
HAL Id: hal-03489923
https://hal.science/hal-03489923

Submitted on 21 Jul 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Metabolic reprogramming by tobacco-specific
nitrosamines (TSNAs) in cancer

Saharnaz Sarlak, Claude Lalou, Nivea Dias Amoedo, Rodrigue Rossignol

To cite this version:
Saharnaz Sarlak, Claude Lalou, Nivea Dias Amoedo, Rodrigue Rossignol. Metabolic reprogramming
by tobacco-specific nitrosamines (TSNAs) in cancer. Seminars in Cell and Developmental Biology,
2020, 98, pp.154 - 166. �10.1016/j.semcdb.2019.09.001�. �hal-03489923�

https://hal.science/hal-03489923
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


 1

Metabolic reprogramming by tobacco smoke-derived  

nitrosamines (TSNAs) in cancer. 

 

 

Saharnaz Sarlak1,2 , Claude Lalou1,2, Nivea Dias Amoedo3 and Rodrigue Rossignol 1,2,3 

 

Affiliations 
1 INSERM U1211, 33000 Bordeaux, France 

2 Bordeaux University, 146 rue Léo Saignat, 33000 Bordeaux, France 

3 CELLOMET, Functional Genomics Center (CGFB), 146 rue Léo Saignat, 33000 Bordeaux, France 

* Correspondence: Rodrigue ROSSIGNOL. Phone: +33 (0)5 57 82 10 54; e-mail address: rodrigue.rossignol@u-bordeaux.fr  

 

 

 

Summary: Metabolic reprogramming is a hallmark of cancer and the link between oncogenes 

activation, tumor supressors inactivation and bioenergetics modulation is well established. 

However, numerous carcinogenic environmental factors are responsible for early cancer 

initiation and their impact of metabolic reprogramming just starts to be deciphered. For 

instance, it was recently shown that UVB irradiation triggers metabolic reprogramming at the 

pre-cancer stage with implication for skin cancer detection and therapy. These observations 

foster the need to study the early changes in tissue metabolism following exposure to other 

carcinogenic events. According to the International Agency for Research on Cancer (IARC), 

tobacco smoke is a major class I-carcinogenic environmental factor that contains different 

carcinogens, but little is known on the impact of tobacco smoke on tissue metabolism and its 

participation to cancer initiation. In particular, tobacco-smoke derived nitrosamines (TSNAs) 

play a central role in tobacco-smoke mediated cancer initiation. Here we describe the recent 

advances that have led to a new hypothesis regarding the link between nitrosamines signaling 

and metabolic reprogramming in cancer.  
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Abbreviation List 

3PG: 3-phosphoglycerate 

4E-BP1: 4E-binding protein 1 

8-OHdG: 8-hydroxy-2'-deoxyguanosine 

AA: arachidonic acid 

ACC1: acetyl-CoA carboxylase-1 

AMPK: Adenosine monophosphate–activated protein kinase 

AP1: activator protein 1 

AREs: antioxidant response elements 

ASK1: Apoptosis signal-regulating kinase 1 

ATF-1: activating transcription factor-1 

β-AR : β-adrenergic receptor 

cAMP: cyclic AMP 

CDKN2A:  

CIN : Chromosome instability 

CoA: acetyl-coenzyme A 

COPD: chronic obstructive pulmonary disease 

COX : Cyclooxygenase 

CREB: cAMP response element binding protein  

CREM: cAMP response element modulator 

EGF: epidermal growth factor 

EGFR: epidermal growth factor receptor 

ETC: electron transport chain 

F6P: fructose 6-phosphate 

FAKHR or FOXO: forkhead transcription factors 

FAO: fatty acid oxidation 

FAS: fatty acid synthase 

FH: fumarate hydratase 

GPCR G: protein-coupled receptors  

GSK-3: glycogen synthase kinase-3 

H2O2: Hydrogen peroxide 

HIF1α: hypoxia inducible factor 1α 

HMOX1: haem oxygenase 1 

HREs: hypoxia response elements 

IARC: International Agency for Research on Cancer 

IDH1: isocitrate dehydrogenase 1 

iso-NNAC: 4-(methylnitrosamino)-4-(3-pyridyl) butanoic acid 

iso-NNAL :4-(methylnitrosamino)-4-(3-pyridyl)-l-butanol 

JAK: Janus-activated kinase 

JNKs: c-Jun N-terminal kinases 

KEAP1: Kelch-like ECH-associated protein 1 

LDHA: lactate dehydrogenase A 

LKB1: liver kinase B1 

LOX: lipoxygenase 

MAPKKK : MAP kinase kinase kinase 

MEKs: mitogen-activated protein kinase kinases 

mtDNA : mitochondrial DNA ()  

mTORC1: mechanistic target of rapamycin complex 1 

mtPTP: mitochondrial permeability transition pore 

mtROS: mitochondrial ROS 

N7-meG: N7-methylguanine 

NAB: N′-nitrosoanabasine 
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nAChR: nicotinic acetylcholine receptor  

NAT N′-nitrosoanatabine 

nDNA: nuclear DNA 

NF-κB: nuclear factor κB 

NNA: 4-(methylnitrosamino)-4-(3-pyridyl) butanal 

NNAL: 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol 

NNK: 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone 

NNN:  N′-nitrosonornicotine 

NRF2: Nuclear factor (erythroid-derived 2)-like 2 

NF2: neurofibromin 2 

NSCLC: non-small cell lung cancer  

O2
−: Superoxide anion 

O4-meT: O4-methylthymine 

O6-meG:  O6-methylguanine 

OAA: oxaloacetate 

OH·: Hydroxyl radical 

OXPHOS: oxidative phosphorylation 

P450s: Cytochrome P450 enzymes 

PDK: pyruvate dehydrogenase kinase 

PGC-1α: nuclear transcriptional coactivator peroxisome proliferator-activated receptor γ 

coactivator 1-α 

PHD: prolyl hydroxylase 

PI3K: phosphatidylinositol 3-kinase 

PIP3: phosphatidylinositol 3,4,5-triphosphate 

PKA: protein kinase A 

PKB: protein kinase B 

PKC: protein kinase C 

PKM2: pyruvate kinase M2 isoform 

PLA2: phospholipase-A2 

POB: pyridyloxobutylations 

PPP: pentose phosphate pathway 

PRAS40:  proline-rich Akt substrate 40 kDa 

PRXs: peroxiredoxins 

R5P: ribose 5-phosphate 

Raptor: regulatory associated protein of mTOR 

Rb: retinoblastoma 

ROS: Reactive oxygen species 

RTK: receptor tyrosine kinase 

RYO: roll-your-own 

S6K1: S6 kinase 1 

SDH: succinate dehydrogenase 

SHMT: serine hydroxymethyltransferase 

SREBP-1: sterol regulatory element-binding protein 1 

STAT3: signal transducer and activator of transcription 3 

TFAM: mitochondrial transcription factor A 

TSC2: tuberous sclerosis 2 

TSC2tuberous sclerosis 2 

TSNAs: Tobacco-specific nitrosamines 

TxA2: thromboxane A2 
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Introduction 

Cigarette smoke is the predominant form of tobacco consumption, and it is the largest 

preventable cause of cancer, causing approximately 30% of all cancer deaths (1-3). Tobacco 

smoke contains approximately 7000 different types of molecules. Among these compounds, 

more than 60 are known carcinogens, and several are tumor promoters or co-carcinogens (1). 

Carcinogenesis is a continuous process initiated by genetic, epigenetic and metabolic 

alteration, followed by other factors that stimulate growth, survival and spreading of the 

cell. The carcinogens contained in tobacco smoke belong to various chemical classes, 

including polycyclic aromatic hydrocarbons (PAHs) (such as benzo[a]pyrene), tobacco-

specific nitrosamines (such as NNK and NNN), aromatic amines (such as 4-aminobiphenyl), 

aldehydes, phenols, volatile hydrocarbons, nitro compounds, and other organic and inorganic 

compounds (2). Tobacco can be used in different forms: smoking (roll-your-own (RYO) or 

manufactured cigarettes, cigars that are made of air-cured and fermented tobaccos with a 

tobacco-leaf wrapper, water pipe, pipe, etc.) or smokeless (moist and dry snuff, chewing 

tobacco). The main focus of this review is on one of the most carcinogenic components of 

tobacco smoke, nitrosamines. Tobacco-specific nitrosamines (TSNAs) only exist in tobacco 

products. During fresh green tobacco air curing, storage and fermentation, nicotine and minor 

tobacco alkaloids can be converted to TSNAs through nitrosation (6-8). This group of 

nitrosamines consists of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), 4-

(methylnitrosamino)-4-(3-pyridyl) butanal (NNA), N′-nitrosonornicotine (NNN), N′-

nitrosoanabasine (NAB), N′-nitrosoanatabine (NAT), 4-(methylnitrosamino)-1-(3-pyridyl)-1-

butanol (NNAL), 4-(methylnitrosamino)-4-(3-pyridyl)-l-butanol (iso-NNAL), and 4-

(methylnitrosamino)-4-(3-pyridyl) butanoic acid (iso-NNAC) (3), among which NNN and 

NNK, due to sufficient evidence in experimental animals, are classified as human carcinogens 

(Group 1) by the International Agency for Research on Cancer (IARC) (4). It is well 

documented that NNK and NNN can induce several malignancies, including those of the lung, 

esophageal, liver, pancreatic and nasal cavity (11-17). NNK causes lung tumors in all tested 

species, and its activity in rats is particularly high (5). To study the role of cigarette smoke in 

health in vitro, two different methods are currently used: acute exposure and chronic 

exposure. Acute exposure can provide general insight about the alterations related to tobacco 

smoke.  Data from these kinds of short-term studies can reveal effects that may constitute the 

underlying causal chain leading to the ultimate chronic effects. For instance, it has been 

shown that cigarette smoke can induce apoptosis in cells when applied at higher 

concentrations (6–8). Moreover, it has been reported that acute smoking causes pro-

inflammatory states in the lung that can lead to inflammatory diseases such as COPD (chronic 
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obstructive pulmonary disease) and asthma and promote tumorigenesis. In general, acute 

exposure studies could demonstrate cellular changes similar to cancerous cells (9). Although 

acute studies help to understand numerous details about the effects of cigarette smoking, it is 

still not possible to understand the exact mechanism underlying tobacco smoke as studying 

some effects (such as cellular transformation) is only feasible with chronic exposure. As a 

result, to study the molecular alterations, long-term studies are recommended. Until now, 

several chronic exposure studies have been conducted in vitro, providing valuable information 

about metabolic changes due to chronic tobacco smoke (10–14); however, additional chronic 

studies are needed to better understand the detailed cellular mechanism of tobacco smoke. 

The levels of TSNA in smokeless tobacco depends on the preparation used (15) and 

the variations in TSNA content of cigarette tobacco are also appreciable. For instance, Greek 

and Turkish types of tobacco are generally characterized by low TSNA contents. Conversely, 

French Gauloises had 8.6 μg/g of TSNA, whereas the TSNA concentrations in US and 

German brands range from 1.6–5.5 μg/g (15). Numerous lines of evidence have established 

that NNK and NNN induce carcinogenesis by causing DNA adductions and mutations as well 

as promoting tumor growth through receptor-mediated effects, which are facilitated by 

associated receptors, such as nicotinic acetylcholine receptor (nAChR) and β-adrenergic 

receptors (β-AR)(20,21). However, additional cancer-driving mechanisms could be stimulated 

by nitrosamines, and little attention has been given to the global impact of TSNAs on the 

emerging cancer hallmarks. The hallmarks of cancer include the sustained proliferative 

signaling, evasion of growth suppressors, resistance to cell death, enabling of replicative 

immortality, induction of angiogenesis, activation of invasion and metastasis, reprogramming 

of energy metabolism, genome instability and mutation, avoidance of immune destruction and 

promotion of tumor inflammation. In particular, one emergent hallmark of cancer is metabolic 

reprogramming, and our review will discuss the link between TSNAs and the changes in 

tumor bioenergetics associated with carcinogenesis. In particular, the main signaling pathways 

activated by TSNAs, namely β-AR and nAChR signaling, have also been involved in the 

regulation of energy metabolism but only few studies have considered the direct bioenergetic 

impact of TSNAs on pre-cancer or cancer cells. The modulation of mitochondrial biology by 

TSNAs is another point of discussion as changes in organelle biogenesis were described upon 

activation of Beta-adrenergic signaling. Lastly, TSNAs have been shown to activate different 

proto-oncogenes that could consecutively modulate energy metabolism. These different 

aspects are covered in what follows. 

 

TSNA-induced carcinogenic genomic alterations 
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Most carcinogens in tobacco products undergo metabolic activation before they are 

able to react with DNA. In this process, an unreactive carcinogen is converted to a form that is 

able to bind to DNA. There are also some carcinogens that can act without any activation 

process (16). Cytochrome P450 enzymes (P450s) generally initiate this metabolic activation 

for foreign compounds, including natural products, pharmaceuticals, and carcinogens. P450s 

catalyze reactions in which produced metabolites are either excreted in a detoxified form or 

readily undergo further detoxification reactions. As long as this detoxification process works 

efficiently, cells are protected. However, some metabolites resulting from this carcinogen-

induced metabolic activation are electrophilic (have an electron-deficient center) and can react 

with DNA. The reaction of these metabolites with DNA can lead to the generation of DNA 

adducts, which are generally regarded as intermediaries in the mutagenesis process. DNA 

adducts can be removed by the cellular repair system, but some can also escape from this 

system and subsequently initiate the carcinogenic process (3,17). It has been reported that 

NNK can be activated through different reactions by cytochrome P450s: α-hydroxylation, 

pyridine oxidation, and carbonyl reduction (18). Such activation generates the toxic 

methylating agent methanediazohydroxide which further reacts with DNA to produce N7-

methylguanine (N7-meG), O6-methylguanine (O6-meG) and O4-methylthymine (O4-meT). 

During the activation process, the carbonyl group in NNK is also reduced to produce NNAL 

that will generate glucuronide or undergo methylene hydroxylation (Figure 1). The excretion 

of NNAL and its glucuronide represents a useful index of exposure in tobacco users (19,20). 

There is also another pathway in which 4-(3-pyridyl)-4-oxobutane-1-diazohydroxide will 

form, which leads to the introduction of pyridyloxobutyl (POB) adducts in DNA (21–23). 

Oxidative metabolism of NNN generates the same reactive diazohydroxide as obtained upon 

α-hydroxylation of the terminal methyl group of NNK, thereby introducing POB in proteins 

and DNA. NNN exhibits a complex pattern of metabolites in urine (24,25). Three important 

types of DNA damage can be caused by NNK and NNN: nucleotide methylation, 

pyridyloxobutylations as well as pyridylhydroxybutylation (Figure 1). As mentioned above, 

DNA phosphate POB adducts are also caused by these TSNAs (26). The N7-meG is the 

predominant adduct found in target tissues induced by NNK, followed by O6-meG, whereas 

very low levels of O4-meT are present (15). It has been demonstrated in the lung that by α-

hydroxylation, NNK can transform into either a methylating agent or a pyridyloxobutylating 

agent. The methylation pathway, which is critical for NNK-induced lung tumorigenesis (in 

A/J mice), generates methyl DNA adducts such N7-meG and O6-meG (37-40). The 

pyridyloxobutylating agent produce relatively bulky DNA adducts (27). It has been shown 

that NNK pyridyloxobutylation is a potential initiating event of CIN in lung carcinogenesis 
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(28). Chromosome instability (CIN), which is an abnormal increase in the rate of change 

in chromosome number and structure, is assumed to be a common genomic instability in 

tumor evolution (29). It has been documented that NNK is also able to induce extensive 

genome-wide changes in DNA copy number (or in general chromosomal alterations), 

indicative of CIN (28). Gross chromosomal alterations have been repeatedly observed in 

NNK-induced mouse lung adenocarcinomas (28,30). In general, the majority of research 

reports that most DNA adducts derived from cigarette-smoke carcinogens, including 

nitrosamines, cause miscoding permanent mutations (most frequently G–T and G–A) (31) that 

can occur in crucial regions of oncogenes or tumor-suppressor genes. These mutations can 

lead to cancer development by creating disruptions in cell-cycle checkpoints, chromosomal 

instability and other changes (32). Candidate NNK-induced genes with roles in lung 

carcinogenesis are p53 and retinoblastoma (Rb) tumor suppressor genes, and KRAS oncogene 

(28). NNK-mediated activation of the C-Myc oncogene could also participate to CIN. Partial 

evidences demonstrated that, on the one hand, NNK could activate C-Myc through Thr58 and 

Ser62 phosphorylation in a ERK1/2 and PKC-alpha dependent manner (33), and on the other 

hand, that Myc activation could generate CIN (34). Yet, C-Myc activation is not a major 

contributor to lung carcinogenesis that depends more on KRAS, suggesting that NNK-

mediated KRAS activation could contribute to CIN in this type of cancer (35). Lastly, gene 

silencing by promoter hypermethylation is an emerging mechanism that might also be 

important in tobacco carcinogenesis (36). To conclude on the TSNA-induced carcinogenic 

genomic alterations, one should also consider the importance of the cumulated dose of 

tobacco-smoke exposure in this phenomenon. Comparison of the genomics and epigenomics 

alterations in lung tumors from smokers and from never smokers revealed important 

differences in the mutational status of KRAS and STK11 (LKB1) that showed a higher level 

of alteration in smokers (37). Given the role of LKB1 in the control of energy metabolism 

through the AMPK pathway (38), bioenergetic differences could be expected in lung tumors 

of smokers as compared to never smokers. Accordingly, the gene expression profiling of lung 

and plasma from mice exposed to tobacco smoke during seven days to nine month revealed 

significant changes in the expression of AMPK-target genes as oxidative phosphorylation 

enzymes (39), but the underpinning signaling mechanisms governing these bioenergetic 

alterations still remain unkown. 

Nitrosamine receptors and signaling 

Nicotine and its oncogenic derivatives NNK and NNN are thought to promote tumor 

progression by binding to and activating the two cell surface receptors nicotinic nAChR and 
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β-AR. This activation can lead to the stimulation of multiple downstream tumor-promoting 

signal transduction pathways (40) discussed below. The two main branches of TNSAs 

signaling, namely β-AR and nAChR interwinned pathways, play a role in the reprogramming 

of energy metabolism and could thus be involved in the bioenergetic reprogramming of pre-

cancer and cancer cells, as discussed below. At first, we provide a rapid description of β-AR 

and nAChR signaling pathways. 

Adrenergic receptors (AR) 

Adrenergic receptors (AR) are a family of G protein-coupled receptors (GPCR). These 

receptors can initiate multiple signaling cascades and therefore lead to numerous pathological 

conditions (41). There are two classes of adrenergic receptors, the α-adrenergic and the β-

adrenergic families (42). It has been demonstrated that β-ARs may regulate different 

processes of cancer initiation and progression, including the adenylyl 

cyclase/cAMP/PKA/CREB pathway (Figure 2 (ex Fig.3)), which transactivates the epidermal 

growth factor receptor (EGFR) pathway, the SRC/STAT pathway as well as the arachidonic 

acid (AA) cascade (43). The physiological agonists for β-ARs are catecholamine stress 

neurotransmitters noradrenaline and adrenaline (44), and their physiological inhibitor is a 

neurotransmitter GABA that can block the activation of adenylyl cyclase. NNK structurally 

resembles classical β-AR agonists (45), and consequently, it can activate downstream 

signaling cascades of this receptor. There is a body of evidence suggesting that NNK can 

induce cancer through β-AR activation, for which there is evidence from lung and pancreatic 

adenocarcinoma (46). As discussed below, β-AR activation can also modulate mitochondrial 

biology and energy metabolism, which might participate to the bioenergetic reprogramming 

of lung exposed to cigarette smoke (39). The TSNAs- β-AR signaling pathway can be divided 

in three branches detailed below: (i) TSNAs- β-AR-PLA2, (ii) TSNAs- β-AR-ERK1/2 and 

(iii) TSNAs- β-AR-EGFR. 

At first, NNK can bind to β-AR on pulmonary epithelial cells and initiate proliferation 

cell signaling pathways, which leads to lung adenocarcinoma (47). After NNK binding to β-

AR, GPCR triggers the activation of adenylyl cyclase and cyclic AMP (cAMP). cAMP itself 

activates protein kinase A (PKA), which subsequently activates phospholipase-A2 (PLA2) 

and defines the TSNAs-β-AR-PLA2 branch. PKA can also stimulate RAP-1 to define the 

TSNAs-β-AR-ERK1/2 branch. Then, cAMP can also activate EGFR which define the 

TSNAs-β-AR-EGFR branch. 

In the TSNAs-β-AR-PLA2 branch, arachidonic acid (AA) acts as a second messenger 

(Figure 2) to activate mitogen-activated protein kinases and protein kinase C, which leads to 
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increased DNA synthesis and cell proliferation in adenocarcinoma (47). Cyclooxygenase 

(COX) and lipoxygenase (LOX) are the two significant metabolic enzymes in AA metabolism 

(48) that have been shown to be overexpressed by pulmonary adenocarcinomas and pancreatic 

adenocarcinoma cells (49–51). In response to NNK, several products downstream of the COX 

pathway are produced, among which thromboxane A2 (TxA2) has a significant role in cancer 

development and metastasis (52,53). In lung cancer cells, NNK leads to higher expression 

of thromboxane synthase TxAS, which facilitates TxA2 synthesis from PGH2 (prostaglandin 

H2) and leads to TxA2 receptor activation (54). It has been demonstrated that overexpression 

of TxAS and TxA2 receptor has a potential role in tumorigenesis and promotion of the 

progression of many types of cancers (52,55).  

Regarding the TSNAs-β-AR-ERK1/2 branch, the NNK-mediated stimulation of β-AR 

signaling activates the cytoplasmic serine/threonine kinase effector B-RAF, which further 

activates signal-regulated kinase 1 and 2 (ERK1 and ERK2) (Figure 2) (56). The main 

genetic effectors of the TSNAs- β-AR signaling pathways include transcription factors as 

cAMP response element binding protein (CREB), cAMP response element modulator 

(CREM), activating transcription factor-1 (ATF-1), activator protein 1 (AP1) and the nuclear 

factor κB (NF-κB)(57). Those effectors alter cell proliferation, differentiation, survival, 

energy metabolism (new Figure 3) and consequently the promotion of oncogenesis (58).  

Lastly, the TSNAs-β-AR-EGFR involves the transactivation of the EGFR pathway and 

downstream recruitment of the SRC kinase (59–63) that promotes activation of Ras oncogenic 

proteins. RAS, as a signal transducer, stimulates RAF and consequently mitogen-activated 

protein kinase kinases (MEKs), ERK1/2 and ribosomal protein S6 kinases (RSKs). These 

factors activate transcription factors such as AP1 and Myc, which regulate cell proliferation 

(46). Additionally, SRC can activate K+ channels, which can stimulate the AA pathway 

(64). It has been reported that through this pathway, NNK regulates the growth and 

development of lung adenocarcinomas (65). In addition to RAF, RAS can also interact with 

phosphatidylinositol 3-kinase (PI3K), which is important in various cellular processes (Figure 

2). Upon activation of PI3K, a secondary messenger phosphatidylinositol 3,4,5-triphosphate 

(PIP3) is generated, which further phosphorylates and activates serine/threonine kinase Akt or 

protein kinase B (PKB). The PI3K/Akt pathway is a critical pathway in cancer, as it is a 

regulator of key cellular processes that contribute to tumorigenesis, tumor growth and 

therapeutic resistance. As an example, it has been documented that NNK can, in this way, 

lead to the phosphorylation of the Bad/Bcl2 antagonist, the dissociation of which hampers the 

pro-apoptotic activity of Bad and consequently promotes cell survival and chemoresistance 

(33). The TSNAs-β-AR-EGFR branch includes activation of RAS (Figure 2) and involves 
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stimulation of signal transducer and activator of transcription 3 (STAT3), a transcription 

factor involved in lung cancer cells proliferation, metastasis and bioenergetics (66–68). 

Accordingly, the STAT3 target IKBKE, a serine/threonine kinase, is overexpressed in 

response to NNK and promotes proliferation (66). These findings might suggest that 

activation of beta-adrenergic signaling by NNK could mediate bioenergetic changes through 

STAT3 and further molecular investigation will be required to verify this hypothesis. 

 

Nicotinic acetylcholine receptors (nAChRs)  

nAChRs consist of five subunits with homo- or heteropentamers that form ligand-gated ion 

channels located in the plasma membrane of mammalian cells (Figure 3). Initially, these 

receptors were identified in the nervous system, at the neuromuscular junction, and classified 

into neuronal or muscle nAChRs (108-111). The neuronal nAChRs can be homomeric 

(composed of five identical α7, α8 or α9 subunits) or heteromeric (composed of combinations 

of α2–α6 or α10 subunits and β2–β4 subunits), whereas muscle nAChRs may comprise 

combinations of α1 subunits with β1, γ, δ or ε subunits (70). Binding of agonist to nAChRs 

leads to the activation of these receptors, which is followed by ion influxes or recruitment of 

β-arrestin to the receptor to stimulate a number of intracellular signaling pathways (71,72). 

Acetylcholine is the initial agonist for these receptors, but nicotine and TSNAs can serve as an 

agonist for nAChRs, especially the α7 subtype (73). The affinity of NNK for α7nAChR was 

found to be 1,300 fold higher than that of nicotine, whereas the affinity of NNN for 

heteromeric α–βnAChRs was 5,000 fold higher than that of nicotine (74,75). This higher 

affinity implies that NNK and NNN can win in the competition for binding to nAChRs. 

Therefore, many cardiovascular, neuropsychological and cancer-stimulating effects currently 

attributed to nicotine are probably caused by these nitrosamines (71). It has been shown that 

the binding of NNK to α7nAChR in lung cells lead to activation of voltage-gated calcium 

(Ca2+) channels and causes an influx of Ca2+ and consequently membrane depolarization (76). 

Following receptor activation and ion flux, three main sub-pathways have been described: i) 

nAChr-PKC-Erk1/2, ii) nAChr-VEGF and iii) nAChr-EGFR-RAS/PI3k. These sub-pathways 

are further discussed below. Please note the redundancy with the sub-pathways described 

above for the beta-adrenergic signaling also activated by TSNas. 

Regarding the nAChr-PKC-Erk1/2 branch, PKC activation leads to stimulation of the 

serine/threonine-protein kinase RAF (Figure 3). This activation initiates the MEK/ERK 

cascade as well as the downstream activation of number of transcription factors such as FOS, 

JUN and Myc, leading to proliferation in lung cancer (33). In this sub-pathway, NNK induces 

the phosphorylation of cellular proteases (μ- and m-calpain) and leads to the migration and 
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invasion of lung cancer cells (77). Additionally, contactin 1, which is a neural cell adhesion 

molecule located in the plasma membrane, can be upregulated by NNK through the ERK 

pathway. Contactin 1, for which a role has been demonstrated in the development of various 

types of cancer including lung adenocarcinoma, is able to interact with several other 

membrane proteins or the extracellular matrix to activate downstream signaling pathways 

(78,79). The role of this molecule in lung cancer cell invasion and metastasis via the VEGF-

C/Flt-4-mediated SRC–p38-C/EBP pathway has been confirmed (80–82). In addition, 

contactin 1 can prevent PHLPP2-mediated Akt dephosphorylation, which leads to Akt 

pathway activation (83). Additionally, nAChRs activation can activate the SRC kinase that 

leads in turn to RAF kinase stimulation and induction of the Rb/E2F1 axis which regulates 

proliferative genes as Cdc25A and Cdc6 (72).  

The nAChr-VEGF sub-pathway involves HIF-1α activation and plays a role in  

nicotine-induced tumor cell proliferation (84). In vitro studies performed on human lung 

cancer cell lines demonstrated that nicotine induces Hypoxia-Inducible Factor-1α Expression 

through the nicotinic acetylcholine receptor with implication for lung cancer cell migration, 

and invasion (85). 

Lastly, the nAChr-EGFR-RAS/PI3k sub-pathway involves the NNK-mediated 

stimulation of PI3K and Akt kinases (Figure 3) that leads to the activation of numerous 

downstream effectors: (a) forkhead transcription factors (FAKHR or FOXO), which have a 

wide range of roles in physiological processes, including cell cycle arrest, apoptosis, 

angiogenesis, stress resistance, energy metabolism, and stem cell differentiation (86), (b) 

serine/threonine kinase glycogen synthase kinase-3 (GSK-3), which can regulate glycogen 

synthesis, (c) tuberous sclerosis complex 2 (TSC2) or tuberin, which can control mechanistic 

target of rapamycin (mTOR) signaling pathway, (d) Apoptosis signal-regulating kinase 1 

(ASK1) or MAP3K5, a member of the mitogen-activated protein kinase kinase kinase that 

activates downstream MAPKs, c-Jun N-terminal kinases (JNKs) and p38 MAPKs, (e) 4EBP-

1, which is a substrate for the mTOR signaling pathway and (f) S6K1, which leads to mTOR 

activation (87). The activation of nAChRs can also occur through the recruitment of a 

scaffolding protein, β-arrestin-1.  

Additionally, nAChRs might functionally network with β-AR and, consequently, the 

EGFR pathway (Figure 3). The indirect stimulation of β-AR via nAChRs has been reported 

in NNK-treated small airway epithelial cells (47). 

 

Nitrosamine signaling implication in the metabolic reprogramming of cancer cells 
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Alterations in cellular metabolism are considered an important hallmark of cancer, as 

this reprogramming can be observed in most types of cancer cells (88). In a simplified view, 

one could describe two main types of metabolic reprogramming: glycolytic and oxidative 

(89). Glycolytic tumors rely more on glycolysis to generate ATP as well as building blocks, 

with little contribution of the mitochondrion. Several mechanisms and determinants of the 

glycolytic phenotype have been described and reviewed in the last decade. Briefly, tissue 

hypoxia or oncogene mediated pseudo-hypoxia promotes the HIF1alpha-dependent 

expression of specific glycolytic genes and inhibits oxidative metabolism through PDK1 

expression (90). In contrast, oxidative tumors rely on mitochondrial energy transduction from 

various sources of carbons as carbohydrates, amino-acids or fats. The determinants of the 

oxidative profile are also numerous and include specific oncogenes activation (as KRAS in 

lung tumors (91) or Myc in breast cancer (92)) as well as environmental factors as tissue 

perfusion (93) or oxidative stress (94). Cancer cells metabolic reprogramming can occur 

independently of metabolic substrates availability as exemplified by aerobic glycolysis or 

Warburg effect, where cancer cells use glycolysis even in presence of oxygen. The 

bioenergetic profile of a given tumor depend on several parameter and inter-patient as well as 

intra-tumor heterogeneity have been described (93). A large number of signaling pathways 

have been involved in the reprogramming of tumor energy metabolism but, surprisingly, little 

attention has been given to the role of nitrosamine signalling in this hallmark of cancer. As 

discussed above, several lines of evidence indicate that nitrosamines can activate the 

PI3K/Akt, Myc, HIF1alpha, KRAS and NRF2 signaling pathways through β-AR, nACHr and 

ROS-dependent or oncogenic-dependent signaling. These pathways also play a role in the 

control of energy metabolism, suggesting that nitrosamines could participate to the 

reprogramming of cancer cells bioenergetics, in concert with changes in other cancer 

hallmarks such as genomic and epigenomic alteration, deregulated cell proliferation and 

increased migration (Figure 4).  

PI3K/Akt : The PI3K/Akt pathway, which is located downstream of receptor tyrosine 

kinase (RTK), is a crucial actor in metabolic reprograming that leads to cell growth (161,163). 

Inappropriate activation of PI3K, which leads to activation of the pro-survival kinase Akt, is 

among the most common perturbations in various human cancers; several well-characterized 

oncogenes and tumor suppressors are located in this network (95). One of the consequence of 

activation of this pathway is the promotion of glucose uptake and glycolytic metabolism, 

directing cellular metabolism toward anabolic growth through Akt-mediated membrane 

translocation of glucose transporters, and Akt-dependent activation of hexokinase and 

phosphofructokinase (96). By phosphorylation and activation of ACL, Akt can stimulate the 
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conversion of citrate to acetyl-CoA and OAA, which leads to de novo fatty acid synthesis 

(97). A major consequence of the activation of this pathway is the activation of the cell 

growth regulator mTOR complex 1 (mTORC1). This downstream activation is mediated by 

the inhibitors of this regulator: TSC2 or proline-rich Akt substrate 40 kDa (PRAS40) (98). 

Activation of mTORC1 enhances protein synthesis by phosphorylation of the translational 

regulators 4E-binding protein 1 (4E-BP1) and S6 kinase 1 (S6K1) (98). Moreover, mTORC1 

activation has an effect on the promotion of mitochondrial biogenesis and respiration, 

gluconeogenesis as well as many other metabolic processes. These effects can be modulated 

by a nuclear transcriptional coactivator, PGC1α (99–102). mTORC1 also has an effect on a 

number of transcription factors that coordinate metabolic gene expression: HIF1α, Myc, and 

sterol regulatory element-binding protein 1 (SREBP-1) (103).  

The impact of NNK on the PI3K/Akt pathway will also depend on the micro-

environment of the cell, in particular the availability to nutrients and to oxygen. As mentioned 

above, the PI3K/Akt pathway responds to external growth factors and hormonal signals by 

promoting glucose transport, aerobic glycolysis, and anabolic synthesis of macromolecules. 

Subsequently, in the presence of insufficient glucose to feed this pathway, the cell should find 

another source to supply its ATP demand. Adenosine monophosphate–activated protein 

kinase (AMPK) is a known sensor of cellular energy status that monitors ATP levels in the 

cell and is activated under energetic stress, when intracellular ATP decreases and intracellular 

AMP increases, such as during hypoxia or nutrient deprivation. Activation of this kinase 

stimulates a program of metabolic adaptation to maintain energy homeostasis (by limiting 

energy consumption or enhancing energy production) and thus allows adaptation to a given 

metabolic stress (104,105). In fact, upstream of this kinase is a serine–threonine kinase, liver 

kinase B1 (LKB1), which is a tumor suppressor and is considered an activator of AMPK. 

The LKB1/AMPK pathway, as a metabolic checkpoint in the cell, initiates suppression of 

the PI3K pathway by inhibiting the mTORC1 pathway and arresting cell growth under 

conditions of low intracellular ATP levels (106). mTORC1 inhibition is accomplished 

through phosphorylation of TSC2 and regulatory associated protein of mTOR 

(raptor)(107,108). By this inhibition, AMPK blocks protein translation and fatty acid 

synthesis, which consume ATP. Fatty acid synthesis can be blocked by acetyl-CoA 

carboxylase-1 (ACC1) phosphorylation (106). Another consequence of AMPK activation is 

the induction of autophagy (109). Moreover, fatty acid oxidation will increase to generate 

acetyl-coenzyme A (CoA) as a substrate for the TCA cycle and oxidative phosphorylation 

(96). In metabolic adaptation, some of the downstream effects of AMPK are related to 

phosphorylation and activation of p53 tumor suppressor. This tumor suppressor is one of the 
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most important transcription factors, playing a vital role in the response and regulating 

metabolic stress to prevent tumor development. p53 activation stimulates transcriptional 

activity and initiates a metabolic cell cycle checkpoint that restricts cell proliferation (110). As 

a vital cancer defender, p53 has a diverse range of functions in the promotion of oxidative 

phosphorylation and downregulation of glycolysis, and its mutation can lead to cancer 

development. Moreover, as p53 regulates cell growth and autophagy, its role is significant 

in the cellular response to starvation (111). 

HIF1α: the Hypoxia-induced factor 1-alpha (HIF1α) is responsible for metabolic adaptation 

in hypoxia. At first, during hypoxia the main reason to use glycolysis is the lack of oxygen 

and HIF-1 further increases glycolysis through the induction of glycolysis related genes (112). 

Enhancement of the glycolytic machinery involved the increased expression of glucose 

transporters, glycolytic enzymes, and of PDK1 that will in turn inhibit pyruvate 

dehydrogenase and glucose-dependent oxidative phosphorylation (90). The other transcription 

factor, Myc, which is activated downstream of mTORC1, also acts in the regulation of cell 

growth and proliferation (113). Myc targets genes that support the proliferative utilization of 

glutamine, including glutamine transporters, and those involved in both mitochondrial 

biogenesis and glutaminolysis. It can also stimulate enhanced expression of many genes 

involved in glucose uptake, glycolysis, and lactate production (114). Myc increases the 

expression of many genes that support anabolic growth, including transporters and enzymes 

involved in glycolysis, fatty acid synthesis, glutaminolysis, serine metabolism, and 

mitochondrial metabolism (115). Myc-transformed cells undergo apoptosis in the absence of 

exogenous glutamine (116–118). Moreover, Myc also induces the expression of enzymes in 

other anabolic pathways, such as serine hydroxymethyltransferase (SHMT) (serine/glycine 

metabolism) and fatty acid synthase (FAS)(lipid biosynthesis) (119). The last mentioned 

transcription factor, SREBP (sterol regulatory element–binding protein), plays a role by 

inducing the expression of several genes involved in fatty acid biosynthesis in response to 

growth factor signaling (120). As a downstream effector of mTORC1, SREBP1 can lead to 

the deregulation of de novo lipid synthesis (121). 

KRAS: Regarding KRAS, NNK can induce activating-KRAS mutations and causes 

primarily lung adenomas (in susceptible mouse strains) (122). Ras is a type of small GTP-

binding protein that functions as a component of several signaling cascades that function in 

other various signaling cascades, such as RAF/MEK/ERK, PI3K/Akt, and RalEGF/Ral 

pathways (123). RAS has different subtypes, such as H-RAS, N-RAS and K-RAS, and the 

effect of each of them differs in mediating different signaling pathways. These genes are 

commonly mutated in human cancer, leading to cellular proliferation (32,124). KRAS 
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mutation is more frequent in comparison to the other subtypes in most cancer types (including 

lung adenocarcinoma) (125). Activation of KRAS can increase the glycolytic flux but 

decreases glucose consumption in the TCA cycle and associated anabolic pathways. Instead, 

to sustain biosynthetic reactions, this oncogene activation promotes the utilization of 

glutamine for anabolic pathways (126). Thus, in KRAS mutated cells, glutamine can be used 

as both carbon and nitrogen sources for biosynthetic reactions to sustain cell growth and 

quench ROS production metabolism, leading to an efficient utilization of both carbon and 

nitrogen and in this way playing an essential role in the proliferation and survival of cancer 

(127–129). Through MEK/ERK kinases activation, KRAS can phosphorylate proteins directly 

or promote protein phosphorylation and consequently regulate various cellular functions 

(130). ERK signaling downstream of KRAS mutation can lead to lipogenesis and alter lipid 

metabolism in cancer (131). The proposed target in this pathway inducing lipogenesis is fatty 

acid synthase (FASN) (126). Additionally, the PI3K/Akt/mTOR pathway is critical for NNK-

induced lung tumorigenesis (132).  

NRF2: The potential role of NFE2-related factor 2 (or nuclear respiratory factor) 

(NRF2) in NNK-mediated metabolic reprogramming was suggested by studies showing that 

NNK can induce oxidative stress in lung tissues in mice and rats by creating a major 

premutagenic lesion, 8-hydroxy-2'-deoxyguanosine (8-OHdG), which is considered a marker 

of DNA oxidative damage produced by ROS (133–136). ROS are intracellular chemical 

species that contain oxygen and include the superoxide anion (O2
−), hydrogen peroxide 

(H2O2), and hydroxyl radical (OH·). As these radicals have a single unpaired electron, they 

are highly reactive (137). The initiator of ROS in aerobic cells is O2
−, which is generated from 

the incomplete reduction of molecular O2 to H2O in the mitochondrial respiratory chain and 

peroxisomal oxidation (138) (and cytosolic NADPH oxidases (NOXs) (139)). After O2
− 

generation, it can be converted to H2O2, which is facilitated in this reaction by superoxide 

dismutase 1 or 2. H2O2 can be converted either to H2O (catalyzed by peroxiredoxins (PRXs) 

and consequently detoxified, or to OH· in the presence of ferrous or cuprous ions. OH· can 

lead to the oxidation of lipids, proteins, and DNA, which consequently damage cells (140). 

Low amounts of ROS can be considered a positive regulator of cell proliferation and cellular 

adaptation to metabolic stress (particularly H2O2) (141), while higher amounts of ROS can 

lead to cell death signaling pathways, initiated by H2O2 and followed by OH· generation, 

which can damage cellular components. In such conditions of oxidative stress the main 

function of NRF2 is to activate the cellular antioxidant response. Thus, NRF2 is an important 

regulator of cell survival and is considered a main defense system of the cells (142). The 

primary regulator of NRF2 is Kelch-like ECH-associated protein 1 (KEAP1). KEAP1 is a 
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substrate adaptor for a Cul3-containing E3 ubiquitin ligase. KEAP1 and the E3 ubiquitin 

ligase complex degrade NRF2 to maintain its low level. High levels of fumarate can also 

cause KEAP1 inactivation and consequently stabilize NRF2. Excess NRF2 binds to 

antioxidant response elements (AREs) and turns on nDNA stress-response genes, including 

haem oxygenase 1 (HMOX1), which appears to be important in tumorigenesis. NNK can 

stimulate the generation of mitochondrial ROS and mimic the effects of hypoxia to induce 

HIF1α accumulation and activity in lung cancer cell lines (143). In cancer cells, DNA lesions 

can also lead to excess generation of ROS. Higher ROS levels can stimulate the PI3K and 

MAPK/ERK signaling pathway and activate transcription factors such as HIF1α and NF-κB 

(144–146). Many lines of evidence indicate that levels of intracellular ROS were closely 

linked to HIF1α stabilization, possibly through the modification of prolyl-hydroxylase (PHD) 

activity (147). Furthermore, mitochondria, which are the main source of ROS production, 

appear to play a critical role in the regulation of HIF1α stability (148). Intratumoral hypoxia 

can cause metastasis, which leads to cancer progression (149). Based on the available 

evidence, most cellular consequences related to hypoxia are mediated by the HIF1, which 

consists of two proteins — HIF1α and HIF1β. These two proteins can bind to hypoxia 

response elements (HREs) in the promoter region of numerous metastasis-associated genes 

and in this way promote metastasis (147,150). HIF1α degradation under normoxia is regulated 

by PHD enzymes, growth factor stimulation and free radical generation. 

β-AR- and nAChR-dependent regulation of mitochondrial biology: Biochemical 

studies have shown that mutations in β-AR receptor can increase cell respiration and fatty 

acid oxidation (151). This increase in cell respiration as a result of activation of β-AR 

associated with an increased production of ROS (152). It is also demonstrated that β-AR 

signaling through agonist binding can induce mitochondrial biogenesis (153–156) and in this 

way modulate oxidative metabolism, energy expenditure, lipolysis, glucose transport, and 

glucose oxidation (157–159). The regulation of mitochondrial biogenesis by nitrosamine 

signaling could involve stimulation of the nuclear transcriptional coactivator peroxisome 

proliferator-activated receptor γ coactivator 1-α (PGC-1α). This transcriptional coactivator 

interacts with CREB and and nuclear respiratory factors 1 and 2 to (NRF1 and 2) (160). As 

discussed above, CREB is activated by stimulation of Beta-adrenergic signaling (Figure 2). 

The transcription factor CREB can induce the expression of a series of genes involved in 

mitochondrial biogenesis and mitochondrial respiration (161–163). CREB participates to the 

so-called retrograde signaling involved in the stimulation of mitochondrial function in 

response to increased energy needs (163). Studies in neurons further showed that CREB can 

act directly on mitochondrial DNA-encoded gene transcription (164), raising the need to 
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investigate this possibility in the context of cancer. Likewise, the SRC kinase and STAT3, 

two components of the non-canonical activation of β-AR signaling have also been related to 

the stimulation of mitochondrial function. For instance, SRC kinase has been discovered 

inside the mitochondrion where it could phosphorylate a complex-I subunit, leading to 

changes in cell respiration (165,166). Similar findings have been reported for STAT3 with a 

mitochondrial-form of this transcription factor involved in the stimulation of OXPHOS 

(67,167). It is also suggested that β-AR can regulates mitochondrial function directly and 

indirectly through cAMP production. In this context, cAMP activates various effectors like 

PKA and Epac that lead to PGC1α activation (168–173). Moreover, other B-AR signaling 

could trigger mitochondrial biogenesis through Ca2+ and CamKKβ or AMPK (174–177). 

Regarding nAChR, cell biology studies have revealed that this receptor is expressed 

on mitochondrial outer membrane of non-neuronal cells (178). It was also demonstrated that 

mt-nAChR is coupled with voltage-dependent anion channel (VDAC) and regulate 

Ca2+accumulation and cytochrome c release during apoptosis. The expression of mt-nAChR 

can also regulate mitochondrial permeability transition (179) and it was proposed that 

activation of mt-nAChR by some agonists that can permeate the cells (such as nicotine) may 

inhibit mPTP opening to reduce apoptosis (178–181).   

 

 

Conclusion 

Cigarette smoke, which is the predominant form of tobacco consumption, is the largest 

preventable cause of cancer, attributed to approximately 30% of all cancer deaths (182–184). 

Cigarette smoke has a complex composition, and the exact mechanism by which these 

components can lead to carcinogenesis is still not well understood. To understand the 

molecular events related to cigarette smoke, several epigenetic (185–187), genomic (188–

190), transcriptomic (191,192), proteomic (193–195) and metabolomic (196,197) studies have 

been conducted. In particular, metabolomics showed that tobacco smoke immediately (2 

hours) leads to altered level of glycerophospholipids, glutamate and 2-octenoylcarnitine in the 

blood, suggesting changes in lipid and glutamine metabolism (190). Conversely, long-term 

effect studies identified specific metabolites that varied in proportion with tobacco-smoke 

exposure (189). These included nicotine metabolites and xenobiotic metabolites involved in 

benzoatic or xanthine metabolism as well as specific amino acids, lipids, vitamins or cofactors 

and one carbohydrate. No metabolite from glycolysis or TCA cycle were identified in these 

studies. However, the specific changes that occur in lung tissue were not investigated in these 

studies focused on the systemic changes induced by tobacco-smoke. Therefore, metabolomics 
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studies will be required on lung tissue of animal model expose to TSNAs to evidence 

potential changes at the level of energy metabolism. 

Cancer metabolism, an emerging hallmarks of cancer, is an important aspect of cancer 

initiation and development, the reprogramming of which is often a consequence of 

tumorigenic mutations and epigenetic alterations (198). Further dissecting the role of cancer 

metabolism and tracking its plasticity in addition to other molecular aspects of cancer studies 

can help us to better understand the pathobiology of cancer, which will in turn lead to the 

identification of early detection biomarkers and/or therapeutic targets. Cigarette smoke has 

been reported to enhance lactate production in human bronchial epithelial cells and lead to 

glucose consumption (199). Moreover, one of the most important effects of cigarette smoke is 

the induction of oxidative stress. Activation of aryl hydrocarbon receptor (AHR) by cigarette 

smoke can be associated with the expression of oxidative stress and antioxidant genes (200–

203), as documented in an human airway epithelium cell line (i.e., activation caused increased 

ROS production (204)). AHR is a cytosolic ligand-activated transcription factor that is 

activated upon encountering multiple foreign ligands, such as cigarette smoke. Activation of 

AHR can lead to the transcription of genes related to biotransformation enzymes such as 

CYP1A1. A prominent role of CYP1A1 is related the metabolism of some carcinogens found 

in cigarette smoke, such as nitrosamines and poly aromatic hydrocarbons (205). Upon chronic 

exposure of lung cancer cells to cigarette smoke, higher expression of AHR regulatory genes 

are observed, followed by an alteration in mitochondrial proteins, specifically enzymes 

involved in TCA and OXPHOS. Moreover, this chronicity leads to higher expression of 

glutamine synthase, fatty acid degradation and lactate synthesis (195), in addition to reduced 

expression of many glycolytic enzymes such PKM2 (195), which is a rate-limiting glycolytic 

enzyme and acts as a key component in tumor metabolism and growth. As a consequence of 

the lower activity of this enzyme, the upstream intermediates of glycolysis will accumulate 

and enter anabolic pathways (206). As higher ROS production can lead to inhabitation of 

PKM2 (207), mitochondria exposed to cigarette smoke are metabolically altered to support 

their survival and proliferation (195). In general, there is a body of evidence that indicates 

cigarette smoke plays a potential role in mitochondrial metabolic reprogramming (195). All 

these reports indicate that cigarette smoke plays a profound role in metabolic alterations. 

Several studies have also examined the role of each carcinogenic component of tobacco 

smoke separately, such as the investigations of TSNAS reviewed in this article. Despite 

several reports on this subject, little is known about their mechanisms, especially regarding 

metabolic reprogramming. This suggests that more research in the field is necessary. 
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Figure Legends. 

Figure 1. Schematic illustration of the NNK and NNN pathways producing DNA 

adducts. Via P450s, NNK is metabolized to α-hydroxy NNK or can undergo reduction to 

NNAL, which is converted to NNAL glucuronides (NNAL-Glucs). Like NNK, NNAL is 

metabolized to α-hydroxy NNALs by P450s, and then both α-hydroxy NNKs and α-hydroxy 

NNALs are decomposed to diazonium ions and aldehydes. NNN undergoes α-hydroxylation, 

as well by P450s and is converted to α-hydroxy NNNs. α-hydroxy NNKs, α-hydroxy NNALs 

and α-hydroxy NNNs are unstable products, and they are rearranged into diazonium ions, 

which are highly reactive and produce DNA adducts. If DNA adducts are not repaired they 

can cause miscoding followed by mutational activation of oncogenes and/or inactivation of 

tumor suppressor genes. As a consequence, these mutations lead to loss of normal cellular 

growth control functions which results in cellular proliferation and cancer (208). DNA 

adducts formation happen both in nuclear DNA (nDNA) and mitochondrial DNA (mtDNA) 

(209). Based on critical role of mitochondria in cellular energy production, apoptosis, and 

cellular growth and differentiation, its alteration may be involved in the carcinogenic process. 

These alterations can happen due to accumulation of some carcinogens in mitochondria that 

can bind to mtDNA and remain because of low-efficiency mtDNA repair mechanisms 

(210,211). There is growing body of evidence that confirm the role of mtDNA mutations in 

cancer. Such evidence includes the link between mtDNA mutations and constitutive oxidative 

stress in cancer cells. Moreover, in malignant cells, mtDNA abnormalities and alterations in 

respiratory activity seems a general feature. These mutations can changes the cell surface 

produced by mtDNA mutations in cancer cells. Abnormal expression of mtDNA-encoded 

proteins due to mutations and deletions in mtDNA, have been observed in various solid 

tumors (212). It is reported that pyridyloxobutyl (POB)(213) and pyridylhydroxybutyl (PHB) 

(214) DNA adducts form and accumulate in NNK chronicaly treated rats (209). Based on this 

study, NNK treatment in rats gives higher levels of POB and PHB adducts in mtDNA than in 

nDNA of their lungs (209). NNK can form POB-DNA adducts via methyl hydroxylation. It 

can also convert to NNAL by carbonyl reduction. NNAL can form PHB-DNA adducts via 

hydroxylation of the methyl group (215,216). Results from this study support the hypothesis 

that tobacco carcinogens can bind to mtDNA and consequently develop smoking-induced 

lung cancer (209). 

 

Figure 2. β-adrenergic receptor (B-AR)-mediated nitrosamines signaling. Binding of 

TSNAs as agonists to β-AR on cancer cells activates GTP-binding proteins (G-proteins) 

coupled to receptor signaling, resulting in the activation of adenylyl cyclase and cyclic AMP 
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(cAMP) followed by protein kinase A (PKA) activation. In turn, PKA triggers the MAPK 

cascade and AA release. Conversely, cAMP induces the release of epidermal growth factor 

(EGF) and transactivation of EGFR signaling. Downstream of EGFR, PI3K/Akt pathways 

may be activated. All these pathways can activate downstream effectors that lead to the 

promotion of cell proliferation and inhibition of apoptosis and migration. 

 

Figure 3. Nicotine/Acetylcholine receptor (nAChR)-mediated nitrosamine signaling. 

Binding of TSNA to nAChRs causes a change in the conformation of the receptor subunits, 

which opens the receptor gates. Opening the gates, Ca2+ flows into the cell, which leads to 

membrane depolarization. This depolarization is enhanced by activation of the gate of 

voltage-activated Ca2+-channels and greater influx of Ca2+. The increased intracellular Ca2+ 

concentration triggers EGFR/RAF/MAPK, PI3K/Akt signaling pathways. Moreover, this 

depolarization leads to the release of the autocrine growth factor serotonin and the angiogenic 

factor VEGF. Serotonin can also activate PKC and its downstream RAF and the MAPK 

cascade. All these pathways can induce activation of different transcription factors and, 

consequently, regulate gene and protein expression; this leads to the stimulation of cell 

proliferation and migration and inhibition of apoptosis. In addition, nAChR can indirectly 

stimulates β-AR signaling through the release of adrenaline and noradrenaline. 

 

Figure 4: Regulation of energy metabolism by tobacco-smoke derived nitrosamines 

(TSNAs). Two main mechanisms can relate nitrosamine signaling to the regulation of energy 

metabolism. On the one hand, TSNAs activate the beta-adrenergic and the acetylcholine-

nicotine receptors to activate a series of transcriptional regulators (pink box) that will in turn 

trigger the expression of various energy genes involved in glucose metabolism, lipid 

metabolism, autophagy and mitochondrial function. On the other hand, TSNAs induce 

oxidative stress and genotoxicity as well as oncogenic activation that also induce a metabolic 

response. Fine tuning of the metabolic response to TSNAs exposure will depend on the 

cellular context, the microenvironment and the type and dose of exposure.  
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