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Laboratory (laser and Z-pinch) opacity measurements of well-characterized plasmas provide data to assist inertial confinement fusion, astrophysics and atomic-physics research. In order to test the atomic-physics codes devoted to the calculation of radiative properties of hot plasmas, such experiments must fulfill a number of requirements. In this work, we discuss some sources of uncertainty in absorptionspectroscopy experiments, concerning areal mass, background emission, intensity of the backlighter and self-emission of the plasma. We also study the impact of spatial non-uniformities of the sample.

Introduction

In the introduction to the article "Opacity calculations: past and future" in 1964 [1], H. Mayer writes "Initial steps for this symposium began a few billion years ago. As soon as the stars were formed, opacities became one of the basic subjects determining the structure of the physical world in which we live". He is also the author of a famous report [START_REF] Mayer | Methods of Opacity Calculations[END_REF] written in 1947 and presenting many theoretical methods for opacity calculation. Since Mayer's 1947 report, there have been few comprehensive reviews of methods for opacity calculations, although several reviews of limited scope have appeared, focusing on specific aspects [3]. In early papers, the authors were mainly concerned with photo-ionization [START_REF] Marr | Photoionization Processes in Gases[END_REF][START_REF] Biberman | [END_REF][6][7]. Many interesting summary articles about atomic opacities from the astrophysicists viewpoint were published [START_REF] Cox | Stellar absorption coefficients and opacities[END_REF][START_REF] Carson | [END_REF][START_REF] Carson | Stellar opacities[END_REF][START_REF] Carson | Stellar opacity[END_REF][START_REF] Huebner | Atomic and Radiative Processes in the Solar Interior[END_REF][START_REF] Rogers | [END_REF]. Penner and Olfe discussed atomic and molecular opacities as applied to atmospheric reentry phenomena [START_REF] Penner | Radiation and Reentry[END_REF] and the opacity of heated air was the subject of work by Armstrong et al. [START_REF] Armstrong | [END_REF]16] and Avilova et al. [17,18]. Proceedings of three opacity conferences were published by Mayer [1], Huebner et al. [19] and Adelman and Wiese [START_REF] Adelman | Astrophysical applications of powerful new databases: Joint discussion no. 16 of the 22nd General Assembly of the IAU[END_REF]. Rickert [START_REF] Rickert | [END_REF] and Serduke et al. [22] summarized workshops in which opacities were compared. Efforts to calculate opacities and the underlying equations of state (EOS) have been renewed by the Los Alamos group, the Livermore group, and the Opacity Project at University College London and the University of Illinois. While the first two groups cover the entire range of atomic opacities, the last one concentrates on detailed EOS and opacities of light elements for stellar envelopes in the high temperature 3 10 3 ≤ T ≤ 10 7 K and low density regions of the astrophysical plasma domain [START_REF] Hummer | The opacity project and the practical utilization of atomic data[END_REF][START_REF] Seaton | [END_REF][START_REF] Berrington | The Opacity Project[END_REF][START_REF] Berrington | The opacity and iron projects -an overview[END_REF]. The low temperature limit avoids the presence of molecules and the high density limit is chosen so that the isolated atom or ion remains a reasonably good approximation.

Seventy-one years have passed, and despite the progress made, many researchers are still working on radiative opacity, due to its applications in the fields of inertial confinement fusion, defense and astrophysics. Several experiments were performed during the past three decades, but the recent experiment on the Z machine at Sandia National Laboratory (SNL), dedicated to the measurement of the transmission of iron in conditions close to the ones of the base of the convective zone of the Sun [START_REF] Bailey | [END_REF], reveals that our computations may be wrong or at least incomplete.

The two main facilities used for opacity measurements are lasers and Z-pinches. High-power lasers and Z-pinches can be used to irradiate high-Z targets with intense X-ray fluxes which volumetrically heat materials in local thermodynamic equilibrium (LTE) to substantial temperatures. These Xray fluxes produce a state of high-energy density matter that can be studied by the technique of absorption spectroscopy. In such experiments, also known as pump-probe experiments, the X-ray source creating the plasma is expected to be Planckian.

The radiative quantities which are measured are the reference I 0,ν (unattenuated radiation intensity) and I ν , the radiation attenuated by the plasma. ν is the photon frequency. The transmission of the sample is given by

T ν = I ν I 0,ν , (1) 
and the knowledge of T ν and of the areal mass of the sample enables one to deduce the opacity.

In laser experiments, the sample is heated by the X rays resulting from the conversion of the energy of laser beams focused inside a gold Hohlraum, and measurement of absorption coefficients in plasmas may be done for instance using the technique of point-projection spectroscopy, first introduced by Lewis and McGlinchey in 1985 [28]. The technique involves a small plasma produced by tightly focusing a laser on a massive or a fiber target to create a point-like X-ray source with a high continuum emission used to probe the heated sample. It was first used to probe expanding plasmas [29,30] and applied to probe a radiatively heated plasma for the first time in 1988 [31]. The point-projection spectroscopy technique can be used to infer the plasma conditions and/or its spectral absorption.

Z-pinch experiments mentioned above proceed as follows [32][33][34][START_REF] Bailey | AIP Conf. Proc[END_REF][START_REF] Nagayama | [END_REF]. The process entails accelerating an annular tungsten Z-pinch plasma radially inward onto a cylindrical low density CH 2 foam, launching a radiating shock propagating toward the cylinder axis. Radiation trapped by the tungsten plasma forms a Hohlraum and a sample attached on the top diagnostic aperture is heated during a few nanoseconds when the shock is propagating inward and the radiation temperature rises. The radiation at the stagnation is used to probe the sample.

For a quantitative X-ray opacity experiment, great care must be taken in the preparation of the plasma, as the latter must be spatially uniform in both temperature and density. Masses and dimensions of the sample must be well-known. In order to compare with LTE opacity codes (see for instance [37][38][39][40]), it is crucial to ensure that the plasma is actually in LTE. Quantitative information on the opacity can be obtained only if the following requirements are satisfied [41][42][43]:

(i) The instrumental spectral resolution has to be sufficiently high to resolve key line features and measured accurately prior to the experiments.

(ii) Backlight radiation and tamper transmission have to be free of a wavelength-dependent structures.

(iii) Plasma self-emission has to be minimized.

(iv) The tamper-transmission difference has to be minimized.

(v) The sample conditions must be uniform, achieving near-local thermodynamic equilibrium.

(vi) The sample temperature, density, and drive radiation should be independently measured.

(vii) Measurements should be repeated with multiple sample thicknesses.

(viii) Both quantities I 0,ν and I ν must be measured during the same experimental "shot" together with the plasma conditions.

The lack of simultaneous measurement of plasma conditions and absorption coefficient is a weakness of most absorption measurements. For example, some experiments rely on radiative-hydrodynamics simulations to infer the plasma temperature and density, while others provide measurements of temperature, density and absorption spectrum, but on different shots. However, even if many experimental teams devote lots of efforts to perform simultaneous measurements, the inferred quantities are always known with a limited accuracy.

There are many sources of uncertainty: areal mass of the sample, background radiation, intensity of the backlighter, plasma temperature and density, etc.

Strictly speaking, some of uncertainty quantification depends on platform (such as self-emission). Opacity-measurement uncertainty is challenging because it consists of three sources of uncertainties that are complicated in different ways:

(i) transmission uncertainty, (ii) areal density uncertainty, and

(iii) temperature and density uncertainties.

In addition, there are multiple sources for each category.

When there is a lateral areal-density non-uniformity, effective areal density (and its uncertainty) become transmission dependent. Therefore, areal-density non-uniformity must be treated either as transmission uncertainty or as a special category.

In the present work, we investigate some uncertainty sources in absorption spectroscopy measurements. In section 2, we show how the relative uncertainties on the transmission and on the areal mass ρL are related to the uncertainty on the opacity. The question we want to answer is: if we seek a particular value of the relative precision on opacity ∆κ ν /κ ν , knowing the relative uncertainty on the areal mass ∆(ρL)/(ρL), which precision ∆T ν on the transmission do we need? As an example, we impose the requirement ∆κ ν /κ ν =10 %. The uncertainties on the background emission and on the self-emission of the sample are discussed in section 3. We chose to discuss the latter areal-mass non-uniformities in a special category: different sources of uncertainty due to defects in the areal mass are examined in section 4: wedge shape, bulge (concave distortion), hollow (convex distortion), holes in the sample and oscillations. In section 5, we address the issue of the temperature and density uncertainties. Section 6 is the conclusion.

Required precision on the measured transmission

For a homogeneous and optically thin (non-emissive) material, the transmission is related to the opacity by the Beer-Lambert-Bouguer law [START_REF] Bouguer | Essai d'optique sur la gradation de la lumière[END_REF][START_REF] Lambert | Photometria, sive de mensura et gradibus luminis, colorum et umbrae[END_REF][START_REF] Beer | Bestimmung der Absorption des rothen Lichts in farbigen Flüssigkeiten[END_REF]:

T ν = e -ρLκν , (2) 
where ρ is the density and L the thickness of the material, κ ν its spectral opacity and T ν its transmission. ρL is the areal mass. Formula (2) is valid for ρLκ ν 1, i.e. T ν 0.37.

It is tempting to split the uncertainty propagation ∆T ν → ∆κ ν in two separate steps: ∆T ν → ∆τ ν (τ ν = ρLκ ν being the optical depth) and then ∆τ ν → ∆κ ν . The conversion from ∆T ν to ∆τ ν is complicated by nature due to their non-linear relation and T ν dependence. There are two main sources of ∆T ν :

(i) miscalibration between unattenuated intensity to attenuated intensity and (ii) background subtraction. Plasma self-emission (i.e., sample and tamper) can be considered as a special case of background (see Sec. 3).

The second phase is the conversion from ∆τ ν to ∆κ ν . This conversion is mathematically much less complicated than the ∆T ν → ∆τ ν one, and only areal-density uncertainties ∆(ρL) have to be quantified. For example, if ρL is perfectly known, the percent uncertainties on τ ν and κ ν are the same. If ρL is underestimated by 10 %, opacity κ ν (= τ ν /(ρL)) is (additionally) overestimated by 11 % (i.e., 1/0.9 ≈ 1.11). This is well separable from ∆T ν (or ∆τ ν ). For example, if τ ν is overestimated by 10 % due to transmission uncertainty (whatever the source is), 10 %-underestimated ρL ends up in giving 1.1/0.9=1.22, which ends up in 22 % overestimate in opacity. So, the impact of areal-density uncertainty can be separately computed from transmission (or optical-depth) uncertainty.

The quantity of interest in fine is opacity κ ν , which is considered to be a function of areal mass ρL (measured by specific techniques such as Rutherford back-scattering for instance) and transmission T ν . Actually, T ν is not measured directly; the quantities that are measured are transmitted intensity I ν , backlighter intensity I 0,ν , electron density n e , electron temperature T , etc.). Therefore, the proper way would be to consider κ ν = f (n e , L, T, I ν , I 0,ν , etc.). In order to simplify the problem, we gather all these variables into two ones: areal mass ρL and transmission T ν = I ν /I 0,ν . The study must absolutely be performed using κ ν = f (ρL, T ν ) and not T ν = f (ρL, κ ν ) (the latter procedure gives unrealistic uncertainties).

Uncertainty estimates obtained as standard deviations of repeated measurement results are called A-type uncertainty estimates. If uncertainty is estimated using some means other than statistical treatment of repeated measurement results then it is called B-type uncertainty. If q = f (x, y), the uncertainty is defined as the mean square root ∆q of N measurements as

(∆q) 2 = 1 N N i=1 (q i -q) 2 , (3) 
where the notation λ represents the average value of quantity λ:

λ = 1 N N i=1 λ i . (4) 
One can prove [START_REF] Taylor | An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements[END_REF] that:

(∆q) 2 = ∂f ∂x 2 (∆x) 2 + ∂f ∂y 2 (∆y) 2 + 2 ∂f ∂x ∂f ∂y ∆ xy , (5) 
where ∆ xy is the covariance of x and y:

∆ xy = 1 N N i=1 (x i -x) (y i -ȳ) . (6) 
If the variables x and y are independent, then the covariance is zero and one has

(∆q) 2 = ∂f ∂x 2 (∆x) 2 + ∂f ∂y 2 (∆y) 2 , (7) 
or

∆q = ∂f ∂x 2 (∆x) 2 + ∂f ∂y 2 (∆y) 2 . ( 8 
)
which is the relation we will use in the following. If the variables are not independent, there is no simple formula for the uncertainty, but an upper bound can be obtained (see Appendix A). In our case, q = κ ν , x = ρL, y = T ν , f (x, y) = -ln(y)/x and Eq. ( 5) becomes

∆κ ν κ ν = ∆(ρL) ρL 2 + 1 ln T ν ∆T ν T ν 2 . (9) 
Using Eq. ( 9) one gets the uncertainty on spectral transmission

∆T ν = -T ν ln(T ν ) ∆κ ν κ ν 2 - ∆(ρL) ρL 2 . ( 10 
)
One can also "invert" the formula [START_REF] Carson | Stellar opacities[END_REF] in order to express the transmission that should be sought in order to ensure a given value of ∆T ν :

T ν = - ∆T ν ∆κν κν 2 -∆(ρL) ρL 2 × W - ∆κν κν 2 -∆(ρL) ρL 2 , ( 11 
)
where W is Lambert's function (w = W (z) is the solution of we w = z, see Fig. 1) [START_REF] Lambert | [END_REF][START_REF] Lambert | Nouveaux Mémoires de l'Académie Royale des Sciences et Belles-Lettres de Berlin[END_REF][START_REF] Corless | [END_REF][51][52][53][54]. The Lambert function is named "ProductLog" in the Mathematica R software. Table 2 contains uncertainties mentioned in several publications about absorption-spectroscopy measurements over the past decades (see Refs. [32,[55][56][57][58][59][60][61][62][63][64][65][66]). For the enigmatic iron experiment on Z [START_REF] Bailey | [END_REF], as well as for the more recent measurements on chromium, iron and nickel [START_REF] Nagayama | [END_REF], the relative uncertainty on the areal mass ∆(ρL)/(ρL) was close to 4 % (estimated from Rutherford back-scattering). In a recent paper devoted to the ongoing National Ignition Facility (NIF) experiment on iron [67], Heeter et al. estimate the relative uncertainty on the areal mass ∆(ρL)/(ρL) ≈ 7%. The definition of Lambert's function (for the principal branch W 0 in black in Fig. 1) implies that:

W       - ∆T ν ∆κν κν 2 -∆(ρL) ρL 2       ≥ -1, (12) 
and

∆T ν ∆κν κν 2 -∆(ρL) ρL 2 ≤ 1 e , (13) 
which means that the largest acceptable value of ∆T ν corresponds to T ν = 1/e ≈ 0.37. If we want a precision ∆κ ν /κ ν of 10 % on the opacity, assuming a relative uncertainty of 7 % on the areal mass, formula [START_REF] Carson | Stellar opacities[END_REF] implies that, for a transmission T ν = 0.4, a precision of 0.026 is required on the transmission, which corresponds to ≈ 6.5 % (see table 1 and Fig. 2), which is consistent with the value of 0.02 (5 %) given by Heeter et al..

3 Background signal, backlighter characteristics and self-emission

Uncertainty on the background signal

Let us consider a wavelength-independent backlight signal I 0,ν ≡ I 0 (the effect of wavelengthdependent structures was studied by Iglesias [68]). Assuming a background radiation of intensity b ν in a restricted spectral region, we have

Tν = I ν -b ν I 0 -b ν . ( 14 
)
The quantity Tν represents the true transmission and T ν is the apparent transmission, i.e. the transmission defined by Eq. ( 2) without substracting the background δ. Expanding the latter expression up to second order yields

Tν ≈ T ν 1 - b ν T ν I 0 1 + b ν I 0 = T ν 1 + b ν I 0 1 - 1 T ν - b 2 ν T ν I 2 0 + O(δ 3 ). ( 15 
)
Therefore, at first order, we have

Tν ≈ T ν (1 + ) -, (16) 
where = b ν /I 0 . As can be seen in figures 3, 4 and 5, for a transmission of T ν ≈ 0.4, if background level is as high as 10 % of backlight intensity, transmission inferred without accounting for it (i.e. using Eq. ( 2) instead of Eq. ( 14)) would significantly misinfer the sample transmission. This background uncertainty is bigger when expected transmission value is low (see Figs. 3 and5). This is the reason why it is required to repeat many experiments with varied sample thicknesses in order to measure strong lines at sufficiently high transmission. It is important to mention that Eq. ( 14) can also be used to address the question of how the uncertainty ∆b ν on the background b ν would impact the inferred opacity. Indeed, the modified transmission can be rewritten

Tν = I ν -(b ν + ∆b ν ) I 0 -(b ν + ∆b ν ) = I ν -∆b ν I 0 -∆b ν , (17) 
with

I ν = I ν -b ν and I 0 = I 0 -b ν .

Effect of self-emission

The radiative-transfer equation for stationary, homogeneous and non-diffusive material reads

dI ν dx = -ρκ ν I ν + j ν , (18) 
where x represents the position along the line of sight of the spectrometer, I ν is the intensity of the radiation field and j ν the emissivity. For a plasma in LTE, using Kirchhoff's law j ν = B ν κ ν , where B ν is the Planckian distribution

B ν = 2hν 3 c 2 1 e hν k B T -1 , (19) 
one gets the solution

T ν = e -ρLκν + B ν I 0 1 -e -ρLκν . ( 20 
)
The transmission is therefore higher than the one predicted by Beer's law. However, Eq. ( 20) holds for a point-like source with a time-independent emission in one direction [START_REF] Mihalas | Stellar Atmospheres[END_REF], which is of course not representative at all of what really happens. The quantities B ν and I 0 are usually given in erg/s/eV/cm 2 /sr. However, the measured self-emission and backlight signals integrate B ν and I 0 , respectively, over their emitting area (observable from each point on the detector) and duration.

Comparing these quantities without the integrations has limited applicability. In reality, the measurements also integrate over small energy range and solid angle as well, but for many platforms, the integrations over these quantities have similar impacts on backlight radiation and self-emission. A point-projection method [75] has a greater chance of self-emission contamination. For example, if a 2 mm 2 sample foil is heated over 2.5 ns and backlit by a 200-µm backlight source over 300 ps, the ratio of sample-self-emission-to-backlight is close to 1/3 (in terms of expected photons per mm 2 , see Figure 5 of Ref. [START_REF] Ross | [END_REF]). In the NIF experiment, there is no dedicated aperture [START_REF] Ross | [END_REF], and thus, every point on the detector sees most of the emitting region. As a result, there is a huge difference in emitting area as well as in duration, which signifies the self-emission contamination relative to the backlight radiation. On the other hand, the Z-pinch experiment performed at SNL [START_REF] Bailey | [END_REF][START_REF] Nagayama | [END_REF] uses a larger backlight area (800 µm), and the detector's view is limited by an aperture and a slit. As a result, the detector sees similar emitting surface areas for backlight radiation and sample self-emission (see the red rectangle of Fig. 16(a) of Ref. [42]). In that way, the measurements are less subject to self-emission issues than the laser experiments. The durations of self-emission and backlight radiation are similar too, because the same source works as heating and backlight radiation. This might be the reason why NIF experiment suffers from self-emission and background, on the contrary to the SNL experiment. However, one has to be cautious; the background can also originate from other sources (such as Hohlraum itself, crystal second-(or higher-) order reflection, some sort of fluorescence or hard X rays, etc.). In order to quantify the impact of self-emission on the opacity measurements, one should consider the differences in the emission areas as well as the integration over their time histories (see Sec. IV-C of Ref. [43]).

It is worth mentioning that the point-projection method evoked in the introduction is not the best method at high temperature due to this reason.

4 Modeling spatial non-uniformities of the sample Figure 6 represents microscopy views of several copper samples (before the experiment) used during a recent (2017) experimental campaign in "Laboratoire pour l'Utilisation des Lasers Intenses" (LULI) in France [71]. As can be seen, the surface of the sample is far from being perfect. Spatial nonuniformities of targets have been widely investigated in the past (see for instance the non-exhaustive list of references [72][73][74]). There are various possible modulations. In reality, some modulation that exists in the target fabrication is relaxed during the experiment, while some other modulation might be produced by hydrodynamics. In the present work, we focus on five spatial deformations of the target in two dimensions: wedge, bulge (convex deformation), hollow (concave deformation), holes and oscillations (modulations of the surface), assuming that they are still present at the time of probe. Our goal is to find a simple analytical modeling of such non-uniformities in order to get a realistic idea of their respective impact.

The areal mass, written ρL, can have defects in both directions x and y (we do not, for simplicity, separate the variations of ρ and L with respect to x and y but ρL is taken as a global quantity) and its average reads

ρL(x, y) = 1 ab a 0 b 0 ρL(x, y)dxdy, (21) 
where a and b are the dimensions of the sample in directions x and y respectively.

Sometimes, the interpretation of an experimental spectrum reveals that the main structures have the right energy and relative intensities which seem consistent with the experiment, but the general level of transmission is not satisfactory. Even if the areal mass of the sample is guaranteed by the manufacturer with a good accuracy, it might happen that some variations of the areal mass occur, during the experiment. There might be a difference between the areal density used in the analysis and the true areal density. In the following, we assume that area-averaged areal density ρL(x, y) during the experiment is known and defined as Eq. ( 21) and try to quantify how different types of lateral variations would affect the opacity inferred with ρL(x, y) .

In the present work, ρL is considered as a function of lateral (or transverse) position x only (we still do not separate the dependence of ρ and L with respect to x and take ρL as a global quantity) and in both cases, we preserve the average areal mass:

ρL(x) = 1 a a 0 ρL(x)dx = ρ 0 L 0 , (22) 
a being the transverse dimension of the target. For a perfect sample (no defects), we have

Tν = T ν = e -κν ρ 0 L 0 , (23) 
and for a corrugated sample:

Tν = 1 a a 0 e -κν ρL(x) dx. (24) 
Equation ( 24) is correct only when backlight radiation is uniformly filling the observed sample area. For NIF, it should not be a problem since backlight is only bright over 100 µm (although it has a self-emission issue). The concern is modulation over 100 × 100 µm 2 backlit region. For SNL, it is a bigger concern since backlighter is bigger (approximately 800 µm). However, it should not be a serious problem because the measurement resolves in one direction and takes lineout only over brightest 300 µm. Since it does not resolve in other direction, the modulation concern for SNL experiment is over 800 (backlight width) × 300 (lineout width) µm 2 region. The convexity of the exponential function implies e -κν ρL(x) ≥ e -κν ρL(x) ,

and therefore, due to Eq. ( 22), we have

Tν ≥ T ν . (26) 
Assuming constant areal mass, the presence of spatial non-uniformities or distortions of the sample tends to make the foil more transparent. This is correct but may mislead the reader to think effective areal density is always lower. This is not true if the sample is tilted somehow by an angle θ, maybe due to misalignment or some weird hydrodynamics. If tilt happens, the apparent areal density along the line of sight is elongated by 1/ cos(θ).

We have considered a few distortions.

• Wedge: in order to model a wedge-shape distortion of the sample (see Fig. 7), we use the linear form

ρL(x) = ρ 1 L 1 1 - x a , (27) 
where controls the slope of the surface of the target. • Bulge: a concave distortion of the sample (see Fig. 11) is modeled here as

ρL(x) = ρ 1 L 1 - 4 a 2 x(x -a) + 1 . (28) 
• Hollow: a convex distortion (see Fig. 15) is modeled here as

ρL(x) = ρ 1 L 1 4 a 2 x(x -a) + 1 . (29) 
• Impact of holes: we choose to model the presence of holes (see Fig. 19) in the sample by the replacement

ρ 0 L 0 → ρ 1 L 1 (1 -), (30) 
where 0 < < 1 quantifies the amount of holes (the areal mass of the sample must therefore be increased from ρ 0 L 0 to ρ 1 L 1 ).

The different expressions of the modified transmission are summarized in table 3 and the derivations are provided in Appendix B.

The effect of the holes is stronger than the effect of the thickness modulations (25 % of holes yield the same result as 100 % of modulations). Nevertheless, to have a visible effect, one needs around 75-100 % of spatial modulations of the areal mass; it seems unrealistic to have such a perturbed hydrodynamic evolution and / or such a bad conception of the targets.

The impact of the different defects, as varies, is illustrated respectively in Figs. sufficiently high (which is the case in the laser or Z-pinch experiments mentioned above), the sample becomes a plasma, and the inhomogeneities will not be the same as the ones before the experiment (in the solid phase). For instance, one can imagine that the holes will be filled very quickly. In fact, the above considerations imply that we consider the defects of the sample at the instant of the probe.

5 Temperature and density uncertainties

A complex issue

The temperature and density uncertainties do not contribute to the opacity measurement itself. They are important only when comparing with models. Even if temperature and density are off by 50 %, it would be fine if the calculations were identical at the misinferred conditions. In fact, temperature and density uncertainties are very different from ∆T and ∆(ρL) ones, and cannot be discussed in a general way. The criteria must depend on the level of model-data discrepancies. The relevant question for this uncertainty is: can the observed discrepancy between measurement and modeling be explained by temperature and density uncertainties?

Upper bound on the uncertainty on temperature and density due to the cross-section calculation

Uncertainties in opacity calculations stem from the fundamental atomic cross-sections, plasma effects caused by perturbing ions, computational limitations, etc. Measurements of fundamental crosssections are usually carried out on neutral atoms, rather than on charged ions, due to the difficulty in preparing a sample in a specific ion stage and because of the myriad possibilities of excited levels. The problem is that cross-sections of neutral atoms are more difficult to calculate accurately because of the many-body electron-electron interaction. Thus, comparison of calculations with measured crosssections for neutral species should provide an upper bound on uncertainties. Huebner and Barfield [3] estimate that:

(i) When scattering dominates (high temperature, low density), the uncertainty in the opacity is 5 %.

(ii) As the density increases, free-free processes become more important, the uncertainty is less than 10 %.

(iii) As the temperature decreases and bound-free processes become important, the uncertainty increases to 15-20 % and as the temperature decreases still further (photo-excitation can contribute), the uncertainty increases to 30 %.

The calculated opacity uncertainty purely due to electron temperature and density uncertainties is not just cross-section uncertainty, but it involves cross-sections (oscillator strengths) combined with uncertainty on quantum-state populations as well as on line broadening (in the case of photoexcitation) and edge broadening (in the case of photo-ionization). Since we are mostly dealing with LTE opacities in the present work, the population factor reduces to a Boltzmann factor, and depends on the energies of the configurations (and therefore in particular on the way electron-electron interactions are taken into account). Line shapes depend on many factors such as the atomic-physics basis used in the computation, the microfield distribution, etc. In the present subsection, we try to find upper bounds on temperature and density uncertainties required to ensure a given relative uncertainty on opacity; for that purpose we simplify the problem as much as we can, and restrict ourselves to one process (the simplest one to model approximately), namely inverse Bremsstrahlung. Kramers' formula for inverse Bremsstrahlung reads:

κ ν ≈ N A A 2 32π 3 3 √ 3 e 2 4π 0 3 2 mc √ 2πmk B T Z * 3 ρ (hν) 3 , (31) 
which can be put in the form

κ ν ≈ CT -1/2 ρ/ν 3 yielding ∆κ ν κ ν ≈ 1 2 ∆T T + ∆ρ ρ . ( 32 
)
Of course, this is not realistic; in the experiments, our main goal is to study plasmas for which the photo-excitation is important. In general, it is difficult to find a simple scaling with density and temperature. If we require ∆κ ν /κ ν ≈ 0.1, relation (32) implies that

∆T T < 2 × 0.1 = 20 %, (33) 
and

∆ρ ρ < 10 %. ( 34 
)
Thus, if observed discrepancy is 10 %, T and n e need to be known better than 20 % and 10 %. This is a crude approximation, but since it is reasonable to assume that dκ ν /dT and dκ ν /dn e are similar between models than κ ν itself, such estimates should be relevant.

A remark on temperature inhomogeneities

Recently, Busquet [77] paid attention to the fact that under some circumstances, the transmission of a L-or M-shell weakly inhomogeneous plasma is identical to the transmission of a one-temperature plasma. This is clearly demonstrated in the case of an opacity varying linearly with the temperature. Indeed, if

T ν = exp - y 2 y 1 κ ν [T (y), ρ(y)] ρ(y)dy , (35) 
where T (y) and ρ(y) are temperature and density of the sample at depth y, y 1 and y 2 being the limits of the sample (see Fig. 27). Defining the average temperature T as

T = y 2 y 1 T (y)ρ(y)dy/ y 2 y 1 ρ(y)dy, (36) 
Busquet assumed a uniform density ρ (but this is not necessary), and a linear dependence of κ ν with respect to temperature:

κ ν (T, ρ) = κ ν ( T , ρ) + (T -T ) × d, (37) 
where

d = dκ ν dT T = T , (38) 
and therefore

T ν = exp - y 2 y 1 κ ν ( T )ρ(y)dy , (39) 
which means that T ν is identical to the transmission of a sample at the average temperature. This implies that, under particular circumstances, one can find a temperature for which the experiment can be interpreted, although the plasma is subject to gradients... This enforces the need for independent diagnostics of the plasma conditions (K-shell spectroscopy of a light element, Thomson scattering, shadowgraphy, etc.).

Conclusion

It is important to study the effect of relative uncertainties in photo-absorption measurements (areal mass, backlighter, background radiation, self-emission, etc.). In the present work, we discussed, assuming the knowledge of the uncertainty on the areal mass, the required uncertainty on the transmis-sion measurement in order to infer the opacity with a given accuracy. The issue of the uncertainty on the backlighter emission was also briefly investigated. We quantified the impact of several spatial nonuniformities of the areal mass on the transmission, considering fives cases: wedge, bulge, hollow, holes and modulations. The corresponding formulas can provide an insight on the effect of the amount of corrugations, depending in each case on a single parameter (e.g. depth of the hollow relative to the nominal thickness, density of holes, amplitude of modulations, etc.). Non-uniformities of the sample can be detected by analysis techniques (Rutherford back-scattering, scanning electron microscopy, etc.). Such defects always overestimate the transmission, i.e. make the plasma more transparent, due to convexity of the exponential function. They are more important when the spectral transmission is low. Holes, modulations (oscillations) and hollows (convex distortions) are expected to have the strongest impact.

7 Appendix A: Expression of opacity uncertainty in terms of areal-mass and transmission relative uncertainties

When the variables x and y are not independent, relation [START_REF] Cox | Stellar absorption coefficients and opacities[END_REF] can not be used anymore. In that case, an upper bound can be obtained. Indeed, using Schwartz inequality, one has

∆ xy ≤ ∆x.∆y, (40) 
and therefore

(∆q) 2 ≤ ∂f ∂x 2 (∆x) 2 + ∂f ∂y 2 (∆y) 2 + 2 ∂f ∂x ∂f ∂y ∆x∆y, (41) or 
(∆q) 2 ≤ ∂f ∂x ∆x + ∂f ∂y ∆y 2 , (42) yielding ∆q 
≤ ∂f ∂x ∆x + ∂f ∂y ∆y, (43) 
i.e. in the present case

∆κ ν κ ν ≤ ∆(ρL) ρL - 1 ln T ν ∆T ν T ν . ( 44 
)
We note that if we had used Eq. ( 44) for uncertainty evaluation, in order to achieve ∆κ ν /κ ν = 10% with ∆(ρL)/(ρL) = 7%, we would have obtained, for T ν = 0.4, ∆T ν = 0.011 (i.e. 2.75 %), which is smaller than the estimate made using Eq. ( 9), i.e. 0.026.

8 Appendix B: Impact of areal-mass distortions on the transmission -analytical formulas

In this appendix, we provide the main steps of the derivations of expressions givven in table 3.

Wedge

In order to model a wedge-shape distortion of the sample (see Fig. 7), we use the linear form

ρL(x) = ρ 1 L 1 1 - x a , (45) 
where controls the slope of the surface of the target. The preservation of the areal mass reads

ρ 1 L 1 1 a a 0 1 - x a dx = ρ 0 L 0 , (46) 
which yields

ρ 1 L 1 = ρ 0 L 0 1 -/2 , (47) 
and we get

Tν = (1 -/2) ln (T ν ) [T ν ] 1 1-/2 1 -T -1-/2 ν . ( 48 
)

Bulge (convex distortion)

A bulge-shape (concave) distortion of the sample (see Fig. 11) is modeled here as

ρL(x) = ρ 1 L 1 - 4 a 2 x(x -a) + 1 . (49) 
The quantity ρ 1 L 1 , given by the preservation of the areal mass, is

ρ 1 L 1 = ρ 0 L 0 1 + 2 /3 . ( 50 
)
We have therefore

Tν = 1 + 2 /3 -ln T ν [T ν ] 1 1+2 /3 D -ln T ν 1 + 2 /3 , (51) 
where D(x) represents Dawson's function

D(x) = e -x 2 x 0 e t 2 dt. ( 52 
)

Hollow (convex distortion)

In a similar way, a hollow (convex distortion, see Fig. 15) is modeled here as

ρL(x) = ρ 1 L 1 4 a 2 x(x -a) + 1 . (53) 
The thickness L 1 , given by the preservation of the areal mass, is

ρ 1 L 1 = ρ 0 L 0 1 -2 /3 . (54) 
In the case of a hollow, we have

Tν = √ π 2 [T ν ] 1- 1-2 /3 1 -2 /3 -ln T ν Erf -ln T ν 1 -2 /3 , ( 55 
)
where Erf is the usual error function

Erf(x) = 2 √ π x 0 e -t 2 dt. (56) 
Nevertheless, to have a visible effect, at least 25 % of holes are required in the target (this is very important, but since the considered thicknesses are of the order of a few hundreds of Angströms, it might be realistic).

Impact of holes

We choose to model the presence of holes (see Fig. 19) in the sample by the replacement

ρ 0 L 0 → ρ 1 L 1 (1 -), (57) 
where 0 < < 1 quantifies the amount of holes (the areal mass of the sample must therefore be increased from ρ 0 L 0 to ρ 1 L 1 ). The preservation of areal mass implies

ρ 1 L 1 = ρ 0 L 0 1 - , (58) 
and the transmission becomes

Tν = (1 -) [T ν ] 1 1-+ . (59) 

Modulations

We consider the following modulations of the sample (see Fig. 23):

ρL(x) = ρ 0 L 0 [1 + cos(x)] , (60) 
with 0 ≤ ≤ 1. We have, taking a = 2πN with N ∈ N:

ρL(x) = ρ 0 L 0 1 a a 0 [1 + cos(x)] dx = ρ 0 L 0 1 + a sin(a) = ρ 0 L 0 . (61) 
We get

Tν = T ν × 1 2πN 2πN 0 (T ν ) cos(x) dx = T ν × 1 2π
2π 0 e cos(x) ln(Tν ) dx,

and finally

Tν = T ν × I 0 (-ln T ν ) , (63) 
where I 0 is the Bessel function of the first kind of order zero. Table 2 Uncertainties mentioned in several publications about absorption-spectroscopy measurements (nonexhaustive list). T BL represents the effective temperature deduced from the backlighter flux (which is proportional to the fourth power of T BL according to Stefan's law). 
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 6 Fig. 6. (Color online) Microscopy views of a few samples from a recent (2017) absorption-spectroscopy campaign at LULI laboratory [71].
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 7 Fig. 7. (Color online) Wedge-shape distortion of the sample. The lowest purple arrows corresponds to I 0 and the highest to I ν . For the sample on the left I ν = T ν I 0 and for the sample on the right I ν = Tν I 0 .
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 8910 Fig. 8. (Color online) Impact of a wedge-shape distortion of the sample on ∆T ν /T ν for different values of .
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 11 Fig. 11. (Color online) Concave distortion of the sample (bulge). The lowest purple arrows corresponds to I 0 and the highest to I ν . For the sample on the left I ν = T ν I 0 and for the sample on the right I ν = Tν I 0 .
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 1213 Fig. 12. (Color online) Impact of a concave distortion of the sample (bulge) on ∆T ν /T ν for different values of .

Fig. 14 .

 14 Fig. 14. (Color online) Impact of a concave distortion of the sample (bulge) on the transmission of copper at T =18 eV, ρ=0.01 g/cm 3 and a resolving power of R = E/∆E=1000 (E is the photon energy) for different values of .

32

 32 

Fig. 15 .

 15 Fig. 15. (Color online) Convex distortion of the sample (hollow). The lowest purple arrows corresponds to I 0 and the highest to I ν . For the sample on the left I ν = T ν I 0 and for the sample on the right I ν = Tν I 0 .
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 1617 Fig. 16. (Color online) Impact of a convex distortion of the sample (hollow) on ∆T ν /T ν for different values of .
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 18 Fig. 18. (Color online) Impact of a convex distortion of the sample (hollow) on the transmission of copper at T =18 eV, ρ=0.01 g/cm 3 and a resolving power of R = E/∆E=1000 (E is the photon energy) for different values of .
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 19 Fig. 19. (Color online) Presence of holes in the sample. The lowest purple arrows corresponds to I 0 and the highest to I ν . For the sample on the left I ν = T ν I 0 and for the sample on the right I ν = Tν I 0 .
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 2021 Fig. 20. (Color online) Impact of the presence of holes in the sample on ∆T ν /T ν for different values of .
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 2225 Fig. 22. (Color online) Impact of the presence of holes in the sample on the transmission of copper at T =18 eV, ρ=0.01 g/cm 3 and a resolving power of R = E/∆E=1000 (E is the photon energy) for different values of .
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 26 Fig. 26. (Color online) Impact of oscillations of the sample surface on the transmission of copper at T eV, ρ=0.01 g/cm 3 and a resolving power of R = E/∆E=1000 (E is the photon energy) for different values of .
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 27 Fig. 27. (Color online) We consider a sample homogeneous along the x and z axis and located between y 1 and y 2 and subject to gradients along the y axis.

  

  Values of ∆T ν for different values of T ν in order to obtain an accuracy of 10 % on the opacity assuming an uncertainty of 7 % on the areal mass.

			T ν ∆T ν	∆Tν Tν		
			0.4 0.026 6.5 %		
			0.6 0.022 3.6 %		
	Table 1					
	Experiment	ρL	I 0	ρ or n e	T	T
	Foster et al. (1991) [55]			± 20 % (ρ)		
	Perry et al. (1991) [56]			± 35 % (ρ)	± 4 %	± 5 %
	Springer et al. (1992) [57]			± 0.8 % (ρ) ± 5 %	
	Da Silva et al. (1992) [58]					
	Eidmann et al. (1994) [59]		± 6 % (T BL )			
	Perry et al. (1996) [60]	± 5 %		± 20 % (ρ)	± 5 %	
	Merdji et al. (1998) [61]			± 35 % (ρ)		
	Chenais et al. (2000) [62]			± 50 % (ρ) ± 20 %	
	Bailey et al. (2003) [32]			± 33 % (n e )		
	Renaudin et al. (2006) [63] ± 30 %		± 25 % (ρ)	± 2 %	
	Loisel et al. (2009) [64-66]					
	Bailey et al. (2007) [33]	± 25 %		± 25 % (n e ) ± 4 %	± 2 %
						in [990-1305 eV]
						± 5 %
						in [800-990 eV]

[77] M. Busquet, J. Appl. Phys. 121, 023301 (2017).
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Defect

Areal mass

Modified transmission

Table 3 Modified transmission Tν as a function of the "unperturbed" transmission T ν in the case of the different areal-mass defects considered in the present paper. D(x) = e -x 2 x 0 t 2 dt represents Dawson's function, Erf(x) = 2 √ π

x 0 e -t 2 dt is the usual error function, and I 0 (x) is the Bessel function of the first kind of order zero. a is the areal size of the sample and quantifies the amplitude of the perturbation.