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, they also got criteria for Na = 0, 3. In 2014, Bracken, Tan and Tan [5] presented another criterion for Na = 0 when n is even and gcd(k, n) = 1. This paper completely solves this equation x 2 k +1 + x + a = 0 with only the condition gcd(n, k) = 1. We explicitly calculate all possible zeros in F2n of Pa(x). New criteria for which a, Na is equal to 0, 1 or 3 are by-products of our result.

Introduction

Let n be a positive integer and F 2 n be the finite field of order 2 n . The zeros of the polynomial

P a (x) = x 2 k +1 + x + a, a ∈ F 2 n (1) 
have been studied in [START_REF] Bluher | On x q+1 + ax + b[END_REF][START_REF] Helleseth | On the equation x 2 l +1 + x + a = 0 over GF (2k)[END_REF][START_REF] Helleseth | x 2 l +1 +x+a and related affine polynomials over GF (2k)[END_REF]. This polynomial has arisen in several different contexts including the inverse Galois problem [START_REF] Abhyankar | Bivariate factorizations connecting Dickson polynomials and Galois theory[END_REF], the construction of difference sets with Singer parameters [START_REF] Dillon | New cyclic difference sets with singer parameters[END_REF], finding cross-correlation between m-sequences [START_REF] Dobbertin | Niho type cross-correlation functions via Dickson polynomials and Kloosterman sums[END_REF][START_REF] Helleseth | Characterization of m-sequences of lengths 2 2 2k -1 and 2 k -1 with three-valued crosscorrelation[END_REF], construction of error correcting codes [START_REF] Bracken | Triple-error-correcting bch-like codes[END_REF], APN functions [START_REF] Bracken | On a class of quadratic polynomials with no zeros and its application to APN functions[END_REF][START_REF] Budaghyan | Classes of quadratic APN trinomials and hexanomials and related structures[END_REF], and designs [START_REF] Tang | Infinite families of 3-designs from APN functions[END_REF]. More general polynomial forms x 2 k +1 + rx 2 k + sx + t are also transformed into this form by a simple substitution of variable x with (r + s

It is clear that P a (x) has no multiple roots. In 2004, Bluher [START_REF] Bluher | On x q+1 + ax + b[END_REF] proved following result.

Theorem 1. For any a ∈ F * 2 n and a positive integer k, the polynomial P a (x) has either none, one, two or 2 gcd(k,n) + 1 zeros in F 2 n .

It should be pointed out that, Bluher demonstrated in [START_REF] Bluher | A New Identity of Dickson polynomials[END_REF] that P a has the same splitting field as some Müller-Cohen-Matthews polynomial by explicitly writing the roots of P a , more precisely, a polynomial that is equivalent to P a , in terms of the roots of this Müller-Cohen-Matthews polynomial and conversely. However, the question of which roots are rational, that is, which solutions are in a given finite field, was not considered. Therefore, the rationality question requires new arguments that are presented in this paper.

In this paper, we will consider a particular case with gcd(n, k) = 1. In this case, Theorem 1 says that P a (x) has none, one or three zeros in F 2 n [START_REF] Helleseth | On the equation x 2 l +1 + x + a = 0 over GF (2k)[END_REF].

In 2008, Helleseth and Kholosha [START_REF] Helleseth | On the equation x 2 l +1 + x + a = 0 over GF (2k)[END_REF] have provided criteria for which a the polynomial P a (X) has exactly one zero in F 2 n and an explicit expression of the unique zero when gcd(k, n) = 1. In 2010 [START_REF] Helleseth | x 2 l +1 +x+a and related affine polynomials over GF (2k)[END_REF], the extended version of [START_REF] Helleseth | On the equation x 2 l +1 + x + a = 0 over GF (2k)[END_REF], they also got criteria for which a, P a (x) has none or three zeros.

In 2014, Bracken, Tan and Tan [START_REF] Bracken | On a class of quadratic polynomials with no zeros and its application to APN functions[END_REF] presented another criterion for which a the polynomial P a (x) has no zero in F 2 n when n is even and gcd(k, n) = 1.

In this paper, we explicitly calculate all possible zeros in F 2 n of P a (x) when gcd(n, k) = 1. New criteria for which a, N a is equal to 0, 1 or 3 are by-products of this result.

We begin with showing that we can reduce the study to the case when k is odd. In the odd k case, one core of our approach is to exploit a recent polynomial identity special to characteristic 2, presented in [START_REF] Bluher | A New Identity of Dickson polynomials[END_REF] (Theorem 3). This polynomial identity enables us to divide the problem of finding zeros in F 2 n of P a into two independent problems: Problem 1 to find the unique preimage of an element in F 2 n under a Müller-Cohen-Matthews (MCM) polynomial and Problem 2 to find the preimages of an element in F 2 n under a Dickson polynomial (subsection 3.1). There are two key stages to solve Problem 1. One is to establish a relation of the MCM polynomial with the Dobbertin polynomial. The other is to find an explicit formula for the solutions of the affine equation x 2 k + x = b, b ∈ F 2 n . These are done in subsection 3.2 and Problem 1 is solved by Theorem 5. Problem 2 is relatively easy which is answered by Theorem 6 and Theorem 7 in subsection 3.3. Finally, we collect together all these results to give explicit expressions for all possible zeros in F 2 n of P a in Theorem 8, Theorem 9 and Theorem 10.

Preliminaries

In this section, we state some results on finite fields and introduce classical polynomials that we shall need in the sequel. We begin with the following result that will play an important role in our study [START_REF] Dillon | New cyclic difference sets with singer parameters[END_REF]. Proposition 1. Let n be a positive integer. Then, every element z of F * 2 n := F 2 n \{0} can be written (twice

) z = c+ 1 c where c ∈ F 2 n := F 2 n \F 2 if T r n 1 ( 1 z ) = 0 and c ∈ µ 2 n +1 := {ζ ∈ F 2 2n | ζ 2 n +1 = 1} \ {1} if T r n 1 ( 1 z ) = 1. Proof. For z ∈ F * 2 n , z = c + 1 c is equivalent to 1 z 2 = c z + c z 2
, and thus this equation has a solution in

F 2 n if and only if T r n 1 ( 1 z ) = 0. Hence, mapping c -→ c + 1 c is 2-to-1 from F 2 n onto {z ∈ F 2 n | T r n 1 ( 1 z ) = 0} with convention 1 0 := 0. Also, since c + 1 c 2 n = c 2 n + 1 c 2 n = 1 c + c for c ∈ µ 2 n +1 , the mapping c -→ c + 1 c is 2-to-1 from µ 2 n +1 with cardinality 2 n onto {z ∈ F 2 n | T r n 1 ( 1 z ) = 1} with cardinality 2 n-1 .
We shall also need two classical families of polynomials, Dickson polynomials of the first kind and Müller-Cohen-Matthews polynomials.

The Dickson polynomial of the first kind of degree k in indeterminate x and with parameter a ∈ F * 2 n is

D k (x, a) = k/2 i=0 k k -i k -i i a k x k-2i ,
where k/2 denotes the largest integer less than or equal to k/2. In this paper, we consider only Dickson polynomials of the first kind D k (x, 1), that we shall denote D k (x) throughout the paper. A classical property of Dickson polynomials that we shall use extensively is Proposition 2. For any positive integer k and any x ∈ F 2 n , we have

D k x + 1 x = x k + 1 x k . (2) 
Müller-Cohen-Matthews polynomials are defined as follows [START_REF] Cohen | A class of exceptional polynomials[END_REF],

f k,d (X) := T k (X c ) d X 2 k where T k (X) := k-1 i=0 X 2 i and cd = 2 k + 1.
A basic property for such polynomials that we shall need in this paper is the following statement.

Theorem 2. Let k and n be two positive integers with gcd(k, n) = 1.

1. If k is odd, then f k,2 k +1 is a permutation on F 2 n . 2. If k is even, then f k,2 k +1 is 2-to-1 on F 2 n .
Proof. For odd k, see [START_REF] Cohen | A class of exceptional polynomials[END_REF]. When k is even, n is odd as gcd(n, k) = 1. Theorem 10 of [START_REF] Dillon | New cyclic difference sets with singer parameters[END_REF] states that f k,1 is 2-to-1, and then the statement follows from the facts that

f k,2 k +1 (x 2 k +1 ) = f k,1 (x) 2 k +1 and gcd(2 k +1, 2 n -1) = 1 when gcd(k, n) = 1
and n is odd.

We will exploit a recent polynomial identity involving Dickson polynomials established by Bluher in [3, Theorem 2.2]. Theorem 3. In the polynomial ring F 2 k [X, Y ], we have the identity

X 2 2k -1 + k i=1 Y 2 k -2 i X 2 k -1 + Y 2 k -1 = w∈F * 2 k (D 2 k +1 (wX) -Y ) .
Finally, we remark that the identity by Abhyankar, Cohen, and Zieve [1, Theorem 1.1] tantalizingly similar to this identity treats any characteristic, while this identity is special to characteristic 2 (this may happen because the Dickson polynomials are ramified at the prime 2). However, the Abhyankar-Cohen-Zieve identity has not led us to solve P a (x) = 0.

3 Solving P a (x) = 0 Throughout this section, k and n are coprime and we set q = 2 k .

Splitting the problem

One core of our approach relies on Theorem 3. To this end, we observe firstly that

k i=1 Y q-2 i = Y q T k (1/Y ) 2 and f k,q+1 (1/Y ) = Y q T k (1/Y ) q+1 .
Introduce an indeterminate T , algebraic over F 2 n (Y ), satisfying

T q 2 -q = k i=1 Y q-2 i = Y q T k (1/Y ) 2 . (3) 
Then, (T

q 2 -q ) q+1 = Y q(q+1) T k (1/Y ) 2(q+1) = Y q 2 -q f k,q+1 (1/Y ) 2 . (4) 
Substituting T Z for X in the identity of Theorem 3, the left side is

(T Z) q 2 -1 + T q 2 -q (T Z) q-1 + Y q-1 = T q 2 -1 (Z q 2 -1 + Z q-1 + A),
where A = Y q-1 /T q 2 -1 . By (4),

A q = Y q 2 -q /T q 3 -q = f k,q+1 (1/Y ) -2 . ( 5 
)
Theorem 3 therefore implies that

Z q 2 -1 + Z q-1 + A = T 1-q 2 w∈F * 2 k (D q+1 (wT Z) -Y ). (6) 
If we specialize to A = a, T = t, Y = y in a manner so that the corresponding relations (3), ( 5) hold with a, t, y in place of A, T, Y , then (6) will hold as well.

In particular, let a ∈ F * 2 n . Assuming k to be odd, then f k,q+1 permutes F * 2 n , so that a unique y ∈ F * 2 n can be found satisfying the specialization of ( 5):

a q = f k,q+1 1 y -2 . ( 7 
)
Since gcd(q -1, 2 n -1) = 1, the function x q-1 permutes F * 2 n . Thus, there is a unique t satisfying the specialization of (3):

t q 2 -q = y q T k 1 y 2 . ( 8 
)
We then have from ( 6):

P a (Z q-1 ) = t 1-q 2 w∈F * 2 k (D q+1 (wtZ) -y). (9) 
Therefore, when k is odd, equation ( 9) states that finding the zeros of P a (Z q-1 ) amounts to determining the preimages of y under the Dickson polynomial D q+1 . When k is even, f k,q+1 is no longer a permutation and we cannot repeat again the preceding argument (indeed, when k is even, f k,q+1 is 2-to-1, see Theorem 2). Fortunately, we can go back to the odd case by rewriting the equation. Indeed, for z ∈ F 2 n ,

P a (z) = z 2 k +1 + z + a = z 2 n-k +1 + z 2 n-k + a 2 n-k 2 k = (z + 1) 2 n-k +1 + (z + 1) + a 2 n-k 2 k
and so

{z ∈ F 2 n | P a (z) = 0} = z + 1 | z 2 n-k +1 + z + a 2 n-k = 0, z ∈ F 2 n . ( 10 
)
If k is even, then n is odd as gcd(k, n) = 1, and so n -k is odd and we can reduce to the odd case.

We now summarize all the above discussion in the following theorem.

Theorem 4. Let k and n be two positive integers such that gcd(k, n) = 1.

1. Let k be odd and q = 2 k . Let y ∈ F * 2 n be (uniquely) defined by a =

1 f k,q+1( 1 y ) 2 q 
.

Then,

{z ∈ F 2 n | P a (z) = 0} =      u q-1 yT k 1 y 2 q | D q+1 (u) = y, u ∈ F 2 n      .
2. Let k be even and q = 2 n-k . Let y ∈ F * 2 n be (uniquely) defined by

a q = 1 f n-k,q +1 1 y 2 q
. Then,

{z ∈ F 2 n | P a (z) = 0} =      1 + u q -1 y T n-k 1 y 2 q | D q +1 (u) = y , u ∈ F 2 n      . Proof. Suppose that k is odd. Let t be the unique element of F * 2 n such that t q-1 = yT k 1 y 2 q .
Equation [START_REF] Dillon | New cyclic difference sets with singer parameters[END_REF] shows that the zeros of P a in F 2 n are z q-1 for the elements z ∈ F 2 n such that D q+1 (wtz) = y for some w ∈ F * 2 k . Now, we will prove that indeed it must be w = 1 for such z's if any. Remember

D q+1 (X) = X q+1 (1 + T k (1/X)) 2 (Lemma 2.1 of [8]). Hence, y = D q+1 (wtz) = (tz) q-1 (wtz + wtzT k (1/wtz)) 2 . Setting v = 1 wtz , we have 1+T k (v) v = y (tz) q-1 1/2
. For simplicity, let us introduce

new denotation c = y (tz) q-1 1/2 ∈ F * 2 n . Then, we have 1 + T k (v) = cv.
Squaring both sides of this equality yields 1 + T k (v) + v + v q = c 2 v 2 , and since

v q = 1 (tz) q-1 v, we have 1 + T k (v) + v(1 + 1 (tz) q-1 ) = c 2 v 2 .
From these two equalities, we get

v(1 + c + 1 (tz) q-1 ) = c 2 v 2 .
As cv = 0, from this equality it follows

v = 1 + c + 1 (tz) q-1 c 2 ∈ F 2 n and so w = 1 vtz ∈ F * 2 k ∩ F * 2 n = {1}, that is, w = 1.
Thus, Item 1 is proved. Item 2 follows from Item 1 and equality [START_REF] Dillon | Multiplicative difference sets via additive characters[END_REF].

Theorem 4 shows that we can split the problem of finding the zeros in F 2 n of P a into two independent problems with odd k.

Problem 1. For a ∈ F * 2 n , find the unique element y in F * 2 n such that

a q 2 = 1 f k,q+1 1 y . ( 11 
)
Problem 2. For y ∈ F * 2 n , find the preimages in F 2 n of y under the Dickson polynomial D q+1 , that is, find the elements of the set

D -1 q+1 (y) = {u ∈ F 2 n | D q+1 (u) = y}. (12) 
In the following two subsections, we shall study those two problems only when k is odd since, if k is even, it suffices to replace k by n -k, q by q = 2 n-k , and a by a q in all the results of the odd case.

On problem 1

In this subsection, we show that solving Problem 1 amounts to finding a solution in F 2 2n of an affine equation x + x q = b, for which we prove Proposition 3. Let k be odd and gcd(n, k) = 1. Then, for any b

∈ F 2 n , {x ∈ F 2 2n | x + x q = b} = S n,k b ζ + 1 + F 2 ,
where S n,k (x) = n-1 i=0 x q i and ζ is an element of µ 2 n +1 . Proof. As it was assumed that k is odd and gcd(n, k) = 1, it holds gcd(2n, k) = 1 and so the linear mapping x ∈ F 2 2n -→ x + x q has kernel of dimension 1, i.e. the equation x + x q = b has at most 2 solutions in F 2 2n . Since S n,k (x) + (S n,k (x)) q = x + x q n , we have

S n,k b ζ + 1 + S n,k b ζ + 1 q + b = b ζ + 1 + b ζ + 1 q n + b = b ζ + 1 + b ζ q n + 1 + b = b ζ + 1 + b 1/ζ + 1 + b = 0 and thus really S n,k b ζ+1 , S n,k b ζ+1 + 1 ∈ F 2 2n are the F 2 2n -solutions of the equation x + x q = b. For any x ∈ F 2 2n , define Q k,k (x) = x q+1 k i=1 x q i (13)
where k < 2n is the inverse of k modulo 2n, that is, s.t. kk = 1 mod 2n. Note that k is odd since gcd(k , 2n) = 1. It is known that if gcd(2n, k) = 1 and k is odd, then Q k,k is a permutation on F 2 2n (see [START_REF] Dillon | New cyclic difference sets with singer parameters[END_REF] or [START_REF] Dillon | Multiplicative difference sets via additive characters[END_REF] where

Q k,k = 1/Q k,k
is instead considered). Indeed, due to [START_REF] Dillon | New cyclic difference sets with singer parameters[END_REF], defining the following sequences of polynomials

A 1 (X) = X, A 2 (X) = X q+1 , A i+2 (X) = X q i+1 A i+1 (X)+X q i+1 -q i A i (X), i ≥ 1, B 1 (X) = 0, B 2 (X) = X q-1 , B i+2 (X) = X q i+1 B i+1 (X)+X q i+1 -q i B i (X), i ≥ 1,
then the polynomial expression of the inverse R k,k of the mapping induced by

Q k,k on F 2 2n is R k,k (x) = k i=1 A i (x) + B k (x). ( 14 
)
Directly from the definitions, it follows that, for any x ∈ F 2 2n ,

f k,q+1 (x + x 2 ) = (x + x q ) q+1 x q + x 2q and Q k,k (x + x q ) = (x + x q ) q+1 x q + x q k +1 . Since x 2q = x q k +1 ⇐⇒ x = x 2 kk -1 , it holds that f k,q+1 (x + x 2 ) = Q k,k (x + x q ) . ( 15 
)
Define an element x of F 2 2n by

1 y = x + x 2 .
By using [START_REF] Tang | Infinite families of 3-designs from APN functions[END_REF], we can rewrite (11) as

a -q 2 = Q k,k (x + x q ) .
Therefore, we have

Proposition 4. Let a ∈ F * 2 n . Let x ∈ F 2 2n be a solution of R k,k a -q 2 = x + x q . ( 16 
)
Then, y = 1 x+x 2 = 1 + 1 x + 1 (1+ 1 x )
is the unique element of F 2 n such that

a q 2 = f k,q+1 1 y -1 . 
Proof. Let y be the unique element of F 2 n such that a

q 2 = f k,q+1 1 y -1 
.

Write

1 y = x + x 2 with x ∈ F 2 2n . Then, a -q 2 = f k,q+1 x + x 2 = Q k,k (x + x q ) proving that x is a solution of (16).
By Proposition 4 and Proposition 3, we can now explicitly write the solutions of Problem 1.

Theorem 5. Let a ∈ F * 2 n . Let k be odd with gcd(n, k) = 1 and k be the inverse of k modulo 2n. Then, the unique solution of [START_REF] Dobbertin | Niho type cross-correlation functions via Dickson polynomials and Kloosterman sums[END_REF] 

in F * 2 n is y = 1 S n,k R k,k a -q 2 ζ+1 + S n,k R k,k a -q 2 ζ+1 2
where ζ denotes any element of

F 2 2n \ F 2 such that ζ 2 n +1 = 1, S n,k (X) = n-1 i=0 X q i and
R k,k is defined by [START_REF] Helleseth | x 2 l +1 +x+a and related affine polynomials over GF (2k)[END_REF]. Furthermore, we have

y = v + 1 v for v = 1 + 1 S n,k R k,k a -q 2 ζ+1
.

On Problem 2

To begin with, remind that Problem 2 is to find all solutions u ∈ F 2 n to D q+1 (u) = y for given y ∈ F * 2 n . By Proposition 1, one can write u = c + 1 c where c ∈ F 2 n or c ∈ µ 2 n +1 . Equation ( 2) applied to u leads then to

D q+1 (u) = c q+1 + 1 c q+1 . (17) 
Thus, we can be reduced to solve firstly equation v 

+ 1 v = y, then equation c q+1 = v in F 2 n ∪ µ 2 n +1 ,
c q+1 = v in F 2 n ∪ µ 2 n +1 . First, note that if v ∈ F 2 n , then necessarily c ∈ F 2 n (indeed, if c ∈ µ 2 n +1 , we get v 2 = v • v = v 2 n • v = v 2 n +1 = (c 2 n +1 ) q+1 = 1 contradicting v / ∈ F 2 ). Recall that if k is odd and gcd(n, k) = 1, then gcd(q + 1, 2 n -1) = 1, if n is odd 3, if n is even (18) 
and

gcd(q + 1, 2 n + 1) = 1, if n is even 3, if n is odd. (19) Therefore, if v ∈ F 2 n , then there are 0 (if v is a non-cube in F 2 n ) or 3 (if v is a cube in F 2 n ) elements c in F 2 n
such that c q+1 = v when n is even while there is a unique c (i.e. v (q+1) -1 mod 2 n -1 ) when n is odd. And, if v ∈ µ 2 n +1 , then there are 0 (if v is a non-cube in µ 2 n +1 ) or 3 (if v is a cube in µ 2 n +1 ) elements c in µ 2 n +1 such that c q+1 = v when n is odd while there is a unique c (i.e. v (q+1) -1 mod 2 n +1 ) when n is even.

It remains to show in the case when there are three solutions c, they define three different elements u = c + 1 c in F 2 n . Denote w a primitive element of F 4 . Then these three solutions of c q+1 = v are of form c, cw and cw 2 . Now,

cw 1 + 1 cw1 = cw 2 + 1 cw2 implies that cw 1 = cw 2 or cw 1 = 1 cw2 (because A + 1 A = B + 1 B is equivalent to (A + B)(AB + 1) = 0). The second case is impossible since it implies that v = c q+1 = 1 w 1 2 1 w 1 2 2 q+1
= 1 because 3 divides q + 1 when k is odd. We can thus state the following answer to Problem 2.

Theorem 6. Let k be odd and n be even. Let y ∈ F * 2 n . Let v be any element of F 2 2n such that v + 1 v = y (this can be given by Proposition

3). 1. If v is a non-cube in F 2 n , then D -1 q+1 (y) = ∅. 2. If v is a cube in F 2 n , then D -1 q+1 (y) = cw + 1 cw | c q+1 = v, c ∈ F 2 n , w ∈ F * 4 . 3. If v is not in F 2 n , then D -1 q+1 (y) = v (q+1) -1 mod 2 n +1 + 1 v (q+1) -1 mod 2 n +1 .
Remark 1. Item 1 of Theorem 6 recovers [5, Theorem 2.1] which states: when n is even and gcd(n, k) = 1 (so k is odd), P a has no zeros in F 2 n if and only

if a -1 = f k,q+1 1 v+ 1 v 2
q for some non-cube v of F 2 n . Indeed, the statement of Theorem 2.1 in [START_REF] Bracken | On a class of quadratic polynomials with no zeros and its application to APN functions[END_REF] is not exactly what we write but it is worth noticing that the quantity that is denoted A(b) in [START_REF] Bracken | On a class of quadratic polynomials with no zeros and its application to APN functions[END_REF] 

satisfies A(b) -1 = f k,q+1 1 b 1 4 + 1 b 1 4 2 q .
Theorem 7. Let k be odd and n be odd. Let y ∈ F * 2 n . Let v be any element of F 2 2n such that v + 1 v = y (this can be given by Proposition 3) :

1. If v is a non-cube in µ 2 n +1 , then D -1 q+1 (y) = ∅. 2. If v is a cube in µ 2 n +1 , then D -1 q+1 (y) = cw + 1 cw | c q+1 = v, c ∈ µ 2 n +1 , w ∈ F * 4 . 3. If v is in F 2 n , then D -1 q+1 (y) = v (q+1) -1 mod 2 n -1 + 1 v (q+1) -1 mod 2 n -1 .
3.4 On the roots in F 2 n of P a (x)

We sum up the results of previous subsections to give an explicit expression of the roots in F 2 n of P a (x).

Let k denote any positive integer coprime with n and a ∈ F * 2 n . First, let us consider the case of the odd k. Let k be the inverse of k modulo 2n. Define v = 1 + 1

S n,k R k,k a -q 2 ζ+1
, where ζ is any element of F 2 2n \ F 2 such that ζ 2 n +1 = 1, S n,k (x) = n-1 i=0 x q i and R k,k is defined by [START_REF] Helleseth | x 2 l +1 +x+a and related affine polynomials over GF (2k)[END_REF].

According to Theorem 5, Theorem 6 and Theorem 7, we have following.

Theorem 8. Let n be even, gcd(n, k) = 1 and a ∈ F * 2 n . 1. If v is a non-cube in F 2 n , then P a (x) has no zeros in F 2 n .

2. If v is a cube in F 2 n , then P a (x) has three distinct zeros

(cw+ 1 cw ) q-1 yT k ( 1 y ) 2 q in F 2 n ,
where c q+1 = v, w ∈ F * 4 and y = v + 1 v . 3. If v is not in F 2 n , then P a (x) has a unique zero

(c+ 1 c ) q-1 yT k ( 1 y ) 2 q
in F 2 n , where c = v (q+1) -1 mod 2 n +1 and y = v + 1 v . Remark 2. When k = 1, that is, P a (x) = x 3 + x + a, Item (1) of Theorem 8 is exactly Corollary 2.2 of [START_REF] Bracken | On a class of quadratic polynomials with no zeros and its application to APN functions[END_REF] which states that, when n is even, P a is irreducible over F 2 n if and only if a = c + 1 c for some non-cube c of F 2 n . Theorem 9. Let n and k be odd with gcd(n, k) = 1 and a ∈ F * 2 n . 1. If v is a non-cube in µ 2 n +1 , then P a (x) has no zeros in F 2 n .

2. If v is a cube in µ 2 n +1 , then P a (x) has three distinct zeros (cw+ 1 cw )

q-1 yT k ( 1 y )

2 q in F 2 n , where c q+1 = v, w ∈ F * 4 and y = v + 1 v . 3. If v is in F 2 n , then P a (x) has a unique zero (c+ 1 c )

q-1 yT k ( 1 y ) 2 q
in F 2 n , where c = v (q+1) -1 mod 2 n -1 and y = v + 1 v . When k is even, following Item (2) of Theorem 4, we introduce l = n -k, q = 2 l and l the inverse of l modulo 2n. Define

v = 1 + 1 S n,l   R l,l a -(q ) 2 2 ζ+1   ,

1 y 1 y= 1 (

 111 and set u = c + 1 c . Here, let us point out that c q+1 = v is equivalent to 1 c q+1 = 1 v and that c and 1 c define the same element u = c + 1 c of F 2 n . Proposition 1 says that the equation v + 1 v = y has two solutions in F 2 n if T r n 1 = 0 and in µ 2 n +1 if T r n 1 Proposition 3 gives an explicit expression for these solutions). Now, let us consider solutions of
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where ζ is any element of F 2 2n \ F 2 such that ζ 2 n +1 = 1, S n,l (x) = n-1 i=0 x q i and R l,l is defined by [START_REF] Helleseth | x 2 l +1 +x+a and related affine polynomials over GF (2k)[END_REF].

Theorem 10. Let n be odd and k be even with gcd(n, k) = 1. Let a ∈ F * 2 n .

1. If v is a non-cube in µ 2 n +1 , then P a (x) has no zeros in

in F 2 n , where

Remark 3. When n is even, Theorem 8 shows that P a has a unique solution if and only if v is not in

When n is odd and k is odd (resp. even), Theorem 9 and Theorem 10 show that P a has a unique zero in

)) = 0 for odd k or even k, respectively.

By the way, for x ∈ F 2 n , Q l,l x + x q = (x+x q ) q +1

x q +x 2q 2 , and so T r n 1 (R l,l (a -1 )) = 0 is equivalent to T r n 1 (R k,k (a -1 )) = 0. After all, we can recover [13, Theorem 1] which states that P a has a unique zero in F 2 n if and only if T r n 1 (R k,k (a -1 ) + 1) = 1.

Conclusion

In [START_REF] Bluher | On x q+1 + ax + b[END_REF][START_REF] Bluher | A New Identity of Dickson polynomials[END_REF][START_REF] Bracken | On a class of quadratic polynomials with no zeros and its application to APN functions[END_REF][START_REF] Helleseth | On the equation x 2 l +1 + x + a = 0 over GF (2k)[END_REF][START_REF] Helleseth | x 2 l +1 +x+a and related affine polynomials over GF (2k)[END_REF], partial results about the zeros of P a (x) = x 2 k +1 + x + a in F 2 n have been obtained. In this paper, we provided explicit expressions for all possible zeros in F 2 n of P a (x) in terms of a and thus finish the study initiated in these papers when gcd(n, k) = 1. We showed that the problem of finding zeros in F 2 n of P a (x), in fact, can be divided into two problems with odd k: to find the unique preimage of an element in F 2 n under a Müller-Cohen-Matthews (MCM) polynomial and to find the preimages of an element in F 2 n under a Dickson polynomial. We completely solved these two independent problems. We also presented an explicit formula for solutions to the affine equation