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A filtered high gain observer for a class of non
uniformly observable systems - Application to

a phytoplanktonic growth model

J.L. Robles-Magdaleno1,2, A.E. Rodriguez-Mata1, M. Farza2, M. M’Saad2,
1 CONACYT-Tecnolgico Nacional de Mexico-ITCuliacán, Juan de Dios Bàtiz S/N,

Col. Guadalupe, Culiacan Sinaloa México
2 Normandie Univ, UNICAEN, ENSICAEN, LAC, 14000 Caen, France

Abstract: The design of a high gain observer with filtering capabilities for a class of non uniformly
observable systems is proposed. The filtering feature enables to perform a smooth estimation in
the presence of noisy output measurements. Of fundamental interest, the Filtered High Gain Ob-
server (FHGO) design is first carried out by assuming that the output measurements are available
in a continuous manner before being extended to the case of sampled outputs leading thereby to a
continuous-discrete time FHGO which inherits the main properties of the original FHGO. The per-
formance of the FHGO and its main properties are highlighted and compared to those of a Standard
High Gain Observer (SHGO) through a a bioprocess dealing with the growth of a phytoplanktonic
population.

keywords Nonlinear systems, Standard high gain observers, Filtered high gain observers, phyto-
planktonic.

1 Introduction

Since the eighties, we have witnessed the emergence of nonlinear state observers performing an admissi-
ble estimation of the component concentrations inside bioreactors (see e.g. [1] and references therein).
These observers have been designed using various approaches that have been progressively developed
for specific classes of nonlinear systems using various design principles (See for instance [2, 3, 4, 5, 6]).
The high gain principle has shown to provide an appealling approach to design observers for nonlinear
systems as pointed out in [5]. Such an attraction is motivated by implementation simplicity and fun-
damental considerations. Indeed, the Standard High Gain Observer (SHGO) structure is very simple
since it consists in adding a copy of the system dynamics with a corrective involving an observer gain
which is essentially parameterized by a positive design parameter θ. Of a fundamental interest, one
can naturally recover the genuine separation principle for nonlinear systems when designing output
feedback control systems incorporating a SHGO (see [7] and references therein). However, the design
parameter θ has to be taken high enough for observer convergence purposes and it intervenes with
positive powers in the observer gain, leading thereby to three well known issues. The first deals with
a numerical implementation issue occurring for systems with high dimensions when relatively high
values of θ are required. The second issue consists in the intrinsic sensitivity of SHGO to the non
avoidable output measurement noise. The third issue is the peaking phenomena of the state variable
estimates, the magnitude of which is proportional to an appropriate power of θ, leading to poor tran-
sient behavior of SHGO.
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An important research activity has been recently devoted to alleviate the SHGO sensitivity to mea-
surement noise using an appropriate filtering. The seminal contribution has been proposed in [8] for
a class of single output nonlinear systems of dimension n ≥ 3. The filtering feature is mainly used to
limit the observer gain power to 2, reducing thereby the amplification of noise measurements. Two
design features are worth to be emphasized. Firstly, the dimension of the proposed observer is equal
to 2(n−1). Secondly, the observer provides an estimate of the first and last components of the system
state whereas the intermediary states are provided by a couple of estimates. This contribution has
been subsequently reconsidered in [9] and [10] where redesigned versions involving nested saturations
have been proposed to deal with the peaking phenomena. A nice contribution has been proposed
in [7], it consists in a redesigned SHGO having the same dimension as the original system with two
important design features, namely the power of the observer design parameter is limited to one and
the peaking phenomena is well reduced thanks to nested saturation functions. Further developments
related to the design of SHGO with filtering capabilities have been carried out in [11, 12] for a class
of systems with dimension n ≥ 2. The underlying observers consist in two cascaded sub-systems each
one of which has the same dimension as the original system. The first subsystem is a copy of the
original system with a simple correction term which (linearly) depends on the state of the second
subsystem. The latter subsystem is a linear filter driven by the output observation error, namely the
error between the output measurements and an output prediction provided by the first subsystem. As
in [8], the power of the observer gain is limited to 2.

It is worth noticing that all the high gain observers incorporating filtering capabilities, cited above,
were proposed for uniformly observable systems, i.e. systems which are observable for any input. Up
the authors best knowledge, no equivalent solution has been proposed for non uniformly observable
systems, i.e. systems where the considered inputs have to satisfy an adequate persistent excitation
condition to ensure their observability. In this paper, one aims at providing a new Filtered High
Gain Observer (FHGO) for a class of Multi-Input/Multi-Output (MIMO) non uniformly observable
nonlinear systems. The underlying design is quite different from those given in [11, 12] for uniformly
observable systems, namely the observer gain is issued from the resolution of a Riccati or Lyapunov
Ordinary Differential Equation (ODE).

The paper is organized as follows. A comprehensive presentation of the class of systems to be consid-
ered together with an appropriate SHGO are given in section 2, constituting thereby the preliminaries
of the paper. Section 3 is devoted to the FHGO design assuming that the output measurements are
continuously available with a particular emphasis on a certain persistent excitation condition required
for the observer convergence. The redesigned version of the FHGO dealing with sampled outputs is
given in section 4 with a particular emphasis on the admissible sampling process. Section 5 is dedicated
to an application, namely an admissible estimation of the component concentrations within a bioreac-
tor in a realistic simulation framework. A particular attention is paid on the FHGO performance with
respect to the SHGO in the presence of noise measurements. For clarity purposes, the convergence
analysis related to the FHGO with continuous output measurements as well as with sampled ones are
given in Appendix.

Throughout the paper, for any positive integers k and m, Ik and 0k denote the k-dimensional identity
and zero matrices respectively, 0k×m is the k ×m zero matrix, ∥ · ∥ denotes the euclidian norm and
for any Symmetric Positive Definite (SPD) time-varying matrix Q(t), λM (Q(t)) (resp. λm(Q(t))) will
be used to denote the largest (resp. the smallest) eigenvalue of Q(t) and λ̄M (Q(t)) = sup

t≥t0

λM ((Q(t))),

λm(Q(t)) = min
t≥t0

λm((Q(t))) where t0 is any fixed non negative real number. Moreover, the arguments

will be omitted when clear from the context.
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2 Preliminaries

Recall that the ultimate motivation of this paper consists in addressing the SHGO sensitivity with
respect to the ubiquitous noise measurements for a class of non uniformly observable systems. More
specifically, we will consider the following class of nonlinear MIMO systems{

ẋ(t) = F (u(t), x(t))x(t) + φ (u(t), x(t)) +Bε(t)
y(t) = Cx(t) + w(t)

(1)

with

x =


x(1)

x(2)

...

x(q)

 with x(k) ∈ IRnk and

q∑
k=1

nk = n, (2)

F (u, x) =


0 F1(u, x) 0 0
... F2(u, x)
... 0
0 0 Fq−1(u, x)
0 0

 with Fk(u, x) = Fk(u, x
(1), . . . , x(k)), (3)

φ(u, x) =


φ(1)(u, x)

φ(2)(u, x))
...

φ(q−1)(u, x)

φ(q)(u, x)

 ∈ IRn with φ(k)(u, x) = φ(k)(u, x(1), . . . , x(k)), (4)

B =


0n1×nq

...
0nq−1×nq

Inq

 , C =
(
In1 0n1×n2 · · · 0n1×nq

)
, (5)

where the state x(t) ∈ IRn, each Fk(u, x) is a nk × nk+1 matrix which is triangular w.r.t. x, i.e.
Fk(u, x) = Fk(u, x

(1), ..., x(k)), k = 1, ..., q − 1, φ(x(t), u(t)) is a nonlinear vector function that has
a triangular structure w.r.t. x; u ∈ IRs denotes the system input, y ∈ IRp is the system output;
ε : IR+ → IRnq , is an unknown function which denotes the system uncertainties and w : IR+ → IRnq

is the output noise.

The observer design will be performed under the following assumptions.

A1. The state x(t) and the control u(t) are bounded, i.e. x(t) ∈ X and u(t) ∈ U where X ⊂ IRn and
U ⊂ IRs are compact sets. One sets xM = sup

x∈X
∥x∥.

A2. Each φk(u, x), k = 1, . . . , q and each Fk(u, x), k = 1, . . . , q − 1, is Lipschitz on X with respect
to x uniformly in u, i.e.

∃Lφ > 0 / ∀u ∈ U ; ∀(x, x̄) ∈ X ×X, one has ∥φ(k) (u, x)− φ(k) (u, x̄) ∥ ≤ Lφ∥x− x̄∥,

∃LF > 0 / ∀u ∈ U ; ∀(x, x̄) ∈ X ×X, one has ∥Fk (u, x)− Fk (u, x̄) ∥ ≤ LF ∥x− x̄∥.
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A3. The unknown uncertainty ε and the noise signal w are essentially bounded functions, i.e.

∃ (δε, δw) ∈ IR+ × IR+ / ∥ε∥∞
∆
= ess sup

t≥0
∥ε(t)∥ ≤ δε and ∥w∥∞

∆
= ess sup

t≥0
∥w(t)∥ ≤ δw. (6)

Remark 2.1 Since the state is bounded, one can construct global Lipschitz prolongations of the non-
linearities using saturation functions ([13]). To avoid symbol redundance, one shall assume as in
[14] that such prolongations have been achieved and that the functions F and φ result from these
prolongations.

System (1) has been already considered in [15] in the free uncertainties and noise measurements case
and a SHGO has been designed under a set of assumptions amongst which A1 to A3. Similarly, this
system belongs to the class of systems considered in [16] and [17] where a SHGO has been proposed in
the absence of noise measurements. For comparison purposes and in order to highlight the main steps
of the FHGO design which shall be detailed later, let us recall the equations of a SHGO proposed in
the above references ([16, 17])

˙̂x(t) = F (u, x̂)x̂(t) + φ(u(t), x̂(t))− θ∆−1
θ P (t)CT (x̂(t)− y(t)), (7)

with
∆θ = diag

[
In1

1
θ In2 · · · 1

θq−1 Inq

]
, (8)

where x̂ =

 x̂(1)

...

x̂(q)

 ∈ IRn, with x(k) ∈ IRnk , k = 1, . . . , q, denotes the state estimate and P (t) is a

n× n symmetric matrix governed by the following Riccati ODE{
Ṗ (t) = θ

(
P (t) + F (u, x̂)P (t) + P (t)F T (u, x̂)− P (t)CTCP (t)

)
,

P (0) = P T (0) > 0.
(9)

Recall that the convergence of the underlying observation error has been established under Assump-
tions A1 to A3, together with an appropriate persistent excitation condition similar to the one which
shall be considered later when designing the FHGO.

3 The FHGO design

Recall that one aims at alleviating the sensitivity of the SHGO (7) to the ubiquitous noise mea-
surements. A suitable filtering process is used to this end by cascading two subsystems. The first
subsystem corresponds to a copy of the original system, with a (time-varying) corrective term that
linearly depends on the state of the second subsystem. The latter is a linear filter the input of which
is the difference between the output predicted by the observer and the output measurement, namely
the output observation error. The proposed observer is given by the following set of equations

{
˙̂x(t) = F (u, x̂)x̂(t) + φ(u(t), x̂(t))− θK(t)η(t),
η̇(t) = δθ

{
−η(t) + θAT η(t) + CT

qn1
(Cx̂(t)− y(t))

}
, η(0) = 0,

(10)

where x̂ =

 x̂(1)

...

x̂(q)

 ∈ IRn with x(k) ∈ Rnk , k = 1, . . . , q, η =

 η(1)

...

η(q)

 ∈ IRqn1 with η(k) ∈ IRn1 and

A is the qn1 × qn1 anti-shift matrix, i.e.
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A =


0n1 In1 0n1 0n1

...
. . .

. . . 0n1

0n1 · · · · · · In1

0n1 · · · · · · 0n1

 , CT
qn1

=


In1

0n1

...
0n1

 . (11)

The terms δ and θ > 0 are positive real design parameters and finally, K(t) is the following diagonal
matrix

K(t) = diag(P (t)CT )
∆
= diag

(
K(1)(t) . . . K(q)(t)

)
, (12)

where each K(i) is ni × n1 matrix and P (t) is a n × n symmetric matrix governed by the following
Riccati ODE

{
Ṗ (t) = θ

(
P (t) + F (u, x̂)P (t) + P (t)F T (u, x̂)− P (t)CTCP (t)

)
,

P (0) = P T (0) > 0.
(13)

Besides Assumptions A1 to A3, the following assumption is needed for the observer design:

A4. The Riccati ODE (13) has a positive definite solution that satisfies the following property

∃ρ⋆ > 0; ∃θ⋆ > 0; ∀θ > θ⋆; ∃t⋆ ≥ 0; ∀t ≥ t⋆, (1/λ̄M (P (t))) ≥ (ρ⋆/α(θ))In, (14)

where α(θ) is a positive function satisfying

∀θ > 0, α(θ) ≥ 1 and ∃ 0 < χ ≤ 1, lim
θ→∞

α(θ)

θ2χ
= 0. (15)

Notice that the dynamics of the Riccati equation (13) involved in Assumption A4 depends on the
state estimate x̂ as in [18, 19] and not on the state x. At a first glance, it would seem more natural
to express Assumption A4 using the state rather than its estimate. But this would lead to a non
checkable assumption since the state is not available. Considering the observer states instead of the
system states, as formulated in Assumption A4, would allow to check it at least on-line, even though
not a priori. Indeed, Assumption A4 can be checked on-line by simply computing the inverse of the
largest instantaneous eigenvalue of P (t).

On other aspects, Assumption A4, which is similar to that considered in [18, 19], is of a primary
importance for the stability of the observer. Indeed, as noted in [18], this assumption is satisfied for
uniformly observable systems, i.e. systems which are observable for any input. For non uniformly
observable systems, the characterization of the class of inputs which satisfy Assumption A4 is still an
open problem despite that some interesting results dealing with some subclasses of systems (1) have
already been obtained. Indeed, the authors in [20] introduced the notion of local regular inputs which
are defined as those satisfying Assumption A4 with α(θ) ≡ 1 for all θ. However, these inputs were
defined for a class of systems included in (1), i.e. the matrices Fk do not depend on the state. In [21],
the class of systems considered in [20] was revisited and the authors enlarged the class of locally regular
inputs to the class of regular inputs. In the spirit of the persistent excitation conditions proposed in
[20, 21], a similar condition which allows Assumption A4 to be satisfied has been formulated in [16, 17]
where some classes of systems similar to (1) have been considered with a view to observer design in
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the free noise case. As in [20, 21], the underlying formulation used the transition matrix Φu,x̂(t, s) of
the following state affine system ξ̇u,x̂(t) = A(u, x̂)ξu,x̂(t) where ξu,x̂ ∈ IRn is the system state, u and x̂
are the inputs of the system and they respectively correspond to the input of system (1) and to the
state of the dynamical system (10). Recall that the matrix Φu,x̂(t, s) is defined as follows

{
d
dt (Φu,x̂(t, s)) = A(u(t), x̂(t))Φu,x̂(t, s),

Φu,x̂(s, s) = In.
(16)

The persistent excitation condition was formulated as follows in [16, 17]
• ∃θ0 > 0; ∃ρ0 > 0; ∃T ⋆ > 0;∀θ ≥ θ0; ∀t ≥ T ⋆

θ , one has

∫ t

t−T⋆

θ

ΦT
u,x̂(s, t)C

TCΦu,x̂(s, t)ds ≥
ρ0

θα(θ)
∆2

θ, (17)

where the function α(θ) satisfies (15) and ∆θ is given by (8).

It has been shown in [16, 17] that Assumption A4 is satisfied under the persistent excitation condition
(16)-(17) and one has

θ⋆ = θ0, t⋆ =
T ⋆

θ
and ρ⋆ = e−T ⋆

ρ0.

Before stating the theorem where the main properties of observer (10) are summarized, one shall
compare the structure of this observer with that of the SHGO (7) in order to put forward the rational

behind the proposed design. Let us first focus on the observer sub-state η =

 η(1)

...

η(q)

. The first

component η(1) is a filtered version of the output observation error x̂(1)− y with a filter of order 1 and
the static gain of which does not depend on θ. For i ≥ 2, the component η(i) is also a filtered version
of η(i−1) with a filter of order 1 and the static gain of which is proportional to θ. The component η(i) is
therefore a filtered version of x̂(1)−y with a filter of order i and the static gain of which is proportional
to θi−1. Now, the ODE associated to the state x̂i in the FHGO (10) is obtained from that given by
the SHGO (7) by replacing the corrective term θiK(i)(x̂1 − y) by its filtered version, namely θK(i)ηi.
Two feature are worth to be mentioned. The first one deals with the fact that the power of the design
parameter θ does not exceed 2 in the FHGO. The second feature deals with the fact the substitution
of the output observation error by an appropriate filtered version in the state estimate equations will
definitely improve the behavior of the FHGO with respect to the output measurements noise.

Now, the main properties of the proposed observer (10) are summarized in the following theorem the
proof of which is detailed in Appendix.

Theorem 3.1 Consider system (1) subject to assumptions A1 to A3. Then, for every bounded input
satisfying A4, there exist δ⋆, θ⋆, such that for all θ ≥ θ⋆ and for all δ > max(δ⋆, θχ), one has for all
t ≥ t⋆,

∥x̃(t)∥ ≤ βfθ
q−1
√

α(θ)e−ν θ
2
µ(θ)(t−t⋆)

(
(1 +

√
n)∥x̃(t⋆)∥+ ∥η(t⋆)∥

)
+2

βf
νµ(θ)

(√
α(θ)

θ2
δε +

√
α(θ)δθq−1δw

)
. (18)

where x̃ = x̂− x with x̂ being any trajectory of system (10), δw and δε are the ultimate bounds of the
uncertainties given by Assumption A3, βf and ν are positive constants independent of θ and δ; the
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positive reals t⋆, ρ⋆, χ and the function α are given by Assumption A4and finally µ(θ) > 0 is such
that lim

θ→∞
µ(θ) = 1.

Remark 3.1 Notice that in the uncertainties free case and in the absence of measurement noise, the
observation error exponentially converges to zero. Moreover, in the presence of uncertainties and in
the free noise case, the asymptotic estimation error can be made as small as desired by choosing θ high
enough.

4 The FHGO redesigned version with sampled outputs

The observer designed above assumes that the outputs are available in a continuous manner. This is
rarely the case in practice since these outputs are generally available only at sampling time instants
0 ≤ t0 < . . . < tk < tk+1 < . . . with (time-varying) sampling intervals τk = tk+1−tk and lim

k→∞
tk = +∞.

In the sequel, one shall propose a redesigned version of the above observer that accounts for the output
sampling process. For this sake, one naturally assumes that the time intervals τk’s are bounded away
from zero by τm and are upperly bounded by the upper bound of the sampling partition diameter τM ,
i.e.

0 < τm ≤ τk = tk+1 − tk ≤ τM , ∀k ≥ 0. (19)

The approach which shall be adopted to redesign the continuous time output FHGO is similar to
that proposed in [14]. One needs the following additional hypothesis on the boundedness of the noise
samples w(tk).

A5. For all tk, the samples w(tk) are bounded by δw where δw is the essential bound given by As-
sumption A3.

The redesigned observer takes the following form


˙̂x(t) = F (u, x̂)x̂(t) + φ(u(t), x̂(t))− θK(t)η(t),
η̇(t) = δθ

(
−η(t) + θAT η(t) + CT

qn1
(Cx̂(tk)− y(tk) + α(t))

)
,

α̇(t) = −δθCP (t)CTCqn1η(t) = −δθK(1)(t)η(1)(t), t ∈ [tk, tk+1[,
η(0) = 0 and α(tk) = 0, k ≥ 0.

(20)

Notice that, the above continuous-discrete time observer involves a new state α governed by an ODE
which is re-initialized at zero at each sampling instant tk.

The main properties of the proposed observer (20) are summarized in the following theorem the proof
of which is given in Appendix.

Theorem 4.1 Consider system (1) subject to assumptions A1, A2, A3 and A5. Then, for every
bounded input satisfying A4, there exist δ⋆, θ⋆, such that for all θ ≥ θ⋆ and for all δ > max(δ⋆, θχ),
there exist positive constants ϱθ > 0, ηθ > 0 and Nθ such that if the upper bound of the sampling
partition diameter τM is such that τM < ϱθ, then for every u ∈ U and every x̂(0) ∈ X, one has for all
t ≥ t⋆,

∥x̃(t)∥ ≤ βf
√

α(θ)θq−1e−ζθ(t−t⋆)
(
(1 +

√
n)∥x̃(t⋆)∥+ ∥η(t⋆∥

)
+βfNθ(τm, τM )

(√
α(θ)

θ2
δε +

√
α(θ)δθq−1δw

)
, (21)
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where x̃ = x̂− x with x̂ being any trajectory of system (20), δw, δε, βf , ν, t
⋆, ρ⋆, χ, α(θ)and µ(θ) > 0

are as given in Theorem 3.1; the expressions ϱθ, ζθ and Nθ are

ϱθ =
βf
√

α(θ)(θFM + Lφ)

2νθµ(θ)
, ζθ = aθ(1−

τM
ϱθ

)e−aθτm ,

aθ =
νθµ(θ)

2
, Nθ(τm, τM ) = θτM

2− e−ζθτm

1− e−ζθτm
, (22)

where FM = sup
x∈X,u∈U

F (u, x) and Lφ is the Lipschitz constant of φ given by Assumption A2.

The following remark provides insights about the observer dynamics and the sampling process speci-
fication according to the above fundamental result.

Remark 4.1 The bound of the estimation error related to the continuous-discrete time observer, i.e.
the right side of inequation (21) is very similar to that derived in the continuous output case, i.e. the
right side of inequality (18), with the following two differences:

(i) The rate of the exponential decay is equal to aθ = νθµ(θ)/2 in the continuous output case while
it is equal to ζθ when the output is sampled.

(ii) The term 2/(νµ(θ)) involved in the expression of the ultimate bound in the continuous output
case is replaced by Nθ(τm, τM ) when the output is sampled.

Proceeding as in [14], one can show that in the case of a constant sampling period, i.e. τM = τm = Ts,
ζθ(Ts) is a decreasing function of Ts and lim

Ts→0
ζθ(Ts) = aθ. One can also show that Nθ(Ts) is a non

decreasing function of Ts and that lim
Ts→0

Nθ(Ts) = 2/(νµ(θ)). Hence, the results obtained in the sampled

output case are in accordance with those derived in the continuous output one: the decreasing to zero
of the observation error is inversely proportional to the magnitude of the sampling period while the
value of the ultimate bound is proportional to this magnitude. More specifically, when the sampling
period tends to zero, the expressions for the decay rate and ultimate bound become identical to those
derived in the continuous output case.

5 Application to a phytoplanktonic growth model

This section is devoted to the use of the proposed FHGO in a realistic simulation framework involving
a phytoplanktonic growth model that has been validated in [22] through two high gain observers one
of which is similar to (7) that uses continuous-time output measurements.

5.1 The phytoplanktonic growth model

One considers a bioreactor where a biomass (phytoplanktonic cells) with a concentration N is growing
by consuming a substrate with a concentration S. The bioreactor is functioning under a continuous
mode with a dilution rate D and an input substrate concentration Sin. A mathematical model which
accounts for the biomass and substrate concentrations as well as the cell quota of assimilated nutrient,
Q, has been considered in [22] and it can be written as follows

Ṅ(t) = µm

(
1− KQ

Q(t)

)
N(t)−D(t)N(t)

Q̇(t) = ρm
S(t)

Kρ+S(t) − µm(Q(t)−KQ)

Ṡ(t) = −ρm
S(t)N(t)
Kρ+S(t) +D(t)(Sin − S(t))

(23)
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where µm,KQ, ρm,Kρ are constant kinetic parameters.

The biomass concentration is measured at equally spaced sampling instants and the observation ob-
jective is to provide continuous estimates of the biomass and substrate concentrations X and S and
in particular the cell quota Q which can only be estimated with manual sampling and high cost mea-
surements.

As in [22] and for writing convenience, one first adimentionalizes the state variables by considering
the following changes

x1 =
ρmN

Sin
, x2 =

Q

KQ
, x3 =

S

Sin
, a1 =

Kρ

Sin
, a2 = µm, a3 =

ρm
KQ

. (24)

The resulting model which shall be used for the observer design specifies as follows

ẋ1 = −a2x1
1

x2
+ (a2 − u)x1

ẋ2 = −a1a3
1

a1 + x3
+ a3 − a2(x2 − 1)

ẋ3 = − x1x3
a1 + x3

+ u(1− x3)

y(tk) = x1(tk)

(25)

where u
∆
= D is the input of the system.

Now, one shall consider the following change of coordinates which puts system (25) under the normal

form (1), Φ : IR3 → IR3, x =

 x1
x2
x3

 7→ z =

 z1
z2
z3

 with

z1 = x1, z2 =
1

x2
, z3 =

1

a1 + x3
. (26)

Indeed, one can show that the above change of coordinates puts system (25) under form (1) with

x(k) = zk, k = 1, . . . , 3, i.e. nk = 1, . . . , 3,

F1(u, z) = −a2z1, F2(u, z) = a1a3z
2
2 , φ(u, z) =

 (a2 − u)z1
a2z2 − (a2 + a3)z

2
2

−a1z1z
3
3 + z23(z1 − u(1 + a1)) + uz3

 .

Note that, the original coordinates can be deduced from the new ones as follows

x1 = z1, x2 =
1

z2
, x3 =

1

z3
− a1. (27)

A discrete-continuous time FHGO observer of the form (20) has been designed for the resulting system
in the new coordinates z to estimate the relevant state variables of the process. Notice that the observer
equations could be derived in the original coordinates by considering the inverse of the transformation
jacobian. Nevertheless, since the original dynamical system has already been expressed in the new
coordinates z and the original variables can be easily deduced from the new ones through equations
(27), one has simulated the underlying discrete-continuous time observer in the new coordinates z.
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5.2 Estimation results

Two sets of simulation results are given. In each one, the measurements of the biomass are assumed
to be available at equally spaced sampling instants with a sampling period equal to Ts which has
been set to 0.02 Day in the first experiment and to 0.0625 Day (i.e. 1.5 h as in [22]) in the second
one. Moreover and before being used by the observer, the output z1(tk) has been corrupted by a
noise signal N (tk) to generate a noisy output y(tk) = z1(tk)(1 +N (tk)). The noise signal N (tk) has
been generated by considering the sum of 26 high frequency sinusoidal signals where the underlying
frequencies are equally spaced between 0.95/(2Ts) and 1/(2Ts) (see Fig. 1). In each set of simulation
results, the estimates provided by the continuous-discrete version of the FHGO are compared with
their counterpart estimates provided by a continuous-discrete version of the SHGO (see [15] for more
details). The values of the model parameters used in simulation are [22]

a1 = 0.02 g.g−1, a2 = 4.18 Day−1, a3 = 5.32 Day−1.

The dilution rate D = u was chosen as a sinusoidal signal, i.e. u = 1.71

(
1 + 0.6 sin(

2π

T0
t)

)
with

T0 = 1/3 Day.

0 0.5 1 1.5 2 2.5 3 3.5 4

TIME (Day)

0

1

2

3

4

5

6

x
1

MEASURED NOISY OUTPUT SAMPLES

UNKNOWN NOISY FREE CONTINUOUS OUTPUT

Figure 1: Noisy measurements of the output, with Ts = 0.0625 Day

Figure 2 shows estimates provided by the FHGO with Ts = 0.02 Day together with their true values
issued from the simulation model. The design parameters θ and δ have been set to 5 and 7, respectively.
Figure 3 shows the estimates provided by the SHGO when the design parameter θ has been set to
5 as for the SHGO. The fundamental results have been corroborated, namely the smooth behavior
of the estimates provided by the FHGO is mainly du to its filtering capability. Figures 4 and 5
show the performance of the FHGO and SHGO, respectively during the second experiment with
Ts = 0.0625 Day. The underlying values of the design parameters are θ = 3 and δ = 5 for the FHGO
and θ = 3 for the SHGO. Again, the FHGO outperforms the SHGO from the noise sensitivity point
of view.
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Figure 2: State estimation with FHGO, with Ts = 0.02 Day (θ = 5, δ = 7)

6 Conclusion

A FHGO has been proposed for a class of non uniformly observable systems. This FHGO has been
first designed assuming that the output measurements are continuously available and subsequently
appropriately redesigned to account for the sampling process. A particular attention has been paid to
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Figure 3: State estimation with SHGO, with Ts = 0.02 Day (θ = 5)

the observer convergence analysis while emphasizing the admissible sampling process. The feasibility
and performance of the proposed FHGO have been highlighted through a bioreactor dealing with the
growth of a population of phytoplanktonic cells. Smooth time-continuous estimates of the biomass
and substrate concentrations as well as of the cell quota of assimilated nutrient have been provided
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Figure 4: State estimation with FHGO, with Ts = 0.0625 Day (θ = 3, δ = 5)

by the continuous-discrete time version of the FHGO from measured samples of the biomass. These
samples were corrupted by a noise occurring at high frequencies. The so obtained estimates have been
compared to their counterparts provided by a continuous-discrete time version of a SHGO which were
rather noisy, in particular when the sampling periods are relatively high.
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Figure 5: State estimation with SHGO, with Ts = 0.0625 Day (θ = 3)

Further studies are under consideration in the proposed FHGO design framework, namely how to
redesign the proposed FHGO by including saturation functions in order to cope with the observer
peaking phenomenon.
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A Proof of Theorem 3.1

Set x̃ = x̂− x, x̄ = θq−1∆θx̃ and η̄ = θq−1Dθη where ∆θ is the diagonal matrix given by (8) and Dθ

is the following qn1 × qn1 diagonal matrix

Dθ = diag(In1 ,
1

θ
In1 , . . . ,

1

θq−1
In1). (28)

Notice that one can easily check the following equalities

∆θF (u, x̂)∆−1
θ = θF (u, x̂); ∆θK(t) = K(t)Dθ; DθC

T
qn1

C = CT
qn1

C∆θ. (29)

From (1) and (10), one has

˙̃x = F (u, x̂)x̃+ F̃ (u, x̂, x)x+ φ̃(u, x̂, x)− θK(t)η(t)−Bε(t). (30)

Now, using (29), one gets

˙̄x = θF (u, x̂)x̄+ θq−1∆θ

(
F̃ (u, x̂, x)x+ φ̃(u, x̂, x)

)
− θq∆θK(t)η(t)− θq−1∆θBε(t)

= θF (u, x̂)x̄+ θq−1∆θ

(
F̃ (u, x̂, x)x+ φ̃(u, x̂, x)

)
− θqK(t)Dθη(t)−Bε(t)

= θF (u, x̂)x̄+ θq−1∆θ

(
F̃ (u, x̂, x)x+ φ̃(u, x̂, x)

)
− θK(t)η̄(t)−Bε(t). (31)

Similarly, from (1) and (10) and using (29), one gets

˙̄η = −θδ
(
(Iqn1 −AT )η̄ + θq−1DθC

T
qn1

C(x̃− w(t))
)

= −θδ
(
(Iqn1 −AT )η̄ + θq−1CT

qn1
C∆θ(x̃− w(t))

)
= −θδ

(
(Iqn1 −AT )η̄ + CT

qn1
Cx̄+ θq−1CT

qn1
Cw(t)

)
. (32)

Adding and subtracting the term θP (t)CTCx̄ to the right side of equation (31), one gets
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˙̄x = θ
(
F (u, x̂)− P (t)CTC

)
x̄+ θq−1∆θ

(
F̃ (u, x̂, x)x+ φ̃(u, x̂, x)

)
−Bε(t)− θ

(
K(t)η̄ − P (t)CTCx̄

)
. (33)

Now, since K(t) = diag(P (t)CT ), one has K(t)U = P (t)CTC where

U
∆
=

 In1 0n1,n2 . . . 0n1,nq

...
...

...
...

In1 0n1,n2 . . . 0n1,nq

 ∈ IRqn1×n. (34)

Hence, equation (33) can be rewritten as follows

˙̄x = θ
(
F (u, x̂)− P (t)CTC

)
x̄+ θq−1∆θ

(
F̃ (u, x̂, x)x+ φ̃(u, x̂, x)

)
−Bε(t)− θK(t)z̄, (35)

where
z̄ = η̄ − Ux̄. (36)

Let now derive the time derivative of z̄. Indeed, using (31), one gets

˙̄z = ˙̄η − U ˙̄x

= −θδ
(
(Iqn1 −AT )η̄ − CT

qn1
Cx̄+ θq−1CT

qn1
Cw(t)

)
− θUF (u, x̂)x̄

−θq−1U∆θ

(
F̃ (u, x̂, x)x+ φ̃(u, x̂, x)

)
+ θUK(t)η̄ + UBε(t)

= θ
(
−δ(Iqn1 −AT ) + UK(t)

)
η̄ + θ

(
δCT

qn1
C − U F (u, x̂)

)
x̄

−θq−1U∆θ

(
F̃ (u, x̂, x)x+ φ̃(u, x̂, x)

)
− θqδCT

qn1
Cw(t)

= θ
(
−δ(Iqn1 −AT ) + UK(t)

)
(z̄ + Ux̄) + θ

(
δCT

qn1
C − U F (u, x̂)

)
x̄

−θq−1U∆θ

(
F̃ (u, x̂, x)x+ φ̃(u, x̂, x)

)
− θqδCT

qn1
Cw(t)

= θ
(
−δ(Iqn1 −AT ) + UK(t)

)
z̄ + θ

(
δCT

qn1
C − U F (u, x̂)− δ(Iqn1 −AT )U + UK(t)U

)
x̄

−θq−1U∆θ

(
F̃ (u, x̂, x)x+ φ̃(u, x̂, x)

)
− θqδCT

qn1
Cw(t).

Now, one can check that (Iqn1 −AT )U = CT
qn1

C and the above last equation can therefore be written
as follows

˙̄z = θδ

(
−(Iqn1 −AT ) +

1

δ
UK(t)

)
z̄ + θ (−UF (u, x̂) + UK(t)U) x̄

−θq−1U∆θ

(
F̃ (u, x̂, x)x+ φ̃(u, x̂, x)

)
− θqδCT

qn1
Cw(t). (37)

According to Assumption A4, the matrix P (t) governed by (13) is SPD. Let S(t) = P−1(t); one can
show that S(t) is governed by the following Lyapunov ODE

{
Ṡ(t) = −θ

(
S(t) + F T (u, x̂)S(t) + S(t)F (u, x̂)− CTC

)
,

S(0) = ST (0) > 0.
(38)

Again, according to Assumption A4, on has
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∀t ≥ t⋆, λm(S(t)) ≥ ρ⋆

α(θ)
, (39)

where α(θ) satisfies (15).
Now, proceeding as in [15, 16], one can show that the matrix S(t) is bounded and the underlying
upper bound (or equivalently λ̄M (S(t))) is independent of θ. Let V1(x̄, t) = x̄TS(t)x̄; proceeding as in
[15, 16], one can show that for θ ≥ 1,

V̇1(x̄, t) ≤ −θµ(θ)V1(x̄, t) + 2
√

λ̄M (S(t))
√

V1(x̄, t)∥ε(t)∥ − 2θx̄TS(t)K(t)z̄(t)

≤ −θµ(θ)V1(x̄, t) + 2
√

λ̄M (S(t))
√

V1(x̄, t)∥ε(t)∥+ 2θ
√

λ̄M (S(t))
√

V1(x̄, t)∥K(t)∥∥z̄(t)∥,
(40)

where

µ(θ) = 1− γ

√
α(θ)

θ2
with γ = 2

√
n(LFxM + Lφ)

√
λ̄M (S(t))

ρ⋆
, (41)

where xM is given by Assumption A1, LF and Lφ by Assumption A2 and finally ρ⋆ and α(θ) by
Assumption A4.

Similarly, set V2(z̄) = z̄T z̄ = ∥z̄∥2. Then, one has

V̇2 = −θδz̄T (2Iqn1 − (AT +A))z̄ + 2θz̄TUK(t)z̄ + 2θz̄T (−UF (u, x̂) + UK(t)U) x̄

−2θq−1z̄TU∆θ

(
F̃ (u, x̂, x)x+ φ̃(u, x̂, x)

)
− 2θqδz̄TCT

qn1
Cw(t)

≤ −θδκ∥z̄∥2 + 2θ∥U∥∥K1(t)∥∥z̄∥2 + 2θ∥U∥(∥F1(u, x̂)∥+ ∥K1(t)∥)∥x̄∥∥z̄∥

−2θq−1z̄TU∆θ

(
F̃ (u, x̂, x)x+ φ̃(u, x̂, x)

)
− 2θqδz̄TCT

qn1
Cw(t),

where κ is the smallest eigenvalue of the SPD matrix 2Iqn1 − (A+AT ).

According to Assumption A2, one can show that

2θq−1z̄TU∆θ

(
F̃ (u, x̂, x)x+ φ̃(u, x̂, x)

)
≤ 2∥z̄∥∥U∥

√
n(LFxM + Lφ)∥x̄∥

≤ 2∥z̄∥∥U∥
√
n(LFxM + Lφ)

√
V1(x̄, t)√
λm(S(t))

≤ 2n(LFxM + Lφ)

√
α(θ)

ρ⋆
∥z̄∥
√

V1(x̄, t)

= 2n(LFxM + Lφ)

√
α(θ)

ρ⋆

√
V1(x̄, t)

√
V2(z̄). (42)

Similarly, one has

2θ∥U∥(∥F1(u, x̂)∥+ ∥K1(t)∥)∥x̄∥∥z̄∥ ≤ 2θ
√
n(FM +KM )

√
V1(x̄, t)√
λm(S(t))

√
V2(z̄)

≤ 2θ
√
n(FM +KM )

√
α(θ)

ρ⋆

√
V1(x̄, t)

√
V2(z̄), (43)
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where KM = sup
t≥0

∥K1(t)∥.

Hence,

V̇2 ≤ −θδκ

(
1− 2

KM
√
n

κδ

)
V2 + 2θqδ

√
V2∥w(t)∥

+2
√
n
{√

n(LFxM + Lφ) + θ(FM +KM )
}√α(θ)

ρ⋆

√
V1(x̄, t)

√
V2(z̄). (44)

Now, choose δ such that
(
1− 2KM

√
n

κδ

)
≥ 1

2 , i.e. δ ≥ 2
√
nKM

κ and choose θ such that θ ≥ 1. Then,

inequality (44) leads to

V̇2 ≤ −θδκ

2
V2 + c2θ

√
α(θ)

√
V1(x̄, t)

√
V2(z̄) + 2θqδ

√
V2∥w(t)∥,

where c2 = 2
√

n
ρ⋆ {

√
n(LFxM + Lφ) + (FM +KM )} is a constant independent of θ and δ.

Using inequality (40), one gets

V̇1 ≤ −θµ(θ)V1 + c1θ
√

V1

√
V2 + 2

√
λ̄M (S)

√
V1∥ε(t)∥, (45)

where c1 = 2KM

√
λ̄M (S(t)) is a positive constant independent of θ and δ.

Set

V ⋆
1 = θµ(θ)V1, V ⋆

2 =
θδκ

2
V2 and let V ⋆ = V ⋆

1 + V ⋆
2 . (46)

Notice that one has

V ⋆
1 ≤ V ⋆ and V ⋆

2 ≤ V ⋆. (47)

Hence,

V̇1 ≤ −V ⋆
1 + c1θ

√
V ⋆
1

θµ(θ)

√
V ⋆
2

θδκ
2

+ 2
√

λ̄M (S)
√

V1∥ε(t)∥

= −V ⋆
1 +

c1√
δ

√
2

κµ(θ)

√
V ⋆
1

√
V ⋆
2 + 2

√
λ̄M (S)

√
V1∥ε(t)∥.

Using (47), one gets

V̇1 ≤ −V ⋆
1 +

c1√
δ

√
2

κµ(θ)
V ⋆ + 2

√
λ̄M (S)

√
V1∥ε(t)∥. (48)

Similarly, one has
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V̇2 ≤ −V ⋆
2 + c2θ

√
α(θ)

√
V ⋆
1

θµ(θ)

√
V ⋆
2

θδκ
2

+ 2θqδ
√

V2∥w(t)∥

= −V ⋆
2 + c2

√
α(θ)

δ

√
2

κµ(θ)

√
V ⋆
1

√
V ⋆
2 + 2θqδ

√
V2∥w(t)∥

≤ −V ⋆
2 + c2

√
α(θ)

δ

√
2

κµ(θ)
V ⋆ + 2θqδ

√
V2∥w(t)∥. (49)

Now, choose δ such that δ ≥ θχ, i.e. 1
δ ≤ 1

θχ where χ is given by (15). Then, inequality (49) becomes

V̇2 ≤ −V ⋆
2 + c2

√
α(θ)

θ2χ

√
2

κµ(θ)
V ⋆ + 2θqδ

√
V2∥w(t)∥.

Now, let V (x̄, z̄, t) = V1(x̄, t) + V2(z̄) be the candidate Lyapunov function. Using (48) and (50) and
from the facts that

√
V 1 ≤ V and

√
V2 ≤ V , one gets

V̇ ≤ −V ⋆ +

√
2

κµ(θ)

(
c1
δ

+ c2

√
α(θ)

θ2χ

)
V ⋆ + 2

(√
λ̄M (S)∥ε(t)∥+ δθq∥w(t)∥

)√
V . (50)

Now, for θ and δ sufficiently high and according to (15), one has

lim
ρ→∞

α(θ)

θ2χ
= lim

δ→∞

1

δ
= 0, (51)

and as a result, there exists 0 < ν < 1 such that

1−

√
2

κµ(θ)

(
c1
δ

+ c2

√
α(θ)

θ2χ

)
> ν. (52)

Similarly, for such values of θ and δ, one has θµ(θ) ≤ θδκ

2
which implies that

θµ(θ)V ≤ V ⋆ ≤ θδκ

2
V. (53)

Hence, combining (50), (52) and (53), one gets

V̇ ≤ −νθµ(θ)V + 2

(√
λ̄M (S)∥ε(t)∥+ θqδ∥w(t)∥

)√
V . (54)

Using the comparison lemma, one gets for t ≥ t⋆
∆
= T ⋆

θ ,

√
V (x̄(t), z̄(t), t) ≤ e−ν θ

2
µ(θ)(t−t⋆)

√
V (x̄(t⋆), z̄(t⋆), t⋆) +

2

νθµ(θ)

(√
λ̄M (S)δε + θqδδw

)
.

Coming back to x̄ and from the fact that V1 ≤ V , one gets
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∥x̄(t)∥ ≤

√
λM

λm(S(t))
e−ν θ

2
µ(θ)(t−t⋆)∥ξ̄(t⋆)∥+

√
λM

λm(S(t))

2

νθµ(θ)
(δε + θqδδw) ,

where ξ̄(t) =

(
x̄(t)
z̄(t)

)
and λM = max(λ̄M (S), 1).

Now, using (39), the last inequality becomes

∥x̄(t)∥ ≤

√
λM

ρ⋆

√
α(θ)e−ν θ

2
µ(θ)(t−t⋆)∥ξ̄(t⋆)∥+

√
λMα(θ)

ρ⋆
2

νθµ(θ)
(δε + θqδδw)

≤ βf
√

α(θ)e−ν θ
2
µ(θ)(t−t⋆)∥ξ̄(t⋆)∥+ 2

βf
νµ(θ)

(√
α(θ)

θ2
δε +

√
α(θ)θq−1δδw

)
, (55)

where

βf =

√
λM

ρ⋆
. (56)

Now, set ξ =

(
x̃(t)
z̃(t)

)
where z̃ is such that z̄ = θq−1∆−1

θ z̃(t). It is easy to check that

∥ξ̃(t)∥ ≤ ∥ξ̄(t)∥ ≤ θq−1∥ξ̃(t)∥, ∀t ≥ t⋆ and ∀θ ≥ 1. (57)

Besides, one can show that z̃ = η − Ux̃ and therefore, one has for all t ≥ t⋆

∥ξ̃(t)∥ ≤ ∥x̃(t) + (∥e(t)∥+ ∥U∥∥x̃(t)∥) ≤ (1 +
√
n)∥x̃(t)∥+ ∥η(t)∥. (58)

Using (57) and (58), inequality (55) leads to (18). The proof of Theorem 3.1 is ended. �.

B Proof of Theorem 4.1

Set x̃ = x̂− x, x̄ = θq−1∆θx̃ and η̄ = θq−1Dθη. Proceeding as in the continuous output case, one gets
(compare the equations below with (35) and (32), respectively),


˙̄x(t) = θ

(
F (u, x̂)− P (t)CTC

)
x̄−Bε(t)− θK(t)z̄

+θq−1∆θ

(
F̃ (u, x̂, x)x+ φ̃(u, x̂, x)

)
˙̄η(t) = −θδ

(
(Iqn1 −AT )η̄(t) + CT

qn1
Cx̄(t) + θq−1CT

qn1
Cw(tk)

)
−θδCT

qn1
γ̄(t),

where z̄(t) is defined as in (36) and

γ̄ = C(x̄(t)− x̄(tk))− θq−1α(t) (59)
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The dynamics of z̄ is given by (compare with (37)

˙̄z = θδ

(
−(Iqn1 −AT ) +

1

δ
UK(t)

)
z̄

+θ (−UF (u, x̂) + UK(t)U) x̄

−θq−1U∆θ

(
F̃ (u, x̂, x)x+ φ̃(u, x̂, x)

)
− θqδCT

qn1
Cw(t)− θδCT

qn1
γ̄(t). (60)

Notice that the first equation in (59) is similar to (35) while (60) differs from (37) by the presence of
the term involving γ̄. Hence, the forthcoming development will be very similar to those carried in the
continuous out case. The sole difference consist in the accounting for the additional term γ̄. Hence,
let us derive a bound of γ̄. One has

˙̄γ = θF1(u, x̂
(1))x̄(2) + θq−1φ(1)(u, x(1))− θK(1)(t)η̄(1)(t)− θq−1α̇(t)

= θF1(u, x̂
(1))x̄(2) + θq−1φ(1)(u, x(1))− θ(q−1)(α̇(t) + θη(1)(t))

= θF1(u, x̂
(1))x̄(2) + θq−1φ(1)(u, x(1)). (61)

Notice that the last inequality comes from the fact that α(t) is governed by the ODE given by (59).
Now, since α(tk) = 0, one can easily check that γ̄(tk) = 0 and integrating the last equation from t⋆ ≤ t
to t gives

γ̄(t) =

∫ t

t⋆

(
θF1(u, x̂

(1))x̄(2) + θq−1φ(1)(u, x(1))
)
ds,

and hence

∥γ̄(t)∥ ≤ (θFM + Lφ)

∫ t

t⋆
∥x̄(s)∥ds,

where FM = sup
x∈X,u∈U

F (u, x) and Lφ is the Lipschitz constant of φ given by Assumption A2.

Now, as in the continuous output case, let V1(x̄, t) = x̄TS(t)x̄, V2(z̄) = ∥z̄∥2 and V = V1 + V2. Again,
proceeding as in the continuous output case, one can show that (compare with (54)),

V̇ ≤ −νθµ(θ)V + 2
√

λ̄M (S)
√
V2 (θFM + Lφ)

∫ t

t⋆
∥x̄(s)∥ds

+2

(√
λ̄M (S)∥ε(t)∥+ θqδ∥w(t)∥

)√
V .

Using (39), one gets

V̇ ≤ −νθµ(θ)V + 2βf
√

α(θ) (θFM + Lφ)
√
V

∫ t

t⋆

√
V (s)ds

+2λM (∥ε(t)∥+ θqδ∥w(t)∥)
√
V ,

where λM = max(λ̄M (S), 1) and βf is as in (56).
The last inequality leads to
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d

dt

√
V ≤ −1

2
νθµ(θ)

√
V + βf

√
α(θ) (θFM + Lφ)

∫ t

t⋆

√
V (s)ds

+λM

(√
λ̄M (S)∥ε(t)∥+ θqδ∥w(t)∥

)
.

Now, let aθ =
1
2νθµ(θ), bθ = βf

√
α(θ) (θFM + Lφ) and pθ(t) =

√
λM (∥ε(t)∥+ θqδ∥w(t)∥) and assume

that the upper diameter of the sampling partition τM satisfies the following condition

τM < ϱθ
∆
=

aθ
bθ

=
βf
√

α(θ)(θFM + Lφ)

2νθµ(θ)
, (62)

then, according to lemma 2.1 in [14], one has

√
V (x̄(t), z̄(t), t) ≤ e−ζθ(t−t⋆)

√
V (x̄(t⋆), z̄(t⋆), t⋆) + cθτM

2− e−ζθτm

1− e−ζθτm
,

where

ess sup
t≥0

pθ(t) ≤ cθ =
√

λ̄M (δε + δθqδw) , ζθ(τM ) = aθ(1−
τM
ϱθ

)e−aθτM . (63)

Coming back to x̄ and proceeding as in the continuous output case leads to (21). The proof of Theorem
4.1 is ended.
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