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We propose a controller that robustly stabilizes an interconnection of Ordinary Differential Equations with two hyperbolic linear Partial Differential Equations. The proposed design guarantees closed-loop asymptotic stability as well as robustness to small delays. The result is obtained through a backstepping approach. A boundary observer is also derived, yielding an output feedback controller with several calibration parameters.

Introduction

In this paper, we consider the problem of stabilizing the interconnection of a system of two first-order linear hyperbolic Partial Differential Equations (PDE) with Ordinary Differential Equations (ODE). More precisely, the interconnection features a controlled, scalar ODE coupled at one boundary of the spatial domain with the PDE, which we call the proximal boundary. At the distal boundary the other ODE is uncontrolled and may have a vector state. This situation is schematically depicted on Figure 1.

Such systems arise in many practical applications involving delay or transport phenomena, due to lumped physical elements or actuation and measurement dynamics. If the lumped dynamics are not taken explicitly into account in the controller design, e.g. by assuming they can be inverted or canceled, it could easily lead to robustness issues. This is illustrated in this paper by a discussion on delay robustness. Specific examples of this kind of systems include the: control of mining shaft elevators [START_REF] Wang | Control of a 2× 2 coupled linear hyperbolic system sandwiched between 2 odes[END_REF], hydraulic flowlines with lumped elements [START_REF] Goodson | Discussion: A Survey of Modeling Techniques for Fluid Line Transients[END_REF], control of loaded heavy chains with actuation dynamics [START_REF] Petit | Flatness of heavy chain systems[END_REF].

Of particular interest are the modeling and control of Email addresses: florent.di meglio@mines-paristech.fr (Florent Di Meglio), pierre-olivier.lamare@mines-paristech.fr (Pierre-Olivier Lamare), ulaa@norceresearch.no (Ulf Jakob F. Aarsnes).

Control input

ω 0 = a 0 ω 0 +b 0 v(0,t)+U(t) u(0,t)= c 0 ω 0 +d 0 v(0,t)

. torsional and axial vibrations in deep drilling systems. The hyperbolic PDE models the propagation of torsional and axial waves along the long (typically several thousand meters), slender drill string [START_REF] Aarsnes | Avoiding stick slip vibrations in drilling through startup trajectory design[END_REF][START_REF] Aarsnes | Torsional vibrations with bit off bottom: Modeling, characterization and field data validation[END_REF][START_REF] Jakob | Axial and torsional self-excited vibrations of a distributed drill-string[END_REF]. At the surface boundary, an electric motor applies a torque (the control input) to the so-called top drive, which has a large inertia and is responsible for the first-order dynamics at this boundary. At the bottom of the well, the drillstring is rigidly connected to the Bottom Hole Assembly (BHA), which consist of heavy collar sections that can be represented as a lumped element. Ignoring the lumped dynamics in this system leads to controllers which are not usable in practice. This is evident when considering the commercially available controllers [START_REF] Dwars | Recent advances in soft torque rotary systems[END_REF][START_REF] Kyllingstad | A Comparison of Stick-Slip Mitigation Tools[END_REF][START_REF] Kyllingstad | A new stick-slip prevention system[END_REF].

ω 1 = A 1 ω 1 +B 1 u(1,t) v(1,t)= C 1 ω 1 +d 1 u(1,

t)

Several contributions focus on ODE-PDE-ODE interconnections such as the one considered in this paper. In [START_REF] Bou Saba | Backstepping stabilization of 2 × 2 linear hyperbolic pdes coupled with potentially unstable actuator and load dynamics[END_REF], a backstepping approach is used to design a stabilizing full-state feedback controller for actuator dynamics of arbitrary order. Using the design of [START_REF] Di Meglio | Stabilization of coupled linear heterodirectional hyperbolic PDE-ODE systems[END_REF], the PDE in-domain coupling terms are canceled and the distal ODE is stabilized. Then, using an additional step of backstepping, the proximal wave reflection is entirely canceled and the influence of the PDE onto the state of the controlled ODE is entirely canceled. In an ideal setting, this control strategy efficiently stabilizes the plant regardless of the magnitude of coupling terms and of the natural time scales of the ODEs. However, as pointed out in [START_REF] Logemann | Conditions for robustness and nonrobustness of the stability of feedback systems with respect to small delays in the feedback loop[END_REF][START_REF] Hale | Stability and control of feedback systems with time delays[END_REF][START_REF] Auriol | Delay-robust control design for heterodirectional linear coupled hyperbolic PDEs[END_REF] it is likely to have zero delay robustness margin, i.e. to result in an unstable system in the presence of arbitrarily small delays. In [START_REF] Wang | Control of a 2× 2 coupled linear hyperbolic system sandwiched between 2 odes[END_REF], a similar strategy is employed in the particular case where actuator dynamics are of second-order. In [START_REF] Deutscher | Output feedback control of general linear heterodirectional hyperbolic ODE-PDE-ODE systems[END_REF], these results is improved, in particular by alleviating some restrictions on the controlled ODE, and an observer is designed, relying on a measurement of the boundary value of one of the PDEs. Again, the proximal reflection of the PDE is entirely canceled, leading to a stable cascade, but to a non-robust design.

The main contribution of this paper is an output feedback law that:

(1) stabilizes the plant depicted in Figure 1, (2) is robust to small actuator delays, (3) has tunable design parameters.

Our approach builds on the result from [START_REF] Bou Saba | Backstepping stabilization of 2 × 2 linear hyperbolic pdes coupled with potentially unstable actuator and load dynamics[END_REF]. We propose small modifications of the design that "robustify" the controller: rather than canceling the entire proximal wave reflection, we assign it the dynamics of a high-pass filter. The resulting target system dynamics take the form of a cascade of the distal ODE into a first-order neutral system, which, when stable, is shown to be wstable in the sense of [START_REF] Curtain | An introduction to Infinite-Dimensional Linear Systems Theory[END_REF][START_REF] Georgiou | Graphs, causality, and stabilizability: Linear, shift-invariant systems on L 2 [0, ∞)[END_REF]. Further, we propose an observer relying on collocated (proximal) measurements.

The paper is organized as follows: In Section 2 we define the problem and the notations used thoughout the paper. Then, in Section 3, we design the controller and prove its robustness properties. In Section 4 we design the observer and formulate the main result, i.e. the output feedback control law. Finally, we illustrate the design with numerical simulations on a toy problem in Section 5.

Problem setup and notations

In this paper, we consider the problem of stabilizing the following interconnection

ω0 =a 0 ω 0 + b 0 v(t, 0) + U (t) (1) u(t, 0) =c 0 ω 0 (t) + d 0 v(t, 0) (2) u t (t, x) = -λ(x)u x (t, x) + σ ++ (x)u(t, x) + σ +-(x)v(t, x) (3) v t (t, x) =µ(x)v x (t, x) + σ -+ (x)u(t, x) + σ --(x)v(t, x) (4) v(t, 1) =C 1 ω 1 (t) + d 1 u(t, 1) (5) ω1 =A 1 ω 1 + B 1 u(t, 1) (6) with λ, µ ∈ C 1 ([0, 1], R * + ), ω 0 ∈ R, (u, v) ∈ L 2 ((0, 1), R)
and ω 1 ∈ R n , using solely the measurement of the (scalar) ODE state at x = 0, i.e. y(t) = ω 0 (t) [START_REF] Curtain | An introduction to Infinite-Dimensional Linear Systems Theory[END_REF] under the following assumptions A1 The pair (A 1 , B 1 ) (resp. (A 1 , C 1 )) is stabilizable (resp.detectable). We denote κ1 (resp. Ľ1 ) a set of control (resp. observer) gains such that

A 1 + B 1 κ1 (resp. A 1 + Ľ1 C 1 i) is Hurwitz. A2 The reflection coefficients d 0 , d 1 satisfy R < 1 (8) 
where

R = exp 1 0 σ ++ (x) λ(x) dx + 0 1 σ --(x) µ(x) dx |d 0 d 1 | (9) 
A3 The proximal ODE has an effect on the rest of the system, i.e. c 0 = 0. Conversely, the PDE states have an effect on the proximal ODE, i.e. b 0 = 0.

Assumption A2 is a necessary and sufficient condition for the existence of a stabilizing controller robust to at least small delays [START_REF] Logemann | Conditions for robustness and nonrobustness of the stability of feedback systems with respect to small delays in the feedback loop[END_REF]. Indeed, when it is not satisfied, the open-loop system features an infinite number of poles in the Right-Half Plane. We first design a full-state feedback controller taking the form

U (t) = k 0 ω 0 (t) + k 1 ω 1 (t) + K 0 v(t, 0) + K 1 u(t, 1) + 1 0 [K(y)u(t, y) + L(y)v(t, y)]dy, (10) 
before designing the observer.

3 Controller: design and robustness

Control design

The controller is based on a backstepping design similar to [START_REF] Bou Saba | Backstepping stabilization of 2 × 2 linear hyperbolic pdes coupled with potentially unstable actuator and load dynamics[END_REF]. More precisely, we map the system to the following target system

η0 (t) = pη 0 (t) + d 0 p - ž c 0 β(t, 0) (11) α(t, 0) = c 0 η 0 (t) + d 0 β(t, 0) (12) α t (t, x) + λ(x)α x (t, x) = σ ++ (x)α(t, x) (13) β t (t, x) -µ(x)β x (t, x) = σ --(x)β(t, x) (14) β(t, 1) = d 1 α(t, 1). (15) ω1 (t) = (A 1 -B 1 κ 1 )ω 1 (t) + B 1 α(t, 1) (16) 
where p, ž and κ1 are control design parameters. The main difference with [START_REF] Bou Saba | Backstepping stabilization of 2 × 2 linear hyperbolic pdes coupled with potentially unstable actuator and load dynamics[END_REF] is that we cancel here the ODE term in [START_REF] Kyllingstad | A Comparison of Stick-Slip Mitigation Tools[END_REF] but not the PDE boundary reflection term in [START_REF] Georgiou | Graphs, causality, and stabilizability: Linear, shift-invariant systems on L 2 [0, ∞)[END_REF]. Besides, we introduce the degrees of liberty p and ž. To do so, we consider the following backstepping transformation.

α(t, x) = u(t, x) - 1 x K uu (x, y)u(t, y)dy - 1 x K uv (x, y)v(t, y)dy -G u (x) ω 1 (t) (17) β(t, x) = v(t, x) - 1 x K vu (x, y)u(t, y)dy - 1 x K vv (x, y)v(t, y)dy -G v (x) ω 1 (t), ( 18 
)
where the transformation kernels are defined by the following set of well-posed [START_REF] Bou Saba | Backstepping stabilization of 2 × 2 linear hyperbolic pdes coupled with potentially unstable actuator and load dynamics[END_REF] equations

λ(x)K uu x (x, y) + λ(y)K uu y (x, y) = [σ ++ (x)-σ ++ (y)-λ (y)]K uu (x, y)-σ +-(y)K uv (x, y) (19) 
λ(x)K uv x (x, y) -µ(y)K uv y (x, y) = [σ ++ (x)-σ --(y)+µ (y)]K uv (x, y)-σ -+ (y)K uu (x, y) (20) 
K uv (x, x) = - σ +-(x) λ(x) + µ(x) (21) 
λK uu (x, 1) =µ(1)d 1 K uv (x, 1) + G u (x) B 1 (22) λ(x)G u (x) =(σ ++ (x)I n -A 1 )G u (x) -µ(1)K uv (x, 1)C 1 (23) G u (1) = -κ1 ( 24 
)
where I n is the identity matrix of size n, and

-µ(x)K vu x (x, y) + λ(y)K vu y (x, y) = [σ --(x)-σ ++ (y)-λ (y)]K vv (x, y)-σ -+ (y)K vv (x, y) (25) -µ(x)K vv x (x, y) -µ(y)K vv y (x, y) = [σ --(x)-σ --(y)+µ (y)]K vv (x, y)-σ +-(y)K vu (x, y) (26) 
K vu (x, x) = σ -+ (x) λ(x) + µ(x) (27) µd 1 K vv (x, 1) = λK vu (x, 1) -G v (x) B 1 (28) µG v (x) = -(σ --(x)I n -A 1 )G v (x) + µ(1)K vv (x, 1)C 1 (29) G v (1) = -d 1 κ1 +C 1 . ( 30 
)
With the following variable change for ω 0

η 0 (t) = ω 0 (t) -c -1 0 1 0 Kα (y)u(t, y) + Kβ (y)v(t, y) dyc -1 0 G ω 1 (t) (31) 
where

Kα (y) = K uu (0, y) -d 0 K vu (0, y) (32) Kβ (y) = K uv (0, y) -d 0 K vv (0, y) (33) G = G u (0) -d 0 G v (0). ( 34 
)
In [START_REF] Bou Saba | Backstepping stabilization of 2 × 2 linear hyperbolic pdes coupled with potentially unstable actuator and load dynamics[END_REF], the transformation ω 0 → η 0 contains an additional term -d 0 v(t, 0) that is used to cancel the reflecting wave from the PDE at x = 0. Rather, here, Equation ( 31) maps (2) to the following boundary condition

α(t, 0) = d 0 β(t, 0) + c 0 η 0 (t). ( 35 
)
This choice is made to ensure delay robustness of the controller, as proved in Section 3.2.2. Indeed, canceling entirely the reflecting wave of the PDE at the left boundary will cause the delay robustness margin to be exactly zero when R ≥ 0.5, in [START_REF] Deutscher | Output feedback control of general linear heterodirectional hyperbolic ODE-PDE-ODE systems[END_REF], as detailed in [START_REF] Logemann | Conditions for robustness and nonrobustness of the stability of feedback systems with respect to small delays in the feedback loop[END_REF][START_REF] Auriol | Delay-robust control design for heterodirectional linear coupled hyperbolic PDEs[END_REF]. Moreover, the choices made in [START_REF] Bou Saba | Backstepping stabilization of 2 × 2 linear hyperbolic pdes coupled with potentially unstable actuator and load dynamics[END_REF][START_REF] Deutscher | Output feedback control of general linear heterodirectional hyperbolic ODE-PDE-ODE systems[END_REF] requires computing the time derivative of the PDE state at the boundary, or equivalently, its spatial derivative, resulting in both cases an acausal design necessitating approximations in the implementation. As will be made clear, this is not a requirement here. Plugging ( 17), ( 18), (31) into (1) yields

η0 (t) = U (t) + [a 0 -λ(0) Kα (0)]ω 0 (t) -c -1 0 G A 1 + C 1 µ(1) Kβ (1) ω 1 (t) + b 0 + c -1 0 µ(0) Kβ (0) -λ(0)d 0 Kα (0) v(t, 0) + c -1 0 -G b 1 + λ(1) Kα (1) -µ(1)d 1 Kβ (1) u(t, 1) -c -1 0 1 0 λ(y) K α (y) + λ (y) Kα (y) + σ ++ (y) Kα (y) +σ -+ (y) Kβ (y) u(t, y)dy -c -1 0 1 0 -µ(y) K β (y) + λ (y) Kβ (y) + σ --(y) Kβ (y) +σ +-(y) Kα (y) v(t, y)dy (36)
which, using the inverse backstepping transformations yields an expression of the form

η0 (t) = U (t) + A 0 η 0 (t) + B 0 β(t, 0) + D1 ω 1 (t) + B 1 α(t, 1) - 1 0 M (y)α(t, y)dy + 1 0 N (y)β(t, y)dy. ( 37 
)
where A 0 , B 0 , B 1 , D1 , M and N are given in Appendix A. Equation (37), which is the open-loop dynamics of η 0 in the target system coordinates, will prove useful in the w-stability analysis in the next section while (36) is used to express the control law in the original coordinates.

More precisely, we propose a control law of the form [START_REF] Di Meglio | Stabilization of coupled linear heterodirectional hyperbolic PDE-ODE systems[END_REF] where the control gains are given by

k 0 = p -A 0 (38) k 1 = -D 1 - p c 0 G -d 0 p - ž c 0 G v (0) (39) 
K 0 = d 0 p - ž c 0 -B 0 (40) K 1 = -B 1 (41) K(x) = c -1 0 K D u (x) -pc -1 0 Kα (x) -d 0 p - ž c 0 K vu (0, x) (42) 
L(x) = c -1 0 K D v (x) -pc -1 0 Kβ (x) -d 0 p - ž c 0 K vv (0, x). ( 43 
)
where p and ž are design parameters. This choice maps, in closed-loop, ( 1)-( 6) to ( 11)-( 16). In the next section, we investigate the stability properties of ( 11)-( 16).

Stability of the target system and controller robustness

In this Section, we give necessary and sufficient conditions on the control design parameters for the target system to be stable (Lemma 2). Then, we show that the closed-loop system is actually w-stable in the sense of [START_REF] Curtain | An introduction to Infinite-Dimensional Linear Systems Theory[END_REF].

Both results rely on the following Lemma.

Lemma 1 Consider Equations ( 12)-( 16). All the variables can be expressed, in the Laplace domain, as functions of α(s, 0) using proper transfer functions.

We recall the definition of a (strictly) proper transfer function from [START_REF] Curtain | Transfer functions of distributed parameter systems: A tutorial[END_REF] Definition 

|G(s)| = 0. ( 45 
)
We are now ready to prove Lemma 1.

Proof 1 Taking the Laplace transform of (12)-( 16)

yields α(s, x) = exp x 0 σ ++ (y) -s λ(y) dy α(s, 0) (46) ω 1 (s) = (sI -A 1 + B 1 κ1 ) -1 B 1 • exp 1 0 σ ++ (y) -s λ(y) dy α(s, 0) (47) β(s, x) = d 1 exp 1 0 σ ++ (y) -s λ(y) dy + 1 x σ --(y) -s µ(y) dy α(s, 0) (48) 
And denoting

τ = 1 0 1 λ(y) + 1 µ(y) dy, (49) 
k d = exp 1 0 σ ++ (y) λ(y) dx + 1 0 σ --(y) µ(y) dy , (50) 
yields β(s, 0) = d 1 k d e -τ s α(s, 0) (51) c 0 η 0 (s) = 1 -d 0 d 1 k d e -τ s α(s, 0) (52) 
One can readily check that all the transfer functions appearing in (46)-( 52) satisfy (44).

Stability

The stability of the target system is assessed in the following Lemma.

Lemma 2 Assume that p, ž satisfy either the following set of conditions

p -d 0 d 1 k d ž < 0, -p ≥ |d 0 d 1 k d ž| (53) or d 0 d 1 k d ž > |p| , (54) τ < (55) 1 -d 2 0 d 2 1 k 2 d d 2 0 d 2 1 k 2 d ž2 -p2 tan -1 d 2 0 d 2 1 k 2 d ž + p (d 2 0 d 2 1 k 2 d ž2 -p2 )(1 -d 2 0 d 2 1 k 2 d ) (56)
Then (11)-( 16) is asymptotically stable.

Proof 2 Note that α(s, 0) = d 0 s - ž s - p β(s, 0) (57) 
Combining (51),( 52) and (57) we find that the states α(s, 0), β(s, 0) and η(s) all have the characteristic equation

s(1 -d 0 d 1 k d e -τ s ) -p + d 0 d 1 k d že -τ s = 0 (58)
A system with the characteristic equation (58) has the conditions (53)-( 56) for asymptotic stability as derived in [START_REF] Niculescu | Delay effects on stability: A robust control approach[END_REF]Proposition 3.16]. The distributed states α(s, x) and β(s, x) and the distal ODE state ω 1 (s) can be expressed as transfer functions with no poles in the RHP and α(s, 0) as input, and consequently these states are asymptotically stable as well.

Robustness

In this Section, we show that the closed-loop system is robust to approximate identities [START_REF] Curtain | An introduction to Infinite-Dimensional Linear Systems Theory[END_REF], that is, it is w-stable.

A family of operators I δ , δ > 0, is said to be an approximate identity if, for any δ, I δ has transfer function I δ (s) satisfying I δ (s) ∞ = 1 and (I δ (s) -I) ∞ → 0 as δ → 0, see [START_REF] Georgiou | Graphs, causality, and stabilizability: Linear, shift-invariant systems on L 2 [0, ∞)[END_REF]. This is important, as failure to be robust to approximate identities means that the system can be unstable for abritrarily small uncertainty or delays.

To show this, we write the open-loop and feedback law transfer functions in the target system coordinates. More precisely, we write the full-state feedback law as a causal dynamic output feedback law (for a conveniently chosen output) by using the structure of the target system. First, we recall the definition of w-stability.

Definition 2 (w-stability, [START_REF] Curtain | An introduction to Infinite-Dimensional Linear Systems Theory[END_REF] Definition 9.5.3) A stable feedback systen (G, K)is said to be w-stable if for any approximate identity I δ there exists a δ 0 such that (I δ G, K) is input-output stable for all δ ∈ [0, δ 0 ).

We are now ready to state an important result of the paper: when stable, the closed-loop system is w-stable.

Lemma 3 If system (37), ( 12)-( 16) with a control law of the form (10) is stable, then it is w-stable in the sense of [START_REF] Georgiou | Graphs, causality, and stabilizability: Linear, shift-invariant systems on L 2 [0, ∞)[END_REF]. In particular, it is robust to small delays in the actuation path.

Proof 3 The open-loop dynamics of η 0 given by (37) rewrite as follows

sη 0 = A 0 η 0 (s) + D 1 ω 1 (s) + B 0 β(s, 0) + B 1 α(s, 1) - 1 0 M (y)α(s, y)dy - 1 0 N (y)β(s, y)dy + U (s). (59) 
Therefore, using Lemma 1 and its proof, the open-loop transfer function reads

α(s, 0) = c 0 s [1 -Re -τ s ] + H(s) U (s) (60) 
:= G(s)U (s) ( 61 
)
where R is defined by ( 9) and H can be computed from (46)-( 59) and is proper according to Definition 1. Besides, since R satisfies (9), one has

lim sup |s|→∞, s∈C 0 1 -Re -τ s > 0, (62) 
where C 0 denotes the closed left half plane. This essentially means that there is no asymptotic chain of zeros converging towards the Right-Half-Plane, which, in turn, implies that G is strictly proper. Similarly, using the inverse backstepping transformation and relations (46)-( 52), the control law (10) rewrites as

U (s) = K(s)α(s, 0) (63) 
where K(s) is proper. Therefore, for some sufficiently large M > 0, the loop transfer function satisfies

sup |s|>M G(s)K(s) < 1 (64)
which yields the result using [START_REF] Georgiou | Graphs, causality, and stabilizability: Linear, shift-invariant systems on L 2 [0, ∞)[END_REF]Proposition 16].

One should notice that a crucial element in the proof is that the feedback law is proper, which is not the case of, e.g., the feedback law in [START_REF] Bou Saba | Backstepping stabilization of 2 × 2 linear hyperbolic pdes coupled with potentially unstable actuator and load dynamics[END_REF]. In the case of [START_REF] Deutscher | Output feedback control of general linear heterodirectional hyperbolic ODE-PDE-ODE systems[END_REF], the nonproper nature of the control law is avoided by replacing the derivative feedback term v t (t, 0) with a term of the form v x (t, 0) using (4). We have not investigated the robustness properties of such a control law. Lemma 3 guarantees a certain robustness of the design when the closed-loop system is stable.

Output feedback controller

In this Section, we design an observer using a transformation with a structure dual that is dual to [START_REF] Logemann | Conditions for robustness and nonrobustness of the stability of feedback systems with respect to small delays in the feedback loop[END_REF], [START_REF] Niculescu | Delay effects on stability: A robust control approach[END_REF], before sketching the closed-loop stability proof for the corresponding output feedback controller.

Observer design

We consider the following Luenberger-like observer

ω0 (t) = a 0 ω0 (t) + b 0 v(t, 0) + U (t) -p 0 (ω 0 -ω 0 ) (65) û(t, 0) = c 0 ω0 (t) + d 0 v(t, 0) -P 0 (ω 0 -ω 0 ) (66) ût (t, x) = -λ(x)û x (t, x) + σ ++ (x)û(t, x) + σ +-(x)v(t, x) -p u (x)(ω 0 -ω 0 ) (67) vt (t, x) = µ(x)v x (t, x) + σ -+ (x)û(t, x) + σ --(x)v(t, x) -p v (x)(ω 0 -ω 0 ) (68) v(t, 1) = C 1 ω1 (t) + d 1 û(t, 1) -P 1 (ω 0 -ω 0 ) (69) ω1 (t) = A 1 ω1 (t) + B 1 û(t, 1) -p 1 (ω 0 -ω 0 ). ( 70 
)
We define the error variables w = ŵ -w. M vu (x, y)α(t, y)dy 

+ 1 0 M vv (x, y) β(t, y)dy -H v (x)η 0 (t) (73) ω1 (t) =η 1 (t) - 1 0 N u (x, y)α(t, y)dy (74) + 1 0 N v (x, y) β(t, y)dy -H 1 η0 (t) (75) is such that η0 (t) = pobs η0 (t) + b 0 β(t, 0) (76) α(t, 0) = d 0 β(t, 0) (77) αt (t, x) = -λ(x)α x (t, x) βt (t, x) = µ(x) βx (t, x) β(t, 1) = C 1 η1 (t) + d 1 α(t, 1) (78) η1 (t) = A 1 -Ľ1 C 1 η1 (t) (79) provided M uu , M uv , M vu , M vv , H u , H v ,
p 0 = a 0 -b 0 H v (0) -po bs (80) P 0 = c 0 + d 0 H v (0) -H u (0) (81) p u (x) = σ ++ H u (x) + σ +-H v (x) -λH u (x) -pH u (x) (82) p v (x) = σ -+ H u (x) + σ --H v (x) + µH v (x) -pH v (x) (83) p 1 = B 1 H u (1) + H 1 (p obs -a 1 ) (84) P 1 = d 1 H u (1) -H v (1) -C 1 H 1 (85)

Output feedback controller

The main result is stated in the following Theorem.

Theorem 1 Consider System (1)-( 6) with the following control law

U (t) = k 0 ω0 (t) + k 1 ω1 (t) + K 0 v(t, 0) + K 1 û(t, 1) + 1 0 [K(y)û(t, y) + L(y)v(t, y)]dy, (86) 
where ω0 , ω1 , v, û are defined by (65)-(70). The zero equilibrium is asymptotically stable.

Proof 4 We only sketch here the proof for brevity's sake. Consider the observer error system in target system coordinates (76)-(79). It is a cascade of η1 into (α, β) into η0 , thus it is exponentially stable. Consider now (11)-( 16) with the control law (86) expressed in target system coordinates. It rewrites

η0 (t) = pη 0 (t) + d 0 p - ž c 0 β(t, 0) + Ũ (t) (87) α(t, 0) = c 0 η 0 (t) + d 0 β(t, 0) (88) α t (t, x) + λ(x)α x (t, x) = σ ++ (x)α(t, x) (89) β t (t, x) -µ(x)β x (t, x) = σ --(x)β(t, x) (90) β(t, 1) = d 1 α(t, 1). (91) ω1 (t) = (A 1 -B 1 κ 1 )ω 1 + B 1 α(t, 1) (92) 
where Ũ (t) = k 0 ω0 (t) + k 1 ω1 (t) + K 0 ṽ(t, 0) + K 1 ũ(t, 1) (93)

+ 1 0
[K(y)ũ(t, y) + L(y)ṽ(t, y)]dy (94)

vanishes to zero since the observer error converges asymptotically to zero. Besides, the target system (87)-( 92) is linear, which implies by Lemma 1 and Proposition 3 in [START_REF] Dashkovskiy | Input-to-state stability of infinite-dimensional control systems[END_REF] that it is Input-to-State Stable (ISS) wrt to the input Ũ . Therefore, target system (87)-( 92) is asymptotically stable.

Numerical example

To illustrate the result we consider the following toy example ω0 (t) = 0.2ω 0 (t) + v(t, 0) + U (t) (95) u(t, 0) = ω 0 (t) + 0.9v(t, 0) (96) u t (t, x) + u x (t, x) = -0.01u(t, x) -0.05v(t, x) (97) v t (t, x) -v x (t, x) = 0.1u(t, x) -0.01(x)v(t, x) (98) v(t, 1) = 1 0 ω 1 (t) -0.9u(t, 1) (99)

ω1 (t) = 0.1 1 -1 0 ω 1 (t) + 1 0 v(t, 1). ( 100 
)
This plant has unstable ODEs at both boundaries as well as an instability caused by the in-domain source terms.

For this plant we design a stabilizing collocated output injection controller using an observer with ω 0 as the measurement. For the observer we use the design parameters κ 1 = 3 1 , ž = 0, p = -1000. For the controller we use κ 1 = 1.5 0.6 , ž = 0, while for the proximal pole placement we consider two cases: p = -1000 and p = -5. The results are shown in Fig. 5. As is clearly illustrated in this Figure, increasing the magnitude of the p pole yields better performance, but at the cost of a more aggressive control effort and lower robustness to actuation delays. The limit where p → -∞ corresponds to the approach of using a full cancellation of the reflection at the proximal boundary, but this also yields zero delay robustness.

Fig. 1 .

 1 Fig. 1. Schematic description of the considered system. The black dotted arrows represent transport phenomena while the red arrows represent couplings.

Fig. 2 .

 2 Fig. 2. Toy example trends.
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A Open-loop dynamics of the target system

We detail here the open-loop dynamics of the target system. First, one has to compute the inverse backstepping transformation (η 0 , α, β, ω 1 ) → (ω 0 , u, v, ω 1 ). To do so, notice that [START_REF] Logemann | Conditions for robustness and nonrobustness of the stability of feedback systems with respect to small delays in the feedback loop[END_REF], [START_REF] Niculescu | Delay effects on stability: A robust control approach[END_REF] are Volterra equations in u and v.

Denoting L =

L uu L uv L vu L vv the inverse kernels and omiting the time argument, one has

that we rewrite

Plugging into (31) yields, simlilarly, an expression of the form

Lα (y)α(t, y) + Lβ (y)β(t, y)dy

Finally, plugging (A.3)-(A.5) into (36) yields (37) with 1)