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INTRODUCTION

Learned information is typically encoded and stored in the nervous system, from where it can be retrieved to respond appropriately to events previously experienced. Memory, the sum of these processes, can be classified according to multiple criteria, one of which is durability [START_REF] Milner | Cognitive neuroscience and the study of memory[END_REF][START_REF] Kandel | The molecular biology of memory storage: A dialogue between genes and synapses[END_REF][START_REF] Squire | Memory and brain systems: 1969-2009[END_REF]. Short-lasting and long-lasting memories are distinguished in most living animals, a classification that is sustained by the different biological processes underlying these memory forms [START_REF] Goelet | The long and the short of long-term memory -a molecular framework[END_REF][START_REF] Kandel | The molecular biology of memory storage: A dialogue between genes and synapses[END_REF]. Accordingly, long-term memory (LTM) is typically defined as a durable and robust memory that is stabilized in time based on a consolidation phase requiring protein synthesis [START_REF] Squire | Memory and brain systems: 1969-2009[END_REF][START_REF] Squire | The pharmacology of memory: a neurobiological perspective[END_REF][START_REF] Davis | Protein synthesis and memory: a review[END_REF]. On the contrary, short-term memory (STM) decays rapidly over time and does not require protein synthesis. The mechanisms mediating these two types of memory are independent and may occur in parallel [START_REF] Izquierdo | Mechanisms for memory types differ[END_REF][START_REF] Isabel | Exclusive consolidated memory phases in Drosophila[END_REF][START_REF] Trannoy | Parallel processing of appetitive short-and long-term memories in Drosophila[END_REF].

Invertebrates have made fundamental contributions to the study of memory [START_REF] Carew | Invertebrate learning and memory: from behavior to molecules[END_REF][START_REF] Menzel | Memory dynamics in the honeybee[END_REF][START_REF] Heisenberg | Mushroom body memoir: from maps to models[END_REF], Giurfa and Sandoz, 2012[START_REF] Giurfa | Cognition with few neurons: higher-order learning in insects[END_REF]. Among them, the honey bee emerged as a standard model for the distinction between memory phases due to its remarkable learning and memory capacities and the parallels existing between the temporal organization of its memory and that of vertebrates [START_REF] Menzel | Learning and memory in honeybees: from behavior to neural substrates[END_REF][START_REF] Menzel | Memory dynamics in the honeybee[END_REF][START_REF] Müller | The molecular signalling processes underlying olfactory learning and memory formation in honeybees[END_REF][START_REF] Eisenhardt | Molecular mechanisms underlying formation of long-term reward memories and extinction memories in the honeybee (Apis mellifera)[END_REF]. Olfactory STM and LTM have been profusely documented in honey bees using a learning protocol termed the olfactory conditioning of the proboscis extension response (PER) [START_REF] Takeda | Classical conditioned response in the honey bee[END_REF][START_REF] Bitterman | Classical conditioning of proboscis extension in honeybees (Apis mellifera)[END_REF], Giurfa and Sandoz, 2012[START_REF] Matsumoto | Revisiting olfactory classical conditioning of the proboscis extension response in honey bees: a step towards standardized procedures[END_REF]. In such a protocol, harnessed bees learn to associate an odorant (the conditioned stimulus or CS) with a reward of sucrose solution (the unconditioned stimulus or US). After successful learning, bees exhibit the appetitive PER to the odorant that anticipates the food.

Extensive research on olfactory memory in bees led to an established model of the memories existing in this insect [START_REF] Menzel | Memory dynamics in the honeybee[END_REF][START_REF] Eisenhardt | Learning and memory formation in the honeybee (Apis mellifera) and its dependency on the cAMP-protein kinase A pathway[END_REF][START_REF] Menzel | The honeybee as a model for understanding the basis of cognition[END_REF][START_REF] Müller | The molecular signalling processes underlying olfactory learning and memory formation in honeybees[END_REF]. This model posits that a single learning trial (i.e. a single pairing of an odor with sucrose reward) leads to a STM (in the range of seconds to minutes) and a mid-term memory (MTM, in the range of minutes to hours). Interestingly, MTM was not addressed specifically after a single conditioning trial, and statements about it refer mostly to findings obtained after multiple conditioning trials. Yet, it is commonly accepted that both STM and MTM are available after one conditioning trial and that both memory phases are susceptible to various interference treatments, such as local cooling and extinction, but are insensitive to inhibition of protein synthesis [START_REF] Menzel | Memory dynamics in the honeybee[END_REF]. Subsequently, memory decays considerably over time and even if it can sometimes be evoked, it remains insensitive to proteinsynthesis inhibition [START_REF] Grünbaum | Induction of a specific olfactory memory leads to a long-lasting activation of protein kinase C in the antennal lobe of the honeybee[END_REF][START_REF] Friedrich | Learning at different satiation levels reveals parallel functions for the cAMP-protein kinase A cascade in formation of long-term memory[END_REF][START_REF] Pamir | Rapid learning dynamics in individual honeybees during classical conditioning[END_REF]. On the contrary, multiple learning trials have been shown to induce not only STM and MTM, but also a 24-h memory termed early LTM (e-LTM), and a late LTM (l-LTM) that can be retrieved several days after training (e.g. 72 h post conditioning). While e-LTM depends on translation processes, l-LTM depends on both transcription and translation processes [START_REF] Wüstenberg | Long-but not medium-term retention of olfactory memory in honeybees is impaired by actinomycin D and anisomycin[END_REF][START_REF] Menzel | Memory dynamics in the honeybee[END_REF][START_REF] Menzel | The honeybee as a model for understanding the basis of cognition[END_REF]. Thus, repeated trials are considered necessary to trigger the molecular cascades enabling l-LTM consolidation via protein synthesis [START_REF] Menzel | Memory dynamics in the honeybee[END_REF][START_REF] Menzel | Searching for the memory trace in a mini-brain, the honeybee[END_REF][START_REF] Schwärzel | Dynamic memory networks: dissecting molecular mechanisms underlying associative memory in the temporal domain[END_REF][START_REF] Menzel | The honeybee as a model for understanding the basis of cognition[END_REF][START_REF] Müller | The molecular signalling processes underlying olfactory learning and memory formation in honeybees[END_REF][START_REF] Eisenhardt | Molecular mechanisms underlying formation of long-term reward memories and extinction memories in the honeybee (Apis mellifera)[END_REF]).

Here we focused on the memories induced by a single conditioning trial, which has the advantage of allowing a clear separation between consolidation and retrieval (Izquierdo andMedina, 1997, Izquierdo et al., 2002). We coupled one-trial olfactory conditioning of PER with injections of emetine (translation inhibitor) or actinomycin D (transcription inhibitor) into the bee brain, and verified the specificity of the memories retrieved [START_REF] Matsumoto | Revisiting olfactory classical conditioning of the proboscis extension response in honey bees: a step towards standardized procedures[END_REF]. Under our experimental conditions, a single learning trial 1) elicits an olfactory memory expressed 4 h after conditioning that depends on translation but not on transcription, and 2) induces memories retrievable 24 h and 72 h after conditioning, which depend on both transcription and translation. These findings question the notion that only multiple conditioning trials lead to l-LTM in olfactory PER conditioning, and that protein-synthesis depending memories appear only 24 h after training.

RESULTS

Emetine induces a significant reduction of protein synthesis in the bee brain

We first verified the efficiency of the protein-synthesis blocker emetine (translation inhibitor). Emetine (0.2 µl, 20 mM) was injected into the bee brain via the ocellar tract [START_REF] Tedjakumala | Pharmacological modulation of aversive responsiveness in honey bees[END_REF]. We used puromycin labeling to assess the effect of emetine on protein synthesis at different periods following injection. This method, which is based on the incorporation of puromycin into nascent peptide chains, has been used to detect changes in protein synthesis levels in various animal models, including mammals, Drosophila and the honey bee [START_REF] Schmidt | SUnSET, a nonradioactive method to monitor protein synthesis[END_REF][START_REF] Marter | Duration of the unconditioned stimulus in appetitive conditioning of honeybees differentially impacts learning, long-term memory strength, and the underlying protein synthesis[END_REF][START_REF] Deliu | Investigation of protein synthesis in Drosophila larvae using puromycin labelling[END_REF].

Injections of emetine or PBS (control solution) via the ocellar tract were performed 5 min, 30 min or 60 min before injection of puromycin (1 µl, 1000 µg/ml) (Fig. 1A). Forty-five min after puromycin injection, brains were removed and puromycin labeling was quantified by western blots of an equal amount of proteins from individual bee brains. The intensity of puromycin labeling following PBS injection was used as positive control (100 % signal) while the labeling obtained in absence of puromycin with emetine or PBS was used as a negative control. In every case, the labeling was normalized to its correspondent tubulin labeling, and then normalized again to its positive control located on the same blot.

Puromycin incorporation decreased in at least 60 % in when emetine was injected 5, 30 and 60 min before puromycin when compared to the corresponding PBS controls (Figs. 1B and1C).

Comparing groups injected with emetine or PBS showed that emetine injection decreased significantly puromycin incorporation in all groups (Student t test;5 min: t= 7.62,df= 10,p<0.001;30 min: t= 3.34,df= 6,p<0.05;60 min: t= 8.37,df= 6,p<0.001). Thus, emetine inhibited protein synthesis in the bee brain for at least 1 h and 45 min after injection (60 min between emetine and puromycin injections + 45 minutes before tissue extraction).

Memories retrieved 4 h, 24 h and 72 h after single conditioning trial depend on protein synthesis

We used a single conditioning trial to train bees to associate an odorant (conditioned stimulus, CS) with a reward of sucrose solution (unconditioned stimulus, US) (Fig. 2A). The translation inhibitor emetine (Eme) or its vehicle PBS (Veh) was injected 30 min before the conditioning trial. Memory retention was measured 1 h, 4 h, 24 h or 72 h after training by presenting the CS and a novel odorant (NOd), which allowed determining the specificity of the CS memory [START_REF] Matsumoto | Revisiting olfactory classical conditioning of the proboscis extension response in honey bees: a step towards standardized procedures[END_REF]. (Fig. 2A). Independent groups of bees were used for each retention tests. Based on previous results, we expected that the single conditioning trial would induce memory at shorter delays post conditioning and, eventually, a decaying, residual memory retrievable at longer delays, which should be insensitive to blockade of protein synthesis [START_REF] Grünbaum | Induction of a specific olfactory memory leads to a long-lasting activation of protein kinase C in the antennal lobe of the honeybee[END_REF][START_REF] Friedrich | Learning at different satiation levels reveals parallel functions for the cAMP-protein kinase A cascade in formation of long-term memory[END_REF][START_REF] Pamir | Rapid learning dynamics in individual honeybees during classical conditioning[END_REF]. Thus, bees should respond strongly to the CS at 1 h and 4 h (which in the current model of bee memory correspond to MTM) but not (or only weakly) at 24 h (e-LTM) or at 72 h (l-LTM).

Figure 2B shows that Veh-injected bees exhibited robust memory retention at 1 h, 4 h, 24 h and 72 h after the single conditioning trial. In all cases, responses to the CS were significantly higher than generalization responses to the NOd (McNemar's tests; Veh 1h, χ²= 22, df= 1, p<0.001; Veh 4h, χ²= 27, df= 1, p<0.001; Veh 24h, χ²= 50, df= 1, p<0.001; Veh 72h, χ²= 9, df= 1, p<0.01). These results show that it is possible to induce memory formation and retention up to 3 days after a single conditioning trial, and that even at these long retention intervals, the memory expressed is CS specific.

In the current understanding of honey bee memory, the 1-h and 4-h memories are described as MTM [START_REF] Menzel | The honeybee as a model for understanding the basis of cognition[END_REF], a memory form that was characterized using multiple-trial conditioning and that is independent of protein synthesis [START_REF] Grünbaum | Induction of a specific olfactory memory leads to a long-lasting activation of protein kinase C in the antennal lobe of the honeybee[END_REF]Müller, 1998, Müller, 2013). On the contrary, the 24-h and 72-h memories are described as LTM, and are said to both depend on translation [START_REF] Friedrich | Learning at different satiation levels reveals parallel functions for the cAMP-protein kinase A cascade in formation of long-term memory[END_REF]. Following this view, the 1 h and 4 h memories should be insensitive to emetine while the 24 h and 72 h memories should be impaired by emetine injection.

Figure 2B shows that significant retention was found at 1 h, 4 h and 24h, but not at 72h. After the single conditioning trial, Eme-injected bees responded more to the CS than to the NOd in the first three tests but not in the latter (McNemar's tests; Eme 1h, χ²= 24, df= 1, p<0.001; Eme 4h, χ²= 14, df= 1, p<0.001; Eme 24h, χ²= 18.2, df= 1, p<0.001; Eme 72h, χ²= 2, df= 1, p= 0.157; independent groups used for each test). Yet, this analysis may hide further effects of emetine as it focuses on population responses instead of individual responses [START_REF] Pamir | Average group behavior does not represent individual behavior in classical conditioning of the honeybee[END_REF]. To refer the analysis to individual performances both in the Eme-and Veh groups, we quantified the percentage of bees exhibiting CS-specific responses, i.e. the bees that correctly responded to the CS and not to the NOd (Fig. 2C). An impact of emetine on retention would be visible through a significant decrease of CS-specific memory in the Eme group compared to the Veh group. One hour after conditioning, no differences were found between the Veh-and the Eme groups (Chi-square test; χ²= 0.373, df= 1, p= 0.542), thus showing that the 1-h memory was insensitive to the emetine treatment. Yet, in the other retention tests, responses of the Veh group were significantly higher than responses of the Eme group (4h χ²= 5.81, df= 1, p<0.05; 24h χ²= 30.5, df= 1, p<0.001; 72h χ²= 4.39, df= 1, p<0.05). This demonstrates that emetine impaired memory retention not only at 72 h, but also at 4 h and 24 h post conditioning. An alternative explanation to the effect of emetine on retention at 4 h, 24 h and 72 h, but not at 1 h, might be that bees tested 1 h after the single conditioning trial are not in the same conditions as bees tested at longer intervals. If, for instance, emetine changes the perception of the conditioned odor, bees would perceive the conditioned odor in the 1-h test in the same way as during training, thus facilitating responding because emetine is still active 1 h after injection (Fig. 1B). On the contrary, if emetine has worn off at longer intervals post conditioning, the conditioned odor could be perceived as being different from that experienced during training, thus inducing a decrease in response. To address this perceptual hypothesis, we performed a control experiment in which bees were subjected to two injections, one 30 min before the single conditioning trial and another 30 min before the 24-h test. In this way, bees were in identical conditions both during training and during the retention test. Four groups were trained and tested in parallel (Veh/Veh, Veh/Eme, Eme/Veh, and Eme/Eme). Supplemental Fig S1 shows that the pre-training injection had a significant effect on performance while the same injection before the 24-h test had no effect (Two-way ANOVA; factor injection pretraining: F(1, 104)= 15.1, p<0.001; factor injection pre-test: F(1, 104)= 1.73, p= 0.19; interaction: F(1, 104)= 0.002, p= 0.97). The second injection of emetine 30 min before the test did not re-establish responding in the Eme/Eme group despite the fact that animals were in the same conditions during training and test. The CS-specific memory of the Eme/Eme group remained low and similar to that of the group having received first Eme and then the vehicle (Eme/Veh). Thus, the decrease of performance in the 24-h test was not due to a perceptual problem induced by emetine, but to the blockade of protein synthesis that affected similarly the two groups that received emetine 30 min before conditioning. The group that received the pre-training injection of vehicle and that of emetine 30 min before the 24-h test (Veh/Eme) had intact memory, which was similar to that of the Veh/Veh group. This shows, in addition, that the protein synthesis necessary for LTM consolidation was no longer present 23:30 h after the single conditioning trial (and/or that the retrieval process in the 24-h test was independent of protein synthesis).

The lack of effect of emetine on the 1-h memory was expected from the perspective of the traditional view of honey bee memory as this memory has been described as a MTM independent of protein synthesis, based on experiments that used multiple trial conditioning and this time interval to assess memory [START_REF] Menzel | Memory dynamics in the honeybee[END_REF][START_REF] Menzel | The honeybee as a model for understanding the basis of cognition[END_REF][START_REF] Müller | The molecular signalling processes underlying olfactory learning and memory formation in honeybees[END_REF][START_REF] Müller | Memory phases and signaling cascades in honeybees[END_REF]. Leaving apart the fact that one conditioning trial induced long-term memories retrievable 24 h and 72 h after conditioning, the impairment of these memories by emetine is consistent with the long-established idea that LTMs depend on protein synthesis (in this case, on translation processes) [START_REF] Davis | Protein synthesis and memory: a review[END_REF]). Yet, the finding that the 4-h memory was also sensitive to emetine treatment was surprising as it indicates that a translation-dependent memory exists already at this time. As long-term memories are typically defined as protein-synthesis dependent, the 4-h memory can also be classified as LTM.

Different translation and transcription dependencies of the 4-h, the 24-h and the 72-h memories induced by a single conditioning trial

As the 4-h memory depends on translation of RNA transcripts, it coincides with the e-LTM originally defined for the honey bee and ascribed to a 24-h period [START_REF] Menzel | Learning and memory in honeybees: from behavior to neural substrates[END_REF][START_REF] Wüstenberg | Long-but not medium-term retention of olfactory memory in honeybees is impaired by actinomycin D and anisomycin[END_REF][START_REF] Müller | Memory phases and signaling cascades in honeybees[END_REF][START_REF] Eisenhardt | Molecular mechanisms underlying formation of long-term reward memories and extinction memories in the honeybee (Apis mellifera)[END_REF]). Yet, this memory could also depend on transcription processes, and thus exhibit characteristics similar to the l-LTM originally attributed to periods equal or longer than 72 h in the honey bee [START_REF] Menzel | Learning and memory in honeybees: from behavior to neural substrates[END_REF][START_REF] Wüstenberg | Long-but not medium-term retention of olfactory memory in honeybees is impaired by actinomycin D and anisomycin[END_REF][START_REF] Müller | Memory phases and signaling cascades in honeybees[END_REF][START_REF] Eisenhardt | Molecular mechanisms underlying formation of long-term reward memories and extinction memories in the honeybee (Apis mellifera)[END_REF]. To study the dependency of memory on transcription processes, we injected the transcription inhibitor actinomycin D (ActD) into the bee brain 30 min before a single conditioning trial and measured memory retention 4 h, 24 h or 72 h later (Fig. 3A). We focused on these memories as they were shown to depend on translation processes in the previous experiment.

Figure 3B shows the population responses to the CS and to the NOd in the retention tests.

Again, the Veh group exhibited significant retention not only at 4 h but also at 24 h and 72 h after conditioning. In all three tests, responses to the CS were significantly higher than to the NOd (Fig. 3B; Veh: 4 h,χ²= 21,df= 1,p<0.001;24 h,χ²= 25,df= 1,p<0.001;72 h,χ²= 12,df= 1,p<0.001). ActDinjected bees exhibited significant retention 4 h and 24 h after the single conditioning trial but not 72 h after it (Fig. 3B; ActD: 4 h,χ²= 21,df= 1,p<0.001;24 h,χ²= 10.3,df= 1,p<0.01;72 h,χ²= 2.67,df= 1, p= 0.10). Although these results seem to circumscribe the necessity of transcription processes to the 72-h memory, the analysis of CS-specific memory revealed again overlooked effects of actinomycin D. Bees of the Veh and the ActD groups did not differ in the 4-h retention test (Fig. 3C; χ²= 0.0778, df= 1, p= 0.780), thus confirming that the 4-h memory was translation but not transcription dependent.

Yet, a significant difference between the Veh and the ActD groups was found in the 24-h retention test (Fig. 3C; χ²= 8.16, df= 1, p<0.01), thus revealing a significant impact of actinomycin D for the memory retrieved at this time. In the 72-h retention test, the CS-specific memory was also significantly higher for the Veh than for the ActD group (Fig. 3C; χ²= 4.55, df= 1, p<0.05).

These results thus reveal that a single conditioning trial induces, on the one hand, a 4-h memory that is translation-but not transcription-dependent, and on the other hand, a 24-h memory that is both translation-and transcription-dependent, contrary to what is usually affirmed. They also confirm that the 72-h memory depends on both transcription and translation as previously described [START_REF] Menzel | Learning and memory in honeybees: from behavior to neural substrates[END_REF][START_REF] Menzel | Memory dynamics in the honeybee[END_REF][START_REF] Müller | The molecular signalling processes underlying olfactory learning and memory formation in honeybees[END_REF], even if such a memory was not expected after a single conditioning trial. Given that both the 24-h and the 72-h memories depend on transcription and translation, they should be referred as l-LTM. On the contrary, if e-LTM refers to a memory that is translation-dependent but transcription-independent, it should be used to describe the 4-h memory.

Protein synthesis that is necessary for LTM consolidation is still ongoing 4 h after the single conditioning trial

We showed that emetine injected 30 min before a single conditioning trial impairs subsequent LTM phases, which include in our case the 4-h, 24-h and 72-h memories. To determine if the process of protein synthesis persists after training, we studied if emetine injection delivered 4 h after the single conditioning trial impairs memory retention at 24 h and/or 72 h post conditioning (Fig. 4A).

Veh-injected bees exhibited significant retention in the 24-h and the 72-h retention tests (Fig. 4B) as their responses to the CS were significantly higher than to the NOd (24 h: χ²= 13, df= 1, p<0.001; 72 h: χ²= 8.07, df= 1, p<0.01). Eme-injected bees responded more to the CS than to the NOd in the 24-h test but not in the 72-h test (24 h: χ²= 7, df= 1, p<0.01; 72 h: χ²= 3, df= 1, p= 0.0833).

The analysis of CS-specific responses revealed that the injection of emetine induced a significant decrease of CS-specific memory in the 24-h test with respect to Veh-injected bees (Fig. 4C; χ²= 5.67, df= 1, p<0.05). The decrease of CS-specific memory observed in the 72-h test was not significant when compared to the Veh group (χ²= 0.754, df= 1, p= 0.385). This result has to be considered with caution, as the performance of the Veh group was rather low, and may thus have obscured significant differences with the Eme group. Taken together, these results suggest that 4 h after the single conditioning trial, a translation process is still present and is necessary for the consolidation of the memories retrievable 24 h post conditioning.

Protein synthesis necessary for LTM consolidation is no longer present 7 h after the single conditioning trial

We next studied the duration of the protein-synthesis period induced by the single conditioning trial.

We thus injected emetine 7 h after that trial and determined if this treatment impaired memory retention 24 h after conditioning (Fig. 5A).

The population analysis showed that Veh-and Eme-injected bees exhibited significant memory retention in the 24-h retention test as they both responded more to the CS than to the NOd (Fig. 5B; Veh, χ²= 12, df= 1, p<0.001; Eme, χ²= 10, df= 1, p<0.01). An analysis of CS-specific responses confirmed that both groups did not differ significantly (Fig. 5C; χ²= 0.0783, df= 1, p=0.780), thus showing that emetine injection 7 h after conditioning did not impair CS-specific memory at 24 h. We conclude that 7 h after one-trial conditioning, the translation process required for the consolidation of the 24-h memory is already finalized. Furthermore, these results show that the effect of emetine injection is specific as it is restricted to a finite temporal-window.

Addressing a multiple-trial conditioning scenario

Even if addressing the topic of multiple-trial conditioning would require a separate study per se. we asked to what extent findings established in the case of multiple-trial conditioning are still valid under our experimental conditions. We determined if training bees with three conditioning trials spaced by 10 min leads to a protein synthesis dependent LTM, as stated by the established model of honey bee memory [START_REF] Menzel | Memory dynamics in the honeybee[END_REF][START_REF] Menzel | Searching for the memory trace in a mini-brain, the honeybee[END_REF][START_REF] Menzel | The honeybee as a model for understanding the basis of cognition[END_REF]. Bees were injected either with the vehicle or emetine 30 min before conditioning (Fig. 6A). Both groups of bees learned to respond to the CS in the same way (Fig. 6B; 2-way anova for repeated measurements with Geisser-Greenhouse correction for sphericity; Trials: F(1.814, 48.98)= 162, p<0.0001; Groups: F(1, 27)= 1, p= 0.33; Trials x Groups: F(1.755, 47.39)= 0.659, p= 0.50), and responded more to the CS than to the NOd 24 h after conditioning (Fig. 6C; Veh: χ²= 21.0, df: 1, p<0.001; Eme: χ²= 13.1, df: 1, p<0.001). Yet, the group injected with emetine showed a significantly lower CS-specific memory, thus showing that emetine reduced memory expression 24 h after conditioning (Fig. 6D; Pearson's chi-squared test; χ²= 6.84, df: 1, p<0.01). These results reproduce those of [START_REF] Stollhoff | Spontaneous recovery from extinction depends on the reconsolidation of the acquisition memory in an appetitive learning paradigm in the honeybee (Apis mellifera)[END_REF] (Fig. 6E) and show that, we are in a position to reproduce prior results referred to multiple-trial odor conditioning.

DISCUSSION

Extensive research on honey bee memory using the protocol of olfactory PER conditioning led to the established view that one single trial conditioning has no capacity to induce long-term, olfactory memories that depend on protein-synthesis [START_REF] Menzel | The honeybee as a model for understanding the basis of cognition[END_REF][START_REF] Müller | The molecular signalling processes underlying olfactory learning and memory formation in honeybees[END_REF][START_REF] Müller | Memory phases and signaling cascades in honeybees[END_REF][START_REF] Eisenhardt | Molecular mechanisms underlying formation of long-term reward memories and extinction memories in the honeybee (Apis mellifera)[END_REF]. Protein-synthesis dependent memories have been typically circumscribed to protocols using multiple conditioning trials [START_REF] Menzel | Memory dynamics in the honeybee[END_REF][START_REF] Menzel | Searching for the memory trace in a mini-brain, the honeybee[END_REF][START_REF] Menzel | The honeybee as a model for understanding the basis of cognition[END_REF]. Indeed, multiple pairings of an odor and sucrose induce an early (e-LTM; around 24 h post conditioning) and a late LTM (l-LTM; around 72 h post conditioning). These two forms of LTM depend on translation but differ in that only the l-LTM depends on transcription [START_REF] Wüstenberg | Long-but not medium-term retention of olfactory memory in honeybees is impaired by actinomycin D and anisomycin[END_REF][START_REF] Menzel | Memory dynamics in the honeybee[END_REF].

However, inconsistent findings were sometimes reported even when multiple conditioning trials were used. For instance, in one work, e-LTM quantified 24 h after five spaced conditioning trials depended on transcription, as it was impaired by actinomycin D injected shortly before conditioning [START_REF] Menzel | Massed and spaced learning in honeybees: the role of CS, US, the inter-trial interval and the test interval[END_REF]. This finding is nevertheless consistent with the scenario of our work where a single conditioning trial induces a 24-h memory that depends on both translation and transcription.

Previous reports on long-term memories after one trial of olfactory PER conditioning

Transient memories insensitive to protein-synthesis inhibition have been described following one conditioning trial in olfactory PER conditioning. These memories span the range of seconds to minutes, but were also reported for longer periods [START_REF] Hammer | Learning and memory in the honeybee[END_REF][START_REF] Schwärzel | Dynamic memory networks: dissecting molecular mechanisms underlying associative memory in the temporal domain[END_REF][START_REF] Menzel | The honeybee as a model for understanding the basis of cognition[END_REF]. The latter have received less attention, even if responses were recorded one or more days after conditioning [START_REF] Sandoz | Olfactory learning and memory in the honeybee: comparison of different classical conditioning procedures of the proboscis extension response[END_REF][START_REF] Grünbaum | Induction of a specific olfactory memory leads to a long-lasting activation of protein kinase C in the antennal lobe of the honeybee[END_REF][START_REF] Müller | Prolonged activation of cAMP-dependent protein kinase during conditioning induces long-term memory in honeybees[END_REF][START_REF] Friedrich | Learning at different satiation levels reveals parallel functions for the cAMP-protein kinase A cascade in formation of long-term memory[END_REF][START_REF] Pamir | Rapid learning dynamics in individual honeybees during classical conditioning[END_REF]. These memories were not integrated into the current model of honey bee memory and were considered to be independent of protein-synthesis [START_REF] Müller | The molecular signalling processes underlying olfactory learning and memory formation in honeybees[END_REF].

The molecular underpinnings of long-lasting memories induced by one conditioning trial were analyzed in four studies on olfactory PER conditioning [START_REF] Grünbaum | Induction of a specific olfactory memory leads to a long-lasting activation of protein kinase C in the antennal lobe of the honeybee[END_REF][START_REF] Müller | Prolonged activation of cAMP-dependent protein kinase during conditioning induces long-term memory in honeybees[END_REF][START_REF] Friedrich | Learning at different satiation levels reveals parallel functions for the cAMP-protein kinase A cascade in formation of long-term memory[END_REF][START_REF] Pamir | Rapid learning dynamics in individual honeybees during classical conditioning[END_REF]. One of them [START_REF] Müller | Prolonged activation of cAMP-dependent protein kinase during conditioning induces long-term memory in honeybees[END_REF] found that memory could be expressed from 1 to 4 days after a single conditioning trial (40% to 50% of bees responded), and that memory expression was insensitive to blockade of the cAMP-dependent protein kinase (PKA). It was concluded that multiple trials are required to extend PKA activity as a condition for the formation of a protein-synthesis dependent LTM. A similar conclusion was reached in a second study with respect to the necessity of a prolonged activity of the protein kinase C (PKC) for LTM [START_REF] Grünbaum | Induction of a specific olfactory memory leads to a long-lasting activation of protein kinase C in the antennal lobe of the honeybee[END_REF]. In this case, one conditioning trial did not produce such an enhancement and led to a memory that could be retrieved from 1 to 4 days after conditioning (40% of bees responded) but was insensitive to transcription blockade by actinomycin D [START_REF] Grünbaum | Induction of a specific olfactory memory leads to a long-lasting activation of protein kinase C in the antennal lobe of the honeybee[END_REF]). Yet, recent analyses on the role of histone acetyl transferases (HATs) in honey bee olfactory memory contradicted this conclusion, at least for the 24-h memory, and support our findings [START_REF] Merschbaecher | Inhibition of different histone acetyltransferases (HATs) uncovers transcription-dependent and -independent acetylation-mediated mechanisms in memory formation[END_REF].

In this study, inhibition of HATs by garcinol impaired a 24-h memory after a single conditioning trial but the memory could be rescued by injection of actinomycin D, thus indicating that the processes disturbed by garcinol require transcription.

In the two remaining works, the translation dependency of a 24-h memory induced by one conditioning trial was studied [START_REF] Friedrich | Learning at different satiation levels reveals parallel functions for the cAMP-protein kinase A cascade in formation of long-term memory[END_REF][START_REF] Pamir | Rapid learning dynamics in individual honeybees during classical conditioning[END_REF]. In both cases, emetine did not impair the 24-h memory, contrary to our findings. Yet, emetine was injected systemically (into the thorax) while we delivered directly into the brain (via the ocellar tract). Note that the same systemic thoracic injection was used in the study by [START_REF] Grünbaum | Induction of a specific olfactory memory leads to a long-lasting activation of protein kinase C in the antennal lobe of the honeybee[END_REF] where actinomycin D proved to be ineffective. Both works [START_REF] Friedrich | Learning at different satiation levels reveals parallel functions for the cAMP-protein kinase A cascade in formation of long-term memory[END_REF][START_REF] Pamir | Rapid learning dynamics in individual honeybees during classical conditioning[END_REF] used a concentration of emetine of 10 mM, which is half of the concentration used in our work, and which was ineffective to impair memory reconsolidation when injected after one retrieval trial, following three conditioning trials [START_REF] Stollhoff | One retrieval trial induces reconsolidation in an appetitive learning paradigm in honeybees (Apis mellifera)[END_REF]. On the contrary, a concentration of emetine of 20 mM, similar to the one used in our experiments, was effective and impaired memory reconsolidation [START_REF] Stollhoff | One retrieval trial induces reconsolidation in an appetitive learning paradigm in honeybees (Apis mellifera)[END_REF].

It thus seems that part of the discrepancies about the molecular underpinnings of the longlasting memories resulting from one trial conditioning are rooted in the different methods used to deliver the protein-synthesis inhibitors and in their different doses. In addition, parametric differences between prior conditioning procedures and our experimental approach may also have contributed to the differences found.

Parametric differences between our experimental procedures and previous works on olfactory PER conditioning

Which are then the main parametric differences between prior studies and our present work? Firstly, contrary to many prior works, the bees used in our experiments were true foragers with high appetitive motivation as they were captured at artificial feeders to which they were previously trained during foraging seasons (see Star Methods). This is different from the traditional methodology of capturing bees at the hive entrance or even worse, from within the hive, without a proper control of appetitive motivation, which is crucial for an appetitive learning protocol. Secondly, for the same reason, we did not perform experiments during winter or bad-weather days, or during periods of Asian-hornet predation in the summer. In addition, the ON method described in the Star Methods ensured the selection of liveliest and most efficient learners. Thirdly, our experiments made use of a novel olfactometer that provided a much better control of olfactory stimulation than previous apparatuses used for olfactory bee conditioning [START_REF] Szyszka | High-speed odor transduction and pulse tracking by insect olfactory receptor neurons[END_REF]. This device ensured a precise control of the temporal properties of the CS and the NOd, excluded leakage and odor contaminations, and reduced significantly odor generalization, as shown by our preliminary experiments. In other words, it probably enhanced CS salience, thus favoring learning and retention [START_REF] Rescorla | A theory of classical conditioning: variations in the effectiveness of reinforcement and non-reinforcement[END_REF]. This latter point is not trivial as it leads to two further differences, which are conceptual rather than methodological. The fourth difference with many works done on honey bee memory is the use of a NOd in the retention tests to determine the specificity of the memories retrieved [START_REF] Matsumoto | Revisiting olfactory classical conditioning of the proboscis extension response in honey bees: a step towards standardized procedures[END_REF]. This point is important as responses to the CS may include non-specific components and it could be that only the specific components depend on protein synthesis. This hypothesis needs to be addressed experimentally in future works. Following our recommendations to include a NOd in memory tests [START_REF] Matsumoto | Revisiting olfactory classical conditioning of the proboscis extension response in honey bees: a step towards standardized procedures[END_REF], experiments on olfactory learning in cockroaches showed that a conclusions on 24-h memory varied if a NOd was omitted [START_REF] Hosono | Interaction of inhibitory and facilitatory effects of conditioning trials on long-term memory formation[END_REF]. If only the CS was tested, memory was expressed after a single conditioning trial; yet, testing with a NOd revealed that this memory was not specific as responses to the CS and to the NOd were undistinguishable [START_REF] Hosono | Interaction of inhibitory and facilitatory effects of conditioning trials on long-term memory formation[END_REF]. This result underlines the necessity of including a NOd for assessing the specificity of memory. Finally, a fifth difference refers to this specificity and addresses a potential problem of PER conditioning protocols, namely the fact that population accounts of memory (% of bees responding to the CS) -the traditional and standard representation of memory in most works published -confound bees with and without specific memory. Indeed, given the binomial nature of PER responses (1 or 0), the % of CS responders may include bees with specific memory (which would respond only to the CS) and bees which would respond to the CS and to any other odorant. This problem was identified in analyses of learning performances, which found that the gradually increasing learning curve observed in many vertebrate learning paradigms reflects an artifact of group averaging [START_REF] Gallistel | The learning curve: implications of a quantitative analysis[END_REF].

Similarly, population analyses of PER conditioning have been criticized, as they do not represent memory retention of individual honeybees [START_REF] Pamir | Average group behavior does not represent individual behavior in classical conditioning of the honeybee[END_REF][START_REF] Pamir | Rapid learning dynamics in individual honeybees during classical conditioning[END_REF]. This led us to perform an analysis of individual performances (bees with CS-specific memory) besides the traditional population account of memory. This analysis revealed that injecting emetine impaired retention at 4 h, 24 h and 72 h post conditioning, a fact partially hidden by the population analyses. A similar situation occurred in the case of actinomycin D, which impaired the 24-h CS-specific memory, a fact that was concealed by the population account. This type of account, traditionally used for analyses of bee memory, may have, therefore, overlooked important features of honey bee memory.

The parametric aspects enounced here, in particular those related to the selection of motivated forager bees, season and conditions for the experiments, and optimization of odor delivery, could have a significant impact on the molecular pathways activated by one conditioning trial. As mentioned above, multiple conditioning trials result in prolonged activation of PKA [START_REF] Müller | Prolonged activation of cAMP-dependent protein kinase during conditioning induces long-term memory in honeybees[END_REF] and PKC [START_REF] Grünbaum | Induction of a specific olfactory memory leads to a long-lasting activation of protein kinase C in the antennal lobe of the honeybee[END_REF], which seems indispensable for LTM formation. Also, enhancing artificially processes that converge onto PKA activation such as nitric oxide (NO) signaling or the cyclic guanosine monophosphate (cGMP) promote LTM formation [START_REF] Müller | Prolonged activation of cAMP-dependent protein kinase during conditioning induces long-term memory in honeybees[END_REF]. Interestingly, PKA levels vary with the bees' satiation level: bees starved for 18 h show a higher basal PKA activity in their brains than bees fed 4 h before [START_REF] Friedrich | Learning at different satiation levels reveals parallel functions for the cAMP-protein kinase A cascade in formation of long-term memory[END_REF]. It is thus possible, given the specific control of feeding motivation achieved in our work compared to previous ones (see above), that individuals used in our experiments had PKA levels that facilitated LTM formation earlier and faster than expected. The same could occur with PKC levels and NO-cGMP signaling. If this were the case, the common procedure of collecting bees at the hive entrance, or even within the hive, may have resulted in mixed and uncontrolled variation of appetitive motivation and thus of PKA/PKC levels, which may have hidden the processes uncovered by our work. In addition, the traditional use of population-response accounts instead of focusing on individual performances may have further hindered LTM detection in earlier post-conditioning periods.

The existence of two waves of transcription has been reported as a requirement for olfactory LTM formation in bees trained with multiple spaced conditioning trials [START_REF] Lefer | Two waves of transcription are required for long-term memory in the honeybee[END_REF]. The first wave would occur around the second conditioning trial and would be rather short (40 min) while the second wave would take place between 3 and 8 h post-conditioning. If the same two waves of transcription occur following a single conditioning trial, remains to be determined. In spite of this, our results show that the injection of a transcription blocker before a single conditioning trial notably reduces the expression of the 24-h and 72-h LTMs. These results do not allow delimitating the temporal window of the transcriptional dependence but show its requirement. Moreover, emetine injection 30 min before the single conditioning trial, or 4 h (but not 7 h) after it, impaired the 24-h and 72-h LTM, thus showing that the translation process required for LTM consolidation, be it unique, or segregated in different waves, occurs within this period.

Long-term memories induced by a single-trial conditioning across species

Our results allow reconciling long-standing discrepancies on appetitive memory formation with respect to the other most influential insect model in the field of memory studies, the fruit fly Drosophila melanogaster. In this insect, a single appetitive training session induces a LTM at 6 h and 22/24 h that requires de novo protein synthesis [START_REF] Krashes | Rapid consolidation to a radish and protein synthesisdependent long-term memory after single-session appetitive olfactory conditioning in Drosophila[END_REF][START_REF] Colomb | Parametric and genetic analysis of Drosophila appetitive long-term memory and sugar motivation[END_REF][START_REF] Trannoy | Parallel processing of appetitive short-and long-term memories in Drosophila[END_REF]. More generally, they are consistent with multiple lines of evidence showing that a single conditioning trial may result in protein-synthesis dependent memories in different species. For instance, in the snail Lymnea stagnalis, a LTM lasting for at least 21 days can be induced by a single appetitive conditioning trial [START_REF] Alexander | One-trial reward learning in the snail Lymnea stagnalis[END_REF]. This LTM depends on translation and transcription already 6 h after conditioning [START_REF] Fulton | A single time-window for protein synthesis-dependent long-term memory formation after one-trial appetitive conditioning[END_REF]. Also, in the ant Formica fusca, a single association of odor and sucrose in an exploratory context induces a memory that persist until 72 h post conditioning (but not longer), and that is sensitive to translation inhibition by cycloheximide [START_REF] Piqueret | Ants learn fast and do not forget: associative olfactory learning, memory and extinction in Formica fusca[END_REF]. Parallels can also be found in the vertebrate literature. For instance, in adult rats, a single fear-conditioning trial in which animals learn the association between a tone and an electric shock leads to a 24-h LTM that depends on protein synthesis (Schafe et al., 2001). In a different task, adult rats exploring a platform learn to inhibit stepping down on a grid, which delivers an electric shock. In this case, one-trial learning is enough to induce hippocampal protein synthesis around the trial itself and 3 h after it [START_REF] Quevedo | Two time windows of anisomycin-induced amnesia for inhibitory avoidance training in rats: protection from amnesia by pretraining but not pre-exposure to the task apparatus[END_REF]. Twelve h later, a novel protein synthesis and BDNF-dependent phase occurs in the hippocampus that is critical for the persistence of LTM storage [START_REF] Bekinschtein | Persistence of long-term memory storage requires a late protein synthesis-and BDNF-dependent phase in the hippocampus[END_REF]. Furthermore, in the neonate rat, one trial of odor exposure leads to odor preference learning and to a 5-h memory that is translation-dependent but transcriptionindependent, and to a 24-h memory that is both translation-and transcription-dependent [START_REF] Grimes | Mammalian intermediate-term memory: new findings in neonate rat[END_REF]. This situation reminds our findings with respect to the 4-h vs. the 24-h and 72-h memories.

Taken together, these results support the notion that one single conditioning trial has the capacity to induce different forms of protein-synthesis dependent LTM few hours after conditioning and that these memories may differ in their dependency on translation and transcription processes.

Conclusion

The picture that emerges from our study posits that a single PER conditioning trial is a salient learning experience that leads to LTMs that are accessible 4 h later and that remain available three days after conditioning. These LTMs depend on protein synthesis but differ in their dependency on translation and transcription processes (see Fig. 7). The characterization of STM and MTM following one conditioning trial requires novel analyses addressing their molecular underpinnings. We thus conclude that the capacity of the bee brain to form protein-synthesis dependent long-term memories based on unique experiences has been underestimated. Further studies should re-analyze the nature of olfactory memories arising after multiple-trial conditioning to provide a novel integrative perspective of memory in an insect that has played a pivotal role for our understanding of the biological bases of memory. 

MAIN FIGURE TITLES AND LEGENDS

Fig 2. One single conditioning trial induces long-term memories retrievable 72 h after conditioning and that depend on protein synthesis already 4 h after conditioning.

(A) Experimental protocol. Bees were injected with either emetine (Eme) or its vehicle (Veh) 30 minutes before a single trial olfactory PER conditioning. Memory was tested 1 h, 4 h, 24 h or 72 h after conditioning by presenting the conditioned stimulus (CS) and a novel odor (NOd) (B, C). (A) The commonly admitted model of memories induced by olfactory PER conditioning: a single conditioning trial leads to short-term and mid-term memories (STM and MTM; the latter has not been characterized so far), and eventually, at longer delays, to a decaying memory that does not depend on protein synthesis. Adapted from [START_REF] Menzel | The honeybee as a model for understanding the basis of cognition[END_REF]. (B) Our model: a single conditioning trial leads to protein-synthesis dependent long-term memories (LTM). The 4-h memory depends on translation but not on transcription so that it has the characteristics of an early long-term memory (e-LTM). The 24-h and the 72-h memories depend on both translation and transcription, and should thus be considered as late long-term memory (l-LTM). This model still mentions MTM for consistency with the previous model shown in (A), but note that MTM after one-conditioning trial is still hypothetical and awaits for characterization.

Memory expression at 1 h, 4 h, 24 h or

STAR METHODS

LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Martin Giurfa (martin.giurfa@univ-tlse3.fr).

This study did not generate new unique reagents.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Honey bees. Honey bees were reared in outdoor hives at the experimental apiary of the CRCA situated in the campus of the University Paul Sabatier. In all cases, honey bee foragers (2 to 3-week old) were used. Maintenance of the hives was ensured by a full-time beekeeper, who used standard procedures for ensuring a healthy and active state of the colonies. No institutional permission is required for experimental research on honey bees.

METHOD DETAILS

Animal preparation.

Bees were always collected one day before the training session. The bees used for the experiments were foragers collected at feeders filled with 40 % sucrose to which they were previously trained. Captured bees were placed in boxes of 15 individuals where they received an average of 15 µl of 50 % sucrose solution per bee (shared via trophallaxis). The boxes were kept overnight (ON) in an incubator at 28 °C and 70 % humidity. The mortality during this ON period was variable, ranging between 0 and 30 % of the individuals. In the rare cases when the mortality exceeded 30 %, all the bees were discarded. The ON method allowed homogenization of the bee's satiation state inside each box due to trophallaxis. The ON method allowed us to select resistant bees that survived the night in the box, discarding weak bees as a source of poor performances. This method yielded a low mortality rate throughout experiments. In the morning of the training day, the bees were cooled in ice and harnessed in plastic tubes secured with tape. Each bee was then fed with 5 µl of 50 % sucrose solution.

Conditioning protocol.

The training session was carried 3 hours after the feeding and consisted of a single conditioning trial (or three conditioning trials spaced by 10 minutes of intertrial intervals in the case of the experiment presented in figure S2) in which an odorant was paired with sucrose solution [START_REF] Matsumoto | Revisiting olfactory classical conditioning of the proboscis extension response in honey bees: a step towards standardized procedures[END_REF]. The setup used for the experiment has been previously described (Szyszka et al., 2014). Briefly, CS delivery was provided by an automated odor-releasing machine (olfactometer) controlled by a microcomputer (Arduino® Uno). The harnessed bee was placed in front of the olfactometer, which released a continuous flow of clean air (3300 ml/min) to the bee antennae. Fifteen seconds after the onset of the training, the airflow was diverged upstream through the vial containing the odorant serving as the CS during 4 s. An air extractor was placed behind the bee to prevent odorant accumulation. The US was delivered manually to the antennae and proboscis for 3 s using a toothpick dipped into a 50 % sucrose solution. The CS and the US had an overlap of 1 s. The bee was left in front of the clean air flow for additional 39 s, so that the training trial lasted 1 minute in total. The bees that did not respond to the sugar stimulation by extending their proboscis were excluded from the experiment.

The odorants used were 1-hexanol and nonanal (Sigma-Aldrich, France), which are perceived as dissimilar by bees (Guerrieri et al., 2005). Both were used pure and their role as conditioned stimulus (CS) or novel odorant (NOd) was balanced in a random way between bees in each experiment. A 50 % sucrose solution (weight/weight) was used as US.

Retention tests were performed at different time points after the conditioning trial (1 h, 4 h, 24 h or 72 h post-conditioning). In a retention test, the CS was presented without reward; in addition, a novel odor (NOd) was also presented in order to assess generalization (when the CS was 1-hexanol, nonanal was the NOd and vice versa). Test odors were presented in a sequence that was randomized from bee to bee. Each test followed the same dynamics of the conditioning trial but with no reward delivery: the bee was placed in front of the air-flow for 15 s followed by 3 s of odor presentation, and then by 42 s without odor stimulation. The interval between the two odor tests was 10 min. The proboscis extension response to each odorant was measured. Each bee was tested in a single retention test, so that different groups of bees were used for the different retention tests. These groups were trained in the same day and tested at different time points. When the bees were tested 24 h or 72 h after training they were fed every afternoon with 10 µl and every morning with 5 µl of 50 % sucrose solution to ensure their survival. Like for training, feeding occurred 3 -4 hours before the test session.

At the end of the retention test, bees were tested for intact PER by touching their antennae with 50 % sucrose solution. Bees that did not respond were excluded from the analysis (13 %). We found no significant effect of emetine-or actinomycin D injection on sugar responses at any tested time.

Given the impossibility of training all groups at the same time, we decided to choose the 24-h group (Eme and Veh) as a reference and repeated it (Figs 2 and3). In Fig. 2, the groups done in parallel were 1 h vs. 24 h, 4 h vs. 24 h and finally 24 h vs. 72 h; in Fig. 3 the groups run in parallel were 4 h vs. 24 h and 24 h vs. 72 h. The repetition of the 24-h groups accounts for the differences in sample sizes between retention tests (Figs 2 and3).

Puromycin assay.

Bees were caught, harnessed and fed in the morning of the experiment. The median ocellus was removed and emetine (Eme, 0.2 µl, 20 mM in PBS, Sigma-Aldrich) or Phosphate Buffer (PBS, Euromedex) were administered 5, 30 or 60 min before the injection of puromycin (1 µl, 1000 µg/ml in PBS, Sigma-Aldrich). Both drugs were injected through the ocellar tract into the head capsule using a 5 µl Hamilton syringe (model: 85 RN SYR, needle size: 34G). Forty-five minutes after puromycin injection, the bees were anesthetized in ice, the head capsule was opened and the glands and trachea were removed. Each brain was extracted from the head capsule and immediately stored in ice in 125 µl of RIPA buffer with a protease inhibitors cocktail (120 µl of RIPA buffer (Sigma-Aldrich) and 4.8 µl of protease inhibitors (Sigma-Aldrich)) and homogenized mechanically. The homogenate of each brain was then centrifuged at 4 °C at 12000 rpm for 15 min. Part of the supernatant was stored at -20 °C and the rest was used to measure the protein concentrations using Bradford protocol.

Equal amounts (30 µg) of protein lysates of each sample were resolved by SDS-PAGE and electro-transferred to a nitrocellulose membrane. Blots were then briefly stained with Ponceau S to visualize total protein amounts and then subjected to western blot analysis with specific antibodies.

Membranes were incubated in blocking buffer (5 % BSA in PBS-Tw [0.1 %]) for 2 h at room temperature and overnight with the primary antibodies anti-puromycin, clone 12D10 (1:5000, Millipore). They were washed with PBS-Tw [0.1 %] and incubated with the secondary antibody (antimouse: Sigma-Aldrich) diluted 1:10000 in 1 % BSA in PBS-Tw [0.1 %] buffer for 1.5 h. After stripping of the membranes, the same procedure was repeated using primary antibody 12G10 antialpha tubulin-c (1:1000, Drosophila Studies Hybridoma Bank) diluted in 1 % BSA in PBS-Tw [0.1 %].

Protein bands were then visualized by chemoluminescence (Western Lightning ECL Pro, Perkin Elmer) using a Bio-Rad Chemi Doc Touch. Signals were quantified using ImageLab TM 6.0.

Each lane was first normalized to its corresponding tubulin-c band. Then, for each membrane, the average value of the puromycin-only group was considered as a 100 % signal, and all lanes normalized to it.

Drug administrations.

Emetine 20 mM (Eme, emetine dihydrochloride, Sigma-Aldrich) was diluted in Phosphate Buffer (PBS, Euromedex). This concentration was chosen as it proved to be effective to impair memory assays while lower concentrations (e.g. 10 mM) are ineffective [START_REF] Stollhoff | One retrieval trial induces reconsolidation in an appetitive learning paradigm in honeybees (Apis mellifera)[END_REF]. Actinomycin D [1.5 mM] (ActD, Sigma-Aldrich) was diluted in PBS. This concentration proved to be effective to study transcription processes in the bee brains [START_REF] Lefer | Two waves of transcription are required for long-term memory in the honeybee[END_REF]. The drugs were administrated 30 min before (Figs 2, 3, S1 and S2), 4 h after (Fig. 4) or 7 hours after (Fig. 5) the conditioning and/or 30 min before the 24-h memory retention test (Fig S1). They were delivered through the median ocellus, which was gently removed some minutes before injection.

This method allows the drug to directly reach the brain via the ocellar tract [START_REF] Tedjakumala | Pharmacological modulation of aversive responsiveness in honey bees[END_REF]. A volume of 0.2 µl was injected using a 5 µl Hamilton syringe (model 85 RN SYR) with a 34G needle.

QUANTIFICATION AND STATISTICAL ANALYSIS

During learning and tests, a full extension of the proboscis in response to the CS was noted as a conditioned response (CR). Memory retention was computed at the population level as the percentage of responses to the CS and to the NOd. The specificity of memory was computed as the percentage of bees responding to the CS without responding to the NOd (CS-specific responses).

We assessed learning performances and differences in learning performances between groups by performing a repeated-measures two-way ANOVA (based on GLM) with the Geisser-Greenhouse correction for sphericity (Fig. S2). The presence of memory for each group was assessed by comparing the responses to the CS and to the NOd (McNemar's test). Differences in memory between groups were determined by comparing CS-specific memories (Pearson's chi-squared test or two-way ANOVA when more than 2 groups were compared; see Fig S1).

For each percentage, we calculated and represented the 95 % confidence interval. The sample size (number of animals used) of each experiment is reported in the corresponding figure in parentheses.

Statistical analyses were performed using GraphPad Prism 8 software. 
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 1 Fig 1. Emetine induces a significant reduction of protein synthesis in the honey bee brain.

  72 h. Performance is shown as % of responses to the CS and the NOd (B) or as % of individuals with CS-specific responses (C). Sample size is specified between parentheses for each group. Error bars correspond to 95% CI. ns: non-significant, *p<0.05, **p<0.01, ***p<0.001.
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 3 Fig 3. The 4-h, the 24-h and the 72-h memories induced by a single trial in olfactory PER
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 4 Fig 4. Protein synthesis necessary for LTM consolidation is still ongoing 4 h after the single PER
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 5 Fig 5. Protein synthesis necessary for LTM consolidation is no longer present 7 h after the single
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 6 Fig. 6. Emetine injected 30 min before a 3-trial olfactory PER conditioning reduces significantly

Fig 7 .

 7 Fig 7. Memory phases after a single trial in olfactory PER conditioning of honey bees.
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