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The blood supply of hospitals in disasters is a crucial issue in supply chain management. In this paper, a dynamic robust location-allocation model is presented for designing a blood supply chain network under facility disruption risks and uncertainty in a disaster situation. A scenario-based robust approach is adapted to the model to tackle the inherent uncertainty of the problem, such as a great deal of a periodic variation in demands and facilities disruptions. It is considered that the effect of disruption in facilities depends on the initial investment level for opening them, which are affected by the allocated budget. The usage of the model is implemented by a realworld case example that addresses the demand and disruption probability as uncertain parameters. For large-scale problems, two meta-heuristic algorithms, namely the selfadaptive imperialist competitive algorithm and invasive weed optimization, are presented to solve the model. Furthermore, several numerical examples of managerial insights are evaluated.

Introduction

Supply chain management (SCM) is often described as a procedure of planning, implementation, and control of supply chain operations based on efficient practices (Melo et al., 2007). The supply chain network design (SCND) has played a dominant role in the performance of the supply chain (SC). It copes with so many prospects of the SC such as information, location of facilities and allocation of material. The SCND is considered as a significant issue in strategic and operational decisions in the SCM scope [START_REF] Devika | Designing a sustainable closed-loop supply chain network based on triple bottom line approach: A comparison of metaheuristics hybridization techniques[END_REF][START_REF] Amin | Effects of uncertainty on a tire closed-loop supply chain network[END_REF][START_REF] Fu | An adaptive multi-agent system for cost collaborative management in supply chains[END_REF].

Blood supply management and its products are vital issues for humankind. Blood is not a regular commodity since its demand is relatively random, and efficient coordination between supply and demand has not been resolved in various researches yet (Beliën and Force, 2012). Human blood is a rare and vital source that is produced only by human beings, and since there is currently no other product that can produce blood and also its uncertainty supply and demand side, keeping an adequate supply level is very important to fulfill demands [START_REF] Duan | Optimization of blood supply chain with shortened shelf lives and ABO compatibility[END_REF].

In a supply chain, disaster happens in a situation, which is defined as deactivation of one or more supply chain parts' activities, which results in a crucial disruption to the usual flow of different parts of a supply chain. Some decision-making processes to prevent disasters and reflexive decisions in prevailing over the disaster are named disaster management [START_REF] Natarajarathinam | Managing supply chains in times of crisis: a review of literature and insights[END_REF]. Today, supply chains become susceptible to several disruptions. One of the solutions is predicting the disruption and another solution is in knowing which policies will be more suitable in such disrupted conditions [START_REF] Samvedi | A grey approach for forecasting in a supply chain during intermittent disruptions[END_REF]. Two types of risks can be defined in terms of a supply chain: operational and failure risks. Operational risk is caused by intrinsic disruptions of the chain (e.g., uncertain demand, uncertain capacity and uncertain costs of the chain) while the failure risk is created with natural or abnormal accidents (e.g., earthquake, flood, terrorist attacks and fire). In most cases, the risk of disruption and failure in the supply chain performance has a much greater impact than operational risk [START_REF] Tang | Perspectives in supply chain risk management[END_REF].

Robust optimization planning provides a risk aversion approach to face uncertainty in optimization issues. Since Nemirovski and Ben-Tal (1998) showed the consequences of not considering uncertainty, every person realized that ignoring the uncertainty of the data could even lead to an infeasible answer for the problem when it was executed in reality.

These instances highlight the importance and need for the creative design and planning of blood supply chains, which are robust to such disruptions during and after a disaster condition. Thus, this paper aims to design a network, which proposes a new robust model in a blood supply chain by considering disruption risk and demand uncertainty in a disaster situation in a real-world case study.

The remainder of the paper is classified as follows. The literature on the blood supply chain and concepts of reliability and disaster are reviewed in Section 2. In Sections 3, the problem is defined in details with the related assumptions. Section 4 describes a solution method and symbols. Section 5 provides computational and analytic results. Eventually, the managerial insight and conclusion are gathered in Sections 6 and 7, respectively.

Literature review

Studies about the location of unreliable facilities were started by introducing the probability of equality of disruption in all facilities in a p-median problem by [START_REF] Drezner | Heuristic solution methods for two location problems with unreliable facilities[END_REF]. [START_REF] Berman | A defensive maximal covering problem on a network[END_REF] focused on the location of unreliable facilities based on the assumption that customers have inaccurate information about the location of active facilities. [START_REF] Peng | Reliable logistics networks design with facility disruptions[END_REF] presented a model based on a scenario approach and considered that each scenario incorporates some facilities that are disrupted at the same time. They reduced the whole cost by reducing the risk of a disruption using p-robust criteria and finally used the genetic algorithm to solve the model. [START_REF] Hong | Development and evaluation of an integrated emergency response facility location model[END_REF] presented a robust optimization model for the p-median location problem under facility disruption considering the uncertainty of demand and capacity of facilities. Esmaeilikia et al. (2014) introduced an analogous description and classification of hazards in a supply chain scope and considered disruptions in two categories, namely main disruptions and demand or supply disturbances. [START_REF] Jabbarzadeh | Designing a supply chain resilient to major disruptions and supply/demand interruptions[END_REF] designed a supply chain network based on robust stochastic optimization and Lagrangian relaxation methods. They considered a real-world problem, in which disruption could lead to disability or capacity reduction. Also, they considered a function of the investment level for a disruption probability parameter in the construction of facilities with a budget constraint. Diabat et al. (2018) introduced a bi-objective model for a perishable supply chain considering the robust approach and disaster scenarios. The goal of the model was to minimize the time and cost after a disaster. They developed Lagrangian relaxation and ɛ-constraint methods to solve the model by considering a real-case study. Sha and Haung (2012) presented a multi-period model for location-distribution of blood facilities in a disaster condition. They faced with the model by a Lagrangian relaxation method and solved the model for a real-case problem in Beijing. [START_REF] Zahiri | A robust possibilistic programming approach to multi-period location-allocation of organ transplant centers under uncertainty[END_REF] proposed the design and location-allocation model for organ transplantation that aims to minimize the cost of the facility construction, transportation time between centers and relocation of facilities, and based on a robust planning approach to face with uncertainty in some model parameters. [START_REF] Jabbarzadeh | Dynamic supply chain network design for the supply of blood in disasters: A robust model with real world application[END_REF] developed a model for the multi-period, single-product blood supply chain network in disaster situations considering the robust approach for the uncertainty of the demand parameter. The proposed model sought to minimize the total cost of the blood supply chain including fixed facility location costs, relocation of temporary facilities, operation costs, shifting and inventory costs. [START_REF] Zahiri | Blood collection management: Methodology and application[END_REF] presented a multi-period location-allocation model in the blood supply chain by considering the collection process, temporary facilities, and blood centers. They solved their model under uncertain conditions of the input parameters (e.g., blood donors and demand) by using a robust optimization approach. [START_REF] Fereiduni | A robust optimization model for blood supply chain in emergency situations[END_REF] proposed a multi-period location-allocation model in a blood supply chain for the Tehran province after the disaster. Ahmadi-Javid et al. ( 2016) presented a health review paper that reviews related subjects up to 2015. [START_REF] Zahiri | Blood supply chain network design considering blood group compatibility under uncertainty[END_REF] designed a network for the blood supply chain, whose proposed bi-objective model aimed at minimizing the maximum unsatisfied demand and the entire cost considering the robust approach. [START_REF] Fahimnia | Supply chain design for efficient and effective blood supply in disasters[END_REF] proposed a new stochastic biobjective model for a blood supply chain in a disaster condition. Their model minimizes the cost and minimizes the time simultaneously. They presented a hybrid solution approach with a combination of Lagrangian relaxation and -constraint approaches. [START_REF] Ramezanian | Blood supply chain network design under uncertainties in supply and demand considering social aspects[END_REF] designed a network for the blood supply chain and developed a mixed-integer linear programming model. They considered two uncertain parameters and some social parameters, such as the distance of donors, advertising budget and donor experience. They utilized a robust optimization approach for evaluating the proposed model and used a real-case study in Tehran. [START_REF] Zhalechian | A self-adaptive evolutionary algorithm for a fuzzy multi-objective hub location problem: An integration of responsiveness and social responsibility[END_REF] considered an uncertain hub location problem and developed a multi-objective model for it by considering responsiveness, social responsibility and economic issue. [START_REF] Habibi-Kouchaksaraei | Designing a biobjective multi-echelon robust blood supply chain in a disaster[END_REF] designed a robust blood supply chain and developed a multi-period model in disaster situations considering the uncertain demand. The objective of the model was to find the location and number of temporary facilities and minimize the total cost and blood shortages. Also, they used a robust approach for uncertainty and solved the model with data taken from the Ghaemshahr city. [START_REF] Samani | Integrated blood supply chain planning for disaster relief[END_REF] designed a blood supply chain in disaster situations considering the perishable nature of blood and its shortage and uncertain demand. They provided a multi-objective model that simultaneously reduced the most unmet demand and costs.

Eskandari-Khanghahi et al. ( 2018) developed a sustainable blood supply chain network in disaster situations with uncertain parameters. They considered some objectives as minimizing the costs, environmental effects of blood collection and wasted blood, maximizing the social impacts, such as the number of job opportunities created, and finally minimizing the cost of purchasing, lack of blood, maintenance, etc. The simulated annealing (SA) and harmony search (HS) algorithms were chosen and compared for the large-scale solution.

From what has been discussed above, the effects of a disaster on facilities (e.g., disruption and the budget constraint) are one of the most important issues in most countries, which have not taken managerially into account. Besides, knowing the number of required facilities in such emergency systems is one of the challengeable subjects among managers, which should pay more attention. Besides, it is better to generate the model in a real-world condition to be more practical and even it will be more beneficial study to be generated in a new case study and solved the issues of them. Furthermore, the blood supply chain is an integrated chain, in which all sections influence each other, so considering one city or one region will not be as useful as the whole ones. Moreover, in most real cases when a facility is disrupted, it will not lose the whole capacity, whereas it will lose it, which is affected by disruption partially.

To overcome these shortcomings and fill these gaps, a robust model is developed for a blood supply chain under uncertainty of both demand and disruption probability to investigate the best solutions in a real-world and large-scale supply chain. Furthermore, the budget constraint is considered as a vital issue in making a decision. Besides, two meta-heuristic algorithms are conducted and compared with each other.

In this paper, some gaps in the blood supply chain scope are covered and the following contributions are categorized:

• Considering both types of risks that have not taken into account in the postdisaster blood supply chain literature so far. • Considering two types of reliable and unreliable facilities and the effect of disruption on them.

• Proposing a new and practical model in an uncertain blood supply chain.

• Solving the model in a real-world case study, which is suffering from insufficient blood in an emergency case.

• Assuming a multi-period model in a post-disaster condition. Most studies in this area consider the models as a single-period one, whereas after a disaster, due to the nature of the uncertainty, the demand should be considered in different periods.

• Considering the available budget for the model. According to the experts, one of the most important issues for blood centers is the considered budget by the government and optimal usage of it in centers and facilities.

• Examining the uncertainty in some parameters of the problem, such as demand and disruption probability of temporary facilities because of a disastrous occurrence.

• Considering the robustness concept to cope with the uncertainty.

• Applying the self-adaptive imperialist competitive algorithm (SAICA) to solve the model and comparing it with the invasive weed optimization (IWO) algorithm. The features of the proposed supply chain network design models are summarized in Table 1. Besides, for the efficiency of this issue, it is considered a case study in the Mazandaran province located in the north of Iran, which is predisposed to earthquakes and floods disruption, and it is suffered from the lack of blood more than other provinces.

Problem definition and the proposed model

The assignment of facilities to centers, donors and the shift of blood between these nodes are shown in Fig. 1. The content of this paper includes locating temporary facilities and blood centers in the blood supply chain network and allocating the facilities and donors in a disaster situation. It should be noted that in the event of a disaster, temporary facilities get disrupted, in which the level of disruption of any facility and center depends on the initial investment for its construction. Also, the disaster will affect the demand for blood needed by hospitals. Furthermore, the planned budget will also have an impact on this issue and the demand which can be met. In the following, the proposed model is solved in deterministic and robust conditions. The reason for choosing this topic is the vitality of blood substance and the fact that countries always face shortages of this supply, especially at the time of the disaster. A robust formulation model is presented according to the uncertainty of some parameters such as demand and disruption probability. Below, we present a brief background of a scenario-based optimization method. 

Background of the robust formulation

Robust optimization planning is a method to handle the uncertainty in problems. Mulvey et al. (1995) demonstrated a description of scenario-based data and introduced solution robustness and model robustness contexts. The linear optimization model is as follows:

At this model, x and y define the vectors of decision and control variables, respectively. Control variables are subjected to frame once a specific realization of parameters, while design variables are specified before the realization of the uncertain parameters and are not dependent on the realization of them. A set of scenarios is introduced as = {1,2,3, … , }. For each scenario , the set ={ , , , } of realizations is related to the coefficients. The robust optimization model can be formulated by: For modeling with this approach, control variable y and error vector should be introduced to measure the infeasibility allowed in the control constraints under scenario . With different scenarios, the objective function (1) would become a random variable as = + with probability , which ∑ = 1. Equation !. # = ∑ $ is used for the first term in the objective function. The second term in the objective function ( 5) is a measurement of model robustness. Mulvey et al. (1995) proposed that ! , , % , … , # can be written by: In the above suggestion, & is a constant by which the objective function would be less sensitive to change under the scenarios. In brief, the final formulation of the robust optimization model based on the results of [START_REF] Yu | A robust optimization model for stochastic logistic problems[END_REF] is as follows.

Min

+ s.t.

(1)

* = +, (2) + = (3) , ≥ 0 (4) Min ! , , % , … , # + ./! , % , … , # s.t. (5) 
* = +, (6) + + = ∀ (7) ≥ 0, ≥ 0 ∀ (8) ! , , % , … , # = 1 $ + & 1 ! $ - ' s S ∈ ∑ 3 3 # % (9) Min 4 = 1 $5 + & 1 6!ξ -1 3 3 # + 28 3 $ 9 + . 1 : $ (10) s.t. -1 3 3 3 $ + 8 ≥ 0 ∀ , ; (11) 
8 ≥ 0 ∀ (12) 
In this model, if a solution remains near to optimal for any realization of each scenario , the mathematical programming model will be robust with regard to optimality that is defined as ''solution robustness" and the solution feasibility is that if the solution remains almost feasible under almost all possible values for any realization of that is defined as ''model robustness''. The weighting penalty . is utilized to represent the trade-off between the two mentioned contents. With various scenarios, the objective function will become a random variable taking the value and the 8 is a variable, which is used to do the linearization of the model

Assumptions of the model

The assumptions of this model are as follows:

• Two types of facilities are considered in this model: temporary facilities and blood centers. Disruptions occur in temporary facilities, and blood centers are safe against disruptions according to the case study. So, temporary facilities and blood centers are considered as unreliable and reliable facilities, respectively. • The cost of building a blood center is much higher than a temporary facility.

• Each donor can either donate to blood centers or temporary facilities.

• The probability of disruption in temporary facilities and centers depends on the value of the initial investment for opening them meaning that it is possible to increase the investment to reduce the effects of disruption. For example, in centers due to the high investment, the center will not be disrupted.

• The planned budget has an impact on this problem and the responding demand.

• Disaster affects the blood demand of hospitals.

• It is assumed when a disruption occurs on a facility, it is not fully failed. The facility loses some of the capacity to serve in the disruption situation.

• For better controlling the mid-term decisions and fluctuations in demand periods, the model is considered as a multi-period one. The aim of the presented model is to make an optimal decision about the location of blood centers, location and shift of temporary facilities, the allocation of donors to blood centers or temporary facilities located in the coverage area, blood donation from donors through facility, the number of temporary facilities available to collect and transfer blood to centers at any time period and under any scenarios. In the following sections, the modeling indices, parameters, and variables are described.

Sets <

Set of blood donors, = ∈ < ?

Set of potential locations for blood centers or temporary facilities, @ ∈ ? Maximum blood donation quantity of group = of donors in period H \ Cost of losing blood in the facility capacity that cannot get blood due to disaster AE A big number

Variables

]U P Q P: A binary variable, equal to 1 if a temporary facility is located at location D in period H-1 and moves to Location D in period H under scenario ; 0, otherwise ]S T 1 if a blood center is opened at location m; 0, otherwise ^UPW: 1 if donor group = is assigned to a temporary facility at location D in period t under scenario ; 0, otherwise

S TP:
1 if a temporary facility at location D is assigned to a blood center at location B in period H under scenario ; 0, otherwise Number of the temporary facilities required in period H under scenario

Model formulation

The objective function to minimize several cost drivers is as follows:

• Fixed cost of locating facilities: (15)

R
• Blood loss cost: It includes the cost of losing the capacity of temporary facilities in the event of a disruption.

= \ 1 1 1 G P:

P Q P : ]U PP Q : (16)
The objective function is formulated based on the approach explained in Section 3.1 for the robust model as follows:
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)
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^UPW: d 1 ]U PP Q : P Q ∀D, , H, = (29) 
The model is intended to minimize the mentioned costs, including the fixed, operational, transportation, and blood loss cost. Constraint ( 18) is the auxiliary equation determined in Eq. ( 11). Constraint (19) shows that only a blood center or a temporary facility can get blood from each group of donors (not both of them). Constraint (20) indicates the budget for construction of the facilities. Constraints ( 21)-( 22) guarantee that donor group = can be donated to a facility or a temporary facility transfer blood units to a center if they are assigned them. Constraint (24) guarantees that at least one blood center should be built because temporary facilities should deliver blood units at the center and this center is responsible for testing and collecting blood units for hospital applications. Constraint (25) ensures that only one facility or center can locate at location @. Constraint (26) indicates the number of required temporary facilities.

Constraint ( 27) imposes that at most one facility can be shifted to the location D in each period. Constraint (28) ensures that temporary facilities can shift from a location where there has been a facility located there. Constraint (29) makes sure that donor groups can be allocated only to facilities that are facilitated there. Constraint (30) imposes that donors can only be assigned to a blood center that is established there. Constraint (31) guarantees that a temporary facility at location D can allocate to a blood center at location B if the center has been constructed there. Constraints (32)-( 34) indicate the radius of coverage of donors with a blood center, temporary facilities with center and donors with temporary facilities. Constraint (35) indicates the capacity of the temporary facilities in consideration of the disruption. Indeed, this constraint reveals that the quantity of blood cannot exceed the capacity, which is not affected by the disruption. Constraint (36) guarantees that a temporary facility at location D can be assigned to a blood center if there has been a temporary facility in there. Constraint (37) limits the number of blood units donated in each period by each donor group. Constraint (38) indicates that some of the blood units donated to a temporary facility are transferred to a blood center, and some of them are also destroyed due to disruption.

Y D G P: + g1 -Y D h i1 -1 X D D 1 ]U DD 1 H j X ≥ 1 _ D=H ^UD=H = ∀ , D,t (35) 
S TP: d 1 ]U PP Q : P Q ∀ , D, B, H (36) 
1 _ PW:

P + 1 _ TW: ;; T d W: ∀ , =, H (37) 
1 _ PW:

W = 1 _ TP: ; T + G DH ∀ , D, H (38) 
1 1 _ TP:

; T P + 1 1 _ TW: ;; T W + : ≥ N : ∀H, (39) 
]S T , ]U PP Q : , ^UPW: , ^STW: , S TP: ∈ {0,1} ∀ , D, B, H, = (40) G P: , 8 , _ PW: , _ TP:

; , _ TW:

;; ≥ 0 ∀ , H, B, D, = (41) 
Constraint ( 39) is a control constraint indicating that the desirable demand should be fulfilled in each period.

Linearization

The objective function and formula (35) are nonlinear. However, the nonlinear terms are G DH ]U P Q P: and _ PW: ^UPW: . A new variable is defined by:

The above term can be written in the objective function by:

= 1 \ 1 1 * PP Q : P Q P : ∀ (47) 
Also, the same approach is used to linearize the non-linear term in Eq. ( 48).

The above term in constraint can be written by:

Solution methodology

Since solving large-sized location-allocation problems are time-consuming and are NP-hard, meta-heuristic search algorithms are utilized to solve them, because the GAMS solver is unable to solve it. In this paper, we propose a self-adaptive imperialist competitive algorithm (SAICA) to solve the model. Furthermore, an invasive weed optimization (IWO) algorithm is presented to evaluate the efficiency of the proposed SAICA.

Solution representation

In designing a meta-heuristic algorithm, a solution representation is one of the critical steps to get an appropriate near-optimal solution. For the presented model, a solution

* PP Q : = G P: ]U PP Q : ∀ (42) * PP Q : ≥ G P: + AE!]U PP Q : -1# ∀D, , H, D (43) 
* PP Q : d G P: -AE!]U PP Q : -1# ∀D, , H, D (44) 
* PP Q : d AE]U PP Q : ∀D, , H, D (45) 
* PP Q : ≥ 0 ∀D, , H, D (46) 
_ PW: ^UPW: = _U PW: ∀ (48)

Y D G P: + g1 -Y D h i1 -1 X D D 1 ]U DD 1 H j X ≥ 1 _U D=H = ∀D, , H (49) 
representation contains location-allocation parts and some integer variables (e.g., collected and delivered blood). The location part of the proposed solution representation for the centers includes a (1× B) matrix, where m is the number of locations, filled with random numbers 0 and 1. In addition, for other parts of location and allocation (e.g., the location part of temporary facilities), we define a (1× × H × @ × D) matrix that is filled with random numbers of 0 and 1, and H is the number of periods, is the number of scenarios, D and @ are the number of locations. For instance, in a network with three possible locations, two possible periods and two possible scenarios (| |=2, |H|=2, |D|=3, |@|=3), a solution representation is displayed in Fig. 2. It illustrates when the third cell is filled with 1, it means that this cell is related to , D , @ % , H and it results that ]U % =1. For integer variables, it is similar to Fig. 2 with a difference that the matrix is filled with random integer numbers. 

Imperialist competitive algorithm

The imperialist competitive algorithm (ICA) is a politically-socio motivated global search algorithm that is utilized to solve a lot of optimization problems [START_REF] Atashpaz-Gargari | Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition[END_REF][START_REF] Rahimi | Hybrid approach to construction project risk management with simultaneous FMEA/ISO 31000/evolutionary algorithms: Empirical optimization study[END_REF]. Like Genetic Algorithm, which begins with an initial population named chromosome [START_REF] Rabbani | Vehicle routing problem with considering multi-middle depots for perishable food delivery[END_REF], the ICA begins with an incipient population is named a country. Then, based on their cost, some of them with the lower cost are chosen to be imperialist (the best solutions in the population) and other ones with more cost are allocated to the imperialists based on their power [START_REF] Ardalan | A novel imperialist competitive algorithm for generalized traveling salesman problems[END_REF]. Thus, the initial empires are created by the imperialists and their colonies (the solutions, like a generation in the genetic algorithm). Afterwards, such as the assimilation policy, colonies begin to shift toward their related imperialists. Then, a competition starts among all the empires. Notably, the whole power of an empire is decided by two factors, one of which is the power of the imperialist and another is the power of its colonies. An empire will be eliminated if it is not able to increase its power. So, the loser empires will collapse. Finally, just one empire exists based on the competition and the collapse mechanism, and its colonies are other loser countries

Generating initial empires

In ICA, a country is formed as an array to solve an N-dimensional optimization problem shown below:

Country = [p , p % , p I , … , p t ] ( 50 
) t1 t2 t1 t2 t1 t2 0 0 1 0 1 1 s1 i1 i2 i3 j1 j2 j3
Such as before

To start this algorithm, N wxw is generated as an initial population size and then imperialists are considered as N yzw that are a number of most powerful countries. In this algorithm, there are two types of countries that are: imperialist and colony. The colonies are distributed among imperialists based on their power, so the normalized cost of an imperialist is needed that is defined by: C y = max y {c • } -c y (51) where c y is the cost of imperialist i.

The colonies are divided among imperialists due to their power, so the possession probability of each imperialist is as follows:

p y = € C y ∑ C • t •'ƒ • € (52)
It should be noted that in this study, the exponential function is used for this probability.

Power of an Empire

The total power of an empire is equivalent to the power of imperialist and a percentage of mean power of the colonies of it which is given as follows:

(53)

G`V = V + mean …∈V { … }
whereG`V is the total power of the empire i and ξ is a positive and small number, which is better to be less than 1.

Assimilation

The assimilation operator is displayed in Fig. 3. Colonies are moved toward imperialists in another direction by considering a random deviation. where 8 is a random number that follows a uniform distribution. Also, d is considered as the distance between the imperialist and the colony.

Crossover

In this step, the information of colonies is shared between themselves by using crossover operators shown by the p-Crossover. 

Revolution

The revolution operator is an action, which selects a number of colonies by using a random selection mechanism and replaces with an equal number of the newly generated ones, also revolution operator decreases the risk of getting trapped in Local searches. three various procedures are performed obtaining: (a) swap, (b) inversion and (c) reversion operators as they are presented in Fig. 4. In the swap operator, places of two randomly chosen bits are exchanged. In the inversion operator, one bit is selected randomly and its value is replaced with a new random value. Finally, In the reversion operator, a random part of a colony is selected and its permutation is reversed. Moreover, for employing the revolution operator on a discrete part of each colony, two various policies are adopted. First, the discrete part stays unchanged. Second, one bit is chosen randomly, and it is replaced with another random number that is not equal to previous ones. 

Exchanging Positions

The position of a colony and its imperialist might be changed if a colony becomes more powerful than its imperialist.

Eliminating the Powerless Empires

During the competition process, weak empires will be eliminated.

Stopping Criteria

The proposed algorithm will be stopped when the maximum iteration is established or only one empire remains in process.

Self-adaptive ICA

In the ICA, some colonies are influenced by other empires in other countries or maybe empires interchange data with each other. The crossover operator is a practical operator for this concept. There are various methods in the subject literature for the crossover operator, which is utilized before in the genetic algorithm to search the solution space (e.g., one-point crossover, two-point, three-point, uniform, and crossover with three parents), each with its advantages. Since the use of all of them simultaneously rises the algorithm's time, many researchers use only one type of algorithm. In the proposed solution method in this section, it is possible to use most intersection operators without increasing the solving time. To do this, we integrate different operators. For this reason, the proposed algorithm is called SAICA for solving the model. The proposed SAICA has two steps. In the first step, which is called the "Preparation Phase", different crossover operators will compete after a competition. After the competition, the crossover with the higher score has more opportunity to be chosen in the next phase. Two pseudo-codes and flow charts for preparing phases and the ICA are shown in Algorithm 1 and 2, and Fig 5 and6. 

V |@ = 1, … , E † ‡ † ) 4
Evaluate fitness of each country (OFV) 5

Form initial empires: 6

Choose first Nimp countries as the empires min •aRO| @ = 1, … , E ‡ † "

7 E ¡ ‡¢ ‡…£ = E ‡ † -E VT † 8 For @ = 1: E VT † 9 `¥T †V¦¥ § = ¨f© ª«¬ -®¯ §°- § '±² ³ ´ª«¬ -®¯ §°-³ µ ¶ 10 EndFor 11 E`¥ T †V¦¥ § = -®¯ §°- § ∑ -®¯ §°-³ • §®3 ¸Q (NP: Normalized Probability) 12 E ¥T †V¦¥ ³ = E`¥ T †V¦¥ ³ × E ¡ ‡¢ ‡…£ (NC: Number of Colony)
13 Assign colonies to their related empire (pop1) as: 14

For @ = 1: E After the completion of the preparatory phase, the "main phase" of the ICA will be done as mentioned above, with the difference that the response space is searched by all assimilation, crossover, and revolution operators. Notably, the objective function value is shown as OFV in this paper.

Invasive weed optimization (IWO)

Mehrabian and Lucas ( 2006) introduced an evolutionary algorithm based on population to optimize problems, which is called IWO. In IWO, the treatment of weeds is simulated in colonizing to discover appropriate sites for breeding and growth. In short, the procedure of the IWO is described below.

In the first step, a generation of the incipient population (i.e., weeds) is done over search space randomly. The next step, a number of seeds ( ∈ [ TV… , Tˆ‰ ]) are created from each weed based on their relative suitability. Afterwards, the distribution of the created seeds is randomly done over the search space. Finally, all seeds are ranked together with their parents as a colony of weed when they have found in the search area. 4.4. Handling the constraints the considered mathematical model contains several constraints, and the presented algorithms are required to handle them during optimization. The solution representation can guarantee the feasibility of most of the constraints, except for some constraints such as constraint ( 20). In the literature, there are some approaches to handle these kinds of constraints. In this paper, the penalty function is used based on [START_REF] Yeniay | Penalty function methods for constrained optimization with genetic algorithms[END_REF]. The penalty is defined based on the amount of deviation from constraints, which is explained as below with assumption of the infeasible constraint (Ü! # d c):

`! # = × AX Ýž Ü! # -1Ÿ , 0Þ
where `! # is the penalty value and is the coefficient for aggression the constraint.

Then, the sum of the penalties of all related constraints is added in the objective function. So, the algorithms find the solution with minimum penalties.

Experimental results

In this section, a small-sized problem is solved for validating the proposed model, using data taken from one of the main city in the Mazandaran province located in the north of Iran and according to experts' opinion, which is indicated in Table 2. It should be noted that the unit costs are million Rials (as the Iranian currency).

For this model, there are three scenarios for demand and two scenarios for the disruption probability. All the scenarios are presented in Table 3. Table 4 shows the comparison between deterministic and robust approach for small-and medium-sized problems. The problems in this table are solved by the exact method by GAMS (General Algebraic Modeling System) software [START_REF] Rosenthal | General algebraic modeling system (GAMS) user guide[END_REF] using the CPLEX solver.

The computation problems in this paper are solved on a computer with a Core i5 CPU 2.67 GHz and 4 GB RAM. Steps of running the numerical model are depicted in Fig. 7. As from Table 4, the values of the objective function with the robust approach highly depend on the value of .. For example, for higher . the model should decrease the unmet demand and try to fulfill the most quantity of the demand; as a result, the objective function and the solving time increase. Moreover, for a higher value of ., the model intends to make the solution feasible for almost all the scenarios, that is why the amount of objective function is higher than the deterministic ones. Indeed, this is the price of robustness [START_REF] Bertsimas | The price of robustness[END_REF]. 

Model Performance Assessment

To evaluate the proposed model, a Monte Carlo simulation method is used. This method is an efficient and famous computational algorithm, which runs several simulations according to the random generation of data with a specific statistical distribution (Kalos and Whitlock, 2008).

In this paper, the quantity of the unmet demand is compared in robust and deterministic conditions. The unmet demand in robust is the expected value of variable : in different scenarios based on the probability of each scenario. To find the deterministic solution performance in realization under uncertain environment, we applied a Monte Carlo simulation method to find out the quantity of the unmet demand by using a deterministic solution. Indeed, in this simulation, the deterministic model considers the expected value and the robust model considers different scenarios.

As can be seen in Table 4, in conservatism and semi-conservatism solutions of the proposed robust model, the value of the unmet demand, which is shown in the last two columns, is significantly better than the deterministic solution. For example, as it is evident in the last data set, a robust solution with values of ω=80 yields significantly less the unmet demand in comparison with the deterministic solution by spending just 14% more money on the supply chain. It can be concluded that the proposed model shows better performance because it does not ignore the uncertainty of parameters.

Parameter setting of meta-heuristic algorithms

The parameters of an algorithm have an effective influence on it, so inappropriate parameters may lead to inappropriate answers. In this paper, the response surface methodology (RSM) is utilized to adjust the appropriate parameters for the proposed algorithm. In this method, first, parameters that influence the algorithm are known and investigated based on input parameters (usually from the objective function value), and by fitting the best regression equation on several levels of the parameters, the desired values are suggested to adjust the parameters. The parameters of SAICA and IWO algorithms are given in Table 5 by considering that the condition for stopping the algorithm is equal to the NFC number of 90,000. Indeed, NFC is the Number of Function Calls used for the stopping criteria. It is defined based on the number of iterations and loops. 

Numerical examples

IWO and SAICA solutions are compared in small-and large-sized problems. For evaluating the gap between each algorithm with the exact solution solved GAMS, Average Percentage of Relative Gap (APRG) is calculated. It is defined as [100 × !ae ç¥:ˆ-ae èˆT # ae ç¥:⁄ ], in which ae èêç is the objective function values (OFV) in GAMS software and ae ç¥:ˆ is the OFV for the meta-heuristic algorithm. For each test problem and each algorithm, 30 runs are performed and the results are shown in Table 6. It should be noted that the APRG and Std metric shown in this table are the average and the standard deviation of 30 runs for each test problem. As can be seen, APRG(%) for each test problems of two algorithms are less than 2%. So, both algorithms can result in reseanable solutions. There are several statistical tests to determine a significant difference between the performance of two algorithms. The Wilcoxon sum-rank test, a non-parametric test, is used to find a meaningful difference between the SAICA and IWO in terms of CPU times (average time solving of 30 independent runs) and quality (average PRG of 30 Due to the aforementioned point that the presented mathematical model is an NPhard, GAMS software is not able to solve the large-sized test problems. In this respect, for large-sized test problems, a gap between SAICA and IWO algorithms is calculated in MATLAB software and is created as [100 × !ae ëì' -G 5îëïî # G 5îëïî ⁄ ], in which ae ðñÊ and ae êð¡ê are the OFV of the SAICA and IWO algorithms. The results are given in Table 8. It also presents the average cost function and time of 30 replications for each test problem. It should be noted that the APRG is the average, and Std is the standard deviation of 30 replications of each test problem. The problem is solved on a computer with a Core i5 CPU 2.67 GHz and 4 GB RAM.

The calculation time of meta-heuristic algorithms increases by increasing the size of problems, but in small-sized problems, it has a relative increase. These results show that the approaches of both meta-heuristics can find near-optimal solutions in a reasonable time, while the SAICA is better than the IWO in all the problems in terms of time and APRG. Fig. 8 reveals the comparison between two algorithms in terms of cost function value, which shows that in all sets the cost of SAICA is less than IWO based on the results of Table 8. Meanwhile, Figs. 8 and9 shows the APRG differences between the two algorithms based on the results of Table 8; it indicates that by increasing the number of problems, not only the GAP between ae ðñÊ and ae èˆT is increased more than the GAP between ae êð¡ê and ae èˆT , but also the differences between two algorithms in terms of their GAP is growing. Besides, Fig. 9. shows the CPU time of the IWO and SAICA, which the CPU time of the SAICA is less than the IWO. Similar to the explanation mentioned in Fig. 10. by increasing the number of problems, the solving time for IWO grows more than the SAICA. As a result, based on what has been explained above, the performance of the SAICA is better than the IWO in both small-and large-sized problems. 

Case study

The Iranian Blood Transfusion Organization (IBTO) is one of the most important institutions in Iran that has the main responsibility to provide the blood, particularly in disaster and emergencies. One of the most important sub-collections of this institution is the Transfusion Organization of Mazandaran Province. This province is a major province in the north of Iran and is one of the most dangerous provinces in terms of natural disasters with a population of over three million. The proposed model aims to develop an efficient blood supply chain network design in Mazandaran.

The collected data is from 73 cities and 150 surrounding villages located in Mazandaran. The cost of shifting temporary facilities is considered to be proportional to the distances between them. Also, the transportation cost of a blood unit is equal to a constant number in the distance between their positions. The quantity of the blood unit, in which each region can donate, is given in Appendix A. It is determined by considering the population of the region. Other information about the data are given in Tables 9 and10 As it was mentioned before, this province has been exposed to some hazardous disasters (e.g., earthquake and flood). In this study, special attention is paid to this issue and the disruption probability is considered as an important parameter, which is shown in Appendix B. It is determined based on the data during last years and some information about the most likely locations disrupted by disaster. 

Model robustness versus solution robustness

Model robustness is defined as being close to a feasible solution while solution robustness means being close to an optimal solution with the least variance between the objective function of scenarios. We examine the trade-off between the objective function value (solution robustness) and the unmet demand (model robustness) which can be assessed by changing a weighting penalty is named .!ÒB úX# (the last term in the objective function ( 17)). As mentioned before, in the robust optimization problem, the infeasibility in different scenarios is allowed by using penalty : in Constraint (40). As demonstrated in Table 11 that is solved based on the data taken from the mentioned case study, by increasing in the value of ., the objective function (solution robustness) will increase and the unmet demand (model robustness) will consequently decrease. From this table, at larger risk-aversion weights, there is an inclination towards 'almost' feasible solutions in all the scenarios, at the expense of an increased objective function. This trade-off can help in finding a proper risk-aversion weight. At .=180 and more, the problem guarantees the minimum quantity of unmet demand; however, it needs more cost to be feasible and because of the budget constraint, it would be infeasible. Therefore, we choose a smaller risk-aversion weight, which faces the problem with less cost and an acceptable quantity of unmet demand. At .=180, the whole cost is 68001, and simultaneously, the model is robust to most of the scenarios. So, we adjust . equal to 180 in the rest of solving. According to the results obtained from solving the developed SAICA for the mentioned case study, some cities of the Mazandaran province are selected for construction of blood centers. It should be noted that in location-allocation issues, location centers are strategic decisions that do not change over the periods, while most allocation decisions are tactical decisions that can be changed as needed in every period. Therefore, the cost of such decisions is considered only once for the entire period, while mid-term decisions often change periodically due to policies (e.g., movement of temporary facilities in periods).

Tables 12 and13 show the optimal results of solving the model for the case study. Fig. 11 shows the location of candidate blood centers and temporary facilities for one of the periods. As can be seen from Fig. 11 four centers are established in four cities and seven temporary facilities are assigned to them for collecting the blood donated.

Based on the information from Table 12, increasing the . forces the model to decrease the quantity of the unmet demand and as a result, the number of centers and temporary facilities will increase. It is important to mention that the model equips new facilities and centers until the . = 180; however, for more than . = 180, the model cannot build new equipment to fulfill the demand because of the budget constraint.

The value of fundamental variables after solving the problem in each period under each scenario is shown in Table 13. 

Sensitivity analysis of the required parameters

In this part, several sensitivity analyses are conducted to present the management perspective on the basic parameters of the problem. The minimum of the met demand is the parameter that can effectively affect the structure of the model, and the value of . can affect it as well. As mentioned in Table 11, an increase of this parameter will result in more construction of facilities for more demand coverage, so by increasing in ., the amount of mean objective function increases and the unmet demand decreases. Fig. 12 shows the sensitivity analysis of the mean objective function values and unmet demand for different values of .. As can be seen from Fig. 12, by increasing this parameter to 180, more demand is covered by the construction of more facilities and, consequently, by increasing the total cost. As it is mentioned in the prior section, by increasing the . more than 180 the model needs more cost to fulfill the demand; for comparing the effect of budget constraint, the model is solved with and without considering the budget constraint and the results are shown in Figs. 12 and 13 Based on these figures, without budget constraint the model desires to decrease the unmet demand to zero with increasing the cost function in . = 410 and the cost 110456, which means that if the decision makers want to fulfill the whole quantity of demand, they should cost 110456; however, by considering the budget constraint, the best decision is that they accept the quantity of unmet demand which is not high.

In Fig. 14, a comparison between the amount of the budget and unmet demand is made. It demonstrates that by increasing the budget, the unmet demand will be decreased; however, there are some important hints in this comparison. With a budget between 32000 and 50000, there is no significant reduction in the unmet demand whereas, with more than 65000, there is a dramatic change in decreasing the unmet demand. As a result, the decision makers should note this matter that if they intend to boost the budget for the system, increasing it between 32000 and 50000 does not make difference and when they have less money to allocate, it is better to allocate the 32000 rather than 50000. Also, by increasing the budget into 65000, they will take the opportunity to diminish the unmet demand and fulfill more blood demand in disaster condition. Moreover, if this issue has priority over the cost, by increasing the budget into 82000 they will fulfill approximately all the demand.

Another remarkable insight can be obtained from Table 15. As can be seen, the location 44 and 69 are the optimal locations for all amount of .; in other words, these two locations are the proper locations for equipment of blood centers under a variety of budget; Indeed, the decision makers should note that when they face the lack of sufficient budget, these two locations are the best solution for decreasing the whole cost and fulfilling the most quantity of demand. So, they should focus on investing in these two locations. Furthermore, another hint can be obtained from this study is the number of required facilities, which based on the desired budget can be changed and decision makers can utilize the information for making the best decision. 

Managerial insight

To validate the accuracy of the proposed model, the model is solved on several numerical examples of the case study in prior sections. From another point of view, several problems are solved by changing the parameters to examine and analyze the sensitivity of the model. Managerial insight is an integral part of decision making for each organization. Some of the most important insights given by this paper include:

• Making the best decision in a healthcare system and with a perishable supply.

• Coping with uncertainty in an emergency.

• Coping with both operational and failure risk in the network.

• Making the best decision for evaluating the budget level in the network.

• Making the best decision for equipment of centers and locating facilities in the network in a real case study.

Conclusion

Because of increasing attention paid to the health care area in recent years particularly in the emergencies, and since the relocation of facilities will have irreversible effects, this paper has studied location-allocation of facilities in the blood supply chain network. In this paper, we have presented a new mathematical model to make effective decisions in location-allocation of a blood supply chain network in postdisaster periods by considering the budget constraint for the construction of blood facilities and centers. Also, the disruption risk and its effects have been considered for each temporary facility. Due to the existence of disaster conditions, we have developed the model under uncertainty and presented a robust optimization model. A real case study was utilized to evaluate the usage of the presented model. Due to the difficulty of facility location-allocation problems, the self-adaptive imperialist competitive algorithm (SAICA) is considered to solve the proposed model. Furthermore, to evaluate the efficiency of this algorithm, its performance is compared with the invasive weed optimization (IWO) algorithm. Finally, to provide some managerial perspectives for the aforementioned problem, a sensitivity analysis has been performed over the key parameters of the problem. For future studies, we suggest other new and effective methods to face uncertainty (e.g., stochastic programming or fuzzy programming). Also, 

Budget

using other algorithms to solve the developed model is suggested. Moreover, considering the concept of inventory management will be helpful in the case of healthcare systems or even considering another objective function to decrease the computational time will be practical.
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  Operational cost: It includes the cost of gathering blood from the donors in the facilities. Transportation cost: It includes the cost of shifting temporary facilities to other locations and to the center to evacuate their collected blood.
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Table 1

 1 Classification of the related papers.

	Articles	Uncertain parameter	Blood supply chain	Disaster	Multi-period	Movement of facilities	Number of required	facilities	Investment level	Solution	method	Budget	Disruption partially affected Facility Complete shutdown	Case study
	Fereiduni and Shahanaghi (2016)	*	*	*	*	*				P-robust			*
										Robust			
	Jabbarzadeh el al, (2016)	*				*			*	optimization & Lagrangian	*	*	*
										relaxation			
	Jabbarzadeh el al, (2014)	*	*	*	*	*				Robust optimization			*
										Robust			
	Diabat el al, (2018) *	*	*	*	*				optimization & Lagrangian		*	*
										relaxation n			
	Ramezanian and Behboodi (2017)	*	*		*	*	*		Robust optimization			*
	Habibi-Kouchaksaraei et al, (2018)	*		*	*	*	*		Robust programming optimization & Goal			*
	Fahimnia et al, (2017)	*	*	*	*	*				Stochastic programming			
										Robust			
	This study	*	*	*	*	*	*	*	optimization & two meta-			
										heuristics			

* * * Fig. 1. General view of the problem.

  Quantity of blood loss due to a disruption in temporary facility D in period H under scenario Quantity of blood collected at temporary facility D from group = of donors in period H under scenario

	_ PW:	
	_ TP: ; _ TW: ;;	Quantity of blood shifted from a temporary facility at location D to a blood center at location B in period H under scenario Quantity of blood gathered at blood center B from group = of donors in period H under scenario
	`Z:	

^STW: 1 if donor group = is assigned to a blood center at location B in period H under scenario ; 0, otherwise G P:

  Pseudo code for the Preparation Phase of SAICA

	Algorithm 2 Pseudo code of the SAICA
	1	Procedure NFC = 0
	2	Set the parameters (NPop, Nimp, ξ, β, α, PA, PC, PR)
	3	Generate initial Countries containing all distinct five parts (]
		1 Procedure (E † ‡ † = 200,, ?H Z Tˆ‰ = 250) 2 Number of iterations=0 (SXO(j)=0 (j ∈ All Crossovers-XOs)) 3 Iter=0
		4	Generate Initial Population
		5	Calculate OFV
		6	While (terminate=false) do
		7	Select Parents
		8	Apply all Crossover Operators
		9	1.One-point XO (No.1)
		10	2.Two-point XO (No.2)
		11	3.Uniform XO (No.3)
		12	4.Three-point XO (No.4)
		13	Evaluate Cost of the Obtained Solutions
		14 15	‹OE min P SXO(j)=SXO(j)+1 •OFV ''!P# " ≅ XO!D# --˜™
		16	EndIf
		17 18	If Iter ≥ ?H Z Tˆ‰ then terminate=True
		19	EndIf
		20	Iter= Iter+1
		21	EndWhile
		22 23 EndProcedure Calculate Selection Probabilty ž `!D# =	]a!D# ∑ ]a!D# P	Ÿ

Algorithm 1

Table 3

 3 Scenarios of the problem.

	Scenarios	Parameter value		Scenarios	Parameter value	
	% I	0.5N : ßßß &Y á â N : ßßß &Y á â 1.4N : ßßß &Y á â	0.1 0.2 0.2	K L M	0.5N : ßßß &1.3Y á â N : ßßß &1.3Y á â 1.4N : ßßß &1.3Y á â	0.2 0.2 0.1

Table 4

 4 Problem-solving with two deterministic and robust modes.

	Size		OFV		Time (s)		Unmet Demand
	problem	Values						
	|k|×|i|×|t|	of .	Deterministic	Robust	Deterministic	Robust	Deterministic	Robust
		5		16999		121		92
	8×4×3	20	17001	17004	120	122	69	62
		50		17013		289		23
		5		17009		256		87
	10×5×3	20	17086	17115	245	346	75	71
		50		17183		681		33
		5		17174		423		121
	14×6×3	20 50	17248	18374 19131	349	546 825	101	96 71
		80		19854		875		36
		5		19379		534		131
	18×8×3	20 50	19475	19485 21160	481	767 1032	112	99 83
		80		22334		1102		40

Table 6

 6 APRG and STD of the SAICA in comparison with the IWO and computational time for small-sized problems.

	SAICA	IWO

Table 8

 8 APRG and STD of the SAICA in comparison with the IWO and average computational time and average cost function for large-sized problems.

	Data set 11	= 26	@ 14	APRG 4.82	Std. deviation 0.19	Time (s) SAICA 368	Cost SAICA 23544	Time (s) IWO 480	Cost IWO 24679
	12	28	15	5.09	0.12	370	23887	524	25102
	13	29	16	5.33	0.14	427	23972	520	25222
	14	30	17	5.71	0.10	521	24161	625	25557
	15	34	18	6.29	0.06	539	24355	684	25928
	16	36	17	6.76	0.09	546	24317	718	25935
	17	38	18	7.21	0.23	586	24441	789	26210
	18	42	19	7.55	0.07	671	24543	841	26389
	19	46	19	7.64	0.18	668	24539	887	26445
	20	50	18	8.27	0.13	598	24731	931	26828
	21	54	21	8.83	0.42	692	24866	1023	27091
	22	60	24	9.49	0.06	761	25180	1274	27594
	23	70	30	11.08	0.22	969	26655	1353	29719
	24	75	32	12.28	0.33	985	26744	1366	30086
	25	80	37	13.26	0.43	1012	27353	1573	31050
	26	86	41	13.91	0.14	1106	27534	1682	31411
	27	90	46	15.15	0.26	1153	32464	1754	37526
	28	108	52	16.57	0.48	1234	32572	1951	38043
	29	120	63	18.47	0.18	1441	33021	2019	39125
	30	150	70	20.50	0.18	1752	33149	2160	39973

Table 9

 9 Parameters of the case study.

	Parameters	Values	Parameters	Values
	RU Z	250 10	Z[ Cap	50 120

Table 11

 11 Model robustness and solution robustness trade-off solved by SAICA algorithm.

	Values of . 10	Expected OFV 33019	Unmet demand 677
	30	33267	636
	70	33893	531
	100	64374	299
	140	66943	280
	180	68001	242

Table 12

 12 Optimal number and location of facilities in different omega weights.

	Values of . 10	Blood center 44,69	Temporary facility 71,3,14,41	Number of temporary facilities 4
	30	44,69	71,3,14,51	4
	70	44,69	71,51,16,4,36	5
	100	44,69,5	71,51,36,47,59,66,41	7
	140	44,69,5,30	71,51,47,64,46	5
	180	44,69,5,30	71,51,47,57,49,36,20	7
	250	44,69,5,30	71,51,47,57,49,36,20	7
	300	44,69,5,30	71,51,47,57,49,36,20	7

independent runs) metrics. The Wilcoxon sum-rank is performed in Excel software for small-sized problems. The statistical details of this test are presented in Table 7.

The test is applied to each test problem, and the p-value for both metrics of time and quality is less than 0.05 in all test problems. As a result, the null hypothesizes in all test problem are rejected, and there is a considerable difference between the SAICA and IWO in terms of CPU times and quality metrics. Hence, SAICA has less CPU time in all test problems compared to IWO, and it has less gap with the exact solution in all test problems. Therefore, SAICA produces better solutions in terms of both time and gap.