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Abstract 11 

Super-resolution microscopy provides diffraction-unlimited optical access to the intricate 12 

morphology of neurons in living brain tissue, resolving their finest structural details, which are 13 

critical for neuronal function. However, as existing image analysis software tools have been 14 

developed for diffraction-limited images, they are generally not well suited for quantifying 15 

nanoscale structures like dendritic spines. We present SpineJ, a semi-automatic ImageJ plugin 16 

that is specifically designed for this purpose. SpineJ offers an intuitive and user-friendly 17 

graphical user interface, facilitating fast, accurate, and unbiased analysis of spine morphology. 18 

Introduction 19 

Dendritic spines are the postsynaptic component of most excitatory synapses in the mammalian 20 

brain. Highly recognizable in light microscopic images as protrusions covering the membrane 21 

surface of dendrites, they serve as a convenient morphological proxy for synapses (Sala and 22 

Segal, 2014).  23 

Spine structure and synapse function are closely related; large spine heads contain larger 24 

postsynaptic densities (PSD) and form synapses that have a higher conductance, while activity-25 

dependent synaptic plasticity is associated with changes in the number, size and shape of 26 

dendritic spines. Hence, spine morphology and its dynamics can give important indications 27 

about the functional state and adaptations of synapses and neuronal circuits associated with 28 

brain development, learning and memory (Yuste and Bonhoeffer, 2004; Holtmaat and Svoboda, 29 

2009) and brain disorders (Montagna et al., 2017). 30 

However, dendritic spines feature nanoscale structural details, such as spine necks, which are 31 

functionally very important but cannot be properly resolved by conventional optical techniques 32 

like confocal and two-photon microscopy. Ranging in length between 0.2 and 2 micrometers 33 

with diameters smaller than 200 nm, spine necks have traditionally defied geometric analyses 34 

in live tissue. 35 

Given this technical limitation, researchers have instead used calibrated fluorescence 36 

measurements to estimate spine size. This is in principle possible because the spatially 37 

integrated fluorescence signal scales with the volume of the source of the fluorescence, even if 38 

the underlying compartment cannot be spatially resolved (Svoboda et al., 1996; Matsuzaki et 39 

al., 2001). However, the problem is that this method is indirect and requires measurements of 40 

absolute fluorescence intensity, which is sensitive to potential confounders like fluorescence 41 

bleaching, variations in laser power, and the presence of organelles or other structures in the 42 

spines (Lenz and Tonnesen, 2019). While electron microscopy readily provides the required 43 

spatial resolution for direct geometric measurements, its workflow is very time-consuming, 44 

subject to fixation artifacts and incompatible with live-cell analysis.  45 
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By permitting live-cell imaging with nanoscale resolution, super-resolution fluorescence 46 

microscopy is capable of providing new insights into the functional properties of spines 47 

(Tønnesen and Nägerl, 2013). Among the new techniques increasingly adopted by 48 

neuroscientists, stimulated emission depletion (STED) microscopy is particularly well suited 49 

for imaging cellular morphology and has been successfully applied to study the structural 50 

dynamics of spines in brain slices (Nägerl  et al., 2008; Tønnesen et al., 2014) and in vivo 51 

(Berning et al., 2012; Willig et al., 2014; Pfeiffer et al., 2018). It is a volumetric, laser-scanning 52 

imaging technique with high optical sectioning, just like confocal or 2-photon microscopy, 53 

which works with the same organic dyes and fluorescent proteins as these well-established 54 

techniques. 55 

Several software packages are available for analyzing neuronal morphology, including 56 

dendritic spines. While these programs can determine spine densities and coarse spine size 57 

parameters, such as total length or volume, they are in general poorly suited for extracting 58 

geometric information about spine necks. A main drawback is that these programs mostly rely 59 

on data extraction after processing steps such as thresholding and binarization (Broser et al., 60 

2004; Weaver et al., 2004; Bai et al., 2007; Rodriguez et al., 2008; Shen et al., 2008; Janoos et 61 

al., 2009; Jungblut et al., 2012; Blumer et al., 2015), which can compromise the morphological 62 

information contained in super-resolution images (Lenz and Tonnesen, 2019). 63 

Given the wealth of morphological data available in super-resolution microscopy images, there 64 

is a need for dedicated analysis tools that are capable of faithfully extracting the relevant 65 

nanoscale information in units of length and area. Unfortunately, such tools are currently not 66 

available and manual analysis is the current working standard for the analysis of super-resolved 67 

images of spine morphology. This renders the quantitative analysis of large data sets time-68 

consuming and subject to user fatigue and bias. Moreover, with the manual approach 69 

researchers tend to under-utilize their data, reporting only a single neck width measurement per 70 

spine, instead of carrying out a more comprehensive analysis to capture the variation of the 71 

diameter along the neck. 72 

Workflow 73 

We introduce SpineJ, an advanced yet user-friendly ImageJ (Schneider et al., 2012) plugin for 74 

semi-automatic quantification of spine morphology. SpineJ allows for robust spine morphology 75 

analysis using a combination of filtering and segmentation techniques easily accessible through 76 

a graphical user interface (GUI). Its workflow is composed of three main steps (Fig. 1): (i) 77 

Interactive wavelet-based filtering to binarize the dendritic structures of interest from the 78 

background. (ii) Semi-automatic reconnection of spines that were erroneously separated from 79 

the dendritic shaft, which can happen with very thin and weakly fluorescent necks. (iii) 80 

Skeletonization-based segmentation allowing quantitative morphological analysis of spine neck 81 

width, length and head surface area.  82 

SpineJ only requires basic ImageJ skills and its GUI allows for swift collection of spine 83 

geometry data in a reproducible and unbiased manner. The semi-automated analysis is 84 

insensitive to pixel size and gives consistent results with manual analysis of the same spines. 85 

Integrated software components 86 

Wavelet-based image filtering  87 

The segmentation of spine morphology requires efficient and reliable discrimination of the 88 

fluorescent structures of interest from the background. However, common segmentation 89 

techniques, such as thresholding or unsharpening, are not well suited because of the differences 90 

in fluorescence intensity between the thin spine neck (100 – 300 nm) and the much wider 91 

dendritic trunk (1 – 3 µm). To overcome this problem, we used wavelet filtering, which has 92 
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intrinsic multi-scale properties and allows to efficiently segment structures with widely varying 93 

sizes and intensities. 94 

We used the fast “à-trous” algorithm (Holschneider et al., 1990), which computes a series of 95 

multi-scale wavelet coefficients by iterative convolutions of increasing kernels 96 

(Supplementary Fig. 1A, Methods). A-trous wavelets have several key features: (i) the noise 97 

variance ��� can be robustly estimated (Donoho and Johnstone, 1995); (ii) the size of filtered 98 

objects is directly related to the wavelet scale, allowing segmenting structures of similar size 99 

by thresholding a given wavelet sub-band; (iii) wavelets are not sensitive to  absolute image 100 

intensities, making it possible to quantify and compare different images. 101 

All the STED images analyzed here were thresholded using the second and third wavelet 102 

coefficients with a threshold of 3��� (Supplementary Fig. 1B, Methods). It is important to note 103 

that the choice of wavelet coefficients and thresholds will mostly affect the number of spines 104 

that will have to be manually reconnected to the dendrite, but will not influence the 105 

measurements of spine neck widths, which are carried out on the raw images. 106 

Spine head reconnection  107 

Because of the low fluorescence intensity of spine necks relative to spine heads and dendritic 108 

trunks, some spine heads may appear to be disconnected from the parent dendrite (Fig. 2A). As 109 

spine necks are rarely straight and extend at variable angles from the dendrite, their 110 

reconnection using a straight line is a poor estimate of the true situation.  111 

We adopted an approach originally developed in NeuronJ that allows the identification and 112 

tracing of dim structures (Meijering et al., 2004). A gradient field is directly computed from the 113 

original image, resulting in pair-pixel vectors reflecting their direction and magnitude (Fig. 1). 114 

It allows determining the best path between two points by capturing and following the 115 

orientation of bright structures present in the image. Reconnections are performed locally after 116 

manual identification of both the isolated spine heads and the parent dendrite (Fig. 2B). 117 

Automatic spine identification 118 

At this step, neurites are delimited from the background as a binary image and direct 119 

identification of spines remains difficult as individual pixels lack context. To overcome this 120 

problem, we used skeletons, which are 1D geometric descriptors that naturally contain 121 

information on the shape of the structures. 122 

In order to properly account for spine neck geometries, it is essential to ensure smooth vectorial 123 

skeletons. This eliminates pixel-based skeletons resulting from segmentation mask thinning 124 

since they are usually jagged. We therefore used polygon-based skeletons, where the binarized 125 

neurite is represented as a polygon. We combined the C1-continuous Catmull-Rom spline 126 

(Farin, 2002) with an arc-length parametrization, providing higher accuracy for curved and 127 

junctional parts of the dendrites (Fig. 2C), and resulting in segmenting the dendrite outline as 128 

a smooth vectorial line independent of pixel size. 129 

The points of the spline are then used as seeds to compute a constrained Delaunay triangulation 130 

(Fig. 2D). This space-subdividing technique has two advantages: first, triangle connectivity can 131 

be used to extract a skeleton, with its branching and end points defining a graph G that 132 

accurately describes neuronal morphology (Fig. 2E, Methods). We used a pruning algorithm 133 

to remove insignificant small branches from the skeleton (Methods). Second, a morphological 134 

compartment can be represented as a subgraph of G combined with a set of triangles, facilitating 135 

its geometric definition and analysis (Fig. 3A). In particular, we use three morphological 136 

compartments, namely dendrite, spine head, and spine neck (Fig. 3B). The automatic 137 

identification of spines is achieved by graph theory applied to G (Fig. 3C, Methods). In 138 
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instances where spines are ill-defined, a correction can easily be manually applied using the 139 

ROI tools in ImageJ (Methods).  140 

Spine quantification 141 

Because the border between a spine head and its neck is not well defined, their separation is 142 

hard to automatize. We used the Delaunay triangulation to facilitate the separation. The neck 143 

base is defined as the shared edge between a spine and its parent dendrite (Fig. 3D), while its 144 

tip, which connects the spine head, is manually defined by selecting a triangle edge (Fig. 3E).  145 

The software then automatically traces evenly spaced lines perpendicular to the neck skeleton 146 

(Fig. 3F). Neck widths are extracted from the full width at half maximum (FWHM) computed 147 

by Gaussian fits of intensity line profiles gathered from the raw images. The final neck width 148 

reported by SpineJ is determined as the minimal width along the spine neck. The spine head 149 

area is directly computed on the binarized image after separation from the neck. Most of the 150 

parameters can be selected automatically or adjusted manually (Methods). 151 

Robustness with respect to noise  152 

To assess the robustness of the wavelet segmentation with noise, we computationally regraded 153 

a STED image by adding Gaussian noise (Supplementary Fig. 3, Methods). In all scenarios, 154 

wavelet filtering managed to properly identify both the dendrite and the spines. However, low-155 

SNR images required a threshold adjustment (Methods), resulting in small artefacts in the 156 

background which could easily be dismissed. Finally, low SNR also impacts the spine/dendrite 157 

reconnection and the neck width computation, since Gaussian fitting the intensity line profiles 158 

is less accurate with low-SNR images (Thompson et al., 2002) (Supplementary Fig. 2).  159 

Results 160 

Measurements of spine neck width 161 

Spine neck widths in STED images have usually been determined by fitting one-dimensional 162 

Gaussian (Ding et al., 2009; Tønnesen et al., 2011) or Lorentzian functions (Bethge et al., 2013; 163 

Takasaki et al., 2013) to intensity line profiles of spine neck cross sections and extracting the 164 

FWHM value (Fig. 4A). Usually, only a single measurement per spine is manually taken at the 165 

place where the neck looks the thinnest. By contrast, SpineJ automatically computes the 166 

minimal, maximal and average FWHM values all along the spine neck.  167 

While both Gaussian and Lorentzian functions produced highly correlated measurements (R2 = 168 

0.83, y = 0.89x + 9.3; Fig. 4B), the Gaussian fit returned slightly larger values for the neck 169 

width than the Lorentzian fit (meanGauss 144 ± 38 nm , meanLorentz 137 ± 37 nm (SD), p = 0.0006, 170 

paired t-test, n = 69 spines from 6 dendritic segments; Fig. 4C). All subsequent measurements 171 

were performed by using Gaussian fits.   172 

Comparison of SpineJ performance with manual quantification  173 

We compared the performance of SpineJ with manual quantifications (Fig. 4D-H). For this, we 174 

asked 5 “naïve” persons to analyze 30 spines from 3 dendritic segments. In the case of manual 175 

analysis, the angle, position of the line across the necks and elliptical ROI representing the spine 176 

head were set by the experimenter. For the neck width, users placed the line ROI at the location 177 

they thought the neck was the thinnest. For the head, the area was measured from the ellipse 178 

ROI they placed to approximate its borders.  179 

For spine neck widths, even though the values obtained with SpineJ were smaller compared to 180 

manual analysis (SpineJ: 146 ± 48 nm SD; manual: 177 ± 64 nm SD), they correlated well 181 

(Linear fit: y = 0.799x, 95% confidence [0.759-0.836], no intercept; Correlation Kendall’s tau: 182 

τ = 0.621, p < 0.0001; Fig 4.D). SpineJ is expected to report a smaller minimal value because 183 
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it makes many more measurements along the spine neck, and thus has a much better chance to 184 

find the true minimal neck width. The variability between users (Methods) was almost two 185 

times lower with SpineJ compared to the manual analysis (SpineJ: 11 ± 11 nm SD; manual: 21 186 

± 18 nm SD; Fig. 4.E).  187 

For spine heads, SpineJ and manual analysis returned similar areas (SpineJ: 0.37 ± 0.26 µm² 188 

SD; manual: 0.38 ± 0.34 µm² SD), which were highly correlated (Linear fit: y = 0.863x, 95% 189 

confidence [0.807-0.907], no intercept; Correlation Kendall’s tau: τ = 0.81, p < 0.0001; Fig. 190 

4.F). The variability between users was more than five times lower with SpineJ compared to 191 

manual analysis (SpineJ: 0.014 ± 0.02 µm² SD; manual: 0.078 ± 0.07 µm² SD; Fig 4.G).  192 

The mean analysis time per spine was less than half for SpineJ compared to manual analysis 193 

(SpineJ: 29 ± 12 s SD; manual: 70 ± 20 s SD; Fig. 4.H). 194 

Discussion 195 

By breaking the diffraction barrier, super-resolution fluorescence microscopy gives optical 196 

access to micro-anatomical structures in live brain tissue. This has allowed geometric analysis 197 

of dendritic spines and axons, providing new insights into their biological function (Tønnesen 198 

et al., 2014; Chereau et al., 2017). However, geometric analysis of dendritic spines in super-199 

resolution images currently still requires manual intervention, which inevitably introduces 200 

variability and bias, and is very time-consuming. 201 

Here, we introduce SpineJ, a new software to quantify geometric information of nanoscale 202 

details of dendritic spines. The strength of SpineJ lies in its ability to analyze spine neck 203 

geometry in a fast and reproducible manner.  204 

The software is based on a structured workflow design, where the user selects the population 205 

of spines to be analyzed in a first step, while automatic measurements are performed from the 206 

original image in a second step. This separation of spine selection and analysis steps has the 207 

effect of limiting user bias, as illustrated by the low variability in the measurements performed 208 

by different users.  209 

We validated the performance of SpineJ by comparing it with manual analysis. SpineJ 210 

systematically reported a smaller minimal neck width than manual analysis, reflecting the fact 211 

that SpineJ measures neck width all along the entire neck and thus can precisely find the true 212 

minimal value.  213 

The high variability associated with manual analysis of spine heads shows that elliptical shapes 214 

are a poor representation for spine heads. Users could use the hand-drawn ROI to properly 215 

account for discontinuous borders, but this would become even more complicated, time-216 

consuming and an additional source of variability. By contrast, SpineJ can reliably estimate 217 

spine head size without making any assumptions about their shapes. Finally, the combination 218 

of robust image processing techniques with straightforward user interactions (a few mouse 219 

clicks) and instant visual feedback (preview, overlay, statistics) minimizes the time spent on 220 

analyzing each spine. While this gain in time was already significant during our tests with a 221 

small dataset (30 spines in 3 dendritic segments), it will surely increase with user fatigue when 222 

analyzing more than hundreds of spines.  223 

Contrary to manual analysis, which is designed for a specific task and cannot be easily 224 

extended, the workflow used in SpineJ allows going beyond the more limited measurements 225 

done in the past. For example, the custom of measuring neck width at only a single place simply 226 

reflects the inadequacy of manual analysis. By contrast, by returning a multitude of systematic 227 

measurements all stored and accessible through a customized widget, SpineJ provides a more 228 

robust and reliable analysis of spine morphology (Supplementary Fig. 3).   229 
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We therefore encourage the adoption and use of SpineJ as a reference software for more 230 

meaningful and transparent quantitative analysis of spine morphology. 231 

Methods 232 

A-trous wavelet filtering  233 

The ‘à trous’ wavelet transform represents a discrete and translation-invariant approach to the 234 

classical continuous wavelet transform. We define ��(�) as the original fluorescent image. The 235 

smoothed data �	(�) at a given resolution level 
 and at pixel � are obtained by the convolution 236 

�	(�) =  ∑ ℎ(�)�	��(� + 2	���)� , where ℎ is a low-pass scaling function (usually a B3 spline). The 237 

difference between two consecutive resolution levels �	(�) = �	��(�) − �	(�) represents the 238 

wavelet coefficients (or subband) at level 
. Segmentation is achieved by thresholding these 239 

wavelet coefficients independently.  240 

In fluorescence microscopy, the noise is a mixture of Gaussian (electronic) and Poisson 241 

(photon) statistics. During the wavelet transform, while the noise ε is decomposed in all of the 242 

wavelet sub-bands, more than 80% of its components are present in the first wavelet sub-band. 243 

For this reason, a robust estimation of the noise variance ��� based on the median absolute value 244 

of the first wavelet coefficients and defined as ��� =
���(|��(�,�)|)

�.�!"#$
 was proposed (Donoho and 245 

Johnstone, 1995). Since most of the noise % is part of w1 while containing little useful signal, 246 

such estimator has become very popular and is widely used. 247 

To identify pixels that are part of the actual dendrite, the wavelets sub-bands are thresholded 248 

with �	(&, ') > )��� where α is a coefficient set by the user. The final binary image is 249 

reconstructed by summing all the filtered wavelet coefficient sub-bands. We experimentally 250 

determined that a threshold of 3��� applied on the second and third wavelet sub-bands provides 251 

a robust segmentation of our images. These values might slightly fluctuate depending on the 252 

acquisition parameters. 253 

Gradient field computation and reconnection  254 

In computer vision, ridges define a set of curves that represent local maxima of the image in at 255 

least one dimension. Since neurites are thin bright structures standing out from a darker 256 

background, they can readily be represented by ridges. Ridge detection is facilitated by 257 

computing a vector field on the image, with each pixel being associated with a vector direction 258 

and magnitude (Meijering et al., 2004).  259 

Reconnection between spine head and dendrite is initiated by two user-defined clicks within 260 

the respective structures to be reconnected. The algorithm computes the optimal path 261 

connecting the two points as the path exhibiting the minimal cumulative cost when following 262 

the vector field main directions. The ridge connects the points of maximal magnitude.  263 

Polygon-based skeleton generation 264 

Triangles of the constrained Delaunay triangulation are divided into three categories 265 

(Supplementary Fig. 4A): extremal (E, one neighboring triangle), transitional (T, two 266 

neighboring triangles), and junctional (J, more than two neighboring triangles). The skeleton is 267 

obtained by connecting the midpoints of the edges shared by transitional triangles 268 

(Supplementary Fig. 4B). The graph is easily generated by creating graph nodes originating 269 

from all the junctional and extremal triangles, and connecting them by following the respective 270 

skeleton branches (Supplementary Fig. 4B). To avoid insignificant and unstable branches, a 271 

pruning algorithm is applied on the skeleton extremal branches (Supplementary Fig. 4C), 272 

resulting in a more stable skeleton and graph (Supplementary Fig. 4D).  273 

Pruning of the skeleton  274 



 

7 

 

To avoid insignificant and unstable branches, extremal triangles are subject to a pruning 275 

algorithm designed to merge extremal regions with adjacent transitional triangles. If all the 276 

outline points of the extremal region are inside the semicircle, whose diameter is the edge 277 

between the extremal region and its adjacent transitional triangle, this edge is removed and the 278 

transitional triangle is added to the extremal region (Supplementary Fig. 4C, top). This process 279 

is repeated until at least one outline point is outside the semicircle or if a junctional triangle is 280 

reached (Supplementary Fig. 4C, bottom). After pruning, the skeleton is more stable and still 281 

embeds the topology of the neurite. 282 

This pruning process affects both the graph and the skeleton. If the pruning translates from an 283 

extremal triangle to a junctional one, the whole graph branch (and corresponding skeleton) is 284 

discarded (Supplementary Fig. 4D). In addition, the graph node originating from the junctional 285 

triangle is also discarded. If the pruning does not reach a junctional triangle, the graph node 286 

originating from the extremal triangle is unchanged, while the skeleton stops at the first pruned 287 

triangle it encounters (Supplementary Fig. 4D). 288 

Automatic spine identification  289 

Since the graph G is extracted from the Delaunay triangulation, any of its vertex or edge is 290 

linked to a set of triangles (Supplementary Fig. 5A-B). The degree d(vi) counts the number of 291 

vertices connected to vi. First, the graph vertices are classified in 2 categories: leaf (d(vi) = 1) 292 

or junctional (d(vi) = 3) nodes (Supplementary Fig. 5C). Since they are part of the dendritic 293 

trunk, leaf nodes touching the image borders are modified to junctional nodes. All leaf nodes 294 

are tagged as spine nodes. Spines, on the other hand, start from a leaf node and can be composed 295 

of several nodes (extremal and junctional). Junctional nodes are then tagged as spine nodes if 296 

they are connected to two leaf nodes within a distance dmerge of 800 nm (Supplementary Fig. 297 

5D), corresponding to a common length for spines. This value can be modified by users. By 298 

adding all the edges of G that connect two spine nodes plus the connected edges with only one 299 

dendrite node, we define a subgraph Gspines that represents all the spines (Supplementary Fig. 300 

5E), with individual spines as the connected components of Gspines. Each spine is then defined 301 

as the set of triangles of all its vertices and edges (Supplementary Fig. 5F).  302 

Manual correction of missing or ill-defined spines 303 

Since spines can exhibit very diverse shapes, the automatic spine classification can misidentify 304 

some spines, especially if dmerge is poorly defined (Supplementary Fig. 6A-B, dmerge = 200 305 

nm). Manual definition of a spine is possible by tracing a ROI on the image (Supplementary 306 

Fig. 6C), using one of the ROI (rectangular, oval, freehand, etc.) provided by ImageJ. First, any 307 

existing spine intersecting this ROI is discarded, with all its graph nodes and edges tagged as 308 

dendrite (Supplementary Fig. 6AD). Then, all the graph nodes and edges intersecting the ROI 309 

are tagged as spine (Supplementary Fig. 6E), and finally the corresponding set of triangles is 310 

used to compute spine shape (Supplementary Fig. 6F). 311 

Automatic determination of the neck width  312 

To quantify the width along a given spine neck, SpineJ automatically traces several evenly 313 

spaced lines perpendicularly through the spine neck skeleton. Each line is defined by a width 314 

and a thickness, describing a rectangle under which SpineJ computes the intensity profile of the 315 

spine neck in the raw image, thus corresponding to line intensity profiles in previous manual 316 

analyses. In SpineJ the line thickness can be chosen by the users, and here we used a fixed value 317 

of 100 nm for all our images. The number of lines nb is defined as *+ = �
0.75 ∗ 01 , with l and 318 

t being respectively the neck length and line thickness. This ensures optimal sampling with 319 

some overlap between the lines. Each line represents the width at a specific location of the neck 320 

skeleton. This width is determined by Gaussian fitting the intensity profile with spatial extent 321 
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ranging between 400 nm to 800 nm, with 50 nm steps. The fit having the highest R² is selected 322 

as the optimal width for this skeleton position.  323 

In our study, the final neck width reported is defined as the minimal width of all the lines 324 

computed alongside the neck skeleton.  325 

Assessment of the wavelet filtering robustness 326 

To test the robustness of the method with the noise, we added Gaussian noise using the “Add 327 

Specified Noise” function in ImageJ, of amplitudes 5, 15 and 25 (Supplementary Fig. 3B-D). 328 

For each structure of interest (dendrite, spine head and neck), SNR was quantified as the 329 

amplitude of the signal, subtracted from the background, divided by the standard deviation of 330 

the signal. For the two high SNR images (Supplementary Fig. 3A-B), a threshold of 331 

�2(&, ') > 3��� was used to generate the binary image. For the two low SNR images 332 

(Supplementary Fig. 3C-D), this threshold was adjusted to �2(&, ') > ���. The minimum 333 

goodness of fit of the Gaussian fitting was also adjusted depending on the SNR: we used 0.8 334 

for the original image (Supplementary Fig. 3A), and 0.6 to 0.4 for the noisiest images 335 

(Supplementary Fig. 3B-D). Even with a smaller goodness of fit value, several fits either failed 336 

or underestimated the neck width (black arrows in Supplementary Fig. 3B-D). 337 

Gaussian and Lorentzian fits 338 

Gaussian and Lorentzian fits were performed within ImageJ and Prism, respectively. 339 

Protocol for analysis and computation of variability between users 340 

A set of 30 spines from 3 cells were preselected for the analysis, in a well-defined order. We 341 

asked each user to follow this order and checked for it, allowing us to compute variabilities on 342 

each measurement. A measurement is defined as the quantification of one parameter, e.g. neck 343 

width, head area, etc…, for a single spine. Each measurement was performed by the 5 users, 344 

both using SpineJ and manually. The variability per measurement is defined as the standard 345 

deviation between the 5 values obtained by each user. 346 

Availability of SpineJ 347 

Plugin and source-code of SpineJ are available at https://github.com/flevet/SpineJ. 348 
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Figure Legends 421 

Figure 1: SpineJ workflow. The workflow is composed of three steps. First, the dendrites of 422 

interest are identified by using a wavelet filtering process. Spines separated from the dendrite 423 

because of weak fluorescent necks can be reconnected by following a gradient field computed 424 

on the original image. Finally, the morphological analysis of spines is performed by computing 425 

a constrained Delaunay triangulation on the dendrite outlines. 426 

Figure 2: Abstracting dendrites as graphs. (A) Original STED image (left) and binarized 427 

dendrite after à-trous wavelet filtering (right). Scale bar 1 µm for the complete image and 500 428 

nm for the magnification. (B) Reconnection of separated dendritic spines (green). Location 429 

where the user had to click are identified by the red arrow tips. (C) Vectorial outline of the 430 

dendrite (red). (D) Constrained Delaunay triangulation computed on the vectorial outline (red). 431 

(E) Skeleton (magenta) and graph (green) extracted from the triangulation.   432 

Figure 3: Spine neck quantification. (A) Triangle sets (left) and corresponding graph (right) 433 

of a spine (green) connected to its dendrite (orange), scale bar: 300 nm. (B) Definition of the 434 

three morphological compartments: the spine head (magenta) and neck (green) and the dendrite 435 

(orange). (C) Automatic identification of 24 spines (scale bar: 1 µm). (D) Basis of the spine 436 

neck is automatically defined as the edge connecting the triangle sets of the spine and the 437 

dendrite (red arrow). (E) The user defines the neck end by clicking on a triangle edge (tip of the 438 

red arrow). (F) SpineJ computes the three compartments and automatically traces several 439 

perpendicular lines to analyze the neck morphology (blue). 440 

Figure 4: Comparison of Lorentzian and Gaussian fits and measurement of spines. (A-C) 441 

Comparison of Lorentzian and Gaussian fits. (A) Lorentzian (FWHM 92 nm) and Gaussian 442 

(FWHM 102 nm) fits of the same spine neck width. (B) Gaussian fit (144 ± 38 nm SD) identifies 443 

a slightly wider width than the Lorentzian one (137 ± 37 nm SD), n = 69 spines. (C) Correlation 444 

between the Lorentzian and the Gaussian FWHM (R2 = 0.83). (D-H) Comparison of manual 445 

and SpineJ analysis. (D) Correlation between the measurements obtained manually or by SpineJ 446 

for the neck width. (E) User variability of the manual and SpineJ analysis for the neck width. 447 

(F) Correlation between the measurements obtained manually or by SpineJ for the head area. 448 

(G) User variability of the manual and SpineJ analysis for the head area. (H) Comparison of the 449 

time needed to analyze one spine manually and with SpineJ. N = 150 spines.  450 

Supplementary Figure 1: Wavelet filtering. Wavelets (A) and coefficients (B) sub-bands 451 

(scale bar: 1 µm). (B) Filtered sub-bands resulting from applying a threshold of 3�45  (top), with 452 

�45  the noise variance determined automatically form the first wavelet sub-band. The final 453 

filtered image is obtained by adding the 2nd and 3rd filtered sub-bands (bottom). 454 

Supplementary Figure 2: Robustness to noise. (A) Fluorescence image (scale bar: 1 µm) 455 

with magnification of a spine (scale bar: 500 nm), SNR values, reconnected binary image and 456 

quantification of the magnified spine. Addition of Gaussian noise on the original image (A) 457 

with mean 0 and standard deviation 5 (B), 15 (C) and 25 (D) grey levels. Black arrows 458 

identification location where the Gaussian fitting either failed or underestimated the neck width. 459 

Supplementary Figure 3: Modeling spine necks. (A) Measurements of the neck width at 460 

several locations (green) on the original image (left). (Right) Corresponding unfolding and 461 

modeling of the spine neck, with its length, maximal and minimal width (red). (B-C) Modeling 462 

of the neck for 3 spines. Scale bar 400 nm. (E) Customized widget storing every measurement 463 

performed by SpineJ. 464 
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Supplementary Figure 4: From triangulation to spine neck quantification. (A) Delaunay 465 

triangulation of a spine. Triangles are classified into three categories: extremal (E), junctional 466 

(J) and transitional (T). (B) Original skeleton (green) extracted from the triangulation, and 467 

corresponding graph (magenta). (C) Pruning algorithm: if all points of an extremal region are 468 

inside the circumcircle, the current triangle is merged to its neighbor. This process is stopped 469 

when encountering a junctional triangle or if a point is outside the circumcircle. (D) Skeleton 470 

and graph after pruning. 471 

Supplementary Figure 5: Automatic spine identification. (A) Vectorial outline of a spine 472 

and a portion of the dendrite (scale bar: 1 µm). (B) Constrained Delaunay triangulation of the 473 

outline. The graph is computed after pruning (cyan). (C) Two classes organization of the graph 474 

vertices. (D) Leaf nodes are tagged as spine nodes. A junctional node is tagged as spine node 475 

(arrow) since it is connected to two spine nodes within a distance of 800 nm. (E) Subgraph 476 

representing the spines (green). It is composed of five connected components. (F) 477 

Corresponding identified spines. The spine/dendrite separations are defined by the red edges. 478 

Supplementary Figure 6: Manual correction of ill-defined spines. (A-B) Poorly defined 479 

dmerge distance (dmerge = 200 nm) results in misidentification of a spine as two spines, with its 480 

neck being identified as part of the dendritic trunk (scale bar: 500 nm). (C) Definition of a ROI 481 

directly on the image. (D) The two misidentified spines are discarded, with their graph nodes 482 

and edges tagged as dendrite. (E) All the graph nodes and edges intersecting the ROI are tagged 483 

as spine. (F) Corrected spine. 484 
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