Enrico Palumbo
email: palumbo@ismb.it

Diego Monti
email: diego.monti@polito.it

Giuseppe Rizzo
email: giuseppe.rizzo@ismb.it

Raphaël Troncy
email: raphael.troncy@eurecom.fr

Elena Baralis
email: elena.baralis@polito.it

entity2rec: Property-specific Knowledge Graph Embeddings for Item Recommendation

Keywords: recommender systems, knowledge graph embeddings, knowledge graphs

Knowledge graphs have shown to be highly beneficial to recommender systems, providing an ideal data structure to generate hybrid recommendations using both content-based and collaborative filtering. Most knowledge-aware recommender systems are based on manually engineered features, typically relying on path counting and/or on random walks. Recently, knowledge graph embeddings have proven to be extremely effective at learning features for prediction tasks, reducing the complexity and time required to manually design effective features. In this work, we present entity2rec, which learns

user-item relatedness for item recommendation through property-specific knowledge graph embeddings. A key element of entity2rec is the construction of property-specific subgraphs. Through an extensive evaluation on three datasets, we show that: (1) hybrid property-specific subgraphs consistently enhance the quality of recommendations with respect to collaborative and content-based subgraphs; (2) entity2rec generates accurate and non-obvious recommendations, compared to a set of state-of-the-art recommender systems, achieving high accuracy, serendipity and novelty. More in detail, entity2rec is particularly effective when the dataset is sparse and has a low popularity bias; (3) entity2rec is easily interpretable and can thus be

Introduction

In the last decade, research on recommender systems has shown that hybrid systems generally outperform collaborative or content-based systems, addressing problems such as data sparsity, new items or overspecialization [START_REF] Adomavicius | Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions[END_REF]. Knowledge graphs are an ideal data structure for hybrid recommender systems, as they allow to easily represent useritem interactions, and item and user properties as typed edges connecting pairs of entities. Recommender systems based on knowledge graphs have shown to generate high quality recommendations [START_REF] Yu | Personalized entity recommendation: A heterogeneous information network approach[END_REF]Di Noia et al., 2016;[START_REF] Catherine | Personalized recommendations using knowledge graphs: A probabilistic logic programming approach[END_REF][START_REF] Ostuni | Top-n recommendations from implicit feedback leveraging linked open data[END_REF][START_REF] Palumbo | Entity2rec: Learning user-item relatedness from knowledge graphs for top-n item recommendation[END_REF] that are also easier to interpret and explain [START_REF] Kanjirathinkal | Explainable Recommendations[END_REF]. The crucial point to use knowledge graphs to perform item recommendations is to be able to effectively define a measure of user-item relatedness on the graph. At the present time, most knowledge-aware recommender systems are based on manually engineered features based on path counting and/or random walks [START_REF] Figueroa | A systematic literature review of linked data-based recommender systems[END_REF]. However, feature engineering is a time consuming endeavour and machine learning research has shown that feature learning algorithms generate higher quality features [START_REF] Bengio | Representation learning: A review and new perspectives[END_REF]. Feature learning algorithms applied to a knowledge graph generate 'knowledge graph embeddings', which have proven to be very effective for prediction tasks such as knowledge graph completion [START_REF] Bordes | Translating embeddings for modeling multi-relational data[END_REF][START_REF] Wang | Knowledge graph embedding by translating on hyperplanes[END_REF][START_REF] Lin | Learning entity and relation embeddings for knowledge graph completion[END_REF]. Thus, recently, some works have started to use knowledge graph embeddings in recommender systems. Notable examples have used translational models [START_REF] Zhang | Collaborative knowledge base embedding for recommender systems[END_REF][START_REF] Wang | Dkn: Deep knowledge-aware network for news recommendation[END_REF] or random walk-based approaches [START_REF] Rosati | Rdf graph embeddings for content-based recommender systems[END_REF][START_REF] Ristoski | Rdf2vec: Rdf graph embeddings and their applications[END_REF]. This paper builds upon this related work and our previous work in the field:

• In [START_REF] Palumbo | Knowledge graph embeddings with node2vec for item recommendation[END_REF] we use the random-walk based approach node2vec [START_REF] Grover | node2vec: Scalable feature learning for networks[END_REF] to create embeddings of the knowledge graph as a whole;

• In Palumbo et al. (2018c,b) we show how translational models [START_REF] Bordes | Translating embeddings for modeling multi-relational data[END_REF] can be used for item recommendation embedding the knowledge graph as a whole and predicting the 'feedback' property;

• In [START_REF] Palumbo | Entity2rec: Learning user-item relatedness from knowledge graphs for top-n item recommendation[END_REF] we introduce the notion of property-specific subgraphs that allows to derive user-item property-specific relatedness scores and to combine them in a global user-item relatedness score used as a ranking function for top-N item recommendation. This 'divide and conquer' approach, based on the aggregation of property-specific embeddings, enables great interpretability and explainability of the recommendations, and produces high quality recommendations.

However, property-specific subgraphs, as built in [START_REF] Palumbo | Entity2rec: Learning user-item relatedness from knowledge graphs for top-n item recommendation[END_REF], often exhibit poor connectivity in terms of node degree, i.e. number of connections of a node, due to the fact that many properties typically connect one item to a few or even a single entity. We argue that this may hinder the effectiveness of a random walk-based feature learning algorithm and we propose a new way of building property-specific subgraphs that tackles the connectivity problem, by using users' feedback as a pivot property to be combined with all the item properties, one at the time. In this paper, we refer to the approach presented in [START_REF] Palumbo | Entity2rec: Learning user-item relatedness from knowledge graphs for top-n item recommendation[END_REF] as 'entity2rec (2017)', while to the approach presented in this work simply as 'entity2rec'.

In this work, we present: (1) a critical analysis of the approach presented in entity2rec (2017) [START_REF] Palumbo | Entity2rec: Learning user-item relatedness from knowledge graphs for top-n item recommendation[END_REF] to build property-specific subgraphs through an analysis of their connectivity in terms of average degree;

(2) a new way of building property-specific subgraphs, overcoming the distinction between collaborative and content-based subgraphs and using the 'feedback' property in every graph; (3) a set of different ways to combine property-specific relatedness scores into a single user-item relatedness score used to provide recommendations; (4) a theoretical derivation of the computational complexity of entity2rec in terms of the number of users and items of the system; (5) an extensive empirical evaluation on three standard benchmark datasets comparing entity2rec with its previous version and with a set of state-of-the-art recommender systems. The evaluation protocol is based on standard candidate generation techniques and on metrics that go beyond pure accuracy, as suggested in [START_REF] Herlocker | Evaluating collaborative filtering recommender systems[END_REF]; [START_REF] Burges | From ranknet to lambdarank to lambdamart: An overview[END_REF] a comparative analysis of the experimental results across the different datasets and an interpretation of the experimental results using statistical properties of the datasets; (7) an assessment of entity2rec's features importance and an illustration of the interpretability and configurability of entity2rec's rec-ommendation model. More specifically, we address the following research questions:

RQ1 How do hybrid property-specific subgraphs perform with respect to collaborative-content property-specific subgraphs, namely does entity2rec work better than entity2rec (2017)?

RQ2 How do different aggregation functions perform in generating the useritem relatedness score from property-specific relatedness scores?

RQ3 How does entity2rec perform with respect to collaborative filtering systems in terms of precision, recall, serendipity and novelty of the recommendations?

RQ4 How does entity2rec perform with respect to other knowledge graph embeddings based systems for item recommendation? Is it justified to generate property-specific embeddings to leverage the semantics of the graphs?

RQ5 What is the interpretation of entity2rec features and what is their importance?

RQ6 How can entity2rec be configured to specific user requirements and to explain recommendations?

The structure of the paper is the following. In Sec. 2 we introduce some relevant and recent published work related to the topic of the paper, in Sec. 3 we introduce some definitions that are used throughout the paper, in Sec. 4 we describe the entity2rec approach, in Sec. 5 we provide details on the experimental setup, in Sec. 6 we report and discuss the experimental results and in Sec. 7 we summarize the findings of the paper. In Appendix A we provide additional details on the selection of the properties to build the knowledge graph and in Appendix B we report results presented in Sec. 6 in tabular format. Software and datasets are publicly available at https://github.com/ D2KLab/entity2rec to support reproducibility.

Related Work

Knowledge graph embeddings

Feature learning algorithms are applied to networked structure to derive feature vectors effectively encoding the graph structure. Recently, DeepWalk [START_REF] Perozzi | Deepwalk: Online learning of social representations[END_REF] has shown that language models such as Word2Vec [START_REF] Mikolov | Distributed representations of words and phrases and their compositionality[END_REF] can be extended to graph structures by using random walks to sample sequences of nodes, which can then be treated as 'words' of a document. node2vec [START_REF] Grover | node2vec: Scalable feature learning for networks[END_REF] has built upon this insight, introducing a 2 nd order random walk that can be more easily tailored to a diversity of graph connectivity patterns.

In knowledge graphs, not only the graph structure has to be encoded in the features, but also properties and/or entity types. Thus, knowledge graph embeddings are vector representations of entities and/or relations that attempt to preserve the structure and the semantics of the knowledge graph. They are generated using feature learning algorithms that project entities and/or relations into a vector space by solving a learning problem (unsupervised or supervised). Comprehensive surveys of machine learning algorithms used to learn features from knowledge graphs are [START_REF] Nickel | A review of relational machine learning for knowledge graphs[END_REF] and [START_REF] Wang | Knowledge graph embedding: A survey of approaches and applications[END_REF]. All methods attempt to describe the existing triples in the knowledge graph by learning latent features according to some modeling assumption. RESCAL [START_REF] Nickel | A three-way model for collective learning on multi-relational data[END_REF] is a tensor factorization method that explains triples via pairwise interactions of vector representations of entities; NTN (Neural Tensor Network) is an expressive non-linear model that learns representations using neural networks [START_REF] Socher | Reasoning with neural tensor networks for knowledge base completion[END_REF]; distance based models, such as the Structured Embeddings (SE) [START_REF] Bordes | Learning structured embeddings of knowledge bases[END_REF], explain triples using a distance in the vector space. Translational models are a special case of distance-based models that represent relations as translations in the vector space and score triples according to a distance function. These models have shown to be computationally efficient and accurate at the same time [START_REF] Bordes | Translating embeddings for modeling multi-relational data[END_REF][START_REF] Wang | Knowledge graph embedding by translating on hyperplanes[END_REF][START_REF] Lin | Learning entity and relation embeddings for knowledge graph completion[END_REF].

Knowledge-aware recommender systems

Several works have shown the effectiveness of external knowledge resources in enhancing the performance of recommender systems. In [START_REF] Yu | Personalized entity recommendation: A heterogeneous information network approach[END_REF] and in [START_REF] Catherine | Personalized recommendations using knowledge graphs: A probabilistic logic programming approach[END_REF], the authors start from a graphbased data model encompassing both user feedback and item relations to generate personalized entity recommendations. Several works leverage Linked Open Data knowledge graphs [START_REF] Bizer | Linked data-the story so far[END_REF], which represent a wealth of freely available multi-domain ontological knowledge, and have successfully been used in the past to build recommender systems [START_REF] Figueroa | A systematic literature review of linked data-based recommender systems[END_REF]. In Di Noia et al. (2016) and in [START_REF] Ostuni | Top-n recommendations from implicit feedback leveraging linked open data[END_REF], the authors adopt a hybrid graph-based data model utilizing Linked Open Data to extract metapath-based features that are fed into a learning to rank framework. In the past couple of years, some works have applied knowledge graph embeddings to recommender systems. In [START_REF] Shi | Heterogeneous information network embedding for recommendation[END_REF], the authors create metapath-aware embeddings using DeepWalk [START_REF] Perozzi | Deepwalk: Online learning of social representations[END_REF], which are then combined using an aggregation function and used to initialize a matrix factorization for rating prediction. In [START_REF] Zhang | Collaborative knowledge base embedding for recommender systems[END_REF], the authors use translational models to create knowledge graph embeddings that are then combined with embeddings of the items' content (textual and visual knowledge) to initialize a matrix factorization. In [START_REF] Ristoski | Rdf2vec: Rdf graph embeddings and their applications[END_REF], knowledge graph embeddings are used as side information for a factorization machine or for a content-based Item-KNN recommender system, like in [START_REF] Rosati | Rdf graph embeddings for content-based recommender systems[END_REF]. Translational models have also been used to learn knowledge graph embeddings to provide recommendations as a link prediction problem on a knowledge graph (Palumbo et al., 2018c,a). node2vec has been used to generate recommendations using a knowledge graph [START_REF] Palumbo | Knowledge graph embeddings with node2vec for item recommendation[END_REF]. In [START_REF] Sun | Recurrent knowledge graph embedding for effective recommendation[END_REF], the authors use recurrent neural networks to learn representations of different meta-paths connecting users and items that are then aggregated through a pooling and a fully connected layer.

Beyond accuracy

In their survey dealing with the problem of evaluating a recommender system, [START_REF] Herlocker | Evaluating collaborative filtering recommender systems[END_REF] review and compare several metrics that could be exploited for conducting a comparison among different algorithms. After discussing the accuracy-based metrics, they argue that, in order to draw a reliable conclusion, it is necessary to also consider other properties of the recommended items. In their opinion, a recommender system should be capable of providing suggestions that are not only accurate but also useful. For example, an extremely popular item may be an accurate but not an interesting suggestion. For this reason, they also discuss other metrics that could be considered beyond the traditional concept of accuracy, such as serendipity, novelty, and diversity. The idea of relying not only on accuracy-based metrics is also supported by [START_REF] Ge | Beyond accuracy: Evaluating recommender systems by coverage and serendipity[END_REF]. In their work, the authors state that the purpose of an evaluation protocol is to assess the quality of the recommended items and not their accuracy. However, metrics like precision and recall alone are not capable of verifying that the recommendations are actually useful. In fact, only the users of the system can judge their quality in the context of an online experiment. Therefore, their suggestion is to consider other metrics beyond accuracy when it is necessary to perform an offline study.

Preliminaries

In this section, we introduce some definitions that will be used in the remaining of this paper. A depiction of the knowledge graph model for the specific case of movie recommendation is provided in Fig. 1.

Definition 1. A knowledge graph is a set K = (E, R, O) where E is the set of entities, R ⊂ E × Γ × E is
The problem of top-N item recommendation is that of selecting a set of N items from a set of possible candidate items. Typically, the number of candidates is order of magnitudes higher than N and the recommender system has to be able to identify a short list of very relevant items for the user. More formally: Definition 6. Given a user u ∈ U , the set of candidate items I candidates (u) ⊂ I is the set of items that are taken into account as being potential object of recommendation. Definition 7. A ranking function ρ(u, i) : (u, i) ∈ U × I candidates (u) → R is a function that takes as inputs a user and a candidate item and assigns a score to them. The higher the score, the more relevant the item is deemed to be for user u. Definition 8. A ranking function ρ(u, i) induces a permutation of integers corresponding to sorting the list of items I candidates (u) according its score:

π(u, I candidates (u)) = {i 1 , i 2 , . . . , i L } (1)
where L = |I candidates (u)| and ρ(u, i j) > ρ(u, i j+1) for any j = 1, . . . , L -1.

Definition 9. Top-N item recommendation provides to each user u ∈ U the recommended items R(u), i.e. the first N ≤ L elements of π(u, I candidates (u)):

R(u) = π(u, I candidates (u)) N 1 = {i 1 , i 2 , . . . , i N } (2)
where ρ(u, i j) > ρ(u, i j+1) for any j = 1, . . . , N -1.

entity2rec

In this section, we describe the overall entity2rec approach, which is summarized in Fig. 2.

node2vec

Before describing the entity2rec approach, we review node2vec [START_REF] Grover | node2vec: Scalable feature learning for networks[END_REF]) on which entity2rec is based. node2vec can be seen as a two stage approach: first, it samples nodes of a graph using a set of biased random walks turning it into a 'document'; then, node embeddings are learned using neural language models such as Word2Vec [START_REF] Mikolov | Distributed representations of words and phrases and their compositionality[END_REF]. A crucial concept introduced by node2vec is that of the neighborhood of a node.

Neighborhood of a node

Networked structures can be organized according to different principles. For example, in certain cases, graphs could be organized according to the principle of homophily, meaning that similar entities will tend to be tightly connected in communities. In other cases, the organization can be based on the structural roles of nodes in the graph ('structural equivalence') and entities can be considered similar because they have a similar role in the network, e.g. they are both hubs or bridges between different communities. Real-world networks commonly exhibit a mixture of such equivalences [START_REF] Henderson | Rolx: structural role extraction & mining in large graphs[END_REF]. Thus, the definition of a node neighborhood must be flexible enough to account for different forms of possible equivalences. The problem of defining neighborhoods can be seen as a question of local search.

In general, given a node n, there are two classic and opposite strategy of local search to define a neighborhood N s (n) of size k: Breadth-First Search (BFS) and Depth-First Search (DFS). One of the shortcomings of prior work is that it fails to offer flexibility in combining these two opposite approaches [START_REF] Perozzi | Deepwalk: Online learning of social representations[END_REF]. node2vec provides a definition of node neighborhood that allows for a mixture of BFS and DFS through a neighborhood sampling strategy based on a biased second order random walk. Parameters p and q control how fast the walk explores and leaves the neighborhood of starting node n. Tuning them allows a flexible sampling strategy and a notion of neighborhood N s (n), which is able to approximately interpolate between BFS and DFS. p, also called return parameter, controls the likelihood of returning to a previously visited node. Low values of p result in a search strategy that lingers around the source node n. q, also called in-out parameter, controls the probability of moving further away from the source node n. A high value of q results in a strategy that approximates BFS, while low values encourage outward exploration, approximating DFS. After samples from the graph are generated using the second order random walk, neural language models are applied to compute node embeddings.

Neural language models

Neural language models have been recently developed to overcome many of the shortcomings of naive one-hot bag of words representations, where word vectors are simply represented as binary feature vectors. While these models have been quite popular for their simplicity and intuitiveness, they suffer from several drawbacks, such as a dimensionality equal to the size of the vocabulary, data sparsity, independence among words. Recent advancements in the field of neural language models have allowed the generation of lowdimensional dense word representations, among which word2vec [START_REF] Mikolov | Distributed representations of words and phrases and their compositionality[END_REF] is the most popular one. Word2vec efficiently learns word embeddings from a large amount of raw text, training a two layer neural network to predict the context of a word, defined by a sliding window of am- Figure 3: node2vec turns the knowledge graph into a "document" made by a sequences of nodes. Then, neural language models learn embeddings of the graph, preserving structural properties on the graph in the embedding space. This approach has been used in previous work to make recommendations [START_REF] Palumbo | Knowledge graph embeddings with node2vec for item recommendation[END_REF] and it is included in the results section for comparison.

plitude c. Thus, given a word w t , the context is defined by the surrounding words w t-c , w t-c+1 ...w t+c-1 , w t+c . The most commonly used architecture is the Skip-Gram model. The Skip-Gram model implements a two layer neural network where the input corresponds to the target word w t and the output to the context words w t-c , w t-c+1 ...w t+c-1 , w t+c . Word embeddings are learned so that the average likelihood on the training set of observing a word surrounded by its actual context is maximized.

A full exemplification of the application of node2vec on the KG introduced in Fig. 1 is given in Fig. 3. In this paper, we build upon this work by using property-specific subgraphs and embeddings.

Property-specific knowledge graph embeddings

From these representations, the relatedness between two nodes can be easily computed using vector similarity measures. However, node2vec cannot account for the diversity of semantic properties of a knowledge graph. Films can be related in terms of starring actors and not in terms of subject, can share the same director but not the same writer. Processing the whole knowledge graph altogether neglecting the semantics of the properties would not allow to account for these variations. Thus, we start by learning property-specific vector representation of nodes considering one property at the time, i.e. creating property-specific subgraphs K p . Then, for each K p independently, we learn a mapping x p : e ∈ K p → R d , optimizing the node2vec objective function [START_REF] Grover | node2vec: Scalable feature learning for networks[END_REF]:

max xp e∈Kp (-log Z e + n i ∈N (e) x p (n i) • x p (e)) (3)
where Z e = v∈Kp exp(x p (e) • x p (v)) is the per-node partition function and it is approximated using negative sampling [START_REF] Mikolov | Distributed representations of words and phrases and their compositionality[END_REF], and N (e) ∈ K p is the neighborhood of the entity e defined by the node2vec random walk.

The optimization is carried out using stochastic gradient ascent over the parameters defining x p and it attempts to maximize the dot product between vectors of the same neighborhood, i.e. to embed them close together in vector space.

Property-specific subgraphs

We consider two different strategies to create property-specific subgraphs. The first one is the one presented in [START_REF] Palumbo | Entity2rec: Learning user-item relatedness from knowledge graphs for top-n item recommendation[END_REF], which keeps separated collaborative and content-based information. We shall note with K p the property-specific subgraphs created with this strategy and we will refer to it as entity2rec (2017) in Section 6. The latter is the one presented in this work, which considers hybrid property-specific subgraphs, in the sense that each of them contains both collaborative and content-based information. We refer to the hybrid subgraphs as K + p and to the whole approach as entity2rec, as it has proven to be the most effective one among the two (see Section 6).

Collaborative-content subgraphs

For each property p ∈ Γ , we define a subgraph K p as the set of entities connected by the property p, i.e. the triples (i, p, j). For example, if p = 'starring', we have edges connecting movies to their starring actors, e.g. (Fargo, starring, Steve Buscemi), if p = 'subject' we have edges connecting movies to their category, e.g. (Fargo, subject, American crime drama films). The only subgraph K p containing users is that corresponding to p = 'feedback', where triples represent user-item interactions, e.g. (user201, feedback, dbr:Fargo). From the vector representations x p , property-specific relatedness scores can be defined as follows:

ρ p (u, i) = s(x p (u), x p (i)) if p = 'f eedback 1 |R + (u)| i ∈R + (u) s(x p (i), x p (i)) otherwise
where R + (u) denotes a set of items liked by the user u in the past and s denotes a measure of vector similarity. In this work, we consider s as the cosine similarity. The features include both collaborative and content information and have a straight-forward interpretation. When considering p = 'feedback', K is reduced to the graph of user-item interactions and thus ρ f eedback (u, i) models collaborative filtering. ρ f eedback (u, i) will be high when x f eedback (u) is close to the item x f eedback (i) in vector space, i.e. when i has been liked by users who have liked the same items of u in the past and are thus tightly connected in the K f eedback graph. On the other hand, when p corresponds to other properties of the ontology O, the features encode content information. For instance, if p is 'starring', ρ starring (u, i) will be high if x starring (i) is close to items x starring (i), i.e. when i shares starring actors with items that the user u has liked in the past. For 'new items', i.e. with no feedback from users, we are still able to compute all the content-based features.

Hybrid subgraphs

The largest issue with the use of property-specific subgraphs that consider collaborative and content-based information as separated is that often these graphs have poor connectivity, as a consequence of the fact that many properties connect one item to a few or even a single entity. This is clearly undesirable for feature learning algorithms based on random walks such as [START_REF] Palumbo | Entity2rec: Learning user-item relatedness from knowledge graphs for top-n item recommendation[END_REF]; [START_REF] Grover | node2vec: Scalable feature learning for networks[END_REF]; [START_REF] Perozzi | Deepwalk: Online learning of social representations[END_REF]. Consider the example of the property p = 'director'. Since most films have only one director, K director is similar to a set of disconnected star graphs, where each director is connected to his/her movies. In order to overcome this limitation and maintain the interpretability and explainability of the approach of using one property at the time to create features, we propose to use the 'feedback' property as a pivot property to create bridges between different parts of the graph, i.e. to replace K p with K + p = K p (u, f eedback, i), where u ∈ U and i ∈ I. Therefore, we move from an approach where collaborative (K f eedback) and content-based (K p with p = f eedback) information is well distinguished to a set of property-specific graphs that are hybrid, as they contain both the 'feedback' information and one specific item property (Fig. 4).

In this case, Γ = Γ \ f eedback. From the subgraphs K + p , vector representations x p can be learned as described in Section 4.2 and property-specific relatedness scores between a user u ∈ U and an item i ∈ I can be defined as follows:

ρ p (u, i) = s(x p (u), x p (i)) (4
)
where s is the cosine similarity. Note that since users are now part of every subgraph K + p , it is no longer necessary to distinguish between collaborative features, where the relatedness score can be computed directly as in Eq. 4, and content-based features that require to look at the items that the user u has rated in the past, as done in [START_REF] Palumbo | Entity2rec: Learning user-item relatedness from knowledge graphs for top-n item recommendation[END_REF]. For 'new items', i.e. with no feedback from users, we are able to compute all features.

Global user-item relatedness

For each user-item pair, we are now able to compute all property-specific relatedness scores ρ(u, i) = {ρ p (u, i)} p∈Γ , either using content/collaborative subgraphs as described in Section 4.3 or using hybrid subgraphs as described in Section 4.3.2. We aim to consider these scores as features of a global useritem relatedness model that can be used to provide item recommendation. To this end, we experiment both an unsupervised and a supervised approach.

Unsupervised approach

In the unsupervised approach, user-item property-specific relatedness scores are combined into a single user-item relatedness score used as ranking function ρ(u, i) through different possible functions such as:

entity2rec avg (u, i) = avg({ρ p (u, i)} p∈Γ) (5) entity2rec min (u, i) = min({ρ p (u, i)} p∈Γ) (6) entity2rec max (u, i) = max({ρ p (u, i)} p∈Γ) (7)

Supervised approach

In the supervised setting, we define the global user-item relatedness ρ(u, i; θ) = f (ρ(u, i); θ) as a function f of the property-specific scores ρ(u, i) and of a set of parameters θ. The goal is that of finding the parameters θ that optimize top-N item recommendation as a supervised learning to rank problem [START_REF] Liu | Learning to rank for information retrieval[END_REF].

Training data. Given the set of users U = {u 1 , u 2 , . . . , u N }, each user u k is associated with a set of items from feedback data i k = {i k1 , i k2 , . . . , i kn(k) }, where n(k) denotes the number of feedback released by the user u k , and a set of labels y k = {y k1 , y k2 , . . . , y kn(k) } denoting the ground truth relevance of items i k (e.g. ratings with explicit feedback or boolean values with implicit feedback). The training set is thus represented as τ = {(u k , i k , y k) N k=1 }. In the case of implicit feedback, negative examples are obtained by random sampling, i.e. by randomly selecting items that the user has not interacted with.

Sorting. ρ(u, i; θ) is a ranking function, meaning that, for each user u k , the corresponding items i k are sorted according to its score. ρ(u, i; θ) induces a permutation of integers π(u k , i k , θ), corresponding to sorting the list of items i k according its score (see Section 3).

Loss. The agreement A(π(u k , i k , θ), y k) between the permutation π(u k , i k , θ) induced by ρ(u, i; θ) and the list of ground truth relevance of items y k can be measured by any information retrieval metric that measures ranking accuracy, such as P@k [START_REF] Powers | Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation[END_REF]. From this score, a loss function can be easily derived as:

C(θ) = N k=1 (1 -A(π(u k , i k , θ)) (8)
Optimization. The learning process has thus the objective of finding the set of parameters θ that minimize the loss function C over the training data:

θ = arg min θ C(θ) (9)
In this work, we use LambdaMart [START_REF] Burges | From ranknet to lambdarank to lambdamart: An overview[END_REF], a listwise learning to rank algorithm that has state-of-the-art results in learning to rank and has shown to achieve the best scores in previous work such as [START_REF] Palumbo | Entity2rec: Learning user-item relatedness from knowledge graphs for top-n item recommendation[END_REF]; Di Noia et al. (2016). We define:

entity2rec lambda (u, i) = LambdaM art({ρ p (u, i)} p∈Γ) (10)

Computational complexity

In this section, we derive the computational complexity of entity2rec in terms of the number of users U and the number of items I. The computational complexity of entity2rec can be divided into a component required for training and one required for testing: Collaborative and content information are separated. User-item relatedness scores can be computed directly only for K f eedback , whereas for content properties it is necessary to average the distance with respect to the items that a user has rated in the past. For properties such as "director", the connectivity is poor. (b): Property-specific subgraphs as defined in this work. Feedback from user to items is included in every graph, improving connectivity and allowing to measure directly user-item relatedness for all properties.

T entity2rec = T train entity2rec + T test entity2rec (
The training of entity2rec can be in turn expressed as the training time of node2vec repeated for p times, where p is the number of distinct properties in the graph, which is the time required to generate the embeddings and the time required to learn the global relatedness score:

T train entity2rec = pT train node2vec + T train global (12)
node2vec is mainly composed of three steps: one in which transition probabilities are pre-computed for each edge, one in which nodes are sampled through random walks, and one in which the word2vec model is applied to learn the embeddings [START_REF] Grover | node2vec: Scalable feature learning for networks[END_REF]:

T train node2vec = T preprocessing + T walks + T word2vec (13)
The time for pre-processing transition probabilities depends on the number of edges T preprocessing = O(E). Since a fixed number of random walks is performed for each node and a single random walk is done in unitary time, T walks = O(N). Learning the embeddings with word2vec using the Skip-gram model can be done in T word2vec = O(N log 2 N) as explained in Mikolov et al. (2013a). Summing the three components, we obtain that:

T train node2vec (N, E) = O(E) + O(N) + (N log 2 N) (14)
Given that the number of edges E ∼ U I and the number of nodes N ∼ U +I, we have:

T train node2vec (U, I) = O(U I) + O(U + I) + O((U + I) log 2 (U + I)) (15)
Now, in the unsupervised case:

T train global = O(1) (16)
and the total training complexity:

T train entity2rec (p, U, I) = O(pU I)+O(p(U +I))+O(pU log 2 (U +I))+O(pI log 2 (U +I)) (17)
The time for testing is:

T test entity2rec = O(pU I) (18)
as for each pair of user and items we need to compute p scores. The total complexity for entity2rec becomes:

T entity2rec (p, U, I) = O(pU I)+O(p(U +I))+O(pU log 2 (U +I))+O(pI log 2 (U +I)) (19
) meaning that for large values of U and I:

T entity2rec (p, U, I) ∼ O(pU I) (20)
entity2rec is linear in the number of users, linear in the number of items and linear in the number of properties in the graph. Note that the dependence on p can be removed using an embarrassingly parallel implementation that distributes the generation of the embeddings on different machines, obtaining:

T parallel entity2rec (U, I) ∼ O(U I) (21)

Experimental setup

In this section, we describe the experimental setup, providing information about the three datasets used in the experiments, how the knowledge graph has been created, and how we have configured and evaluated the systems. The objectives of the experiments reported in this paper are manifold:

• Comparing entity2rec to entity2rec (2017), showing the effectiveness of hybrid property-specific subgraphs;

• Comparing different aggregation functions within entity2rec;

• Comparing entity2rec to other state-of-the-art recommendation algorithms;

• Showing that the use of property-specific subgraphs leads to features that can be easily interpretable and can be configured to a specific recommendation problem.

Datasets

The first dataset is MovieLens 1M.1 MovieLens 1M [START_REF] Harper | The movielens datasets: History and context[END_REF]) is a well known dataset for the evaluation of recommender systems and it contains 1,000,209 anonymous ratings of approximately 3,900 movies made by 6,040 MovieLens users. The second dataset is the LastFM dataset,2 which contains 92,834 listen counts of 1,892 users of 17,632 musical artists [START_REF] Cantador | 2nd workshop on information heterogeneity and fusion in recommender systems (hetrec 2011)[END_REF]. The third dataset is LibraryThing,3 which contains 7,112 users, 37,231 books and 626,000 book ratings ranging from 1 to 10. For these three datasets, their items have been mapped to the corresponding DBpedia entities [START_REF] Ostuni | Top-n recommendations from implicit feedback leveraging linked open data[END_REF] and we make use of these publicly available mappings to create the knowledge graphs using DBpedia data [START_REF] Auer | Dbpedia: A nucleus for a web of open data[END_REF]. We select the most frequently occurring properties p from the DBpedia Ontology4 (see Appendix A), and for each item property p, we include all the triples (i, p, e) where i ∈ I and e ∈ E, e.g. (dbr:Pulp Fiction, dbo:director, dbr:Quentin Tarantino) in K M ovielens1M . 5 We finally add the 'feedback' property, modeling user-item interactions. Similarly to what has been done in previous work [START_REF] Di Noia | Recommender systems meet linked open data[END_REF][START_REF] Ristoski | Rdf2vec: Rdf graph embeddings and their applications[END_REF], we add a 'feedback' edge for all movie ratings where r ≥ 4 in X train , all user-item interactions in LastFM as the dataset does not contain explicit feedback, and ratings where r ≥ 8 for LibraryThing. We split the data into a training X train , validation X val and test set X test containing, for each user, respectively 70%, 10% and 20% of the ratings. Users with less than 10 ratings are removed from the dataset, as well as items that do not have a corresponding entry in DBpedia. In this process, we lose 674 movies from Movielens1M, 27 users and 7867 musical artists from LastFM, 323 users and 27305 books for LibraryThing. The final datasets statistics after this processing are reported in Table 1. The sparsity of the feedback matrix ρ f is defined as:

ρ f = F |U ||I| (22
)
where interactions, have actually taken place between users and items of the system.

F
Given that typically users interact with a very limited fraction of all the items available, the sparsity of datasets for recommender systems is generally very high [START_REF] Billsus | Learning collaborative information filters[END_REF]. We observe that Movielens 1M has a much lower sparsity with respect to LastFM and LibraryThing. The entropy of the dataset is defined in terms of the distribution of positive feedback assigned by users to items:

H = - i∈I P + (i) log P + (i) (23)
where P + (i) : I → [0, 1] is the fraction of positive feedback attributed to the item i. The entropy of the dataset is a useful measure of the popularity bias, i.e. the effect according to which most of the positive feedback is concentrated on a few very popular items [START_REF] Cremonesi | Performance of recommender algorithms on top-n recommendation tasks[END_REF]. Being the entropy maximum when the distribution is uniform, a low entropy value indicates a strong concentration of feedback on very popular items, i.e. high popularity bias, whereas a high entropy value points at the contrary effect. In Figure 5, we represent the P + (i) distributions for the three datasets to visualize this effect. Movielens 1M and LastFM have a strong popularity bias, whereas this effect is relatively weaker for LibraryThing. Note that the choice of relying on the DBpedia Ontology to build K is not the only possible. For instance, Wikidata [START_REF] Vrandečić | Wikidata: a free collaborative knowledgebase[END_REF]) is a more recent project, started in 2012 by the Wikimedia Foundation, collaboratively edited and created by the community. Although it is younger than DBpedia, it is gaining momentum, and currently contains information about 52 million things. 6 The major convenience of using DBpedia is that public mappings have been released to popular RS datasets.

% of feedback

Movielens1M LastFM LibraryThing

Figure 5: Showing how the positive feedback is distributed among the items of the three datasets, in a log-log scale. LastFM has a strong concentration in the top-100 items, but it has a significant long tail compared to Movielens 1M. In LibraryThing, the popularity bias is weaker and the feedback is more evenly distributed among the items. These considerations are consistent with the values of entropy reported in Table 1.

Evaluation

We use the evaluation protocol known as AllUnratedItems [START_REF] Steck | Evaluation of recommendations: rating-prediction and ranking[END_REF], i.e. for each user, we select as possible candidate items, all the items present in the training or in the test set that he or she has not rated before in the training set:

I candidates (u) = I \ {i ∈ X train (u)} (24)
Items that are not appearing in test set for user u are considered as negative examples, which is a pessimistic assumption, as users may actually like items that they have not seen yet. Scores are thus to be considered as a worstcase estimate of the real recommendation quality. We measure standard information retrieval metrics such as precision (P@k) and recall (R@k).

P(k) = 1 |U | u∈U k j=1 hit(i j , u) k (25) R(k) = 1 |U | u∈U k j=1 hit(i j , u) |rel(u)| (26)
where the value of hit is 1 if the recommended item i is relevant to user u, otherwise it is 0, and rel(u) is the set of relevant items for user u in the test set. Differently from P (k), R(k) accounts for the fact that different users can have a different number of relevant items, e.g. for a user who is highly selective and likes fewer items, finding relevant items is harder.

In addition to these accuracy-focused metrics, we also decided to measure the serendipity and the novelty of the recommendations. Serendipity can be defined as the capability of identifying items that are both attractive and unexpected [START_REF] De Gemmis | An investigation on the serendipity problem in recommender systems[END_REF]. [START_REF] Ge | Beyond accuracy: Evaluating recommender systems by coverage and serendipity[END_REF] proposed to measure it by considering the precision of the recommended items after having discarded the ones that are too obvious. Eq. 27 details how we compute this metric. hit non pop is similar to hit, but top-k most popular items are always counted as non-relevant, even if they are included in the test set of user u. Popular items can be regarded as obvious because they are usually well-known by most users.

SER(k) = 1 |U | u∈U k j=1 hit non pop(i j , u) k (27)
In contrast, the metric of novelty is designed to analyze if an algorithm is able to suggest items that have a low probability of being already known by a user, as they belong to the long-tail of the catalog. This metric was originally proposed by [START_REF] Vargas | Rank and relevance in novelty and diversity metrics for recommender systems[END_REF] in order to support recommenders capable of helping users to discover new items. We formalize how we computed it in Eq. 28. Note that this metric, differently from the previous ones, does not consider the correctness of the recommended items, but only their novelty.

NOV(k) = - 1 |U | × k • u∈U k j=1 log 2 P train (i j) (28)
The function P train : I → [0, 1] returns the fraction of feedback attributed to the item i in the training set. This value represents the probability of observing a certain item in the training set, that is the number of ratings related to that item divided by the total number of ratings available. In order to avoid considering as novel items that are not available in the training set, we consider log 2 (0) . = 0 by definition. We compare entity2rec to a set of state-of-the-art collaborative filtering recommender systems from the MyMediaLite library [START_REF] Gantner | My-MediaLite: A free recommender system library[END_REF], which has shown to outperform competing libraries in controlled experiments [START_REF] Said | Comparative recommender system evaluation: benchmarking recommendation frameworks[END_REF]):

• BPRMF: a matrix factorization method where the optimization is performed using Bayesian Personalized Ranking [START_REF] Rendle | Bpr: Bayesian personalized ranking from implicit feedback[END_REF].

• BPRSLIM: a Sparse LInear Method where the optimization is performed using Bayesian Personalized Ranking [START_REF] Ning | Slim: Sparse linear methods for top-n recommender systems[END_REF].

• ItemKNN: a K-nearest neighbor recommender based on items [START_REF] Sarwar | Item-based collaborative filtering recommendation algorithms[END_REF].

• LeastSquareSLIM: a Sparse LInear Method optimized for the ranking elastic net loss [START_REF] Ning | Slim: Sparse linear methods for top-n recommender systems[END_REF].

• MostPop: a simple baseline algorithm where the top-N popular items are recommended to every user.

• WRMF: the Weighted Regularized Matrix Factorization is a matrix factorization method where a weighting matrix is used to account for different confidence levels in the user-item feedback [START_REF] Hu | Collaborative filtering for implicit feedback datasets[END_REF].

Furthermore, we consider other recommender systems based on translational models for knowledge graph embeddings, where the property to predict is 'feedback', as explained in Palumbo et al. (2018c):

• TransE [START_REF] Bordes | Translating embeddings for modeling multi-relational data[END_REF]: it learns representations of entities and relations so that h + l ≈ t where (h, l, t) ∈ R is a triple. h is the 'head' entity, l is the relation and t is the 'tail' entity. The score function for a triple is thus f (h, l, t) = D(h + l, t), where D is a distance function such as the L 1 or the L 2 norm.

• TransH [START_REF] Wang | Knowledge graph embedding by translating on hyperplanes[END_REF]: the first extension of TransE, enables entities to have different representations when involved in different relations by projecting entities on a hyperplane identified by the normal vector w l . The score function becomes: f (h, l, t) = D(h ⊥ +l, t ⊥), where h ⊥ = h -w T l hw l and t ⊥ = t -w T l tw l , where D is a distance function such as the L 1 or the L 2 norm.

• TransR [START_REF] Lin | Learning entity and relation embeddings for knowledge graph completion[END_REF]: it enables entities and relations to be embedded in a separate vector space through a matrix M l associated to any relation l that performs projections of vectors from entity to relation space. The score function is: f (h, l, t) = D(h l + l, t l) where h l = hM l and t l = tM l , where D is a distance function such as the L 1 or the L 2 norm.

Finally, we also analyze the behaviour of knowledge graph embeddings computed using node2vec:

• node2vec (Grover and Leskovec, 2016): it performs random walks through a flexible exploration strategy of the graph and feeds the sampled sequences into a word2vec model that learns node embeddings. node2vec does not take into account the semantics of the properties, we apply it directly on the whole knowledge graph K as done in [START_REF] Palumbo | Knowledge graph embeddings with node2vec for item recommendation[END_REF].

All the baselines have been trained on the user ratings contained in X train in the original matrix format and tested on X test . The implementations of the translational based embeddings7 and of node2vec8 are available online.

entity2rec is also publicly available on GitHub.9

Configuration

We have configured entity2rec hyper-parameters by assessing the P@5 of the model on the validation set, using grid and manual searches. We have optimized the dimension of the embeddings d, the maximum length of the random walk l, the context size for the optimization c, the return parameter p, the in-out parameter q, the number of random walks per each node of the graph n (see [START_REF] Grover | node2vec: Scalable feature learning for networks[END_REF] for more information on these parameters). More in detail, we started to search for hyper-parameters on the Movielens 1M dataset, making a grid search and evaluating the model on the validation set, using the ranges p ∈ {0.25, 1, 4}, q ∈ {0.25, 1, 4}, d ∈ {200, 500}, l ∈ {10, 20, 30, 50, 100}, c ∈ {10, 20, 30}, n ∈ {10, 50}. We found the optimal configuration in this range to be C1 = {p : 4, q : 1, d : 200, l : 100, c : 30, n : 50}, and we observed that the performance was improving when increasing l and c. Thus, we have run a configuration C2 = {p : 4, q : 1, d : 200, l : 100, c : 50, n : 100}, which achieved better performance on the validation set. For LastFM, we started from the configuration C1, and then explored the ranges: p ∈ {1, 4}, q ∈ {1, 4}, c ∈ {30, 40, 50, 60}, l ∈ {60, 100, 120}, n ∈ {50, 100}. We found the configuration C3 = {p : 4, q : 4, d : 200, l : 100, c : 60, n : 100} to be optimal on the validation set in this range. For LibraryThing, we have explored the ranges p ∈ {1, 4}, q ∈ {1, 4}, c ∈ {30, 50}, keeping l = 100, n = 100, d = 200. The optimal configuration is: C4 = {p : 1, q : 1, d : 200, l : 100, c : 50, n : 100}. The hyper-parameters of the LambdaMart [START_REF] Burges | From ranknet to lambdarank to lambdamart: An overview[END_REF] algorithm have been left to their default values as reported in the implementation that has been used for this work. 10In general, we can observe that, for all datasets in consideration, using long walks (l = 100), many walks per entity (n = 100), and a large context size such as c = 50 improves the quality of the recommendations. This kind of configuration ought to be used as a starting point in configuring entity2rec with new datasets.

K p K + p property N M κ N M

Results

Hybrid property-specific subgraphs

In this section, we compare the new version of entity2rec based on hybrid property specific subgraphs to the one proposed in [START_REF] Palumbo | Entity2rec: Learning user-item relatedness from knowledge graphs for top-n item recommendation[END_REF]Palumbo et al. (), i.e. entity2rec to entity2rec (2017)). In Table 2, Table 3 andTable 4, we report statistics for the property-specific subgraphs K p and K + p for Movielens 1M, LastFM and LibraryThing respectively. It can be noticed that for many content properties, the average degree is small, indicating that items are connected to few entities, as discussed in Section 1. On the other hand, hybrid property-specific subgraphs always have a better connectivity in terms of average degree of the nodes.

We have compared entity2rec to entity2rec (2017) for the three datasets under analysis. The results are reported in Table 5, Table 6 andTable 7. The first finding is that entity2rec consistently obtains better scores for different configurations of the hyper-parameters for the three datasets, proving the effectiveness of using hybrid property-specific subgraphs as suggested in this work. The second finding is that using learning to rank (entityrec lambda) is crucial to obtain good recommendations for entity2rec (2017), but it is no longer useful for entity2rec, especially if hyper-parameters are properly optimized. In order to interpret this result, we remind the reader that, as shown System P@5 P@10 R@5 R@10 SER@5 SER@10 NOV@5 NOV@10 entity2rec lambda (C2) 2017) for different configurations of hyperparameters on Movielens 1M (C1 = {p : 4, q : 1, d : 200, l : 100, c : 30, n : 50}, C2 = {p : 4, q : 1, d : 200, l : 100, c : 50, n : 100}). In entity2rec as presented in this work, the learning to rank is no longer useful, as the unsupervised approach appears to be more effective.

K p K + p property N M κ N M
Results can be considered with no error for comparisons as the standard deviation is negligible up to the reported precision.

P@5 P@10 R@5 R@10 SER@5 SER@10 NOV@5 NOV@10 entity2rec lambda (C3) Table 6: entity2rec outperforms entity2rec (2017) for different configurations of hyperparameters on LastFM (C1 = {p : 4, q : 1, d : 200, l : 100, c : 30, n : 50}, C3 = {p : 4, q : 4, d : 200, l : 100, c : 60, n : 100}). In entity2rec as presented in this work, the learning to rank is no longer useful, as the unsupervised approach appears to be more effective.

Results can be considered with no error for comparisons as the standard deviation is negligible up to the reported precision.

P@5 P@10 R@5 R@10 SER@5 SER@10 NOV@5 NOV@10 entity2rec lambda (C4) 0.1271 0.1091 0.0803 0. Table 7: entity2rec outperforms entity2rec (2017) for different configurations of hyperparameters on LibraryThing (C1 = {p : 4, q : 1, d : 200, l : 100, c : 30, n : 50}, C4 = {p : 1, q : 1, d : 200, l : 100, c : 50, n : 100}). In entity2rec as presented in this work, the learning to rank is no longer useful, as the unsupervised approach appears to be more effective.

Results can be considered with no error for comparisons as the standard deviation is negligible up to the reported precision.

in [START_REF] Palumbo | Entity2rec: Learning user-item relatedness from knowledge graphs for top-n item recommendation[END_REF], the most relevant information to make predictions comes from the user-item interaction, i.e. from the 'feedback' property. In entity2rec (2017), the feedback property was contained only in the 'feedback' subgraph, and thus the learning to rank was fundamental to attribute different weights to the properties. On the other hand, for hybrid propertyspecific subgraphs, user-item interactions are present for all the properties, and the feature learning process, with an appropriate configuration of the hyper-parameters, is able to encode effectively all the necessary information to make recommendations, so that the learning to rank algorithm appears redundant and even damaging, and a simple unsupervised approach such as averaging the features is more effective. Note that the scores of entity2rec (2017) reported in the tables are generally lower than those reported in the original paper [START_REF] Palumbo | Entity2rec: Learning user-item relatedness from knowledge graphs for top-n item recommendation[END_REF]. This is due to the fact that the evaluation protocol is different. In [START_REF] Palumbo | Entity2rec: Learning user-item relatedness from knowledge graphs for top-n item recommendation[END_REF], the set of candidate items did not include all the unrated items, but only a random subset of 100 unrated items per user, making the task easier.

Figure 6: Results on Movielens 1M, LastFM, and LibraryThing datasets for P@5, R@5, SER@5, and NOV@5. entity2rec performs well for all datasets, but it is especially effective for LibraryThing, where sparsity and entropy are high. Scores are reported in tabular form in Appendix B. entity2rec refers to entity2rec avg (C1), entity2rec avg (C2), and entity2rec avg (C3) for Movielens 1M, LastFM, and LibraryThing respectively. node2vec refers to node2vec(C1), node2vec(C2) and node2vec(C3) for Movielens 1M, LastFM, and LibraryThing respectively. Results can be considered with no error for comparisons as the standard deviation is negligible up to the reported precision.

Comparison with state-of-the-art recommender systems

We have measured precision, recall, serendipity and novelty for all the recommender systems and the three datasets under analysis. We can see from Figure 6a, Figure 6b, and Figure 6c that entity2rec outperforms competing systems for all datasets for P@5, R@5, and SER@5, except for P@5 in Movielens 1M where WRMF is performing better. As we can see from Figure 6d, WRMF is characterized by low novelty of the recommendations, i.e. it tends to recommend very popular items. This proves to be effective in Movielens 1M and LastFM that have a high popularity bias as shown by the entropy value (Table 1), the distribution of items (Figure 5), previous literature [START_REF] Cremonesi | Performance of recommender algorithms on top-n recommendation tasks[END_REF] and the effectiveness of the MostPopular baseline. Looking at SER@5, i.e. considering the top-5 items as non relevant, entity2rec has a slightly better score than WRMF. Movielens 1M is also characterized by a lower sparsity with respect to the other datasets, and this favors collaborative filtering systems, which are known to suffer from data sparsity [START_REF] Adomavicius | Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions[END_REF]. In fact, all of collaborative filtering systems, even ItemKNN that does not perform dimensionality reduction, achieve scores above 20%. LastFM is much sparser than Movielens 1M, and this affects the performance of ItemKNN, whereas matrix factorization based techniques maintain good scores. In LibraryThing, where the popularity bias is weaker (Figure 5), entity2rec is significantly more effective than competing systems and matrix factorization techniques are much less well performing with respect to the other two datasets. ItemKNN, on the other hand, is outperforming matrix factorization techniques. Looking at R@5 (Figure 6b) we can see that entity2rec outperforms all competing systems, also in the Movielens 1M dataset, where WRMF has a better precision. Since R@5 is weighting the number of hits by the number of relevant items for the user, this shows that entity2rec generally works better than other systems with users having fewer relevant items.

In terms of novelty, ItemKNN is the best performing system (Figure 6d), but it is not comparable to competing systems in terms of P@5, R@5 and SER@5. Recommender systems based on knowledge graph embeddings (en-tity2rec, node2vec, translational models) have better novelty with respect to collaborative filtering systems. We also observe that entity2rec outperforms node2vec for all the datasets and for P@5, R@5, and SER@5, justifying the creation of property-specific embeddings that are aggregated in a later stage, rather than embedding the whole knowledge graph. Furthermore, we observe that using knowledge graph embeddings approaches based on neural language models such as entity2rec and node2vec is more effective than using translational models.

In general, we can say that entity2rec generates accurate (high precision and recall) and non-obvious (high serendipity, good novelty) recommendations and it is particularly effective with respect to state-of-the-art systems when the sparsity and the entropy of the datasets are high (e.g. Library-Thing). A tabular representation of the scores on the three datasets is reported in Appendix B.

Feature interpretability

In this section, we address the question of the interpretation of the en-tity2rec model. We focus on entity2rec avg , as it proved to be more effective on the three datasets. entity2rec avg , as described in Section 4, is the average of property-specific relatedness scores:

entity2rec avg (u, i) = avg({ρ p (u, i)} p∈Γ) (29)
where the property-specific relatedness scores are obtained from the embeddings of the property-specific subgraphs, containing user-item interactions and item relations p to other entities. With respect to most knowledge-aware recommender systems based on metapaths, the interpretation is thus easier, as it considers one property at the time. We report in Table 8, Table 9, and Table 10 the scores of using a single property ρ p as a ranking function. We can see that for all datasets, the information coming from "dct:subject" is quite relevant. Then, for movies, the starring actors and the director appear to be strong features, for musical artists the record label and the genre, and for books previous and subsequent work. In general, none of the features individually outperforms the average of the features. The simplicity of the final ranking function and the ability to interpret the model in an easy way has several positive consequences. An in-depth discussion of this point is matter of future work, but we mention two big advantages. The first is that entity2rec can be easily used in an interactive interface, as a sort of multicriteria recommender system, replacing Eq. 29 with a weighted average of the property-specific relatedness score. For example, the user might assign more weight to the "director" property and recommendations could change accordingly. The second is the possibility of explaining recommendations along different dimensions. Explanations can be generated in terms of related items, looking at what items of the users' property P@5 P@10 R@5 R@10 SER@5 SER@10 NOV@5 NOV@10 feedback dbo:cinematography 0.1847 0.1599 0. Table 8: Feature evaluation for Movielens 1M dataset. The most effective features appear to be the subject, the starring actors and the director of the movie. The writer and the producer introduce more novelty. Results can be considered with no error for comparisons as the standard deviation is negligible up to the reported precision.

property P@5 P@10 R@5 R@10 SER@5 SER@10 NOV@5 NOV@10 feedback dbo:associatedBand 0. Table 9: Feature evaluation for LastFM dataset. The most effective features appear to be the subject, the record label and the genre. The instruments and the former band players introduce more novelty. Results can be considered with no error for comparisons as the standard deviation is negligible up to the reported precision.

profile are more similar to the recommended ones using the global ρ(u, i) (e.g. "Because you liked Titanic"); in terms of properties, by comparing the property-specific relatedness scores ρ p (u, i) and using the highest scores to unravel specific properties of the item to which the user is more related (e.g. "Because you may like the cast"); in terms of item content, since propertyspecific relatedness scores ρ p (u, e) can be measured between a user u and any entity of the knowledge graph e ∈ E, not just for items i ∈ I (e.g. "Because you may like Steve Buscemi").

Conclusions and future work

In this paper, we have presented entity2rec, a recommender system based on property-specific knowledge graph embeddings. We have introduced a new way of creating property-specific subgraphs and to aggregate the relatedness property P@5 P@10 R@5 R@10 SER@5 SER@10 NOV@5 NOV@10 feedback dbo:author 0. novelty, which highlights the fact that predictions tend to be concentrated on highly popular items. In particular, entity2rec appears to be particularly effective for the LibraryThing dataset. This dataset is characterized by a high sparsity, which is similar to a real world scenario, and a lower popularity bias with respect to the other datasets.

RQ4 How does entity2rec performs with respect to other knowledge graph embeddings based systems for item recommendation? Is it justified to generate property-specific embeddings to leverage the semantics of the graphs, or is node2vec enough? Experiments in Section 6.1 show translational models appear to be less effective than node2vec-based models for generating recommendations. entity2rec appears the most effective way to generate recommendations using knowledge graph embeddings among the systems under analysis. The fact that entity2rec outperforms node2vec on all the datasets shows that it is justified to generate property-specific embeddings and aggregate the scores, rather than creating embeddings of the whole graph without taking into account the semantics of the properties.

RQ5 What is the interpretation of entity2rec features and what is their importance? The recommender model of entity2rec has a straight forward interpretation, as shown in Section 6.3. entity2rec avg aggregates several property-specific relatedness scores, whose interpretation is a measure of the relatedness between the user and the item with respect to specific aspects of the item content. "dct:subject" appears to be effective for all datasets. Then, for movies, the starring actors and the director appear to be strong features, for musical artists the record label and the genre, and for books previous and subsequent work.

RQ6 How can entity2rec be configured for specific user requirements and to explain recommendations? In Section 6.3, we show that, since entity2rec avg averages property-specific relatedness scores, the aggregation function could be easily modified according to weights entered by a user in an interactive interface. Moreover, property-specific relatedness scores can be leveraged to generate rich explanations of the recommendations, in terms of related past items, item properties and item content.

As a summary, we believe that the strengths of entity2rec that make it outperform competing approaches are:

• its ability of leveraging a very rich and diverse source of data (KG containing both content-based and collaborative information).

• extending a state-of-the-art graph embedding approach (node2vec), which has proven to be very effective for prediction tasks. Also, the use of property-specific embeddings that are then aggregated in a "divide and conquer" approach can be seen as a sort of "ensemble method", which are known to boost accuracy in machine learning tasks.

entity2rec is domain-agnostic, as we have applied it to movie, book, and musical artist recommendations. However, should it be applied to a new domain, it would require an ontology that models the item properties.

As a future work, we will perform an online experiment testing the effectiveness of the richer explanations generated by entity2rec, as well as the users' appreciation of the configurability of the recommender interface. We will also deal with the problems of having a recommender system working online, i.e. how to generate recommendations for new users (e.g. asking to rate a set of seed items and using item-to-item relatedness scores), and of updating entity2rec when new data (users, items, and/or feedback) comes in without retraining the model from scratch.

Acknowledgements

This work was partially supported by EIT Digital within the innovation activity PasTime (grant number 17164).

Declaration of interests

Declarations of interest: none select the first N so that the frequency of the N+1-th property is less than 50% of the previous one. In this way, we avoid to select a fixed number of properties and we rely on the actual frequency of occurrence to determine the cut-off. Finally, we add "dct:subject" to the set of properties, as it provides an extremely rich categorization of items, as done in previous work [START_REF] Palumbo | Entity2rec: Learning user-item relatedness from knowledge graphs for top-n item recommendation[END_REF]Di Noia et al., 2016). We obtain: ["dbo:director", "dbo:starring", "dbo:distributor", "dbo:writer","dbo:musicComposer", "dbo:producer", "dbo:cinematography", "dbo:editing", "dct:subject"] for Movielens 1M, ["dbo:genre", "dbo:recordLabel", "dbo:hometown", "dbo:associatedBand", "dbo:associatedMusicalArtist", "dbo:birthPlace", "dbo:bandMember", "dbo:formerBandMember", "dbo:occupation", "dbo:instrument", "dct:subject"] for LastFM and ["dbo:author", "dbo:publisher", "dbo:literaryGenre", "dbo:mediaType", "dbo:subsequentWork", "dbo:previousWork", "dbo:series", "dbo:country", "dbo:language", "dbo:coverArtist", "dct:subject"]. Recently, some works such as ABSTAT [START_REF] Di Noia | Using ontology-based data summarization to develop semantics-aware recommender systems[END_REF] have dealt with the problem of finding a selection of properties to create a knowledge graph that optimizes recommender systems accuracy. For example, for the datasets under analysis, ABSTAT property selection in the configuration: k = 10, norep.AbsOccAvgS is: ["dbo:director", "dbo:starring", "dbo:distributor", "dbo:writer", "dbo:musicComposer", "dbo:producer", "dbo:cinematography", "dbo:music", "dbo:language", "dct:subject"] for Movielens 1M, ["dbo:genre", "dbo:recordLabel", "dbo:hometown","dbo:birthPlace","dbp:placeOfBirth", "dbo:deathPlace", "dbo:field", "dbo:nationality", "dbp:placeOfDeath", "dct:subject"] for LastFM and ["dct:subject", "dbo:author", "dbo:publisher", "dbo:literaryGenre", "dbo:mediaType", "dbo:country", "dbo:language", "dbo:series", "dbo:nonFictionSubject", "dbo:coverArtist"]. We have run an experiment comparing entity2rec on a KG built using our property selection and the ABSTAT selection for the LastFM dataset, which is the one where the properties are differing more, but the scores did not show a consistent improvement of the recommendation quality (Tab. A.11).

Property selection

System

P@5 P@10 R@5 R@10 SER@5 SER@10 NOV@5 NOV@10 dbo + frequency (C3) • SoftMarginRankingMF: a matrix factorization model for item prediction optimized for a soft margin (hinge) ranking loss [START_REF] Rendle | Context-aware ranking with factorization models[END_REF].

entity2rec
• WeightedBPRMF: a weighted version of BPRMF with frequency adjusted sampling [START_REF] Gantner | Personalized ranking for non-uniformly sampled items[END_REF].

All scores can be considered as without error up to the digit reported in the tables, as the standard deviation is negligible.

System P@5 P@10 R@5 R@10 SER@5 SER@10 NOV@5 NOV@10 entity2rec lambda (C2) 0.2125 0.1820 0.0967 0. Table B.12: Results for the Movielens 1M dataset. Scores can be considered with no error for comparisons as the standard deviation is negligible up to the reported precision.

System P@5 P@10 R@5 R@10 SER@5 SER@10 NOV@5 NOV@10 entity2rec lambda (C2) Table B.13: Results for the LastFM dataset. Scores can be considered with no error for comparisons as the standard deviation is negligible up to the reported precision.

System P@5 P@10 R@5 R@10 SER@5 SER@10 NOV@5 NOV@10 entity2rec lambda (C2)

 a set of typed relations between entities and O is an ontology. The ontology O defines the set of relation types ('properties') Γ, the set of entity types Λ, assigns nodes to their type O : e ∈ E → Λ and entity types to their related properties O : ∈ Λ → Γ ⊂ Γ. Definition 2. Users are a subset of the entities of the knowledge graph, u ∈ U ⊂ E. Definition 3. Items are a subset of the entities of the knowledge graph, i ∈ I ⊂ E. Users and items form disjoint sets, U ∩ I = ∅. Definition 4. A triple is an edge of the knowledge graph, i.e. (i, p, j) ∈ R where i ∈ E and j ∈ E are entities and p ∈ Γ is a property. Definition 5. The property 'feedback' describes an observed positive feedback between a user and an item. Feedback only connects users and items, i.e. (u, f eedback, i) where u ∈ U and i ∈ I.

Figure 1 :

 1 Figure 1: Knowledge graph represents user-item interactions through the special property 'feedback', as well as item properties and relations to other entities. Items are represented in blue, whereas other entities are represented in grey. The knowledge graph allows to model both collaborative and content-based interactions between users and items. In this depiction, 'starring' and 'director' properties are represented as an example, more properties are included in the experiments.

Figure 2 :

 2 Figure2: entity2rec starts by creating property-specific subgraphs. Then, on each subgraph, it applies node2vec to compute property-specific embeddings. In the embedding space, property-specific relatedness scores can be computed using vector similarity measures such as cosine similarity. The property-specific relatedness scores are then aggregated to obtain a global relatedness score, which is used as a ranking function for item recommendation. The figure illustrates the case in which hybrid property-specific subgraphs are used, as described in Section 4.3.2, and where only the starring and the director properties are considered.

 Figure4: (a): Property-specific subgraphs as defined in[START_REF] Palumbo | Entity2rec: Learning user-item relatedness from knowledge graphs for top-n item recommendation[END_REF]. Collaborative and content information are separated. User-item relatedness scores can be computed directly only for K f eedback , whereas for content properties it is necessary to average the distance with respect to the items that a user has rated in the past. For properties such as "director", the connectivity is poor. (b): Property-specific subgraphs as defined in this work. Feedback from user to items is included in every graph, improving connectivity and allowing to measure directly user-item relatedness for all properties.

Bob Alice Coen brothers Fargo The Big Lebowski Michael Bay Pearl Harbor Armageddon Steve Buscemi Bruce Willis

		The Big Lebowski,	
		Alice, Pearl Harbor…	
	random walks	Steve Buscemi, Fargo,	word2vec
		Bob, Armageddon…	
		Pearl Habor,Michael	
		Bay, Armageddon, Bruce	
		Willis...	

Table 1 :

 1 is the number of user-item interactions (e.g. ratings or implicit feedback), |U | is the number of users and |I| is the number of items in the dataset. The sparsity measures how many interactions, out of all the possible Datasets statistics. ρ r represents the sparsity of the user-item interactions, H is the entropy of the positive feedback distribution.

	Dataset	Domain Feedback Users Items ρ f	H
	Movielens 1M Movie	948976	6040	3226	95.13 7.17
	LastFM	Music	78633	1865	9765	99.57 7.77
	LibraryThing Book	410199	6789	9926	99.39 8.26

Table 2 :

 2 Network stats for Movielens 1 M for K p and K +

p . N = n nodes, M = n edges, κ = average degree.

Table 3 :

 3 Network stats for LastFM for K p and K +

		K p			K + p		
	property	N	M	κ	N	M	κ
	dbo:author	13132 9757	1.5 20564 194416 18.9
	dbo:country	2015 1921	1.9 16657 186580 22.4
	dbo:coverArtist	1990 1438	1.4 17126 186097 21.7
	dbo:language	1975 1906	1.9 16630 186565 22.4
	dbo:literaryGenre	7211 8526	2.4 17292 193185 22.3
	dbo:mediaType	4632 5539	2.4 16676 190198 22.8
	dbo:previousWork	4845 3261	1.3 17559 187920 21.4
	dbo:publisher	8696 8241	1.9 17878 192900 21.6
	dbo:series	3317 2562	1.5 17319 187221 21.6
	dbo:subsequentWork 5928 3930	1.3 18245 188589 20.7
	dct:subject	18903 51324 5.4 26138 235983 18.1
	feedback	16501 184659 22.4 n/a	n/a	n/a

p . N = n nodes, M = n edges, κ = average degree.

Table 4 :

 4 Network stats for LibraryThing for K p and K + p . N = n nodes, M = n edges, κ = average degree.

Table 5 :

 5 entity2rec outperforms entity2rec (

Table 10 :

 10 Feature evaluation for LibraryThing dataset. The most effective features appear to be the subject, the previous and following works. The author introduces more novelty. Results can be considered with no error for comparisons as the standard deviation is negligible up to the reported precision.

 TableA.11: ABSTAT property selection and the heuristics used in this paper ("dbo + frequency") are compared on the LastFM dataset. The heuristics work best for C3 = {p : 4, q : 4, d : 200, l : 100, c : 60, n : 100}, ABSTAT selection works best for C1 = {p : 4, q : 1, d : 200, l : 100, c : 30, n : 50}. Scores can be considered with no error for comparisons as the standard deviation is negligible up to the reported precision.

		lambda 0.1852 0.1506 0.1066 0.1736 0.1512	0.1126	10.101	10.206
	dbo + frequency (C3) entity2rec avg	0.2062 0.158 0.1191 0.1823 0.1682	0.1193	10.379	10.514
	dbo + frequency (C3)	entity2rec min	0.2055 0.1571 0.1191 0.1823 0.1664	0.1171	9.807	9.897
	dbo + frequency (C3)	entity2rec max	0.1693 0.1366 0.0986 0.1589 0.1423	0.1063	10.243	10.446
	ABSTAT (C3)	entity2rec lambda 0.1799 0.1410 0.1039 0.1628 0.1419	0.1028	10.343	10.444
	ABSTAT (C3)	entity2rec avg	0.1915 0.1463 0.1102 0.1683 0.1528	0.1082	10.681	10.782
	ABSTAT (C3)	entity2rec min	0.2010 0.1537 0.1162 0.1778 0.1604	0.1143	9.830	9.873
	ABSTAT (C3)	entity2rec max	0.1731 0.1370 0.1003 0.1585 0.1422	0.1047	10.280	10.462
	dbo + frequency (C1)	entity2rec lambda 0.1745 0.1372 0.1009 0.1584 0.1405	0.1054	11.227	11.384
	dbo + frequency (C1)	entity2rec avg	0.1505 0.1182 0.0870 0.1367 0.1182	0.0881	12.267	12.332
	dbo + frequency (C1)	entity2rec min	0.1699 0.1321 0.0981 0.1532 0.1343	0.1001	11.331	11.421
	dbo + frequency (C1)	entity2rec max	0.1295 0.1085 0.0753 0.1258 0.1037	0.0825	10.537	10.892
	ABSTAT (C1)	entity2rec lambda 0.1750 0.1386 0.1011 0.1605 0.1433	0.1076	11.251	11.363
	ABSTAT (C1)	entity2rec avg	0.1390 0.1090 0.0808 0.1263 0.1043	0.0788	12.039	12.087
	ABSTAT (C1)	entity2rec min	0.1604 0.1284 0.0926 0.1485 0.1264	0.0971	11.320	11.401
	ABSTAT (C1)	entity2rec max	0.1382 0.1118 0.0800 0.1291 0.1110	0.0848	10.968	11.237

 TableB.14: Results for the LibraryThing dataset. Scores can be considered with no error for comparisons as the standard deviation is negligible up to the reported precision.

		0.1271 0.1091 0.0803 0.1268	0.1229	0.1025	12.469	12.792
	entity2rec avg (C2)	0.1800 0.1398 0.1072 0.1564	0.1736	0.1306	12.089	12.084
	entity2rec min (C2)	0.1831 0.1410 0.1084 0.1575 0.1757	0.1309	11.709	11.670
	entity2rec max (C2)	0.1634 0.1304 0.0984 0.1480	0.1591	0.1230	12.783	12.729
	node2vec (C4)	0.1749 0.1379 0.1046 0.1551	0.1706	0.1311	12.495	12.458
	TransE	0.0972 0.0791 0.0598 0.0919	0.0944	0.0754	11.370	11.486
	TransH	0.1041 0.0828 0.0634 0.0951	0.1016	0.0787	11.397	11.522
	TransR	0.0774 0.0648 0.0459 0.0721	0.0748	0.0612	11.474	11.572
	BPRMF	0.0377 0.0336 0.0262 0.0463	0.0240	0.0192	9.487	9.546
	BPRSLIM	0.1136 0.0866 0.1013 0.1439	0.0982	0.0709	9.853	10.008
	ItemKNN	0.1225 0.0995 0.1009 0.1556	0.1177	0.0912	13.114	12.773
	LeastSquareSLIM	0.0722 0.0517 0.0522 0.0700	0.0565	0.0354	10.131	10.580
	MostPopular	0.0343 0.0299 0.0256 0.0430	0.0070	0.0056	8.453	8.646
	SoftMarginRankingMF 0.0204 0.0191 0.0141 0.0271	0.0183	0.0138	10.313	10.423
	WeightedBPRMF	0.0381 0.0324 0.0326 0.0529	0.0375	0.0307	11.830	11.963
	WRMF	0.0802 0.0645 0.0620 0.0969	0.0658	0.0487	9.101	9.288

https://grouplens.org/datasets/movielens/1m/

http://files.grouplens.org/datasets/hetrec2011/ hetrec2011-lastfm-readme.txt

https://www.librarything.com

https://wiki.dbpedia.org/services-resources/ontology

dbo stands for DBpedia Ontology, dct stands for Dublin Core Terms and dbr stands for DBpedia resource.

https://www.wikidata.org/wiki/Wikidata:Statistics

https://github.com/thunlp/KB2E

https://github.com/aditya-grover/node2vec

https://github.com/D2KLab/entity2rec

https://github.com/jma127/pyltr

http://mappings.dbpedia.org/server/ontology/classes/

scores into the final ranking function, and conducted several experiments to address our research questions:

RQ1 How do hybrid property-specific subgraph perform with respect to collaborative-content property-specific subgraphs, namely does en-tity2rec work better than entity2rec (2017)? Experiments reported in Section 6.1 show that hybrid property-specific subgraphs significantly enhance the recommendation quality for all the datasets.

RQ2 How do different aggregation functions perform in generating the useritem relatedness score from property-specific relatedness scores? Experiments in Section 6.1 show that, when building content-collaborative property-specific subgraphs as in entity2rec (2017), a learning to rank algorithm to combine the property-specific relatedness scores is fundamental to obtain good recommendations. However, when using hybrid property-specific subgraphs and a proper configuration of the hyperparameters (long walks, many walks per entity, large context size), the learning to rank is no longer beneficial.

RQ3 How does entity2rec perform with respect to collaborative filtering systems in terms of accuracy, serendipity and novelty of the recommendations? Experiments in Section 6.2 show that entity2rec outperforms all collaborative filtering systems for accuracy-based metrics for all datasets, but P@5 in Movielens 1M, where WRMF obtains the best score. However, WRMF shows to consistently have a little level of

Appendix A. Item modeling

In order to create the knowledge graph, we need an item model, i.e. we need to define the properties that describe an item type for the datasets used in this work. To this end, we start from the DBpedia Ontology, that defines properties for different item types 11 . However, a property selection strategy purely based on the schema of the data does not provide any guarantee on how frequently used are those properties in the data. Thus, we opt for an empirical approach where we count what are the DBpedia properties ("dbo:") most frequently used in DBpedia data to describe the items in the datasets. More specifically, for each item i in the dataset, we retrieve all triples (i, p, o) in DBpedia and we count the most frequently occurring properties p. Then, we sort the properties according to their frequency of occurrence and we

Appendix B. Scores

In this section, we report the extended results of the comparison of en-tity2rec with the state-of-the-art in tabular form. For completeness, we include also: