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Abstract
Given a bipartite graph G “ pU Y V, Eq, |U| ď |V|, the surplus of G is defined by the maximum number k such that a matching
covering all vertices of U still exists upon removal of any k vertices from V . Given a partitionU “ tU1, ...,Umu of U, the Multiple
Bipartite Complete Matching Vertex Blocker Problem (MBCMVBP) consists in finding a partition V “ tV1, ...,Vmu of V such
that the smallest surplus among those of the induced subgraphs GrUi Y Vis is maximized. The removed vertices are related to
the blocker notion. We show the strong NP-hardness of the MBCMVBP by using a reduction from the stable set problem. We
also propose two integer linear programs for solving this problem. After comparing these two models, we introduce some valid
inequalities for the model that outperforms the other one, and we analyze its facial structure. We then derive a Branch-and-Cut
algorithm based on these results and conclude by an analysis of the experimental results.

Keywords: matching interdiction/blocker problem, bipartite graph, polytope, integer linear programming, Branch-and-Cut

1. Introduction

Solving interdiction/blocker problems is a mean to determine the maximum possible perturbation such that, be-
yond that point, no valid solution exists for the studied problem. Practically, these perturbations can be triggered
by failures, attacks or absenteeism. Furthermore, such weakness analysis can be used to define tactical and strategic
investments to make the model robust.

The matching interdiction/blocker problem ([13], [14]) consists in finding the maximum number of edges or nodes
that can be removed such that a matching with a given cardinality still exists.

Given a bipartite graph G “ pU Y V, Eq, |U| ď |V|, the complete matching problem on U consists in finding a
matching covering all vertices of U ([3], [10]). The bipartite complete matching vertex blocker problem (BCMVBP)
([8]) consists in finding the maximum number k such that a complete matching on U still exists after removal of any
k vertices in V . Let U “ tU1, ...,Umu be a partition of U. Given a partition V “ tV1, ...,Vmu of V , we denote by ki

the solution of the BCMVBP associated with the induced subgraph GrUi Y Vis, i P t1, ...,mu. The Multiple Bipartite
Complete Matching Vertex Blocker Problem (MBCMVBP) consists in finding a partition V “ tV1, ...,Vmu of V such
that the minimum of tk1, ..., kmu is maximized.

To the best of our knowledge, this problem has never been studied before. It can be applied in different fields. For
instance, in nurse rostering and staff management, BCMVBP can be employed to identify the critical number of staff

with specific skills below which the system remains under-staff. When considering several time shifts, the idea is to
have the biggest common flexibility on each shift.
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sebastien.martin@univ-lorraine.fr (Sébastien Martin), anass.nagih@univ-lorraine.fr (Anass Nagih),
zsuzsanna.roka@univ-lorraine.fr (Zsuzsanna Róka)
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Our contributions. The complexity of the problem is analyzed, and two Integer Linear Programs (ILP) are proposed.
Some polyhedral properties of the problem are identified including facets and valid inequalities to strengthen their
efficiency in a Branch-and-Cut algorithm. All the proposed algorithms have been tested to evaluate the practical
effectiveness of the algorithmic ingredients developed. Note that the instances are generated to represent real-life
assignment problems such as nurse rostering.

Related work. The notion of interdiction/blocker is relevant in several fields. For example, considering computer net-
works, it is primordial to guarantee the continuity of services in case of dysfunction of some routers or switches. These
problems are usually modeled by shortest paths ([1]), spanning trees ([2]) or network flows ([7]) in the underlying
graph.

In the field of human resources, being able to anticipate the potential absenteeism is essential in order to ensure
the proper running of a company. This class of problems can be formulated by matching or scheduling models.

The blocker problem allows the understanding of the strength of the graph according to a given property. It has
been studied on several well-known graph properties such as the independent set ([18], [19]) and related structures,
i.e. clique and chromatic number ([15], [17]) or path problem ([16]).

One of the problems related to the matching interdiction/blocker problem has been studied in [12], where the
authors consider the minimum d-blocker problem. The goal is to determine a minimum cardinality subset of edges
such that their deletion from the graph decreases the matching number by at least d units. This problem corresponds
to a particular case of the edge interdiction problem.

In [13] and [15], the authors studied two particular versions of the matching interdiction problem. The first one,
called edge interdiction problem, considers a graph in which each edge has a weight and an interdiction cost. The
goal is to find a subset of edges such that the value of a maximum-weight matching without these edges is minimized,
with respect to a cost constraint. The second problem is defined in a similar way, where costs are applied to vertices
instead of edges. These problems are shown as being NP-complete even in bipartite graphs, and some approximation
algorithms are proposed to solve them. The same author, in [14], extended his proof to show the NP-hardness of these
problems in the particular scope of bipartite graphs.

In [8], the authors showed the polynomiality of this problem when a complete matching is considered. This
problem is a particular case of the MBCMBVP when |U| “ 1. It has been applied to a robust nurse assignment
problem which consists in affecting nurses to jobs according to their skills in such a way that possible absences may
not perturb the schedule.

Note that these models can be applied to study problems of assignment in any domain where the management of
staff or production with limited resources is needed (air or rail transports, timetabling, . . . ).

Organization of the paper. In the next section, we give some basic definitions. In Section 3, the MBCMVBP is
defined, and its NP-completeness is proved. In Section 4, we propose and study two Integer Linear Programs. The
first one is based on the dual of the model used for the BCMVBP. The second one is an alternative with a reduced
number of variables but an exponential number of inequalities. We also analyze the associated polytope and present a
new family of inequalities. Then, some solving strategies and experimental results are presented in Section 5. In the
last section, we propose some directions for further research.

2. Basic notions and definitions

Let us first introduce some notations and recall some basic notions concerning graphs, stable sets, and matchings.

Graphs. Let G “ pW, Eq be a graph, where W is the set of vertices and E is a set of edges which are unordered
pairs of vertices of W. An edge tu, vu, where u and v are two vertices of W, is denoted uv (or vu). For each uv P E,
the vertices u and v are said to be neighbors. In the following, the neighborhood of a vertex v P W is denoted by
NGpvq Ď W. We extend this notation to a subset W 1 Ď W by NGpW 1q “

Ť

vPW1 NGpvq.

Stable set. A subset S of vertices is a stable set if NGpS q X S “ H. Equivalently, each edge in the graph has at most
one endpoint in S . The size of a stable set is its cardinality.
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Maximal stable set. A stable set S is said to be maximal if it cannot be strictly included in another stable set. The
problem of finding a maximal stable set of maximum size is called the maximum stable set problem and is an NP-hard
optimization problem. The stable set decision problem concerning the existence of a stable set of a given size K can
be solved in polynomial time if K is a fixed integer. However, if K is a part of the instance, the problem becomes
NP-complete in the strong sense.

Bipartite graph. Let tU,Vu be a partition of the set of vertices W (i.e. U Y V “ W and U X V “ H) such that
NGpUq Ď V and NGpVq Ď U. G “ pW “ U Y V, Eq is called a bipartite graph.
Let V 1 Ď V , U 1 Ď U and ErU 1YV 1s “ tuv | u P U 1, v P V 1, uv P Eu. We denote by GrU 1YV 1s “ pU 1YV 1, ErU 1YV 1sq
the subgraph of G induced by U 1 Y V 1.

Matchings. Given a graph, a matching is a subset of edges such that no two edges share a common vertex. The
matching problem consists in finding a matching with a maximal cardinality ([3], [9]).

Complete Matchings. Let G “ pU Y V, Eq, |U| ď |V|, be a bipartite graph. A complete matching on U is a matching
covering all vertices of U, i.e. each vertex of U is incident with an edge of the matching. The associated problem
consists in finding a complete matching on U. If |U| “ |V|, then a complete matching on U is called a perfect
matching.

The following theorem is a fundamental result about the existence of a complete matching in bipartite graphs ([6]).

Theorem 1 (Hall’s theorem). Let G “ pU YV, Eq be a bipartite graph. There exists a complete matching on U if and
only if |NGpU 1q| ě |U 1| for all U 1 Ď U.

Surplus. The surplus of a subset U 1 Ď U is defined as σGpU 1q “ |NGpU 1q| ´ |U 1|. When U 1 “ tuu, the surplus of
U 1 is denoted by σGpuq. The surplus of G is defined as σpGq “ minH‰U1ĎUtσGpU 1qu.

k-Complete Matchings ([8]). Let G “ pU Y V, Eq be a bipartite graph. We say that G is k-Complete Matchable
(k-CM) on U if and only if, for all V 1 Ď V with |V 1| “ |V| ´ k, there exists a complete matching on U in the induced
subgraph GrU Y V 1s. Note that if a graph is k-CM on U, then it is also pk ´ 1q-CM on U, for k ą 0.

Note that the particular case of k “ |V| ´ |U| has been studied in [9], and such a bipartite graph is called k-critical.

In [8], the following result has been presented for the case when 0 ď k ď σpGq.

Theorem 2 (Surplus form of Hall’s theorem). Let G “ pU Y V, Eq be a bipartite graph. G is k-CM on U if and only
if, for all non-empty subset U 1 Ď U, |NGpU 1q| ě |U 1|` k. The maximum value of k such that G is k-CM on U is equal
to σpGq.

Theorem 3. σpGq can be computed in polynomial time.

Proof. As σ is a submodular set function on U ([10]), its minimum value can be computed by a strongly polynomial-
time algorithm ([11]).

The graph presented in Figure 1 is 2-CM (and so 1-CM) on U: after deleting any two vertices (in grey color)
from V , there still exists a complete matching on U (bold edges). It is not the case for more than two vertices, hence
σpGq “ 2.

U

V

U

V

U

V

U

V

Figure 1: 2-CM on U bipartite graph.
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3. Multiple Bipartite Complete Matching Vertex Blocker Problem (MBCMVBP)

First, we give some definitions, and we illustrate them on some examples. Then, we analyze the complexity of
this problem.

Definition 1. Let G “ pUYV, Eq be a bipartite graph,U “ tU1, ...,Umu be a partition of U andV “ tV1, ...,Vmu be
a partition of V. For all i P M “ t1, ...,mu, we denote by Hi the induced subgraph GrUiYVis. We say that pG,U,Vq
is k-Multiple Complete Matchable (k-MCM) onU if and only if, for all i P M, Hi is k-CM on Ui.

The graph presented on Figure 2 is 1-MCM onU: H1 “ GrU1 Y V1s is 2-CM on U1 and H2 “ GrU2 Y V2s is 1-CM
on U2.

U

U1

U2

V

U

U1

U2

V

V1

V2

Figure 2: An instance of a MBCMVBP and its solution.

Definition 2 (MBCMVBP). Let G “ pU Y V, Eq be a bipartite graph and U “ tU1, ...,Umu a partition of U.
The Multiple Bipartite Complete Matching Vertex Blocker Problem (MBCMVBP) consists in finding a partition
V “ tV1, ...,Vmu of V such that min

 

σpHiq | i P M
(

is maximum. We denote this maximum number by σpG,U,Vq.

In Figure 2, the solution of the MBCMVBP is given by the partitionV “ tV1,V2u with σpG,U,Vq “ 1.

Let us now study the complexity of the MBCMVBP.
Remark that the case m “ 1, i.e. |U| “ 1, is equivalent to compute σpGq. So this subproblem is polynomial from

Theorem 3.
We now consider the complexity of the MBCMVBP when U is composed of more than one set. The decision

problem associated with this problem is denoted by dec-MBCMVBP. An instance of this decision problem is given by
a graph G “ pU YV, Eq, a partitionU of U and an integer q. It consists in determining if there exists a partitionV of
V , |V| “ |U|, such that pG,U,Vq is at least q-MCM onU. In order to show that dec-MBCMVBP is NP-complete,
it is sufficient to show that it is NP-complete when |U| “ 2.

Theorem 4. The dec-MBCMVBP is strongly NP-complete when |U| “ 2.

Proof. We first show that the dec-MBCMVBP is in NP. Let us consider a graph G “ ptU1,U2u Y V, Eq, an integer
q and a solution given by the partition V “ tV1,V2u of V . By Theorem 3, it is possible to test in polynomial time
whether the surplus σpGrU1 Y V1sq ě q and σpGrU2 Y V2sq ě q. Thus, MBCMVBP is in NP. We now show the
NP-completeness in a strong sense of the dec-MBCMVBP by a transformation from the stable set decision problem
presented in Section 2.

Let us consider an instance of the stable set problem G1 “ pV 1, E1q and a positive integer K ď |V1|

2 (see Figure 3a).
As the stable set decision problem is NP-complete for any K ď |V 1| (see [4]), it is sufficient to show that the stable
set decision problem with K ď

|V1|

2 can be polynomially reduced to dec-MBCMVBP. We assume, without loss of
generality, that the graph G1 is connected. Otherwise, we consider each connected component separately. We obtain
an instance of the dec-MBCMVBP by constructing a graph G “ pU Y V, Eq and a partition U “ tU1,U2u (see
Figure 3b), as follows:
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– U “ U1 Y U2, where U1 “ tu1
e1 |e1 P E1u and U2 “ tu2u.

– V “ W1 YW2 YW3, where W1 “ tv1
e1 |e1 P E1u, W2 “ tv2

v1 |v1 P V 1u and W3 “ tv3
j | j P t1, .., |V

1| ´ 2Kuu. Note
that W3 is a set of fictitious vertices.

– E “ E1 Y E2 Y E3 Y E4, where E1 “ tv1
e1 u1

e1 |e1 P E1u, E2 “ tv2u2|v2 P W2u,
E3 “ tv2

v1 u1
e1 |v2

v1 P W2, u1
e1 P U1, e1 not incident to v1 in G1u and E4 “ tv3u1|v3 P W3, u1 P U1u.

(a) Stable set instance, K “ 2.
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(b) Construction of G.
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(c) pG,U, tV1,V2uq is 2-MCM onU,
V1 “ W1 YW3 YW4,V2 “ W5.

Figure 3: Stable set problem instance and the associated bipartite graph.

Recall that G1 is supposed to be connected. Then, by the construction of graph G, the following observations hold.

Observation 1. For each non-empty subset W 1
2 of W2, there exists at least one vertex of U1 having less than |W 1

2|

neighbors in W 1
2.

Indeed, if each vertex of U1 had exactly |W 1
2| neighbors in W2, the vertices of G1 associated with the vertices of W 1

2
would be isolated vertices, and G1 would not be connected.

Observation 2. Let S be a non-empty proper subset of V 1 and let W 1
2 be a non empty proper subset of W2 such that

S “ tx P V 1 | v2
x P W 1

2u and W 1
2 “ tv

2
x P W2 | x P S u. Then S is a stable set of G1 if and only if each vertex of U1 has

at least |W 1
2| ´ 1 neighbors in W 1

2.

Indeed, if S is a stable set of G1, then each edge e1 P E1 is incident to at most one vertex of S and hence each vertex of
U1 is adjacent to at least |W 1

2|´1 vertices of W 1
2. Conversely, if W 1

2 is such that each vertex of U1 is adjacent to at least
|W 1

2| ´ 1 vertices of W 1
2, then each edge e1 P E1 is incident to at most one vertex of S and hence S is a stable set of G1.

Remark that the number of vertices of U1 having exactly |W 1
2| ´ 1 neighbors in W 1

2 is positive (by Observation 1) and
equal to the number of edges of E1 which are incident to exactly one vertex of S .

To complete the proof of the theorem, it is sufficient to show the following claim.

Claim 1. G1 contains a stable set of size at least K, K ď |V1|

2 , if and only if there exists a partitionV “ tV1,V2u of V
such that pG,U,Vq is at least p|V 1| ´ K ´ 1q-MCM onU.
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Proof. (ñ) Let us suppose that G1 contains a stable set S of size K (S “ td, eu in Figure 3a). We split W2 into W4
and W5, W4 being the set of vertices associated to the vertices of S (W4 “ tv2

d, v
2
eu in Figure 3c) and W5 “ W2zW4 .

Note that |W4| “ K and |W5| “ |V 1| ´ K. Let H1 “ GrU1 Y V1s where V1 “ W1 YW3 YW4, and H2 “ GrU2 Y V2s

where V2 “ W5.

By construction of G, each non-empty subset U 11 of U1 has |U 11| neighbors in W1 and |V 1| ´ 2K neighbors in W3.
Thus, σpGrU1 Y pW1 YW3qsq “ |V 1| ´ 2K. By Observation 2, each non-empty subset U 11 of U1 has at least K ´ 1
neighbors in GrU1YW4s and hence σH1pU

1
1q ě p|V

1|´2Kq`pK´1q “ |V 1|´K´1 . Therefore, σpH1q ě |V 1|´K´1.

Recall that U2 “ tu2u. Since NH2pu2q “ W5, the surplus of H2 is σpH2q “ |W5| ´ 1 “ |V 1| ´ K ´ 1.

By Theorem 2, H1 is p|V 1| ´ K ´ 1q-CM on U1 and H2 is p|V 1| ´ K ´ 1q-CM on U2. Thus, pG,U,Vq is
p|V 1| ´ K ´ 1q-MCM onU.

(ð) Suppose that there exists a partition V “ tV1,V2u such that Hi “ GrUi Y Vis is p|V 1| ´ K ´ 1q-CM on Ui

(i.e. σpHiq ě |V 1| ´ K ´ 1), i P t1, 2u.

Let W5 be any subset of W2 of cardinality at least |V 1|´K. By choosing V2 “ W5, we have σpH2q ě |V 1|´K´1.

Let W4 be any subset of W2zW5. Notice that |W4| ď K. A necessary condition for σpH1q to be greater than or
equal to |V 1| ´K´ 1 is that |NH1pU1q| ě |U1| ` p|V 1| ´K´ 1q “ |E1| ` p|V 1| ´K´ 1q. Hence, the minimum size of
V1 is |E1| ` |V 1| ´ K ´ 1 and, by construction of G, its maximum size is |E1| ` |V 1| ´ K. According to this necessary
condition, V1 can be composed in three different ways :

- V1 “ W1 YW3 YW4 where |W4| P tK ´ 1,Ku,

- V1 “ W 1
1 YW3 YW4 where W 1

1 Ă W1, |W 1
1| “ |W1| ´ 1, |W4| “ K,

- V1 “ W1 YW 1
3 YW4 where W 1

3 Ă W3, |W 1
3| “ |W3| ´ 1, |W4| “ K. Note that this composition of V1 is only

possible when W3 is not empty, i.e. when |V 1| ą 2K.

Let H14 “ GrU1 YW4s and H1z4 “ GrU1 Y pV1zW4qs. Then, for each u1 P U1, the surplus of u1 in H1 is σH1pu
1q “

σH1z4pu
1q ` |NH14pu

1q|. Therefore, a necessary condition for σpH1q to be greater than or equal to |V 1| ´ K ´ 1 is

σH1z4pu
1q ` |NH14pu

1q| ě |V 1| ´ K ´ 1,@u1 P U1. piq

We now study the effect of this necessary condition on W4 for each possible composition of V1.

Case 1: V1 “ W1 YW3 YW4, |W4| P tK ´ 1,Ku. Then, H1z4 “ GrU1 Y pW1 YW3qs and σH1z4pu
1q “ |V 1| ´ 2K, for

each vertex u1 P U1. Condition piq implies that |NH14pu
1q| ě p|V 1| ´ K ´ 1q ´ p|V 1| ´ 2Kq “ K ´ 1, for each

vertex u1 P U1. By Observation 1, the cardinality of W4 has to be equal to K and at least one vertex of U1 has
exactly K ´ 1 neighbors in W4. By Observation 2, S “ tx P V 1 | v2

x P W4u is a stable set of size K of G1.

Case 2: V1 “ W 1
1 Y W3 Y W4, W 1

1 Ă W1, |W 1
1| “ |W1| ´ 1, |W4| “ K. Then, H1z4 “ GrU1 Y pW 1

1 Y W3qs. Let
twu “ W1zW 1

1 and let u be the unique neighbor of w in U1. Then σH1z4puq “ |V
1| ´ 2K ´ 1 (as w R W 1

1) and
σH1z4pu

1q “ |V 1| ´ 2K, for each vertex u1 P U1ztuu. Therefore, condition piq implies that:

@u1 P U1, |NH14pu
1q| ě

#

p|V 1| ´ K ´ 1q ´ p|V 1| ´ 2K ´ 1q “ K if u1 “ u,

p|V 1| ´ K ´ 1q ´ p|V 1| ´ 2Kq “ K ´ 1 if u1 ‰ u.

Thus, W4 is such that the unique neighbor of w in U1 has exactly K neighbors in W4, while the other vertices of
U1 have at least K ´ 1 neighbors in W4. By Observation 2, S “ tx P V 1 | v2

x P W4u is a stable set of size K of
G1.

Case 3: V1 “ W1 YW 1
3 YW4, W 1

3 Ă W3, |W 1
3| “ |W3| ´ 1, |W4| “ K, |V 1| ą 2K. Then, H1z4 “ GrU1 Y pW1 YW 1

3qs

and σH1z4pu
1q “ |V 1| ´ 2K ´ 1, for each vertex u1 P U1. Condition piq implies that |NH14pu

1q| ě p|V 1| ´ K ´
1q ´ p|V 1| ´ 2K ´ 1q “ K, for each vertex u1 P U1. By Observation 1, such a subset W4 does not exist. For
such a composition of V1, H1 cannot be p|V 1| ´ K ´ 1q-CM on U1.
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We deduce from these cases that σpH1q ě |V 1|´K´1 only if S “ tx P V 1 | v2
x P W4u is a stable set of size |W4| “ K

of G1.

We can conclude that if there exists a partition V such that pG,U,Vq is p|V 1| ´ K ´ 1q-MCM on U, then G1

contains a stable set of size K.

We can deduce the following corollary.

Corollary 1. MBCMVBP is strongly NP-Hard when |U| ě 2.

4. Integer linear programs for MBCMVBP

In this section, we propose two models representing the MBCMVBP. The first model, called dual based formula-
tion, is based on the integer linear program to solve the MBCMVBP when |U| “ 1. This problem has been introduced
in [8] and will be called BCMVBP for short. The second model, called natural formulation, contains an exponential
number of inequalities allowing to satisfy the property of Theorem 2, for all Ui P U, i P M.

The comparison of these two models is presented in Section 5, where some possible improvements are also
proposed.

4.1. Bipartite Complete Matching Vertex Blocker Problem (BCMVBP)

We present the integer linear program given in [8] to solve BCMVBP.
Let x P t0, 1u|UYV| be defined by

xu “

"

1 if u P U 1,
0 otherwise, @u P U,

xv “

"

1 if v P NGpU 1q,
0 otherwise, @v P V.

The BCMVBP can be formulated as follows:

min

˜

ÿ

vPV

xv ´
ÿ

uPU

xu

¸

(1)

ÿ

uPU

xu ě 1, (2)

pIPq xu ´ xv ď 0, @uv P E, u P U, v P V, (3)
xw P t0, 1u, @w P U Y V. (4)

The objective function expresses Theorem 2. Inequality (2) guarantees that the set U 1 is not empty. Inequalities
(3) ensure that the variables xv associated with the neighborhood of U 1 will be set to 1.

We denote by pPq the linear relaxation of pIPq, replacing constraint (4) by

xw ď 1, @w P U Y V, (5)
´ xw ď 0, @w P U Y V. (6)

7



/ Procedia Computer Science 00 (2019) 1–23 8

4.2. Dual based formulation
The first integer linear program is based on the dual of the model pPq. If we maximize the smallest difference on

each graph Hi“ GrUi Y Vis, i P M, then we do not find σpHiq since σpHiq is given by the smallest difference. Hence,
the model of MBCMVBP cannot be derived directly from pPq by maximizing the smallest surplus. We propose to use
the dual formulation that can be generalized and verifies the integrality property.

Let us first study the BCMVBP. In order to convert the linear relaxation pPq of pIPq into a dual problem pDq, we
consider the subproblem pPũq of pPq where ũ P U 1 and the inequality (2) of pPq is replaced by the equality xũ “ 1:

min

˜

ÿ

vPV

xv ´
ÿ

uPU

xu

¸

yũ : xũ “ 1, (7)
pPũq yuv : xv ´ xu ě 0, @uv P E, u P U, v P V, (8)

yv : ´xv ě ´1, @v P V, (9)
xw ě 0, @w P pU Y Vqztũu. (10)

Note that the optimal value of pPq is the smallest optimal value of all Pũ, ũ P U 1.
For each ũ P U, the dual program pDũq of pPũq is defined as follows:

max

˜

yũ ´
ÿ

vPV

yv

¸

xũ :
ÿ

vPNGpũq

yũv ´ yũ ě 1, (11)

pDũq xu :
ÿ

vPNGpuq

yuv ě 1, @u P Uztũu, (12)

xv :
ÿ

uPNGpvq

yuv ´ yv ď 1, @v P V, (13)

yw1 ě 0, @w1 P pU Y Vqztũu, (14)
yuv ě 0, @uv P E, u P U, v P V (15)
yũ free. (16)

The minimum value of the pDũq programs, for all ũ P U, corresponds to an optimal solution of the following linear
program pDq:

max y (17)

xũ :
ÿ

vPNGpũq

yũ
ũv ´ yũ

ũ ě 1, @ũ P U, (18)

xu :
ÿ

vPNGpuq

yũ
uv ě 1, @ũ P U,@u P Uztũu, (19)

pDq xv :
ÿ

uPNGpvq

yũ
uv ´ yũ

v ď 1, @ũ P U,@v P V, (20)

y ď yũ
ũ ´

ÿ

vPV

yũ
v , @ũ P U, (21)

yũ
w ě 0, @ũ P U,@w P pU Y Vqztũu, (22)

yũ
uv ě 0, @ũ P U,@uv P E, u P U, v P V, (23)

yũ
ũ free, @ũ P U. (24)

8
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Note that the matrix corresponding to pDũq is totally unimodular (see [8]) and the coefficients of the objective
function and the right hand side constraints are integers. Therefore, the optimal solution and the objectif function
value are integer. By the duality Theorem, optimal solutions of both programs pDq and pPq are integer. Indeed, the
variable y maximizes the smallest value of each pDũq, ũ P U, and the linear programs pDũq are integer, and thus the
optimal solution given by y is integer.

The program pDq allows to solve the BCMVBP.
We denote by pIDiq the program associated with Ui P U. Now we extend this formulation to solve the MBCMVBP

by merging the programs pIDiq, i P M. We define the binary variables

xi
v “

"

1 if v P Vi,
0 otherwise, @v P V and @i P M.

We can deduce the following integer linear program:

max y
ÿ

vPNHi pũq

yũ
ũv ´ yũ

ũ ě 1, @i P M,@ũ P Ui, (25)

ÿ

vPNHi puq

yũ
uv ě 1, @i P M,@ũ P Ui,@u P Uiztũu, (26)

ÿ

uPNHi pvq

yũ
uv ´ yũ

v ď 1, @i P M,@v P V,@ũ P Ui, (27)

yi ď yũ
ũ ´

ÿ

vPV

yũ
v , @i P M,@ũ P Ui, (28)

pID1q y ď yi, @i P M, (29)

yũ
uv ď µxi

v @i P M,@ũ P Ui,@uv P E, u P Ui, v P V, (30)

yũ
v ď µxi

v @i P M,@ũ P Ui,@v P V, (31)
ÿ

iPM

xi
v “ 1 @v P V, (32)

yũ
w ě 0, @i P M,@ũ P Ui,@w P pUi Y Vqztũu, (33)

yũ
uv ě 0, @i P M,@ũ P Ui,@uv P E, u P Ui, v P V, (34)

yũ
ũ free, @i P M,@ũ P Ui, (35)

xi
v P t0, 1u, @i P M,@v P V, (36)

where µ is a big constant value.

Inequalities (25) – (28) extend (18) – (21), (29) is derived from the objective function (17) and (30) – (32) ensure
the partitioning. Indeed, @v P V , i P M, if xi

v “ 1, then all variables y associated with v in (30) – (31) are free, thanks
to the constant µ. Otherwise, all these values are equal to 0 and thus are not considered in the subset Vi. A solution
where all xi are fixed to 0 or 1 implies an integer value for all variables.

The following proposition can improve the dual formulation by reducing the number of variables and inequalities.

Proposition 1. Let ũ1, ũ2 P U and let pPũ1q and vpPũ2q be the values of pPũ1q and pPũ2q, respectively. If NGpũ1q Ă

NGpũ2q then vpPũ1q ď vpPũ2q.

Proof. For all U 1 Ď U containing ũ1 and ũ2, we have

|NGpU 1q| ´ |U 1| “ |NGpU 1ztũ1uq| ´ |U 1| ď |NGpU 1ztũ1uq| ´ |U 1ztũ1u|.

Let U 12 be a subset associated to the optimal solution of pPũ2q. The inequality above implies that ũ1 P U 12.
9
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Let U 11 be any subset of U containing ũ1 but not ũ2. By constructing a subset U 12 “
`

U 11ztũ1u
˘

Y tũ2u for each
U 11, we obtain all subsets of U containing ũ2 but not ũ1. As NGpũ1q Ď NGpũ2q, the inequality |NGpU 11q| ´ |U

1
1| ď

|NGpU 12q| ´ |U
1
2| holds for all U 11, where U 12 “

`

U 11ztũ1u
˘

Y tũ2u. According to Theorem 2, vpPũ1q ď vpPũ2q.

We denote by Ũ the set of vertices ũ P U such that there does not exist any ũ1 P U verifying NGpũ1q Ă NGpũq.
Considering only the variables associated with Ũ in the dual formulation is sufficient. The impact of this property will
be analyzed in the experimental study of Section 5.3.1.

4.3. Natural formulation

In this section, we propose an alternative formulation using a smaller number of variables and without the big
constant µ.

4.3.1. Integer linear program formulations
Recall that our goal is to find a partitionV “ tV1, ...,Vmu of V such that pG,U,Vq is σpG,U,Vq-MCM onU.
We now present the integer linear program formulated to find V. Let xi

v, @v P V,@i P M, be defined as in
Section 4.2, and let z P N be the value of σpG,U,Vq. The expressed model follows:

max z
ÿ

iPM

xi
v “ 1, @v P V, (37)

pP1q
ÿ

vPNGpU1q

xi
v ´ z ě |U 1|, @i P M,@U 1 Ď Ui, (38)

xi
v P t0, 1u, @v P V,@i P M, (39)

z P N, (40)

where equalities (37) ensure that each vertex v P V belongs to only one set of the partition V and inequalities (38)
verify Theorem 2 on each subgraph Hi“ GrUi Y Vis, i P M.

4.3.2. Polyhedral study
To simplify the polyhedral study without modifying the optimal solution, we relax the constraints (37) as follows:

ÿ

iPM

xi
v ď 1, @v P V. (41)

Let PpG,Uq be the convex hull of the solutions of program pP1q, that is,

PpG,Uq “ convptpx, zq P t0, 1u|V|ˆm ˆ N | x, z satisfy (38) and (41)uq.

Replacing inequalities (37) by (41) implies that some vertices may not be assigned to any set of the partition V.
The set of these vertices is denoted by V̆0. Thus, a solution of PpG,Uq is a couple pV̆, z1q where V̆ “ tV̆0, V̆1, ..., V̆mu

is a partition of V and z1 is an integer such that z1 ď σpG,U, V̆zV̆0q. The incidence vector xV̆ P t0, 1u
|V|ˆm of the

partition V̆ is then defined by

xi
v̆ “

"

1 if v̆ P V̆i

0 otherwise, @v̆ P V̆i,@i P M.

Note that, for all v̆ P V̆0,
řm

i“1 xi
v̆ “ 0.

Hypothesis 1. For all v P V, there exists a matching in Gztvu.

This hypothesis can be verified in polynomial time. If the hypothesis does not hold, then z “ 0.

10
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Proposition 2. The polytope PpG,Uq is full dimensional if and only if a 1-MCM solution exists.

Proof.
(ñ) If a 1-MCM solution does not exist, then z “ 0 and the polytope is not full dimensional.

(ð) We suppose that PpG,Uq is contained in a hyperplane defined by the linear equation

ax` bz “ α (42)

where a “ pai
v, v P V, i P Mq P R|V|ˆm, b P R and α P R. We show that a “ 0, b “ 0 and PpG,Uq cannot be included

in the hyperplane (42), since it is not empty. As there exists a 1-MCM solution, there exists a solution where z “ 1.
We denote this solution by pV̆, 1q. It is clear that pV̆, 0q is also valid for PpG,Uq and thus verifies (42). Then we
deduce b “ 0.

Let v P V . There exists a solution pV̆v, 0q which is valid for PpG,Uq where V̆v “ tV̆v,0, V̆v,1, . . . , V̆v,mu and
v P V̆v,0. Otherwise, a 1-MCM solution does not exist.

Let i P M and let V̆v,i be the partition obtained from V̆v by moving the vertex v from V̆v,0 to V̆v,i. Then, the
solution pV̆v,i, 0q is also valid for PpG,Uq. We deduce that, for all i P M, aV̆v “ aV̆v,i . This equality holds for any
vertex v P V , we can thus conclude that a “ 0 and hence PpG,Uq is full dimensional.

Proposition 3. If a 1-MCM solution does not exist, then dimpPpG,Uqq “ |V| ˆ m.

Proof. Clearly, we have the equality z “ 0. Now we prove that all equalities of PpG,Uq are equivalent to z “ 0. We
suppose that PpG,Uq is contained in a hyperplane defined by the linear equation

ax “ α (43)

where a “ pai
v, v P V, i P Mq P R|V|ˆm and α P R. We show that a “ 0 and that PpG,Uq cannot be included in the

hyperplane (43), since it is not empty.
Let v P V , i P M and let V̆v, V̆v,i be defined as in the proof of Proposition 2. By Hypothesis 1, there exists a

solution pV̆v, 0q which is valid for PpG,Uq, where v P V̆v,0. The solution pV̆v,i, 0q is also valid for PpG,Uq and we
deduce that, for all i P M, aV̆v “ aV̆v,i . Thus, a “ 0 and dimpPpG,Uqq “ |V| ˆ m.

In the following, for a better understanding of the proofs, we consider that a 1-MCM solution exists. The proofs
can be adapted for the case when no 1-MCM solution exists.

Proposition 4. The inequality (41) associated with v P V defines a facet of PpG,Uq.

Proof. Let us denote by ax` bz ď α the inequality (41) associated with v P V . Let a1x` b1z ď β be a facet defining
an inequality of PpG,Uq such that tx P PpG,Uq : ax ` bz “ αu Ď tx P PpG,Uq : a1x ` b1z “ βu. We show that
a1 “ ρa and b1 “ ρb for some ρ P R.

As a 1-MCM solution exists, there exists a solution where z “ 1. We denote this solution by pV̆, 1q. It is clear
that pV̆, 0q is also valid for PpG,Uq and thus verifies (42). Then, we deduce b “ 0.

Let v1 P Vztvu and i P M. By hypothesis, there exists a solution pV̆v1 , 0q which is valid for PpG,Uq where
v1 P V̆v1,0. It is clear that the solution pV̆v1,i, 0q is also valid for PpG,Uq. We deduce aV̆v1 “ aV̆v1 ,i for all i P M. Thus,
ai

v1 “ 0 for all i P M and v1 P Vztvu.
Furthermore, there also exists a valid solution pV̆1v, 0q for PpG,Uq where v P V̆ 1v,0. It is clear that the solution

pV̆1v,i, 0q is also valid for PpG,Uq. We deduce that aV̆
1
v,i “ aV̆

1
v, j for all i, j P M. We set ai

v “ ρ and we deduce
ai

v “ a j
v “ ρ for all i, j P M.

Proposition 5. The inequality (38) associated with i P M and U 1 Ď Ui defines a facet of PpG,Uq if and only if

1. if U 1 Ă Ui, then there does not exist U2 Ď Ui where U 1 Ă U2 such that |NGpU 1q| ´ |U 1| ě |NGpU2q| ´ |U2|,

2. there does not exist U2 Ď Ui where |U2| “ |U 1| such that NGpU2q Ă NGpU 1q,

11



/ Procedia Computer Science 00 (2019) 1–23 12

3. GrU 1 Y NGpU 1qs is connected,

4. there exists a partition V̆ “ tV̆0, ..., V̆mu and k ą 0 such that pG,U, V̆q is k-MCM on U, satisfying |V̆i X

NGpU 1q| “ |U 1| ` k.

Proof.
(ñ)
1. Suppose there exists U2 Ď Ui, where U 1 Ă U2, such that |NGpU 1q|´|U 1| ě |NGpU2q|´|U2|. Then, the inequality

(38) associated with i and U2 can be expressed as follows:
ÿ

vPNGpU1q

xi
v ´ z`

ÿ

vPNGpU2qzNGpU1q

xi
v ě |U

1| ` |U2zU 1|.

The inequality (38) associated with i and U 1 is a linear combination of the latter inequality and the trivial inequali-
ties

• ´xi
v ě ´1, for all v P NGpU2qzNGpU 1q,

• 0 ě ´1, |U2zU 1| ´ |NGpU2qzNGpU 1q| times.

2. If there exists U2 Ď Ui where |U2| “ |U 1| such that NGpU2q Ă NGpU 1q, then the inequality (38) associated with i
and U 1 is a linear combination of the inequality (38) associated with i and U2 and the trivial inequality xi

v ě 0 for
all v P NGpU 1qzNGpU2q.

3. Suppose that GrU 1YNGpU 1qs is not connected. Let U1 Ă U 1 such that GrU1YNGpU1qs is a connected component.
In this case, the inequality (38) associated with i and U 1 is a linear combination of the inequality (38) associated
with i and U1, the inequality (38) associated with i and U 1zU1 and the trivial inequality z ě 0.

4. Suppose that there does not exist a partition V̆ “ tV̆0, ..., V̆mu such that pG,U, V̆q is k-MCM on U, satisfying
|V̆i X NGpU 1q| “ |U 1| ` k. Then, |V̆i X NGpU 1q| ą |U 1| ` k, for all k-MCM solutions pG,U, V̆ “ tV̆0, ..., V̆muq.
We deduce that the inequality

ř

vPNGpU1q xi
v ´ z ě |U 1| ` 1 is valid and dominates the inequality (38) associated

with i and U 1.

(ð) Let us denote by ax ` bz ď α the inequality (38) associated with i P M and U 1 Ď Ui. Let a1x ` b1z ď β be a
facet defining an inequality of PpG,Uq such that tx P PpG,Uq : ax` bz “ αu Ď tx P PpG,Uq : a1x` b1z “ βu. We
show that a1 “ ρa and b1 “ ρb for some ρ P R.
Conditions 1–3 ensure that there exists a matching A such that |A X GrU 1,V 1s| “ |U 1|, for all V 1 Ď NGpU 1q where
|V 1| “ |U 1|. Let v P VzNGpU 1q. By Hypothesis 1, there exists a complete matching A on U where v is not covered by
A. The solution associated with A is denoted by pV̆v, 0qA. It is clear that the solutions pV̆v, j, 0qA, where j P M, are
valid. All these solutions are valid for PpG,Uq and verify the inequality (38) associated with U 1 to the equality. We
deduce aV̆v “ aV̆v, j , for all j P M. Thus, for all V 1 Ď NGpU 1q where |V 1| “ |U 1|, we have a1 jv “ 0, for all j P M and
v P VzNGpU 1q.

Let v P NGpU 1q. By Hypothesis 1, there exists a complete matching A on U where v is not covered by A. The
solution associated with A is denoted by pV̆v, 0qA. It is clear that the solutions pV̆v, j, 0qA, where j P Mztiu, are valid.
All these solutions are valid for PpG,Uq and verify the inequality (38) associated with U 1 to the equality. We deduce
aV̆v “ aV̆v, j , for all j P Mztiu. Thus, we have a1 jv “ 0, for all j P Mztiu and v P NGpU 1q.

Let v1, v2 P NGpU 1q. By Hypothesis 1, there exists a complete matching A1 without v1 and with v2. As
GrU 1,NGpU 1qs is connected, there exists an alternative path between v1 and v2. We define the complete match-
ing A2 using this alternative path. The solutions pV̆v1 , 0qA1 and pV̆v2 , 0qA2 associated respectively to A1 and A2 are
valid for PpG,Uq and verify the inequality (38) associated with U 1 to the equality. We deduce aV̆v1 “ aV̆v2 . Thus,
a1iv1
“ a1iv2

“ ρ, for all v1, v2 P NGpU 1q.
By condition 4, there exists a partition V̆ “ tV̆0, ..., V̆mu such that pG,U, V̆q is k-MCM on U, satisfying |V̆i X

NGpU 1q| “ |U 1| ` k. Let v P V̆i and V̆1 “ tV̆0 Y tvu, V̆iztvu, pV̆ jq jPMzt0,iuu. The solutions pV̆, kq and pV̆1, k ´ 1q are
valid for PpG,Uq and verify the inequality (38) associated with U 1 to the equality. We deduce aV̆ ` bV̆ “ aV̆

1

` bV̆
1

.
Thus, ai

v “ ´b and so b1 “ ´ρ.
12
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In the following lemma, we show that condition 4 does not imply condition 1. Moreover, condition 4 is stronger
than conditions 2 and 3, but these two conditions are easier to implement, as verifying condition 4 is NP-hard (since
the k-MCM property must be checked).

Lemma 1. Let us consider the inequality (38) associated with i P M and U 1 Ď Ui. If there exists a partition
V̆ “ tV̆0, ..., V̆mu and k ą 0 such that pG,U, V̆q is k-MCM onU, satisfying |V̆i X NGpU 1q| “ |U 1| ` k, then

1. if U 1 Ă Ui then there can exist U2 Ď Ui where U 1 Ă U2 such that |NGpU 1q| ´ |U 1| ě |NGpU2q| ´ |U2|,

2. there does not exist U2 Ď Ui where |U2| “ |U 1| such that NGpU2q Ă NGpU 1q,

3. GrU 1 Y NGpU 1qs is connected.

Proof.

1. If NGpU 1q Ă V̆i then, by hypothesis, we have |V̆i X NGpU 1q| “ |NGpU 1q| “ |U 1| ` k. Let U2 Ď Ui, where U 1 Ă
U2 and let |NGpU2q| “ |NGpU 1q|``1 and |U2| “ |U 1|``2. We have |NGpU2q|´|U2| “ |NGpU 1q|´|U 1|``1´`2.
By choosing `1 “ `2, we obtain |NGpU 1q| ´ |U 1| “ |NGpU2q| ´ |U2| “ k.

2. We suppose that there exists a subset U2 Ď Ui, where |U2| “ |U 1|, such that NGpU2q Ă NGpU 1q. Then,
|NGpU2q| ă |NGpU 1q|, so we have |U2| ` k “ |U 1| ` k “ |V̆i X NGpU 1q| ą |V̆i X NGpU2q| and so k ą
|V̆iXNGpU2q|´|U2| which leads to a contradiction with the extended Hall theorem: k ď |V̆iXNGpU2q|´|U2|.

3. The graph GrU 1YpNGpU 1qX V̆iqs is connected, otherwise |V̆iXNGpU 1q|´ |U 1| ą kˆ `, where ` is the number
of connected subgraphs in U 1. We deduce that GrU 1 Y NGpU 1qs is connected.

4.3.3. Valid inequalities
Recall that inequalities (38) give an upper bound on z when considering each subset Ui P U “ tU1, ...,Umu

separately. We now extend this family of inequalities by considering these subsets two by two, simultaneously.
We illustrate the interest of this approach in the following example. Let Us,Ut P U, s ‰ t, and suppose that
|Us| “ |Ut| “ 2 and NGpUsq “ NGpUtq with cardinality 4. Using inequalities (38), z is bounded by 2. However, it is
straightforward that z “ 0.

For any subsets U 1s Ď Us and U 1t Ď Ut, the set of common neighbors of U 1s and U 1t is denoted by NGpU 1sU
1
t q “

NGpU 1sq X NGpU 1t q . Let us consider ÑGpU 1sq “ NGpU 1sqzNGpU 1sU
1
t q the set of vertices belonging exclusively to the

neighborhood of U 1s. In the same way, we define ÑGpU 1t q “ NGpU 1t qzNGpU 1sU
1
t q.

Let us denote by

k̃max “ max
!

|ÑGpU 1sq| ´ |U
1
s|, |ÑGpU 1t q| ´ |U

1
t |

)

and k̃min “ min
!

|ÑGpU 1sq| ´ |U
1
s|, |ÑGpU 1t q| ´ |U

1
t |

)

the upper bounds of the optimal solution for Us and Ut when considering only the exclusive neighborhoods. Then,
it is clear that the upper bound ksup of the optimal solutions is less than or equal to k̃min ` |NGpU 1sU

1
t q|. In order to

improve ksup, we complete ÑGpU 1t q and/or ÑGpU 1sq with some vertices of the common neighborhood NGpU 1sU
1
t q . Two

cases have to be studied:

1. k̃max´ k̃min ě |NGpU 1sU
1
t q|: only one of the two subsets, ÑGpU 1sq or ÑGpU 1t q, can be completed with the common

vertices in such a way that ksup “ k̃min ` |NGpU 1sU
1
t q|.

2. k̃max ´ k̃min ă |NGpU 1sU
1
t q|: first, one of the two subsets, ÑGpU 1sq or ÑGpU 1t q, can be completed with k̃max ´ k̃min

common vertices. Then, the remaining common vertices can complete both ÑGpU 1sq and ÑGpU 1t q equally. We

deduce that ksup “ k̃max `

´

|NGpU 1sU
1
t q| ´ pk̃max ´ k̃minq

¯

{2.

13
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A common vertex v P NGpU 1sU
1
t q cannot be used to complete ÑGpU 1sq or ÑGpU 1t q if it is assigned to a subset Vi

in a solution, where i P Mzts, tu. Then, ksup will be decreased by at least 1{2. Let ` “ s if |ÑGpU 1sq| ´ |U
1
s| ă

|ÑGpU 1t q| ´ |U
1
t |, let ` “ t otherwise. A vertex v P ÑGpU 1`q cannot be used to complete ÑGpU 1sq or ÑGpU 1t q if it is

assigned to a subset Vi in a solution, where i P Mzts, tu. Then, ksup will be decreased by 1. Thus the following
inequalities are valid for all U 1s and U 1t :

z`
1
2

ÿ

vPNGpU1
sU1

t q

p1´ xs
v ´ xt

vq `
ÿ

vPNGpU1
`
q

p1´ xs
v ´ xt

vq ď ksup. (44)

5. Implementation and experimental results

We first present the strategies used to solve our problems, explain how instances have been produced, and then
analyze the obtained results.

5.1. Solving strategies
For the exact solution, we use a Branch-and-Cut algorithm where the separation strategies are based on inequalities

(38) and (44). We also propose some improvements for the first one and explain how our Branch-and-Cut algorithm
is managed.

5.1.1. Separation algorithm
Given a solution px˚, z˚q P R|V|ˆm

` ˆ R`, the separation problem for a family of inequalities consists in de-
termining whether px˚, z˚q satisfies these inequalities. If it does not, it consists in finding one of these inequalities
being violated by px˚, z˚q. An algorithm solving this problem is called a separation algorithm associated with these
inequalities.

Separation of inequalities (38). The number of inequalities (38) in pP1q is exponential. Hence, a polynomial-time
separation algorithm is necessary to allow the use of these inequalities inside a cutting plane algorithm. The equiva-
lence between separation and optimization in combinatorial optimization [5] implies that the linear relaxation of the
problem pP1q can be solved in polynomial time. Let px˚, z˚q P R|V|ˆm

` ˆR` be a solution of the linear relaxation. For
all i P M, we have to find a set U 1i P Ui such that

ř

vPNGpU1
i q

xi˚
v ´ z˚ ă |U 1i |.

We decompose the problem into m subproblems. Each subproblem is associated with a single set Ui Ď U. In
the following, we consider the graph GrUi Y Vs. Let w : v Ñ R` be the weight function, where wpvq “ xi˚

v for
all v P V . The separation problem consists in solving the integer linear program pP1q with the objective function
z1 “ min

`
ř

vPV wpvqxv ´
ř

uPUi
xu
˘

. Let U 1i be given by the optimal solution of pP1q. If z1 ă z˚, the inequality
ř

vPNGpU1
i q

xi
v ´ z ě |U 1i | is violated when respecting px˚, z˚q. In this case, we add the inequality associated with i and

U 1i to the model. Otherwise, all inequalities (38) are verified.
As the added constraint might not define a facet, we propose some improvements according to conditions 1 – 3 of

Proposition 5.

Improvement 1. If the resulting U 1i does not respect condition 1, there exists a set Ũ 1i where
ř

vPNGpŨ1
i qzNGpU1

i q
wpvq “

|Ũ 1i | and |NGpŨ 1i qzNGpU 1i q| “ |Ũ
1
i |, implying wpvq “ 1 for all v P NGpŨ 1i qzNGpU 1i q. Thus, we aim to maximize

|U 1i |. We ensure the maximality of U 1i by substracting
ř

uPU εxu from the objective function, where ε is a
small value. Figure 4a shows an example of valid Ũ 1i allowing to enforce the inequality p38q associated with
U 1i “ U2i zŨ

1
i . Indeed, the inequality associated to U 1i is a linear combination of the one associated to U2i and

some trivial inequality.

Improvement 2. If the resulting U 1i does not respect condition 2, then there exists a set U2i Ď Ui with |U2i | “ |U
1
i | such

that NGpU2i q Ă NGpU 1i q. Then,
ř

vPNGpU1
i qzNGpU2

i q
wpvq “ 0. Thus, we aim to minimize |NGpU 1i q|. We ensure the

minimality of NGpU 1i q by adding
ř

vPV εxv to the objective function, where ε is a small value. Figure 4b shows
two sets U 1i and U2i of same size, where the inequality p38q associated with U2i strengthen the inequality p38q
associated with U 1i . Indeed, U2i shows that the maximum surplus is 0, whereas U 1i has a surplus of value 1.
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Improvement 3. If GrU 1i Y NGpU 1i qs is not connected, then, for each connected component, if the induced inequality
is violated, it is added to the model. In Figure 4c, the inequality associated to U 1i is a linear combination of the
inequalities p38q associated with U2i,1 and U2i,2.

1

U
′

i

Ũ
′

i

U
′′

i

(a) Improvement 1.

0

U
′′

i

U
′

i

(b) Improvement 2.

U
′′

i,1

U
′′

i,2

U
′

i

(c) Improvement 3.

Figure 4: Improvements of the separation algorithm.

Separation of inequalities (44). We propose a heuristic for solving the separation problem associated with the in-
equality. Let M1 Ď M and U1 “ tU 1i , i P M1u be the set of sets found by the previous algorithm. For all couples
pU 1i ,U

1
jq P U

12, if the inequality (44) associated with this couple is violated, then it is added to the model.

5.1.2. Branch-and-Cut algorithm
In this section, we present a Branch-and-Cut algorithm for solving pP1q. We aim to address the algorithmic

applications of the model and the theoretical results presented in the previous sections. To start the optimization, we
consider the linear program with the objective function

maxtz|x P r0, 1smˆ|V|, z P N`, x satisfies (37)u.

An important task in the Branch-and-Cut algorithm is to determine whether an optimal solution of the linear
relaxation of the MBCMVBP is feasible. An optimal solution x˚ of the linear relaxation is feasible for the MBCMVBP
if x˚ is integer and x˚ satisfies inequalities (38). Thus, whether or not x˚ is feasible for MBCMVBP can be verified
in polynomial time. If not, the Branch-and-Cut algorithm uses the inequalities (38) and (44) and their separations
are successively performed. We note that all inequalities are global (i.e. valid in all the Branch-and-Cut tree) and
several inequalities may be added at each iteration. Testing the two versions of the algorithm shows that the integer
vector-based separation outperforms the fractional vector-based one. Thus, only the integer vector-based separation
method is used to separate vectors px˚, z˚q P N|V|ˆm

` ˆ N`.

5.2. Instances
Recall that our study was motivated by real-life applications. We are especially focused on human resources

problems, such as people assignment to time shifts (hospitals, factories, etc.) according to their own skills.
The following parameters have been used to produce our randomly generated instances for the MBCMVBP:

– m: the number of slots (2 or 5),

– nU : the size of Ui (10, 25, 50, 75),

– nV : the size of V (1.25ˆ nU , 1.5ˆ nU , 1.75ˆ nU),

– d: the density of the graph (10%, 20%, or 40% of nU).

As the resources are often limited regarding the jobs, we have chosen the values of nV not too big relatively to
the values of nU . The density of the graph expresses the multi-skilling degree of people and depends on the studied
domain. This value is a key feature of the generated instances, being of great importance on execution times. With
these parameters, the graph instances could have been randomly generated. Nevertheless, to ensure not to generate
trivial instances, we are using the following strategy. The instance generator first builds a matching. Then, the obtained
graph is randomly completed using two different generators.
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First generator. We consider a uniform degree distribution on V . This generator completes the graph by randomly
adding edges to ensure the uniformity of the distribution.

Second generator. We consider a global density ( |E|
|U|ˆ|V| ) and the generator completes the graph by randomly adding

edges to ensure the global density.

For a better understanding of the results, we present the experiments on instances with a uniform partition of U:
|Ui| “ |U|{m for all i P M. We randomly generated 5 instances for each set pm, nU , nV , dq of parameters, and thus
obtained 700 different instances.

All the tests have shown that these two strategies do not have any influence on the obtained results. Thus, for the
sake of clarity, we only present results on the instances given by the first generator.

5.3. Results
All the models of BCMVBP and MBCMVBP are implemented in Java using CPLEX 12.6 solver, on an Intel core

i5 running at 3.4 GHz, with 8 GB RAM.

5.3.1. Dual formulation
In Section 4.2, we proposed an improvement in order to reduce the size of the ILP: by replacing U with Ũ in the

dual formulation, only a restricted number of variables are considered (Proposition 1). We used our benchmark to
investigate the efficiency of this method. Considering the high computing times of the dual formulation, we restricted
our study to the 110 smallest instances of our benchmark. In Table 1, we show the four instances where the method
effectively reduced the size of the ILP. The first three columns identify the instance. The computing time of the ILP
without improvement (resp. with improvement) is indicated in seconds in column CPU1 (resp. column CPU2). The
number of nodes of the branching tree for both variants is given in columns#Nodes1 and#Nodes2, respectively. The
last column presents the number of nodes not being considered in the dual formulation.

|U| |V| density CPU1 CPU2 #Nodes1 #Nodes2 |UzŨ|
50 62 10 2 2 0 0 1
50 62 10 0 1 0 0 5
50 62 10 0 0 0 0 1
50 75 10 1 2 0 0 1

Table 1: The 4/110 instances for which the improvements reduce the size of the ILP.

We can note on lines 2 and 4 that, even with a reduced sized model, the computing time is greater. This is due
to the time spent to compute Ũ. Moreover, as less than 4% of the instances benefit from the method, the obvious
conclusion is that this improvement is useless. We aimed to generate random instances and hence did not take into
account the fact that the neighborhood of a vertex of U can be included in the neighborhood of another one 1.

5.3.2. Comparison between formulations
The goal of this section is to evaluate the dual formulation proposed in Section 4.2 and the natural formulation

presented in Section 4.3. Table 2 presents some results on these formulations without improvement. Each line
represents five randomly generated instances, sharing the same parameters. Our benchmark is restricted to the smallest
instances, allowing to solve at least one instance over five, in less than one hour.

The first three columns identify the instance (|U|, |V|, graph density). In column CPU1 (resp. column CPU2) is
indicated the average computing times over the five instances, in seconds, of the dual formulation (resp. the natural
formulation). In columns #Nodes1 and #Nodes2 are given the average number of nodes of the branching tree for
both variants, respectively. The last two columns (opt1 and opt2) present the ratio of instances solved in less than one
hour.

1In a real-life application, it could correspond to the fact that some people are more experienced than others in a given area, thus having a wider
range of skills.
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|U| |V| density CPU1 CPU2 #Nodes1 #Nodes2 opt1 opt2
50 62 10 14 0 494.6 0 5/5 5/5
50 62 20 429.8 1.4 254.4 9.8 5/5 5/5
50 62 40 1428 0 566.4 0 5/5 5/5
50 75 10 2.8 0.6 0 0 5/5 5/5
50 75 20 123.8 2.6 553.2 4.6 5/5 5/5
50 75 40 1926.6 1.6 708.8 2.6 4/5 5/5
50 87 10 3.6 0.6 18.6 0 5/5 5/5
50 87 20 379 3 330.4 11.8 5/5 5/5
50 87 40 2298.4 4 462.8 1562.6 2/5 5/5

100 125 10 1241.8 4 44.2 6 4/5 5/5
100 125 20 3234.2 19.6 69.4 11480.6 2/5 5/5

Table 2: Comparison of the two formulations.

With a computing time limited to one hour for each instance, the dual formulation only solves 47 instances over
55, whereas the natural formulation allows solving all instances. Furthermore, the computing times of the natural
formulation is much faster. Indeed, the longest computing time is 50 seconds. The standard deviation of the number
of nodes in the branching tree for the dual formulation is smaller than in the natural formulation. As the natural
formulation leads to models considering fewer variables, the computing times and memory amount needed to solve
are better than the ones for the dual formulation. We can notice that instances (50,87,40) and (100,125,20) are the
most difficult to solve using the dual formulation (see Table 2). Indeed, the number of nodes generated by the dual
formulation is smaller than the number of nodes generated by the natural one. The optimality has not been reached in
the allotted time for three instances out of five. Thus only a few numbers of nodes have been explored in the branching
tree. Furthermore, the number of nodes in the branching tree is larger for these instances with the natural formulation,
due to the separation algorithm. As mentioned in subsection 5.1.2, only integer vectors are separated, implying that
lots of nodes might be explored in the branching tree in order to find the best solution. Remark that these instances
are also the ones having many edges. Nevertheless, the execution times remain small for these instances.

5.3.3. Natural formulation and improvements tests
We now focus on the natural formulation and the different improvements proposed in Section 5.1.1.
First, we present an analysis of computing times for some instances. We have excluded instances having less than

50 vertices, for which the computing times are too tiny to expect any improvement. The execution time results are
represented by grouped bar charts in Figures 6, 7 and 8 for various densities and graph sizes.

Each instance has been solved using inequalities (38), and adding one or a combination of the following variants:

– imprv0: with no improvement,

– imprv1: with improvement 1,

– imprv2: with improvement 2,

– imprv3: with improvement 3,

– imprv4: using inequalities (44).

The results are presented in Figure 6 (for 2 slots), in Figure 7 (for 5 slots) and in Figure 8 (for large instances and
5 slots). On the left side, we show the results obtained by testing each improvement separately; on the right side, we
combined the different improvements.

Let us start with some general observations without focusing on the improvements. For the overall benchmark,
we can notice that for a given couple (density, degree), the computing times are growing as a function of the size of
the instances, as expected. We can also observe in Figure 5 that the difficulty is related to the triplet (number of slots,
density, |V|) for instances with the same |U| value. We present the computing times for 2 slots and |U| “ 100. As it
is the case for many algorithms designed for optimization problems, the most difficult instances are not the very small
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or very large ones. Indeed, we notice that the time is first increasing until reaching a specific density and then it is
decreasing. We can also remark that the density of the hardest instances increases with their size.

We can explain these observations as follows. For low and high densities, the surplus values of the subsets of U
are homogeneous (small values for low densities and large values for high densities). Thus, only a limited number of
inequalities is generated, hence reducing the computing times. The hardest instances are those where the variations of
the surplus (on the power set of U) is the most important.
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2 slots – |U | = 100

|V | = 175

|V | = 150

|V | = 125

Figure 5: Execution time results for 2 slots and different densities.

Considering the results for single improvements, we can notice that imprv3 has no real influence on the computing
times for our benchmark. Indeed, most of the subgraphs produced by the separation procedure are connected. Other-
wise, to be considered as a valid solution for the separation procedure, all components of these subgraphs must have
the same surplus. The way the instances are generated rarely enables the application of imprv3.

Observations on 2 slots. Let us observe the efficiency of each improvement independently (see the left side of Figure
6). We notice that with a small density p0.1q, the optimal solutions are quickly found by the linear program pP1q, and
the improvements have no significant impact. Imprv4 can lead to a reduction of computing times with degree 15, but
the difference remains very small. Medium density p0.2q instances lead to the same observations when the number
of edges is small. Imprv4 has a stronger impact on larger instances (degree 30). For high density p0.4q, imprv1 and
imprv2 allow to enforce inequalities (38), thus giving better results for larger instances when the degree is equal to
60. The efficiency of imprv4 is limited to large instances, needing high computing times. Indeed, for these instances,
a lot of inequalities (38) are generated. As our separation heuristic is based on the set of vertices associated with
inequalities (38), inequalities (44) are more likely to be generated by our heuristic.

Considering combined improvements (see the right side of Figure 6), imprv3 not being relevant, we studied the
combination of the three other ones. As seen earlier, it is better not to use any improvement for small densities.
For medium densities, none of the combinations achieves to give better computing times than imprv4. For example,
combining imprv1 and imprv2 decreases the performance for small and medium densities because of the presence of
ε in the objective function of the separation algorithm. Indeed, ε is subtracted when applying imprv1 and added when
applying imprv2. Then, if k is small, one can cancel the benefit of the other.

Combinations show some efficiency for high density graphs, but none of them are suitable for all instances.

Observations on 5 slots. On 5 slots (see Figure 7), the efficiency of the improvements is limited to instances of larger
size. Moreover, one can remark that imprv1, imprv2 and imprv4 are more efficient for five slots than for 2 slots, when
dealing with high-density instances. Indeed, the number of inequalities is greater for 5 slots (5 choose 2). For small
and medium densities, the different improvements never achieve to give better computing times, for the same reasons
as for 2 slots. The combinations of the improvements do not go any further except for high-density instances. The
results concerning larger instances are presented in Figure 8, Tables 3 and 4. Note that large instances of density 0.4
are more difficult to solve than those of density 0.5. When considering density 0.5, we note that imprv4 is efficient for
a few instances for which the time lost by generating the inequalities without a good impact is weak. Unfortunately,
for the instances with lots of nodes, checking the improvement needs a lot of time, and their impact is not enough to
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compensate the time used to generate the inequalities. For density 0.4, the instances are hard, as mentioned before,
and none of the improvements is efficient.
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Figure 6: Execution time results for 2 slots.
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Figure 7: Execution time results for 5 slots.

In this end of section, we focus our analysis on the biggest instances of our tests; details are presented in Tables 3
and 4. The entries in these tables are:

δv : the degree of all v P V (given by the first generator)
|U| : the size of U,
|V| : the size of V ,
imprv : the associated improvement,
CPU : the total CPU time in seconds,
Ct(38) : the number of generated inequalities (38),
Ct(44) : the number of generated inequalities (44),
No : the number of generated nodes in the Branch-and-Cut or Branch-and-Bound tree.

Table 3 shows the results for instances generated using density 0.4. After focusing on computing times in previous
analysis, we now study the number of generated inequalities and the size of search space. We first note that the
number of nodes in the branching tree (given in the last column) is not correlated with the improvements proposed in
the previous section. Indeed, the number of nodes is similar in most cases, but we also have some instances showing
significant variations. Furthermore, we can notice that the number of nodes is relatively small regarding the size of
instances. This shows the efficiency of our algorithm in terms of memory usage. Secondly, our algorithm finds an exact
solution using only a few inequalities (less than 250), which implies good CPU and memory performances. The results
also show that our improvements do not systematically reduce the number of constraints, whereas improvements 1
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Figure 8: Execution time results for large instances on 5 slots.

and 2 theoretically should strengthen the inequalities Ct(38).
Table 4 shows the results for instances generated using density 0.5. We first notice that all instances are solved in

less than 10 minutes. Secondly, comparing to the results of Table 3, the branching tree size is even smaller (less than
2). Furthermore, the size of the instances does not influence the number of nodes. Finally, the number of inequalities
generated by the Branch-and-Cut algorithm (Ct(38), Ct(44)) is always less than 25. The fact that only a small amount of
them is needed to solve the instances proves the strength of our inequalities. Thus, we can conclude that our algorithm
is well fitted for high-density graphs.
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δv |U| |V| imprv CPU Ct(38) Ct(44) No

120 300

420

0 77.2 14.2 1.6
1 65.6 13.0 1.6
2 93.6 14.6 2.4
4 82.6 14.4 10.0 2.4

450

0 355.6 62.0 40.8
1 374.0 61.2 39.0
2 607.4 65.8 41.6
4 359.6 60.8 10.0 35.0

480

0 1105.6 180.6 232.0
1 1482.4 228.6 1173.8
2 1438.2 203.6 427.6
4 1159.4 193.6 10.0 233.6

160 400

560

0 168.2 11.0 1.2
1 164.0 11.6 1.4
2 225.0 11.8 1.2
4 174.2 12.4 10.0 1.4

600

0 809.8 46.4 24.2
1 986.8 48.4 32.6
2 1129.2 46.6 23.6
4 864.6 46.6 10.0 23.8

640

0 ą1h 223.8 430.6
1 ą1h 225.8 459.4
2 ą1h 214.6 340.6
4 ą1h 232.6 10.0 324.6

200 500

700

0 322.6 10.6 1.2
1 361.2 10.8 1.2
2 359.6 10.8 1.2
4 402.8 12.0 10.0 1.6

750

0 1593.6 43.0 19.2
1 1999.6 42.0 17.6
2 2557.6 43.6 18.2
4 1937.4 46.8 10.0 22.0

800

0 ą1h 96 69.8
1 ą1h 99 65.6
2 ą1h 93 68.8
4 ą1h 98 10.0 59.6

Table 3: 5 slots – density 0.4 – generator 1.

δv |U| |V| imprv CPU Ct(38) Ct(44) No

150 300

420

0 47.6 6.8 1.4
1 51.2 6.8 1.4
2 52.6 6.8 1.4
4 47.2 6.4 10.0 1.0

450

0 50.2 9.6 1.0
1 56.0 9.6 1.0
2 60.6 9.6 1.0
4 59.0 9.6 10.0 1.2

480

0 88.8 11.0 1.2
1 93.6 11.0 1.2
2 109.0 11.2 1.4
4 87.0 10.8 10.0 1.6

200 400

560

0 134.0 6.4 1.2
1 140.0 6.4 1.2
2 149.0 6.4 1.2
4 136.0 7.2 10.0 1.0

600

0 145.0 9.8 1.4
1 171.2 9.8 1.4
2 163.8 9.8 1.4
4 141.4 9.2 10.0 1.0

640

0 233.4 10.4 1.8
1 242.0 10.2 1.2
2 225.0 10.2 1.2
4 187.2 10.2 10.0 1.0

250 500

700

0 302.6 6.4 1.2
1 358.0 6.4 1.2
2 309.0 6.4 1.2
4 304.0 6.2 10.0 1.0

750

0 303.4 8.2 1.2
1 404.8 8.2 1.0
2 347.2 8.2 1.2
4 316.2 7.8 10.0 1.0

800

0 436.2 10.2 1.2
1 520.0 10.2 1.2
2 480.2 10.2 1.4
4 472.0 10.4 10.0 1.0

Table 4: 5 slots – density 0.5 – generator 1.

6. Conclusion

We have studied the Multiple Bipartite Complete Matching Vertex Blocker Problem (MBCMVBP). Within the
field of staff management, it can be used to identify the critical number of people below which the system becomes
understaffed. The NP-completeness of the problem has been shown using a reduction from the stable set problem.
Two mathematical formulations have been proposed. The first one is based on the dual formulation of a particular
case and the second one (natural formulation) is based on the surplus form of Hall’s theorem. These models have been
compared using randomly generated instances.

A further study has been made for the natural formulation, which has been shown as outperforming the dual one.
We proposed a Branch-and-Cut algorithm to solve the natural formulation of the problem, providing good results.
Based on the polyhedral approach, we derived some improvements and a separation procedure for a new family of
inequalities. We tested the performance of these improvements and explained in which case they are efficient.

In future work, we aim to generalize the valid inequalities to more than two subsets and to propose a dedicated
separation algorithm. Another lead is trying to take advantage of some specific graph structures to propose some
ad-hoc strategies.

A variant of the problem taking into account priorities on some subsets of vertices or considering incompatibility
constraints might be studied as well.
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