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HIGHLIGHTS 

• Chromatin-related genes are often de-regulated in cancers, targeting them constitutes a promising 

therapeutic strategy. 

• More than 50 HMTs exist in mammalian cells; however, inhibitors are only available for a small subset. 

• The EZH2 axis is de-regulated in multiple cancer types, where it can play tumor suppressor or pro-

oncogenic roles. 

• Small-molecule inhibition of EZH2 has shown promising results in the treatment of some blood and 

solid tumors of specific mutational background. 

• Identifying novel synthetic interactions, synergistic drug combinations, and mechanisms of resistance 

can help expanding the therapeutic niche of EZH2 inhibitors. 

 

 

ABSTRACT 

Targeting chromatin modifying enzymes is a promising strategy for cancer treatment. The anti-tumor 

effectivity of compounds inhibiting histone methyltransferases (HMTs) -mainly EZH2- is currently being 

tested in Phase I/Phase II clinical trials; some of them showing positive results in haematological 

malignancies and solid tumors of specific mutational background. In this review we aim at highlighting 

the recent advances in the field of HMT inhibitors and describe the challenges that need to be addressed 

for their successful implementation in the clinics.  

  



INTRODUCTION 

Cell identity is controlled by a network of chromatin regulators including histone modifiers, DNA 

methyltransferases/demethylases and chromatin remodelling complexes. Disruption of one node of this 

carefully orchestrated network can have profound effects on the epigenetic landscape and thus alter 

gene expression, genomic stability and/or replication.  

Systematic characterization of cancer genomes revealed a high prevalence of mutations in chromatin-

related genes, some of which constitute drivers of oncogenic transformation [1,2]. Aberrant proliferation, 

metabolism reprogramming and mutations in metabolic enzymes also contribute to the disrupted 

epigenome observed in cancer cells [3]. This has prompted the rational design of compounds that 

modulate the epigenetic landscape: The so-called epidrugs have shown promising anti-cancer properties 

in pre-clinical models, their application in the clinical setting being currently investigated. Due to the 

limited success and toxicity of the first generation of epidrugs (inhibitors of histone deacetylases and DNA 

demethylating agents), a second generation of more selective and mechanism-based compounds is under 

development. 

The diversity and high specificity of histone methyltransferases (HMTs) makes them very attractive 

targets for therapeutic intervention. The number of HMT inhibitors is still limited, but some have reached 

clinical testing (Figure 1). Given the attention they have sparked, we will dedicate the current review to 

inhibitors of HMTs, focusing largely on those targeting the Polycomb complex PRC2.  

PRC2 

Polycomb-repressive complex 2 (PRC2) is a multisubunit enzymatic complex that catalyses methylation of 

H3K27 (H3K27me1/me2/me3) to maintain transcriptional silencing. Within PRC2, EZH1/2 contains a 

conserved SET domain with methyltransferase activity that adopts an inactive conformation unless it 

associates with EED and SUZ12 [4]. RBBP4/7 are also core subunits of PRC2 and are believed to facilitate 

nucleosome binding. In addition, a variety of cofactors bind to PRC2 and modulate its recruitment and 

activity [5�,6].  

The PRC2 axis in cancer 

Early associations between PRC2 and oncogenesis were based on the apparent overexpression of EZH2 in 

a wide range of cancer types [7-10�]. However, high levels of EZH2 do not necessarily translate into 

increased dependency on the complex, and loss of EZH2 does not prevent tumor development in mouse 

models of carcinogenesis [11,12�-14]. Hence, EZH2 overexpression in solid tumors is unlikely to play a 

causative role and probably stems from a need to prevent H3K27me dilution during cell division in highly 

proliferative tumors [15].  

More recently, high-throughput sequencing efforts have identified mutations in PRC2 that enhance or 

decrease the activity of the complex. These mutations often translate into changes in both the levels and 

the distribution of H3K27me2/3 and have been proven to predispose to or even be sufficient for tumor 

development. The underlying mechanisms are often cell type-specific, from aberrant transcriptional 

activation of developmental regulators, to increased vulnerability to cancer signalling pathways [16�,17�, 

13]. The context specificity of PRC2 alterations may reflect the cell-of-origin, the mutational landscape, 

and the history of the tumor among other factors [18].  

1. EZH1/2 Gain-of-function (GOF): 

EZH1 and EZH2 are present in similar PRC2 complexes with overlapping targets, but mutational events 

are far more prevalent in EZH2. Divergent expression patterns (EZH2 is linked to proliferative tissues), 

functional roles, and enzymatic activity [19] could account for the differences in mutation frequency.  



Heterozygous missense mutations of Y641 in the catalytic SET domain of EZH2 have been identified in 

follicular lymphoma, germinal centre (GC) diffuse large B cell lymphoma (DLBCL), and melanoma [20�,21]. 

The mutant PRC2 shows altered substrate specificity, with a preference to methylate H3K27me2 over 

H3K27me0/1, and cooperates with wild-type PRC2 to yield a global increase in H3K27me3 [22�,23]. While 

the oncogenic potential of this mutation is well established -it drives lymphoma and melanoma formation 

when expressed in mouse B cells and melanocytes, respectively [24,25�]- the underlying mechanisms are 

less well understood. An excess of H3K27me3 on tumor suppressors and bivalent genes normally 

activated during B cell differentiation could account for the differentiation blockade [26,23-25�,27]. 

However, caution should be exercised when ascribing the effect of genome-wide changes to a handful of 

genes. Whether no other mechanisms than aberrant activity of PRC2 are in place to promote H3K27me3 

deposition on tumor suppressor genes remains to be demonstrated. 

More recently, EZH1 GOF mutations (Q571R) have been detected in autonomous thyroid adenomas and 

are expected to translate into a more active PRC2 complex [28], but whether similar oncogenic 

mechanisms to EZH2 GOF are in place is not known.  

2. PRC2 Loss-of-function (LOF):  

LOF mutations on PRC2 genes have been reported in myeloid malignancies, malignant peripheral nerve 

sheath tumors (MPNSTs), and T cell acute lymphoblastic leukemia (T-ALL) [29-31]. EZH2 is the major hit in 

myeloid cancers; SUZ12 and EED are exclusively targeted in MPNSTs; and LOF mutations in EZH2, SUZ12, 

and EED occur in equal proportions in T-ALL.  

Disruption of the PRC2 axis can also result from alterations on its substrate or co-factors. Mutation of K27 

in the gene encoding histone H3.3 (H3K27M) has been reported in ~80% of paediatric diffuse intrinsic 

pontine gliomas (DIPGs) [32,33] and in 6% of secondary acute myeloid leukaemia (AML) [34]. This 

mutation behaves as a dominant negative inhibitor of EZH2 and results in genome-wide loss of 

H3K27me3 [35�]. The tumor suppressor role of PRC2 in the central nervous system is further supported 

by the observation that EZHIP, a co-factor that limits PRC2 activity through a mechanism similar to that of 

H3K27M, is abnormally expressed in a subtype of ependymomas [36-38].  

Little is known about the mechanisms whereby loss of function of PRC2 promotes tumorigenesis. 

Inactivation of PRC2 could decrease the threshold for transcriptional activation of oncogenes and their 

targets and thus amplify oncogenic signalling (e.g. NOTCH in T-ALL; RAS in MPNSTs) [39,17�]. 

Alternatively, it might increase transcriptional noise and prime for stochastic processes that drive tumor 

growth and resistance to therapy. The tumor specificity of PRC2-targeting mutations suggests different 

functional consequences. A simple model is that each of these mutations alters PRC2 activity to a variable 

extent, hence resulting in de-regulation of a different set of genes.     

3. Mutations affecting the essentiality of PRC2: 

Another set of therapeutically relevant mutations are those targeting chromatin modifiers that promote 

transcriptional activation and therefore antagonize PRC2. Disrupting the activity of these enzymes leads 

to aberrant gene expression, drives tumorigenesis, and potentially renders cells susceptible to PRC2 

inhibition. Whether the increased sensitivity to PRC2 inactivation results from loss of epigenetic 

antagonism or synthetic lethality is still a matter of debate. This is best exemplified by rhabdoid tumors 

(RT). RTs are deadly paediatric cancers with virtually no genomic instability and a very low mutational 

burden; the sole recurring event being inactivation of SMARCB1 [40]. Loss of SMARCB1 compromises 

recruitment of the SWI/SNF chromatin remodelling complexes BAF/PBAF to key developmental genes, 

which are subsequently targeted and repressed by PRC2 [41]. The essentiality of PRC2 in a SMARCB1-null 

background has been shown in vitro, in vivo (in both mice and xenograft models of RT), and was recently 

confirmed in a clinical trial [42�,43-45�]. Mutations in SWI/SNF subunits other than SMARCB1 have also 

been associated with higher PRC2 addiction: inhibition of EZH2 was reported to be synthetic lethal in 



ARID1A mutant ovarian cancer cell lines [46,47]. However, this notion was recently contested in a panel 

of ovarian cancer cell lines [48]; the discrepancies between studies potentially arising from differences in 

the employed small-molecules (GSK126 vs. tazemetostat), genetic strategies (shRNA-mediated silencing 

of ARID1A vs. ARID1A-mutant cancer cell lines), or cell growth protocols (3D cultures and xenograft 

assays vs. 2D cultures).  

Tumors harbouring mutations in other PRC2-antagonizing enzymes such as the H3K27 demethylases 

UTX/JMJD3, the H2AK119 deubiquitinase BAP1, and the H3K4 mono-methyltransferase MLL3, were also 

proposed to be dependent on PRC2 activity [49-52]. However, this awaits clinical validation since, at least 

in the case of BAP1, synthetic lethality appears to be cell type-dependent [53]. 

Targeting PRC2  

Pharmaceutical intervention of PRC2 addiction is an area that sparks a great deal of interest. High-

throughput screens have yielded a collection of pyridone and indole-based small molecule inhibitors that 

compete with the SAM cofactor for selective binding to the SET domain of EZH1/2 (Table 1). A few 

residues within the SET and SRM domains differ between EZH1 and EZH2 that determine the preferential 

responsiveness of PRC2-EZH2 to these compounds [54]. EZH1 is more abundant in non-proliferating 

tissues and has weaker HMT activity when compared to EZH2 [19]; however, it can contribute to the 

maintenance of H3K27me3 levels in some tissues [55]. These data suggest that simultaneous targeting of 

EZH1 and EZH2 may be advantageous over EZH2-selective strategies, as proven by the dual inhibitor DS-

3201 [56,57]. More recently, molecules that target the H3K27me3-binding pocket of EED, and thus block 

its ability to activate PRC2 (allosteric antagonists), have shown promising results on DLBCL cell lines, even 

in those made resistant to SAM-competitive inhibitors [58-60].Similarly to SAM-competitive inhibitors, 

this group of compounds displays more robust inhibition of PRC2-EZH2 [54]. A third PRC2 inhibition 

strategy consists on targeting specific interfaces within the PRC2 complex with synthetic peptides, 

including that of EZH2-EED [61]. Overall, PRC2 inhibitors selectively and dose-dependently reduce the 

levels of higher order H3K27 methylation (me2/3), but do not interfere with H3K27me1 [62]. 

Six PRC2 inhibitors have so far reached clinical trials (Table 1). Tazemetostat and CPI-1205 are well 

tolerated and demonstrated preliminary benefits in B cell lymphomas [45�,63]. Only a subset of patients 

showed an objective response (Tazemetostat: 38%); nonetheless, most of them were in very advanced 

stages of their disease, having either relapsed or become refractory to conventional chemotherapy [45�]. 

Results are less encouraging with GSK126 given its toxicity and limited efficiency at maximal tolerated 

dose [64]. As monotherapy, EZH2 inhibitors have shown virtually no positive effects in solid tumors with 

the exception of cases with mutations in components of SWI/SNF [45�] and potentially malignant 

mesotheliomas [65].  

Combining EZH2 inhibitors with other therapies can potentially boost their efficacy by promoting 

synergistic re-activation of tumor suppressors and/or limiting the emergence of resistance and side 

effects. Several efforts have been done in this line with promising results in preclinical models (Table 2). 

Targeting EZH2 is proposed to sensitize cancer cells to chemotherapy and to boost their immunogenicity, 

thus rendering immunotherapy strategies more effective [66-69]. 

PRC2 LOF mutations are more difficult to target pharmacologically since they often destabilize PRC2. In 

those cases where the mutant protein is synthesized and stable, development of molecules aimed at 

correcting the impact of the mutation may still be feasible. As proof-of-concept, Suh and colleagues 

(2019) [70] reported the design of agonists that selectively stimulate the activity of a PRC2 complex 

containing EED-I363M, a LOF mutation present in myeloid disorders that impairs EED binding to 

H3K27me3. Alternatively, the epigenetic imbalance triggered by loss of PRC2 could be partially reverted 

by targeting chromatin modifiers involved in promoting  transcription. In this line, bromodomain 

inhibitors show anti-tumoral activity against DIPGs expressing H3K27M [71] and NF1, SUZ12 double 



mutant cancer cell lines [17�]. Recently-developed small molecule inhibitors of SWI/SNF subunits [72,73] 

could also be potentially used to treat PRC2 LOF mutations.  

Finally, it was reported that inhibiting the residual PRC2 activity in DIPG could be therapeutically relevant 

[74], yet further investigations are required to confirm this strategy.   

DISCUSSION 

HMT inhibitors have shown promising preliminary results in the treatment of human malignancies with 

otherwise dismal therapeutic opportunities. Yet their application remains limited, several research axes 

could be developed to favour their implementation in the clinic. Among others:  

1. Expanding the collection of epidrugs:   

Whereas more than 50 HMTs have been identified in mammals, chemical inhibitors are available for a 

small subset (Figure 1), with one target -EZH2- retaining most of the attention. A more systematic 

characterization of their substrates and function, together with the identification of novel synthetic lethal 

interactions could stimulate the development of new HMT inhibitors. Data mining from DepMap, a 

collaborative project that intersects data from genome-wide LOF screens, cellular models and drug 

screens [75,76], could aid the discovery of novel therapeutically relevant genetic interactions. As proof-

of-concept, exploration of DepMap data suggests that PRDM1 is highly expressed and behaves as an 

essential gene in multiple myeloma in an exclusive manner (Figure 2). To date, PRDM1 has not been 

assessed as a druggable target in this cancer type, but was recently identified as a prognostic marker [77]. 

Tissue-specific information on gene essentiality is particularly relevant when balancing potency versus 

undesired toxicity.  Of note, a big effort has been dedicated at developing inhibitors against PRMT1 and 

PRMT5 [78-90]. Both genes are however essential in all cell types assessed by DepMap, suggesting that if 

the available inhibitors were to be applied in a clinical setting, they would most likely elicit undesired 

side-effects (Figure 2).    

Traditional drug design has focused on targeting enzymatic activity. The more recent development of 

small molecules that exploit the cell’s destruction machinery to selectively degrade oncogenic drivers 

(PROTACs: PROteolysis-TArgeting Chimeras) could also expand the number of druggable targets [91]. 

2. Prediction of responders:  

In line with the cell-specific gene targeting of chromatin modifiers, response to epidrugs is highly context-

dependent. This highlights the need for precise patient stratification with rationale-based biomarkers or 

(epi)genetic determinants that are predictive of drug response. Retrospective epi-transcriptomic profiling 

of cancer samples could facilitate this process. In this regard, characterization of the activation status of 

the K-Ras pathway could help predict the response to PRC2 inhibitors, since hyperactivity of this pathway 

has been associated with resistance to EZH2i [17�,92,93].  

3. Battling resistance: 

The efficacy of treatments with epidrugs is limited by both primary and acquired resistance.  

Primary resistance is often detected in solid tumors, which are mostly resilient to epidrugs mono-therapy  

[45�]. Their unresponsiveness likely stems from a combination of factors, including (epi)genomic 

features: mutations in chromatin enzymes can drive tumor formation in the haematopoietic 

compartment, but they often are permissive or secondary events in solid tumors. Differences in the 

microenvironment of blood and solid tumors could also account for the differential effectiveness of 

epidrugs. Aberrant proliferation coupled with inefficient vascularization often creates a hypoxic 

environment in the centre of solid tumors that can lead to acidosis, metabolic reprogramming, and drug 

resistance [94]. Furthermore, the tissue structure of solid tumors can affect the pharmacokinetics and 

successful delivery of epidrugs. Resistance can also result from the aberrant activation of pro-survival 



pathways (e.g. IGF-1R, PI3K, or RAS/MEK/ERK) as reported in DLBCL and SWI/SNF mutant cancer cells 

[47,92]. Alternatively, it can arise from the inherent interplay between chromatin modifiers. Accordingly, 

systematic analysis of ~100 cell lines revealed that resistance to EZH2 inhibition was associated with up-

regulation of H3K27Ac and transcriptional activation of oncogenic pathways. Resistance was reversed by 

treatment with BRD4/p300 inhibitors [93]. In ARID1A mutant cancer cells, a switch in the composition of 

SWI/SNF remodelling complexes (SMARCA4 to SMARCA2) accounts for the resistance to EZH2 inhibitors 

[94]. As for acquired resistance, secondary mutations on EZH2 have been reported in an in vitro model 

[92], but it is not yet clear whether this a major phenomenon in the clinics.  

Deciphering the underlying molecular events will help broaden epidrugs effectiveness and therapeutic 

niche. 

 

HMT inhibitors have shown promising anti-tumoral activity in clinical trials as single or multi-drug 

therapies in specific tumor types and mutational backgrounds, increasing in some cases life expectancy 

with fewer side effects than conventional chemotherapy. Nonetheless, they will need to overcome (some 

of) the aforementioned limitations for their successful implementation. Furthermore, thorough, 

extended surveillance of patients exposed to such drugs should be in place since their long-term effects 

remain unknown. 
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FIGURE AND TABLE CAPTIONS 

 

Figure 1. Available small-molecule inhibitors against human HMTs. Inhibitors in current clinical trials are 

highlighted with a star. 

Figure 2. Essentiality of HMTs over a panel of cell lines. Bubble chart plotting the average dependency 

scores and mRNA levels for known human HMTs (values retrieved from the DepMap portal; DepMap 

19Q3 Public) [75,76]. A dependency score of -1 is indicative of essentiality. The number of cell lines per 

tumor type is indicated between parenthesis. 

Table 1. EZH2 inhibitors. 

Table 2. EZH2 inhibitors in combination therapies. 
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Table 1. EZH2 inhibitors.

Compound Mechanism
Selectivity 

EZH1/EZH2 References 

SAH-EZH2 Disruptor of EZH2-EED EZH2 > EZH1 [61]

Evaluated
tumor types

ClinicalPre-clinical

El1 SAM competitive inhibitor EZH2 > EZH1 (90X) [100] DLBCL

UNC1999 SAM competitive inhibitor EZH2 > EZH1 (10X) [101] DLBCL

DS-3201 EZH1/2 dual inhibitor [56,57]
DLBCL, AML

Solid tumors
Multiple myeloma

GSK343 SAM competitive inhibitor EZH2 > EZH1 (60X) [103]
Prostate cancer
Breast cancer

CPI-1205 SAM competitive inhibitor [63,106]B cell lymphomas
Advanced solid tumors

B cell lymphomas

GSK126 SAM competitive inhibitor EZH2 > EZH1 (150X) SCLC [64,102●] 
B cell lymphomas

Advanced solid tumors
Multiple myeloma

PF-06821497 [104]
SCLC

DLBCL, FL
Prostate cancer

EZH2 > EZH1 

Tazemetostat SAM competitive inhibitor [43,45●,
65,105]

EZH2 > EZH1 (35X) 

B cell lymphomas
DLBCL, FL

SWI/SNF* tumors

Advanced solid tumors

BAP1* mesothelioma
EZH2* GOF tumors

Histiocytic disorders

SWI/SNF* rhabdoid
tumors

EZH2* GOF 
lymphomas
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Structure
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EZH2 > EZH1  CPI-0209 
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A-395 PRC2 allosteric antagonist [58,59]DLBCLEZH2 > EZH1 
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Table 2. EZH2 inhibitors in combination therapies. 

Epidrug Mechanism Drug References 

Standard chemotherapy [130]

Tazemetostat Immunotherapy

Evaluated
tumor types

ClinicalPre-clinical

Melanoma
Bladder CancerIpilimumab 

(αCTL-4 mAb)

IL-2cx

NSCLC(1)

Tazemetostat Immunotherapy
 

Co-treatment

Tazemetostat Standard chemotherapy Non-Hodgkin
Lymphoma

 Prednisolone
Dexamethasone

[129]

(1) NSCLC: Non-Small Cell Lung Cancer
(2) DNMT: DNA Methyltransferase

DZNep
GSK126

DZNep

Tazemetostat 

DNMT(2) inhibitor

Immunotherapy

5-AZA dC  

B7-H1 (αPD-L1 mAb)

Ovarian Cancer
Hepatocellular 

Carcinoma

[66,69]

[67,68]ImmunotherapyGSK503
CPI-1205

Atezolizumab (αPD-L1 mAb)
Obinutuzumab (αCD20 mAb) 

 Pembrolizumab 
(αPD-1 mAb) 

Urothelial Carcinoma NCT03854474

FL and DLBCL NCT02220842

Tazemetostat Standard chemotherapy R-CHOP 21:
   Rituximab
   Cyclophosphamide
   Vincristine
   Doxorubicin
   Prednisolone

DLBCL NCT02889523

CPI-1205 Immunotherapy Ipilimumab Advanced solid 
tumors

NCT03525795

CPI-1205 Enzalutamide
Abiraterone/Prednisone

Prostate Cancer NCT03480646Anti-androgen
therapy

GSK126 Proteasome inhibitor Bortezomib
Nimesulide

NSCLC [131]

Etoposide

Anti-androgen
therapy

SHR3680 Prostate CancerSHR2554 NCT03741712

CPI-0209 IrinotecanStandard chemotherapy Advanced solid 
tumors

NCT04104776




