of the form (10)
where the control gains are given by

k0 = p̌−A0 (38)

k1 = −D1 −
p̌

c0
G̃> − d0

p̌− ž
c0

Gv(0)> (39)

K0 = d0
p̌− ž
c0
−B0 (40)

K1 = −B1 (41)

K(x) = c−10 KD
u (x)− p̌c−10 K̃α(x)− d0

p̌− ž
c0

Kvu(0, x)

(42)

L(x) = c−10 KD
v (x)− p̌c−10 K̃β(x)− d0

p̌− ž
c0

Kvv(0, x).

(43)

where p̌ and ž are design parameters. This choice maps,
in closed-loop, (1)–(6) to (11)–(16). In the next section,
we investigate the stability properties of (11)–(16).

3.2 Stability of the target system and controller robust-
ness

In this Section, we give necessary and sufficient condi-
tions on the control design parameters for the target sys-
tem to be stable (Lemma 2). Then, we show that the
closed-loop system is actually w-stable in the sense of [7].
Both results rely on the following Lemma.

Lemma 1 Consider Equations (12)–(16). All the vari-
ables can be expressed, in the Laplace domain, as func-
tions of α(s, 0) using proper transfer functions.

We recall the definition of a (strictly) proper transfer
function from [6]

Definition 1 A transfer function G(s) is said to be
proper if it satisfies

lim sup
<{s}≥0,|s|>M,M→∞

|G(s)| <∞ (44)

and strictly proper if it satifies

lim
<{s}≥0,|s|→∞

|G(s)| = 0. (45)

We are now ready to prove Lemma 1.

Proof 1 Taking the Laplace transform of (12)–(16)

yields

α(s, x) = exp

(∫ x

0

σ++(y)− s
λ(y)

dy

)
α(s, 0) (46)

ω1(s) = (sI −A1 +B1κ̌1)−1B1

· exp

(∫ 1

0

σ++(y)− s
λ(y)

dy

)
α(s, 0) (47)

β(s, x) =

d1 exp

(∫ 1

0

σ++(y)− s
λ(y)

dy +

∫ 1

x

σ−−(y)− s
µ(y)

dy

)
α(s, 0)

(48)

And denoting

τ =

∫ 1

0

[
1

λ(y)
+

1

µ(y)

]
dy, (49)

kd = exp

(∫ 1

0

σ++(y)

λ(y)
dx+

∫ 1

0

σ−−(y)

µ(y)
dy

)
, (50)

yields

β(s, 0) = d1kde
−τsα(s, 0) (51)

c0η0(s) =
(
1− d0d1kde−τs

)
α(s, 0) (52)

One can readily check that all the transfer functions ap-
pearing in (46)–(52) satisfy (44).

3.2.1 Stability

The stability of the target system is assessed in the fol-
lowing Lemma.

Lemma 2 Assume that p̌, ž satisfy either the following
set of conditions

p̌− d0d1kdž < 0, −p̌ ≥ |d0d1kdž| (53)

or

d0d1kdž > |p̌| , (54)

τ < (55)√
1− d20d21k2d

d20d
2
1k

2
dž

2 − p̌2
tan−1

d20d
2
1k

2
dž + p̌√

(d20d
2
1k

2
dž

2 − p̌2)(1− d20d21k2d)
(56)

Then (11)–(16) is asymptotically stable.

Proof 2 Note that

α(s, 0) = d0
s− ž
s− p̌

β(s, 0) (57)
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Combining (51),(52) and (57) we find that the states
α(s, 0), β(s, 0) and η(s) all have the characteristic equa-
tion

s(1− d0d1kde−τs)− p̌+ d0d1kdže
−τs = 0 (58)

A system with the characteristic equation (58) has the
conditions (53)–(56) for asymptotic stability as derived
in [18, Proposition 3.16]. The distributed states α(s, x)
and β(s, x) and the distal ODE state ω1(s) can be ex-
pressed as transfer functions with no poles in the RHP
and α(s, 0) as input, and consequently these states are
asymptotically stable as well.

3.2.2 Robustness

In this Section, we show that the closed-loop system is
robust to approximate identities [7], that is, it is w-stable.
A family of operators Iδ, δ > 0, is said to be an approxi-
mate identity if, for any δ, Iδ has transfer function Iδ(s)
satisfying ‖Iδ(s)‖∞ = 1 and ‖(Iδ(s) − I)‖∞ → 0 as
δ → 0, see [12]. This is important, as failure to be robust
to approximate identities means that the system can be
unstable for abritrarily small uncertainty or delays.

To show this, we write the open-loop and feedback law
transfer functions in the target system coordinates. More
precisely, we write the full-state feedback law as a causal
dynamic output feedback law (for a conveniently cho-
sen output) by using the structure of the target system.
First, we recall the definition of w-stability.

Definition 2 (w-stability, [7] Definition 9.5.3) A
stable feedback systen (G,K)is said to be w-stable if for
any approximate identity Iδ there exists a δ0 such that
(IδG,K) is input-output stable for all δ ∈ [0, δ0).

We are now ready to state an important result of the
paper: when stable, the closed-loop system is w-stable.

Lemma 3 If system (37), (12)–(16) with a control law
of the form (10) is stable, then it is w-stable in the sense
of [12]. In particular, it is robust to small delays in the
actuation path.

Proof 3 The open-loop dynamics of η0 given by (37)
rewrite as follows

sη0 = A0η0(s) + D̃>1 ω1(s) +B0β(s, 0) +B1α(s, 1)

−
∫ 1

0

M(y)α(s, y)dy −
∫ 1

0

N(y)β(s, y)dy + U(s).

(59)

Therefore, using Lemma 1 and its proof, the open-loop
transfer function reads

α(s, 0) =
c0

s [1−Re−τs] +H(s)
U(s) (60)

:= G(s)U(s) (61)

where R is defined by (9) and H can be computed
from (46)–(59) and is proper according to Definition 1.
Besides, since R satisfies (9), one has

lim sup
|s|→∞, s∈C0

1−Re−τs > 0, (62)

where C0 denotes the closed left half plane. This essen-
tially means that there is no asymptotic chain of zeros
converging towards the Right-Half-Plane, which, in turn,
implies that G is strictly proper. Similarly, using the in-
verse backstepping transformation and relations (46)–
(52), the control law (10) rewrites as

U(s) = K(s)α(s, 0) (63)

where K(s) is proper. Therefore, for some sufficiently
large M > 0, the loop transfer function satisfies

sup
|s|>M

G(s)K(s) < 1 (64)

which yields the result using [12, Proposition 16].

One should notice that a crucial element in the proof is
that the feedback law is proper, which is not the case of,
e.g., the feedback law in [5]. In the case of [9], the non-
proper nature of the control law is avoided by replacing
the derivative feedback term vt(t, 0) with a term of the
form vx(t, 0) using (4). We have not investigated the
robustness properties of such a control law. Lemma 3
guarantees a certain robustness of the design when the
closed-loop system is stable.

4 Output feedback controller

In this Section, we design an observer using a transfor-
mation with a structure dual that is dual to (17),(18),
before sketching the closed-loop stability proof for the
corresponding output feedback controller.

4.1 Observer design

We consider the following Luenberger–like observer

˙̂ω0(t) = a0ω̂0(t) + b0v̂(t, 0) + U(t)− p0(ω̂0 − ω0)
(65)

û(t, 0) = c0ω̂0(t) + d0v̂(t, 0)− P0(ω̂0 − ω0) (66)

ût(t, x) = −λ(x)ûx(t, x) + σ++(x)û(t, x)

+ σ+−(x)v̂(t, x)− pu(x)(ω̂0 − ω0) (67)

v̂t(t, x) = µ(x)v̂x(t, x) + σ−+(x)û(t, x)

+ σ−−(x)v̂(t, x)− pv(x)(ω̂0 − ω0) (68)

v̂(t, 1) = C>1 ω̂1(t) + d1û(t, 1)− P1(ω̂0 − ω0) (69)

˙̂ω1(t) = A1ω̂1(t) +B1û(t, 1)− p1(ω̂0 − ω0). (70)
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We define the error variables w̃ = ŵ−w. The following
invertible mapping

ω0(t) =η̃0(t) (71)

ũ(t, x) =α̃(t, x)−
∫ 1

0

Muu(x, y)α̃(t, y)dy

+

∫ 1

0

Muv(x, y)β̃(t, y)dy −Hu(x)η̃0(t) (72)

ṽ(t, x) =α̃(t, x)−
∫ 1

0

Mvu(x, y)α̃(t, y)dy

+

∫ 1

0

Mvv(x, y)β̃(t, y)dy −Hv(x)η̃0(t) (73)

ω̃1(t) =η̃1(t)−
∫ 1

0

Nu(x, y)α̃(t, y)dy (74)

+

∫ 1

0

Nv(x, y)β̃(t, y)dy −H1η̃0(t) (75)

is such that

˙̃η0(t) = p̌obsη̃0(t) + b0β̃(t, 0) (76)

α̃(t, 0) = d0β̃(t, 0) (77)

α̃t(t, x) = −λ(x)α̃x(t, x)

β̃t(t, x) = µ(x)β̃x(t, x)

β̃(t, 1) = C>1 η̃1(t) + d1α̃(t, 1) (78)

˙̃η1(t) =
(
A1 − Ľ1C1

)
η̃1(t) (79)

provided Muu, Muv, Mvu, Mvv, Hu, Hv, H1 satisfy an
appropriate set of equation exactly equivalent to (19)–
(30) with ž = p̌ = p̌obs, and Ľ1 is such that A1 − Ľ1C1
is Hurwitz. Besides, the observer gains satisfy

p0 = a0 − b0Hv(0)− p̌obs (80)

P0 = c0 + d0Hv(0)−Hu(0) (81)

pu(x) = σ++Hu(x) + σ+−Hv(x)− λH ′u(x)− p̌Hu(x)
(82)

pv(x) = σ−+Hu(x) + σ−−Hv(x) + µH ′v(x)− p̌Hv(x)
(83)

p1 = B1Hu(1) +H1(p̌obs − a1) (84)

P1 = d1Hu(1)−Hv(1)− C>1 H1 (85)

4.2 Output feedback controller

The main result is stated in the following Theorem.

Theorem 1 Consider System (1)–(6) with the following
control law

U(t) = k0ω̂0(t) + k1ω̂1(t) +K0v̂(t, 0) +K1û(t, 1)

+

∫ 1

0

[K(y)û(t, y) + L(y)v̂(t, y)]dy, (86)

where ω̂0, ω̂1, v̂, û are defined by (65)–(70). The zero
equilibrium is asymptotically stable.

Proof 4 We only sketch here the proof for brevity’s sake.
Consider the observer error system in target system coor-
dinates (76)–(79). It is a cascade of η̃1 into (α̃, β̃) into η̃0,
thus it is exponentially stable. Consider now (11)–(16)
with the control law (86) expressed in target system co-
ordinates. It rewrites

η̇0(t) = p̌η0(t) + d0
p̌− ž
c0

β(t, 0) + Ũ(t)

(87)

α(t, 0) = c0η0(t) + d0β(t, 0) (88)

αt(t, x) + λ(x)αx(t, x) = σ++(x)α(t, x) (89)

βt(t, x)− µ(x)βx(t, x) = σ−−(x)β(t, x) (90)

β(t, 1) = d1α(t, 1). (91)

ω̇1(t) = (A1 −B1κ̌
>
1 )ω1 +B1α(t, 1)

(92)

where

Ũ(t) = k0ω̃0(t) + k1ω̃1(t) +K0ṽ(t, 0) +K1ũ(t, 1) (93)

+

∫ 1

0

[K(y)ũ(t, y) + L(y)ṽ(t, y)]dy (94)

vanishes to zero since the observer error converges
asymptotically to zero. Besides, the target system (87)–
(92) is linear, which implies by Lemma 1 and Proposi-
tion 3 in [8] that it is Input-to-State Stable (ISS) wrt

to the input Ũ . Therefore, target system (87)–(92) is
asymptotically stable.

5 Numerical example

To illustrate the result we consider the following toy
example

ω̇0(t) = 0.2ω0(t) + v(t, 0) + U(t) (95)

u(t, 0) = ω0(t) + 0.9v(t, 0) (96)

ut(t, x) + ux(t, x) = −0.01u(t, x)− 0.05v(t, x) (97)

vt(t, x)− vx(t, x) = 0.1u(t, x)− 0.01(x)v(t, x) (98)

v(t, 1) =
[
1 0
]
ω1(t)− 0.9u(t, 1) (99)

ω̇1(t) =

[
0.1 1

−1 0

]
ω1(t) +

[
1

0

]
v(t, 1). (100)

This plant has unstable ODEs at both boundaries as well
as an instability caused by the in-domain source terms.

For this plant we design a stabilizing collocated output
injection controller using an observer with ω0 as the mea-
surement. For the observer we use the design parame-

ters κ1 =
[
3 1
]
, ž = 0, p̌ = −1000. For the controller
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Fig. 2. Toy example trends.

we use κ1 =
[
1.5 0.6

]
, ž = 0, while for the proximal

pole placement we consider two cases: p̌ = −1000 and
p̌ = −5. The results are shown in Fig. 5. As is clearly
illustrated in this Figure, increasing the magnitude of
the p̌ pole yields better performance, but at the cost of
a more aggressive control effort and lower robustness to
actuation delays. The limit where p̌→ −∞ corresponds
to the approach of using a full cancellation of the reflec-
tion at the proximal boundary, but this also yields zero
delay robustness.
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A Open-loop dynamics of the target system

We detail here the open-loop dynamics of the target sys-
tem. First, one has to compute the inverse backstepping
transformation (η0, α, β, ω1) 7→ (ω0, u, v, ω1). To do so,
notice that (17),(18) are Volterra equations in u and v.

Denoting L =

(
Luu Luv

Lvu Lvv

)
the inverse kernels and omit-

ing the time argument, one has

u(x) = α(x)−
∫ 1

x

Luu(x, y)α(y) + Luv(x, y)β(y)dy

+

[
Gu(x)> −

∫ 1

x

Luu(x, y)Gu(y)>dy

−
∫ 1

x

Luv(x, y)Gv(y)>dy

]
ω1(t) (A.1)

v(x) = β(x)−
∫ 1

x

Lvu(x, y)α(y) + Lvv(x, y)β(y)dy

+

[
Gv(x)> −

∫ 1

x

Lvu(x, y)Gu(y)>dy

−
∫ 1

x

Lvv(x, y)Gv(y)>dy

]
ω1(t) (A.2)

that we rewrite

u(x) = α(x)−
∫ 1

x

Luu(x, y)α(y) + Luv(x, y)β(y)dy

+Hu(x)>ω1(t) (A.3)

v(x) = β(x)−
∫ 1

x

Lvu(x, y)α(y) + Lvv(x, y)β(y)dy

+Hv(x)>ω1(t) (A.4)

Plugging into (31) yields, simlilarly, an expression of the
form

ω0(t) =η0(t)−
∫ 1

0

L̃α(y)α(t, y) + L̃β(y)β(t, y)dy

− H̃>ω1 (A.5)

Finally, plugging (A.3)–(A.5) into (36) yields (37) with

A0 =a0 − λ(0)K̃α(0) (A.6)

B0 =b0 + c−10

(
µ(0)K̃β(0)− λ(0)d0K̃α(0)

)
(A.7)

B1 =c−10

[
−G̃>b1 + λ(1)K̃α(1)− µ(1)d1K̃β(1)

]
(A.8)

D̃>1 =− c−10

[
G̃>A1 + C>1 µ(1)K̃β(1)

]
−A0H̃

> +B0Hv(0)> +B1Hu(1)>

+

∫ 1

0

M̃(x)Hu(x)> + Ñ(x)Hv(x)>dx (A.9)

M(x) =M̃(x)−A0L
α(y)−B0L

vu(0, y)

−
∫ x

0

M̃(y)Luu(y, x) +N(y)Lvu(y, x)dy

(A.10)

N(x) =Ñ(x)−A0L
β(y)−B0L

vv(0, y)

−
∫ x

0

M̃(y)Luv(y, x) + Ñ(y)Lvv(y, x)dy

(A.11)

(A.12)

where

M̃(x) =− c−10

[
λ(y)K̃ ′α(y) + λ′(y)K̃α(y)

+σ++(y)K̃α(y) + σ−+(y)K̃β(y)
]

(A.13)

Ñ(x) =− c−10

[
−µ(y)K̃ ′β(y) + λ′(y)K̃β(y)

+σ−−(y)K̃β(y) + σ+−(y)K̃α(y)
]

(A.14)
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