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Abstract

Writer identification is experiencing a revival of activity in recent years and

continues to attract great deal of attention as a challenging and important area

of research in the field of forensic and authentication. In this work, we in-

troduce a reliable off-line system for text-independent writer identification of

handwritten documents. Feature engineering is an essential component of a

pattern recognition system, which can enhance or decrease the classification

performance. A well-designed and defined feature extraction method improves

the classification task. This paper proposes, for feature extraction, an effec-

tive, yet high-quality and conceptually simple feature image descriptor referred

to as Cross multi-scale Locally encoded Gradient Patterns (CLGP). The pro-

posed CLGP feature extraction method, which is expected to better represent

salient local writing structure, operates at small observation regions (i.e., con-

nected component sub-images) of the writing sample. CLGP histogram feature

vectors computed from all these observation regions in all writing samples are

considered as classification inputs to identify query writers using the Nearest

Neighbor Classifier (1-NN). Our system is evaluated on six standard databases

(IFN/ENIT, AHTID/MW, CVL, IAM, Firemaker, and ICDAR2011) including

handwritten samples in Arabic, English, French, Greek, German, and Dutch
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languages. Comparing the identification performance with old and recent state-

of-the-art methods, the proposed system achieves the highest performance on

IFN/ENIT, AHTID/MW, and ICDAR2011 databases, and demonstrates com-

petitive performance on IAM, CVL, and Firemaker databases.

Keywords: Handwritten documents, Text-independent, Off-line writer

identification, Feature extraction, Dissimilarity measure, Hamming distance.

1. Introduction

HANDWRITING is considered as one of the effective and reliable compo-

nents of behavioral biometrics. Contrary to the electronic and printed doc-

uments, handwriting carries much more distinguishing information about the

person who made it. The writing shape and its characteristics extensively vary

from one person to another. This is termed and known as the inter-class vari-

ance. For the intra-class variance, the writing style characteristics are too sen-7

sitive to high intra-variable handwriting. Effectively, a person will not produce

the writing style in exactly the same way twice. This is considerably due to

many factors like mood, time, space (geographical location), writing speed, and

writing medium, etc. Handwriting analysis is an interesting and challenging area

of research in the field of pattern recognition, which attracted a considerable

attention in the last decades for psychologists, graphologists, forensic experts,

and historians.14

Generally speaking, most of the approaches reported in the field of pattern

recognition have focused on converting handwritten texts into uniform represen-

tation comprehensible by machine and easily reproducible by a word process-

ing software. This field has become an important area of research with many

scientific/technical locks and application challenges/potential. One of the main

objective of these researches is to propose new concepts and approaches for hand-

writing analysis, and develop reliable recognition systems, which can be learned21

and applied to different writing styles. Thanks to technological advances, re-

search on handwriting recognition [1] covers, in full expansion, a wide range of
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applications. One can quote on-line/off-line verification of handwritten signa-

tures [2], handwritten musical scores for writer identification [3], on-line/off-line

writer identification [4, 5, 6], classification of ancient documents [7], smart meet-

ing rooms for writer identification [8], and forensic document analysis to detect

the true author of a particular handwritten document [9]. Moreover, the need28

to identify the authenticity of unknown handwritten samples keeps growing like

in the case of identifying the responsible for fraudulent and threatening letters,

finding the person behind ransom notes, determining as a business analyst the

authenticity of a particular agreement, and even more. The presented paper

deals with the handwriting based writer identification. This means to iden-

tify the person who has produced a signature or handwritten text since there

is no ideal framework that can effectively model the overall within-writer and35

between-writer variability. This made the writer identification task more chal-

lenging to handle and characterize such extreme variations. Writer identification

is an area of research, which is drawing more interest with growing need for the

development of biometric systems for many security applications.

The motivation of this work comes from the need to improve behavioral bio-

metric tasks, which have been mainly used for writer identification to enhance

modern eras security and forensic applications. This can be done by develop-42

ing near to real time, effective, and robust machine learning approaches based

systems. In recent years, writer identification has drawn great attention among

the scientific community. There are many benefits and reasons that maintain

the continuous study of handwriting patterns for writer identification. From

the application point of view, one of the main benefits of handwriting based

writer identification is that human intervention is minimized. For instance, old-

est techniques used by forensic examiner are onerous. With the appearance of49

computerized systems for handwriting analysis, the writer identification task is

improved and the search space to compare, match, and identify the authenticity

of unknown documents is reduced. Another important need for writer identi-

fication emerges from the fields of security and biometric verification. By this,

we refer to the potential use of handwritten words or small sentences to enhance
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real world security applications in mobile and internet based environments. To

investigate the writer identification task, well established benchmarks reported56

in the literature are used to evaluate writer identification algorithms. These

databases carry rich handwriting data with diverse scripts and languages.

Writer identification is a challenging task considered in several fields of ap-

plication starting with handwriting-image pre-processing to biometric measure-

ment through classical handwriting classification processes. The present work

comes then to contribute for the resolution of numerous challenges posed by

these various problems.63

In the same context, institutes like the National Institute of Standards

and Technology (NIST) and International Association of Pattern Recognition

(IAPR) provide many programs that promote research in the field of pattern

recognition and computer vision. They regularly organize competitions to re-

ward the best performing learning systems. This paper proposes to be in the

middle of these international competitions, which continue to take more interest

at the scientific, societal, and economic levels.70

Writer identification is performed using the “one-to-many” recognition tech-

nique within a large handwritten database. It is a learning method that mainly

relies on pattern recognition and machine-learning approaches to characterize

the writing style of each writer. It consists of generating a set of candidates

sorted in classes, and whose writing style is similar to the questioned sample

to be tested. Writer identification is one of the highly challenging problems in

computer vision and artificial intelligence fields. Even with small subset of sam-77

ples or a reduced number of writers in experiments, it is still difficult to achieve

higher identification rates on the most popular handwritten databases. Nowa-

days, computerized algorithms actually facilitate the writer identification task

by assisting writing analysts and forensic experts to reduce the search space in

comparing and matching particular handwritten samples within large reference

base.

Writer identification systems can be differentiated according to the nature84

of the available data: on-line and off-line data. The former method employs
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temporal and spatial characteristics of the writing, captured through digitiz-

ing acquisition devices at the real time of the writing (e.g. Anoto pen). These

characteristics are transmitted to computers for evaluation using a specific trans-

ducer device, i.e., transforming dynamic writing movement such as the order of

strokes, trajectory, altitude, velocity, writing time and pen pressure etc., into

signal sequence processed by computers. On-line approach-based writer identi-91

fication is expected to achieve, compared with off-line, better performance since

many significant features of the writing are available in the feature extraction

stage. However, off-line approach-based writer identification remains challeng-

ing and difficult research issue, which can be defined as a static process that

typically uses digitized handwritten images as input samples (present an al-

lographic and texture variation). Off-line identification exploits then different

image processing and segmentation techniques to improve the system perfor-98

mance to highly characterize the writing variability.

Depending on how the writing content is available in the reference base,

off-line approach-based writer identification can be further subdivided into two

main types: text-dependent and text-independent. Text-dependent methods

deal with the textual content of the writing where different writers are asked to

produce the same fixed handwritten texts (e.g. signature verification). Gener-

ally, these methods provide high identification rates but they are often inappli-105

cable in many practical cases because of their constraint imposed on the textual

content, i.e., the same handwritten text is exactly the same in both training

and testing sets. In contrast, since the writing styles of different writers are vi-

sually distinctive, text-independent methods, for wider applicability, are robust

against content and employ any particular text to recognize the writing style.

Feature engineering is a fundamental stage in writer identification, which

uses several techniques to handle and capture local variations of the charac-112

ters shape and between-writer style variability. Indeed, extracting such extreme

variations enhances the quality of the identification task and reduce the misclas-

sification. This is conditioned by the ability of the evaluated feature approach in

characterizing the handwritten samples. Features used by most of well-known
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writer identification systems are classified in several ways. Conventionally, the

most straightforward one is to categorize them into structural or textural. Struc-

tural approaches describe structural properties of the writing (peculiarities of119

writing) considered as purely computational features. One can cite, for instance,

inter- and intra-word distance, inclinations, ascender slant, fissure angles, and

average line height, etc., [10, 11, 12, 13]. Structural features allow achieving

high identification accuracy. However, they are costly in processing time and

difficult in implementation and administration. As regards textural features,

the handwritten sample is simply proceeded as a texture image and not as writ-

ing. In this case, a set of useful features are either extracted within blocks,126

regions, fragments, word, text line or the whole handwriting image [14, 15, 16].

Texture analysis is a topic of research, which has been widely developed for

many years. Bertolini et al. [15] used textural features LBP- and LPQ-based

SVM classifier to improve the writer identification and verification tasks. The

authors demonstrated the robustness of LBP and LTP descriptors in describing

the writing variability, and this thanks to their effectiveness and applicability

in different applications. These primarily include texture classification [17, 18]133

and face recognition [19, 20]. Likewise, the work presented in [16] defined a

set of textural features captured by Grey Scale Co-occurrence Matrix (GSCM)-

and Multi-channel Gabor Filtering technique (MGF)-based weighted Euclidean

distance (WED) and (K-NN) classifiers. In the same manner, Chawki et al.

[14] proposed global approach based on texture analysis. The authors applied

standard nearest-neighbor classifier based on Grey Level Run Length matrix

(GLRL) and Grey Level Co-occurrence Matrix (GLCM) to capture texture fea-140

tures from Arabic handwritten. As introduced in [21], it is also possible to

combine both structural and textural features for better characterization of the

writing style.

Although many works have addressed writer identification, this problem re-

mains challenging due to the style variability between writers and the large

sensitivity of characters shape. Nowadays, several competitions for writer iden-

tification and handwritten recognition allow researchers to regularly compare147
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and evaluate their systems, as well as produce more efficient and robust ap-

proaches that would provide high identification performance while reducing the

processing time. Despite the fact that many existing approaches have been de-

veloped for writer identification, especially Latin handwritten, very few works

have focused on the Arabic one. It has its own properties and writing charac-

teristics, which present some difficulties for the existing systems:

1. Arabic script uses three-letter roots where vowels are not always written.154

This makes the reconstruction of handwritten words a difficult task.

2. Diacritics accompany each Arabic word. Thus, in the pre-processing stage,

these signs can be automatically removed when using segmentation tech-

niques, which might afterward influence the system performance in iden-

tifying the writing style.

3. The same Arabic character can be written in different forms depending on

its place within the word or syllable. Moreover, Arabic is a cursive writing161

where character shapes are visually tilted on the line and not vertical like

most other languages.

In the last years, the computer vision community was affected by the birth

of deep learning. Since its appearance, this technique achieved existing state-of-

art performance in many computer vision tasks even in those in which research

was stuck including writer identification. The first writer identification meth-

ods that employed deep learning techniques were introduced in [22],[23], [24],168

and [25]. These approaches used, for each input patch image, the activation

functions of one of last fully connected layers of a trained Convolutional Neural

Network (CNN) as a feature descriptor. Afterward, the patches are combined

to generate a final feature vector for the complete handwriting document im-

age. Fiel and Sablatnig [22] used convolutional neural network (CNN) activa-

tions obtained from the last layer of a deep CNN, which was trained by word-

and line-segmentation obtained from the IAM database. The authors reported175

(at that time) good performance results on ICDAR2011 (score of 94.7%) and

CVL (score of 98.9%) databases. However, their system showed worse result
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on the ICDAR2013 dataset (score of 88.5%). Christlein et al. [23] trained a

convolutional neural network (CNN) to learn the hidden layer activations, and

used GMM supervector for classification to encode and match the CNN feature

vectors. Another interesting work introduced by the same authors in [24] em-

ployed CNN activation features extracted from LeNet and ResNet CNN models,182

and trained linear exemplar support vector machines (E-SVM) to identify the

writer of each query sample. Xing and Quiao [25] designed multistream CNN

structure consisting of two branches sharing the convolutional layers. i.e., two

non-overlapping windows of an input line are used as inputs for the network.

Their framework learned automatic features from the last fully FC7 connected

layer on IAM database. Recently, Christlein and Maier [26] used pre-trained

Convolutional Neural Network (ResNet-20) (trained on the benchmark ICDAR189

2013) to learn the activation features. These features are PCA-whitened, en-

coded using VLAD encoding, and compared using the cosine distance function.

Likewise, the work introduced in [27] proposed the use of a feature descriptor

learned by a triplet Convolutional Neural Network for writer identification and

retrieval. More recently, Chen et al. [28] proposed a semi-supervised feature

learning approach for off-line writer identification. They introduced a weighted

label smoothing regularization (WLSR) method for data augmentation that as-196

signs a weighted uniform label distribution to extra unlabeled data.

In order to learn how to classify images of a particular application, deep

learning approaches principally require large labeled training data, which is not

always available in many scenarios. In this case, traditional methods perform

better than or equivalent to deep learning. Despite that deep learning methods

come at high computational and experimental cost, the main criticisms of these

approaches reported by the computer vision community can be outlined in the203

following points: (i) It’s found in [29, 30] that the major inconvenient of deploy-

ing a classification system using CNNs based deep learning method, remains in

their high computational complexity and the difficulties experienced to find the

optimal parameters. Deep learning methods also require higher computational

time (in all classification steps) than hand-crafted descriptor based-systems; (ii)
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According to Hu et al. [31], CNN features perform worse than hand-crafted

descriptors. Similarly, Bekhouche et al. [32] demonstrated that the best per-210

formances achieved by deep learning approaches cannot be always guaranteed.

The work published in Chen et al. [33] justified that deep learning methods

still lack much of the functionality needed for realizing the optimum classifier

entirely.

Most of systems developed for writer identification of Arabic handwritten are

classic in terms of adopted processes, with more or less consistent performance

in characterizing the writer individuality. Abdi and Khemakhem [34] intro-217

duced a grapheme-based approach for Arabic off-line text-independent writer

identification and verification. The authors used beta-elliptic model, which

achieved an identification accuracy of 90.02% on IFN/ENIT database (411 writ-

ers) considered as one of the most popular Arabic databases reported in the

literature. Similarly, Hannad et al.[35] developed an effective text-independent

writer identification approach for off-line handwritten documents. The authors

used handcrafted descriptors to extract texture information within small writing224

fragments. Their method allows providing high performance (an identification

rate of 94.9%) on IFN/ENIT database. Recently, the writer identification sys-

tem proposed in [36] relies on Bagged Discrete Cosine Transform descriptor to

characterize the writing style. This technique has proved to be particularly effi-

cient on both English IAM (score of 97.2%) and CVL (score of 99.6%) databases.

However, it performed worse on the Arabic script (IFN/ENIT and AHTID/MW

databases with scores of 76% and 71.6% respectively). More recently, Khan et231

al. [37] presented an efficient off-line text-independent writer identification sys-

tem, which combined Scale Invariant Feature Transform (SIFT) and RootSIFT

descriptors in a set of Gaussian mixture models (GMM). They evaluated their

system on six different handwritten databases, and reported high identification

rates (97.85%, 97.28%, 95.60%, 99.03%, 97.98% and 100% on IAM, IFN/ENIT,

AHTID/MW, CVL, Firemaker, and ICDAR2011 databases respectively).

This work is about off-line text-independent writer identification of English,238

Arabic, French, Greek, Dutch, and German handwritten texts (document or
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set of word/text line images). Our learning-based approach exploits local re-

gions in the writing sample where a set of connected component sub-images are

extracted from each handwriting sample. Afterward, each connected compo-

nent sub-image is fed to the proposed Cross multi-scale Locally encoded Gra-

dient Patterns (CLGP) operator to compute its feature histogram vector. The

writer identification stage (classification) is a dissimilarity measure, which em-245

ploys Hamming distance metric to compare feature histograms of a particular

query handwritten sample with those of all referent samples in the training set.

We evaluated the overall system on six public standard handwritten bench-

marks: Arabic IFN /ENIT [38], Arabic AHTID/MW [39], English CVL [40],

ICDAR2011 (hybrid-language) [41], English IAM [42], and Dutch Firemaker

[43]. Experimental results demonstrate that our approach is the top-1 perform-

ing system over IFN/ENIT, AHTID/MW, and ICDAR2011 databases, while252

on IAM, CVL, and Firemaker databases, our framework provides competitive

performance with respect to the state-of-the-art (the proposed system is out-

performed by 0.38%, 0.13% , and 3.79% versus the best performing systems in

[37] on Firemaker, in [44] on CVL, and in [37] on IAM databases respectively).

The main contributions of the presented work are listed in the following:

• A novel approach for off-line text-independent writer identification is pro-

posed;259

• A discriminative image descriptor, called Locally encoded Gradient Pat-

terns (CLGP) is proposed;

• Extensive experiments are conducted on six challenging handwritten bench-

marks with diverse languages (IFN/ENIT, AHTID/MW, CVL, IAM, Fire-

maker, and ICDAR2011);

• The proposed system achieved the highest performance on IFN/ENIT,

AHTID/MW, and ICDAR2011 databases, and demonstrated competitive266

performance on IAM, CVL, and Firemaker databases;
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The presented paper is organized as follows. Section 2 introduces the main

stages of the proposed system including the feature representation and classifi-

cation (writer identification) process. Section 3 details the investigated hand-

written databases and their evaluation settings, and compares the experimental

results obtained by our system with those of the literature. Finally, Section 4

presents a summary and outlook on future work.273

2. The proposed writer identification framework

As shown in Fig. 1, the proposed framework consists of three main stages:

image pre-processing and segmentation, feature extraction, and writer identifi-

cation. Each stage is described in details in the following sub-sections.

2.1. Pre-processing and segmentation

In our experiments, handwritten images are considered as scanned images

and their corresponding features are captured and extracted from different re-280

gions of interest called connected components. As illustrated in Fig. 1, input

handwritten images (document or set of word/text line images) are subjected to

the segmentation phase, in which, each sample is cropped into set of connected

components, i.e., all connected neighboring pixels constitute a connected com-

ponent. Afterward, we assigned to each component sub-image a particular label

to mark its corresponding class (writer). Smallest bounding box is associated

around each labeled connected component to quantify the writing content within287

it. Certain non-significant connected components with small size, like diacritics

and accidental writing traces, may be generated during the image segmenta-

tion. These non-representative components are considered as undesired details,

and then are discarded. Note that the handwritten samples available in RGB

format on CVL database (cf. subsection 3.1) are first converted into grayscale

images, and then segmented into component sub-images. Segmentation of an

original Arabic handwritten word image into connected component sub-images294

is illustrated in Fig. 2.
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2.2. Proposed cross multi-scale locally encoded gradient patterns for feature ex-

traction

After image segmentation, we proceed to the feature extraction stage to char-

acterize each connected component by its respective feature histogram. Feature

extraction consists in defining, from scanned handwritten images, synthetic de-

scription of the writing style to be characterized in two-dimensional space. It is301

one of the main steps used in most of writer identification approaches. Feature

representation methods mainly rely on extracting distinctive measures from the

writing, called feature vectors, for better characterization of the writer indi-

viduality and the large variability between handwriting. Indeed, if the feature

method is poorly designed, it will be more difficult to perform correct writer

identification even with the use of best classifiers. At this level, the objective is

to accurately identify, in text-independent mode, the writer of query documents308

based on useful features extracted from the writing images.

Feature extraction process in writer identification aims to extract and char-

acterize common features from handwritten images belonging to the same writer

(class), and consequently indexing them. Since it is challenging to effectively

model the overall within-writer and between-writer variability, extracting pow-

erful and discriminative features to capture such extreme handwritten variations

implies producing high recognition quality with the use of suitable classifiers.315

For that, we propose an effective feature representation named Cross multi-scale

Locally encoded Gradient Patterns (CLGP). Inspired by LETRIST descriptor

introduced in [45], especially the feature extraction part that uses extremum fil-

tering and linear/non-linear transforms, our proposed CLGP feature descriptor

captures texture information of the writing image using transform feature con-

struction, and encodes via HOG operator [46], within non-overlapping blocks,

the obtained texture codes at multiple scales. The distribution of local inten-322

sity gradients within these non-overlapping blocks forms the final CLGP feature

histogram. CLGP is insensitive to noise with the use of low-order Gaussian

derivatives filters and global averaging operator in the scalar quantization step.

It is also robust to image rotation because it adopts a set of transform features,
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which makes it rotationally invariant as well as computationally efficient.

As illustrated in Fig. 3, the proposed feature extraction procedure to com-

pute the final CLGP feature histogram H is outlined in the following steps:329

Step 1: Extremum responses computation (spatial filtering). The

input connected component sub-images are first resized to the same uniform

window size of 80×80 pixels. Subsequently, each resized component sub-image

is convolved with a family of Gaussian derivative filters [47] (up to second order)

to compute extremum (maximum and minimum) responses at multiple scales.

The main objective of this step is to capture useful information contained in the

first- and second-order differential structures at a range of scales. Based on the336

two-dimensional circularly symmetric Gaussian function defined in Eq. (1), we

computed, as given in Eq. (2) and (3), the first and second Gaussian derivatives

at an arbitrary orientation θ.

G (x, y; σ) =
1

2πσ2
exp

(
−x

2 + y2

2σ2

)
(1)

G θ
1 = cos(θ)Gx + sin(θ)Gy (2)

G θ
2 = cos2 (θ)Gxx − sin (2θ)Gxy + sin2 (θ)Gyy (3)

where σ is the scale or the standard deviation. Gx and Gxx are respec-

tively the scale-normalized first and second derivatives of G along the x-axis,

and similarly for Gy , Gxy and Gyy. For each connected component sub-image

I, the first- and second-order image derivatives are defined by: Lx = Gx ∗ I,343

Ly = Gy ∗ I,Lxx = Gxx ∗ I, Lxy = Gxy ∗ I, Lyy = Gyy ∗ I, where ∗ is the con-

volution operator. Formally, the responses of the first and second Gaussian

derivative filters at orientation θ [47, 48] are given in the following:

Iθ1 = Gθ1 ∗ I = cos (θ) Lx + sin(θ)Ly

=
√
L2
x + L2

ysin (θ + φ)
(4)
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∏
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Figure 3: The pipeline of the proposed feature extraction method.



where φ = arctan
(
Lx
Ly

)
and

Iθ2 = Gθ2 ∗ I = cos2 (θ) Lxx − sin(2θ)Lxy + sin2(θ)Lyy

=
1

2

(
Lxx + Lyy +

√
(Lxx − Lyy)

2
+ 4L2

xycos (2θ − ψ)

) (5)

where ψ = arctan
(

2Lxy
Lyy−Lxx

)
. The extremum response values of Iθ1 and Iθ2

over all θ are computed as follows:

Iθ1max =
√
L2
x + L2

y (6)

Iθ2max =
1

2

(
Lxx + Lyy +

√
(Lxx − Lyy)

2
+ 4L2

xy

)
(7)

Iθ2min =
1

2

(
Lxx + Lyy −

√
(Lxx − Lyy)

2
+ 4L2

xy

)
(8)

The extremum responses are computed at Nσ scales. As in [48, 49], the350

number of scales Nσ is experimentally set to Nσ = 3: σ1 = 1, σ2 = 2, and

σ3 = 4.

Step 2: Transorm feature construction. Linear and non-linear oper-

ators are performed on the extremum responses obtained earlier Iθ1max, Iθ2max

and Iθ2min to construct a compact, rotationally invariant, yet discriminative set

of transform features denoted as F = {g, d, s, r} ({g, d} is constructed with lin-

ear combinations of the extremum responses, whereas {s, r} is constructed with357

non-linear ones). The transform feature g referred to as gradient magnitude

is the maximum response of the first directional Gaussian derivative filter.i.e.,

g = Iθ1max =
√
L2
x + L2

y. The second transform feature d, i.e., extrema differ-

ence of maximum and minimum responses of the second directional Gaussian

derivative filter is calculated by:

d = Iθ2max − Iθ2min =
√

(Lxx − Lyy)
2

+ 4L2
xy (9)
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The feature set F encompasses more quantitative measures of the second-

order differential structure defined by the shape index s:364

s =
1

2
− 1

π
arctan

(
−I

θ
2max + Iθ2min
Iθ2max − Iθ2min

)

=
1

2
− 1

π
arctan

 −Lxx − Lyy√
(Lxx − Lyy)

2
+ 4L2

xy

 (10)

The correlation information of first- and second-order differential structures

are characterized using the mixed extrema ration r defined as follows:

r =
2

π
arctan

(
d

g

)
=

2

π
arctan

(
Iθ2max − Iθ2min

Iθ1max

)

=
2

π
arctan

√ (Lxx − Lyy)
2

+ 4L2
xy

L2
x + L2

y

 (11)

Step 3: Quantization and cross-scale joint coding. With the obtained

transform features, scalar quantization step aims to design discriminative and

computationally efficient quantizer to quantify the feature set F into discrete

texture codes. To this end, two types of scalar quantization through simple

binary or multi-level thresholding are conceived. For the feature subset {g, d},371

we performed mean-value based binary ratio quantizer Q1 (.):

y = Q1 (x) =

 0, if x
mx

> k

1, otherwise
(12)

where x ∈ {g, d}, mx is the mean value of the transform feature map of

x, and k is a tunning parameter. Transform feature values of {s, r} are in the

range of [0, 1] (cf. Eqs. (10) and (11)). Thus, we adopted, for the feature subset

{s, r}, simple uniform quantization Q2 (.) defined as follows:

y = Q2 (x) =



0, x ∈ [0, ∆]

1, x ∈ [∆, 2∆]

. . .

(L x)− 1, x ∈ [((L x)− 1)∆, 1]

(13)
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where x ∈ {s, r}, L x is the quantization level (L s and L r for the transform

features s and r respectively), and ∆ = 1/L x is the quantization step. In our378

experiments, we empirically set the parameters related to the scalar quantization

as k = 2, L s = 3 and L r = 5, as proposed in [45].

In the next step, we performed cross-scale joint coding to aggregate the gen-

erated discrete pixel-wise codes obtained by scalar quantization into compact

image feature representation. This is achieved by jointly encoding the texture

codes over all scales, i.e., construct multiple feature code maps across multi-

ple scales (cf. Fig. 3). The first feature code map referred to as Adjacent-385

Scale Coding (ASC) is obtained by jointly encoding the quantized texture

codes of the transform feature subset {g, d, s} across two adjacent scales (e.g.,

( σ1, σ2) , ( σ2, σ3), etc). For the adjacent-scale pair ( σi, σi+1) (i = 1, 2, . . . , Nσ−

1), the feature code map ASC value of pixel (x, y) in the connected sub-image

I is composed as follows:

ci (x, y) =

2∑
j=1

(L s)
j−1

ys (x, y; σi+j−1) +

(L s)
2

 2∑
j=1

(L d)
j−1

yd (x, y; σi+j−1)

+

(L s)
2
(L d)

2

 2∑
j=1

(L g)
j−1

yg (x, y; σi+j−1)


(14)

ys (x, y; σi+j−1), yd (x, y; σi+j−1), and yg (x, y; σi+j−1) being the quantized

texture codes of the transform features s, d, and g at the scale σi, respectively.392

L s, L d, and L g are the quantization levels for features s, d and g, respectively.

We empirically set L s = 3 and L d = L g = 2. Based on ASC coding,

we generated two feature code maps: c1 (i.e., ASC1) at two adjacent scales

( σ1, σ2) = (1, 2), and c2 (i.e., ASC2) at ( σ2, σ3) = (2, 4) (cf. Fig. 3). Next,

we performed another scale joint coding referred to as Full-Scale Coding (FSC),

in which the transform feature subset {r} is jointly encoded over all Nσ scales

(σ1, ..., σNσ ). The feature code map FSC value of pixel (x, y) in the connected399
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sub-image I is computed as follows:

cNσ (x, y) =

Nσ∑
j=1

(L r)
j−1

yr (x, y; σj) (15)

yr (x, y; σj) is the quantized texture codes of the transform features {r} at

the scale σj . L r is the quantization level for features {r}. The third feature code

map c3 (i.e., FSC) is computed at three adjacent scales (σ1, σ2, σ3) = (1, 2, 4).

Step 4: Code maps encoding via HOG operator. As shown in Fig. 3,

the proposed technique is to portion each obtained feature code map into small

spatial regions (blocks), and encode each one of them via HOG operator [46] to406

generate its respective HOG-histogram. The concatenation of histograms of all

regions forms the normalized feature vector corresponding to a particular feature

code map. Afterward, we further concatenated all obtained feature vectors of all

feature code maps to obtain the final CLGP (Cross multi-scale Locally encoded

Gradient Patterns) histogram-based feature representation.

In sum, we obtained three feature code maps, i.e., ASC1, ASC2, and FSC,

where each one of them is scanned top-down and left-right, and is spatially413

divided into small uniform Nb non-overlapping blocks. The HOG histogram is

extracted from each block Bt,t=1,..,Nb (cf. Fig. 3). Given a feature code map

cm,m=1,..,Nσ partitioned into Nb blocks, we computed their respective HOG

feature histograms using gradient detectors. Formally, each pixel of each block

Bmt is convolved with the simple convolution kernel defined as follows:

Grx = Bmt (x+ 1, y)− Bmt (x− 1, y) (16)

Gry = Bmt (x, y + 1)− Bmt (x, y − 1) (17)

Grx and Gry being the horizontal and vertical components of the gradients,

respectively. HOG descriptor is calculated from the occurrences of oriented gra-420

dients, i.e., magnitude and direction, within rectangular non-overlapping cells

(R-HOG) of the feature block Bmt . The gradient orientation θ and magnitude
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M are computed as follows:

M (x, y) =
√
Gr2x +Gr2y (18)

θ (x, y) = tan−1Gry
Grx

(19)

In this work, we used for each block Bmt,t=1,..,Nb
in the feature code map

cm,m=1,..,Nσ , Ncell non-overlapping cells and 9 bin histograms per cell. These

histograms were then concatenated to construct a (Ncell × 9)-dimensional fea-

ture vector V mt,t=1,..,Nb
, which is afterward normalized by applying the L2 block427

normalization [50] given as follows:

hmt =
V mt√

‖V mt ‖
2

+ ε
(20)

hmt is the normalized (Ncell × 9)-dimensional feature vector and ε is a small

value close to zero.

Subsequently, each feature code map cm is henceforth characterized by its

concatenated histogram Hm using Eq. (21):

Hm =

Nb∏
t=1

hmt (21)

where
∏

is the concatenation operator. The three (Nσ = 3) obtained

normalized feature vectors Hm,m=1,..,(Nσ=3) that characterize the three fea-434

ture code maps cm,m=1,..,(Nσ=3) are further concatenated to obtain the final

CLGP histogram-based feature representation H = [H1, H2, H3], which is a

(Ncell × 9×Nb × (Nσ = 3))-dimensional image feature descriptor.

Note that the overall system performance substantially depends on the num-

ber of blocks and cells (Nb and Ncell respectively). Indeed, the optimal values

of these parameters are experimentally determined for each tested database via

extensive experiments (cf. Section 3.3).441
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2.3. Classification (writer identification)

At this stage of our system, we computed a set of feature histograms, which

characterizes all connected component sub-images. In each writing sample, the

number of extracted connected components is equal to the number of feature

histograms.

To perform the identification process, we applied dissimilarity measure-based

1-NN classifier using Hamming distance metric. Different distances includ-448

ing Euclidean, correlation, Bhattacharyya, Cosine, and Hamming are tested

in our experiments using the same proposed classification process. Hamming

distance, which is often used and considered as an efficient distance in writer

identification [35, 51, 52, 4], etc., allows producing relatively high performance

to correctly identify the query writers. Hence, a comparison procedure be-

tween handwritten samples is carried out, i.e, comparing Hamming distances

of the respective feature histograms of one sample taken from the testing set455

and the other one from the training. Considering two handwritten samples,

the reference sample refereed to as Swrf produced by known writer, which is

labeled in the training base Brf by wrf , and the query one to be identified

referred to as Swx , where wx is the unidentified writer label in the testing

set. The testing sample Swx is cropped into connected component sub-images

C
j (j=1,..,Nwx )
wx , which are represented by their corresponding feature histograms

HSwx
= {hC

j
wx

ζ(Cjwx )>ρ
, 1 ≤ j ≤ Nwx}, where ζ(Cjwx) is the number of writing pix-462

els in the component Cjwx and ρ is a small threshold to remove certain diacritics

and accidental writing traces, which represent very small share of writing pixels

(suppressing components with a surface less than ρ pixels (ρ << 50 × 50)).

Nwx = card(Swx) is the number of connected component sub-images extracted

from the testing sample Swx . Similarly, the training sample Swrf is composed

of connected component sub-images C
j (j=1,..,Nwrf )
wrf , which are characterized by

the following set of feature histograms HSwrf
= {h

Cjwrf

ζ(Cjwrf )>ρ
, 1 ≤ j ≤ Nwrf }469

(Nwrf = card(Swrf ) is the number of connected component sub-images in the

training sample Swrf ). Systematically, the classification process performed be-

tween the query Swx and training Swrf handwritten samples is proceeded as
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follows: (i) we computed Hamming distances between each connected compo-

nent Cjwx in the query sample Swx and all the components C
k (k=1,..,Nwrf )
wrf in

the training one Swrf , (ii) the training component that reports the minimum

Hamming distance is the one matching the testing component Cjwx in the query476

sample Swx , and (iii) the final dissimilarity measure DIS(Swx , Swrf ) between

the unidentified sample Swx and the training one (known) Swrf is defined as

follows:

DIS(Swx , Swrf ) =
1

Nwx

Nwx∑
j=1

min{η
(
Cj

wx
, C1

wrf

)
, η
(
Cj

wx
, C2

wrf

)
, . . . ,

η

(
Cj

wx
, C

Nwrf
wrf

)
}

(22)

where η
(
Cjwx , C

k
wrf

)
is the Hamming distance between the connected com-

ponent number j (i.e., Cjwx) in the testing document Swx and the connected

component number k (i.e., Ckwrf ) in the training document Swrf . Hamming

distance function η(·, ·) is given as follows:483

η
(
Cjwx , C

k
wrf

)
=

Dim∑
n=1

|hC
j
wx (n)− h

Cjwrf (n)| (23)

hC
j
wx is the feature histogram of the connected component Cjwx , h

Cjwrf is the

feature histogram of the connected component Ckwrf , and Dim is the feature his-

togram dimension. Writer classification is performed by returning all dissimilar-

ities between query sample Swx and all the training samples Swrf , rf = 1, ...,κ,

where κ is the number of handwritten samples in the training base Brf . As a

classification decision, the writer of the query sample Swx is then identified as

the writer of the sample in the training base Brf , which records the minimum490

dissimilarity:

Writer (Swx) =argmin{DIS (Swx , Sw1
) , . . . ,

, . . . ,DIS (Swx , Swκ}
(24)
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3. Experiments

To evaluate the performance and effectiveness of the proposed system, we

carried out extensive experiments on six handwritten databases: IFN/ENIT

(411 writers/Arabic)[38], AHTID/MW (53 writers/Arabic)[39], CVL (310 writ-

ers/English)[40], IAM (657 writers/English)[42], Firemaker (250 writers/Dutch)[43],

and ICDAR2011 (26 writers/Hybrid-language)[41]. In this section, we present497

the handwritten databases setup, discuss experimental results, provide sensitiv-

ity analysis of the key system parameters, analyze the influence of the number

of writers and number of training samples on the system performance, and

compare our approach to the current state-of-the-art.

The presented writer identification experiments have been performed on two

Alienware Aurora R8 with Core i7-8th Processor 4.6GHz Boost, 12 Threads and

48 GB of RAM, running with Ubuntu 18.04.2 LTS (Bionic Beaver) operating504

system. The proposed system has been implemented in MATLAB R© R2018b

environment with parallel pool toolbox. Experiments reported in this paper

have taken days of computer time that is due to the large scale of handwritten

benchmarks, diversity of experiments, and evaluation protocols.

3.1. Handwritten databases and experimental setup

Following the same databases setup as in [35] for IAM and IFN/ENIT, and

in [37] for AHTID/MW, CVL, ICDAR2011, and Firemaker, we adopted, in this511

work, the following databases setting to have comparable and fair experimental

conditions with the literature:

AHTID/MW. We evaluated the proposed system on 53 writers, where

22896-word images have been gathered for all writers. Whereas AHTID/MW

database is divided into 4 sets of word images, we used three sets for training

and the last one is reserved for testing.

CVL. English CVL database contains 310 writers. Five document samples518

(four in English and one in German) are written by 282 writers, and the remain-

ing 27 writers were asked to fill 7 written documents (six in English and one
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in German). In our experimental study, we only picked the English documents

where four document images given in RGB color format are used for each writer.

We selected one English document for testing while the last three ones are used

for training.

IFN/ENIT. The proposed system is evaluated on the total set of 411 writ-525

ers, where a maximum of 50-word binary images is used per writer. 60% of the

word images are randomly selected for the training set while the remaining 40%

are used for testing.

IAM. English IAM database includes 657 writers, where each one of them

contributed to produce handwritten text line images (length varies between 112

and 2.260 pixels with 256 gray levels). For each writer, we randomly selected

maximum of 14 text line images. Similar to the Arabic IFN/ENIT database, we532

randomly took 60% of the text line images as training set while 40% are used

as testing set.

Firemaker. The Firemaker database consists of document samples with

handwritten text of variable content scanned at 300 dpi, gray-scale and collected

from 250 Dutch subjects, predominantly students. Each writer was asked to fill

four different A4 pages of handwritten text. On page 1, five short paragraphs

were written with normal handwriting, i.e., in lowercase with some capital letters539

at the beginning of sentences and names. Page 2 contains another handwritten

text of two paragraphs with only uppercase letters. On page 3, the writers were

asked to produce “forged” text, whereas on page 4, they were asked to write

and describe the content of a given cartoon in their own words. In experiments,

we only selected two pages: page 4 is used for testing while page 1 is used for

training.

ICDAR2011. The ICDAR2011 database contains English, French, Greek,546

and German handwritten texts produced by 26 writers. Two full pages of hand-

written text for each language, giving in total 8 pages per writer. In our eval-

uation, we used a subset of the ICDAR2011 database, called CICDAR2011

dataset, which is arranged by cropping only the first two text lines from each

handwritten page. The first five pages are used as training set and the other
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three pages are used as testing one.

In order to deeply investigate the performance stability of our system on553

AHTID/MW and CVL databases, we carried out full four-fold cross-validation

scheme using four sets of AHTID/MW database, and four handwritten docu-

ments per writer in the case of CVL database.

3.2. Classification results

The system performance is measured by writer identification accuracy, which

is defined as the percentage of correctly classified query samples in the testing

set. For all the tested databases, we conducted all experiments on the complete560

set of writers (classes). As previously pointed out, on CVL and AHTID/MW

databases, unlike most state-of-the-art systems that used the standard evalu-

ation protocol, i.e., only one split into training and testing sets is evaluated,

we adopted full 4-fold cross-validation setup where four split permutations are

generated for each writer. Thus, the overall process is repeated 4 times, each

time with a different split. The final result is reported as the average accuracy

over the four splits (of the training and testing sets). The main objective of567

cross-validation scheme is to deeply assess the system performance to effectively

characterize the writing style of each writer.

In order to illustrate the ability of the proposed CLGP feature method, its

feasibility and effectiveness in characterizing the large variability of handwritten,

we compared CLGP method with block-wise local binary count (BW-LBC)

operator proposed in our previous work [51], LBP [17], LTP [53], LETRIST [45],

and LPQ [18] feature methods (LBP, LPQ, and LTP are the most well-known574

handcrafted descriptors used in writer identification problem [51, 35, 54, 15, 4]).

Table 1 reports the Top-1, Top-3, and Top-5 writer identification rates

achieved by the proposed CLGP method along with those of LETRIST, LPQ,

LTP, LBP, and our previous work in [51] on IFN/ENIT, IAM, Firemaker, and

ICDAR2011 databases. Table 2 depicts the Top-1 average identification rates of

CLGP, BW-LBC [51], LPQ, LTP, LETRIST, and LBP feature methods over the

four tested splits on AHTID/MW and CVL databases. The proposed CLGP581

25



operator impressively and systematically performs the best against the eval-

uated descriptors on all the tested databases. One can see the high gap in

performance between the proposed descriptor and LETRIST one, from which

our method has been inspired. Furthermore, it can be seen from Table 2 that

CLGP operator illustrates steady classification performance across all splits on

CVL and AHTID/MW databases as the identification accuracies tend to con-

verge their average.588

As stated in Section 2.2, the proposed CLGP is a (Ncell×9×Nb×(Nσ = 3))-

dimensional image feature descriptor. Indeed, the setting of the number of

blocks Nb and number of cells Ncell has an influence on the overall system

performance. CLGP classification results reported in Tables 1 and 2 corre-

spond to the optimal setting of these two parameters (Nb and Ncell), which

are empirically determined for each tested database through the comprehensive

evaluation detailed in Section 3.3). The number of blocks Nb = 4 with Ncell = 9595

are set as the optimal setting values for IAM (score of 94.06%), CVL (average

score of 99.51%), Firemaker (score of 97.60%), ICDAR2011 (score of 100%), and

AHTID/MW (average score of 99.53%) databases, resulting in 972 bins of the fi-

nal CLGP-feature histogram (according to Dim = Ncell×9×Nb×(Nσ = 3)). As

regards IFN/ENIT database, the best Top-1 identification accuracy of 98.54%

is achieved when using CLGP method as feature extraction operator with a

number of blocks Nb = 1 (segmentation into blocks is unnecessary) and number602

of cells Ncell = 16. In this case, we obtained reduced length of CLGP feature

histogram (Dim = Ncell × 9× 1× (Nσ = 3) = 432).

The processing time in seconds taken by the proposed system to classify

one writer (class) using our proposed feature with different feature methods on

IAM, IFN/ENIT, CVL, Firemaker, AHTID/MW, and ICDAR2011 databases

is illustrated in Fig. 4. One can see that the recorded processing time increases

when evaluating feature methods with high histogram dimension. Evidently,609

this constraint is quite natural as the overall system necessitates more time to

compare and classify the writing samples when using their respective Hamming

distances. In this experiment, BW-LBC descriptor [51] is the most computa-
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tionally faster method (IAM: 4.9s, CVL: 7.8s, AHTID/MW: 3.9s, IFN/ENIT:

4.1s, Firemaker: 6.8s, ICDAR2011: 9.4s) thanks to its low-feature histogram

size (49 different patterns over all tested databases). From Fig. 4, it is clearly

Table 1: Classification rates on IFN/ENIT (411 writers), IAM (657 writers), Firemaker (250

writers), and ICDAR2011 (26 writers) databases. The highest classification scores are in bold.

Feature representation
Database

Classification accuracy (%)

method Top-1 Top-3 Top-5

CLGP

IFN/ENIT 98.54 100 100

IAM 94.06 97.25 99.23

Firemaker 97.60 98.40 99.2

ICDAR2011 100 100 100

BW-LBC[51]

IFN/ENIT 97.56 99.27 100

IAM 90.11 93.15 94.98

Firemaker 94.40 97.60 98.40

ICDAR2011 97.43 98.71 100

LPQ
IFN/ENIT 75.42 77.12 78.08

IAM 75.49 78.68 80.66

Firemaker 37.20 54.40 64

ICDAR2011 88.46 98.71 98.71

LTP
IFN/ENIT 83.45 85.63 86.59

IAM 73.51 76.85 78.68

Firemaker 30.4 45.6 54

ICDAR2011 82.05 96.15 100

LBP
IFN/ENIT 71.29 74.43 76.11

IAM 68.49 72.43 75.01

Firemaker 33.60 48 55.60

ICDAR2011 79.48 96.15 98.71

LETRIST
IFN/ENIT 77.85 80.29 81.99

IAM 79.14 80.66 82.19

Firemaker 35.60 52 60.4

ICDAR2011 85.89 97.43 98.71
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Table 2: Classification rates on CVL (310 writers) and AHTID/MW (53 writers) databases.

The highest classification scores are in bold

Feature representation
Database

Split Average

method Sp.1 Sp.2 Sp.3 Sp.4 accuracy

CLGP
CVL 99.35 99.67 99.67 99.35 99.51%

AHTID/MW 100 100 100 98.11 99.53%

BW-LBC[51]
CVL 98.7 99.03 97.41 98.38 98.38%

AHTID/MW 100 100 100 98.11 99.53%

LPQ
CVL 83.82 78.64 69.9 78.32 77.67%

AHTID/MW 69.81 58.49 69.81 73.58 67.92%

LBP
CVL 75.4 71.2 65.69 72.49 71.19%

AHTID/MW 64.15 50.94 66.04 69.81 62.73%

LTP
CVL 85.44 79.29 74.11 82.52 80.34%

AHTID/MW 66.04 52.82 67.92 71.70 64.62%

LETRIST
CVL 85.16 78.70 73.22 81.29 79.59%

AHTID/MW 67.92 54.71 69.81 69.81 65.56 %

observed that the proposed CLGP feature method greatly outperformed (in616

terms of identification accuracy) all the other tested feature methods over all

evaluated databases. CLGP certainly requires more time to classify the query

writers compared to BW-LBC descriptor. However, the processing time is not

always a key performance indicator in the off-line writer identification task be-

cause no real-time applications are needed (off-line mode). Moreover, none of

old and recent state-of-the-art systems reported the processing time of their

overall evaluations.623

3.3. CLGP-Key parameters analysis

This subsection introduces findings of an extensive experiment to evaluate

the overall system performance with respect to the number of blocks Nb and

number of cells Ncell. These two settings are the key user-specified parameters

of the proposed CLGP feature method.
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Figure 4: The processing time (in seconds) taken by the proposed system to identify the writer

N◦1 (class N◦1) from IAM, Firemaker, CVL, IFN/ENIT, ICDAR2011, and AHTID/MW

databases.



The identification accuracy is recorded for each pair values of (Nb, Ncell)

where the Nb parameter is set from 1 to 16 blocks for each setting of the pa-630

rameter Ncell. Figs. 5, 6, 7, 8, 9, and 10 illustrate the system performance

as a function of the parameter (Nb, Ncell) on IFN/ENIT, IAM, CVL, Fire-

maker, ICDAR2011, and AHTID/MW databases, respectively. To assess all

possible scenarios and evaluate the system stability performance on CVL and

AHTID/MW databases, the average accuracy is reported after 4-fold cross vali-

dation scheme for each pair of values (Nb, Ncell). Based on the results recorded

in Fig. 5, one can clearly see that the highest identification rate on IFN/ENIT637

database (score of 98.54%) is achieved with the following two couple of values:

(Nb = 1 × 1, Ncell = 16) and (Nb = 2 × 2, Ncell = 16). Since these two pa-

rameter values performed better on IFN/ENIT database, we opted for the first

one, which corresponds to 432-dimensional CLGP feature histogram, resulting

in shortened classification computation time. As shown in Figs 6 and 7, the

two pair values of (Nb = 2 × 2, Ncell = 9) and (Nb = 2 × 2, Ncell = 16) prove

to be the best settings on IAM and Firemaker databases with scores of 94.06%644

and 97.6% respectively. Thus, like IFN/ENIT database, we chose the setup of

(Nb = 2 × 2, Ncell = 9) as an optimal value, which results in CLGP-feature

dimension of 972 according to Dim = Ncell × 9 × 1 × (Nσ = 3). Likewise,

(Nb = 2 × 2, Ncell = 9) and (Nb = 3 × 3, Ncell = 9) parameter configurations

empirically seem to be the suitable way to characterize the writing style on

AHTID/MW database, as they allow achieving the highest average score of

99.53% (cf. Fig. 8). Obviously, we set the first parameter value to get reduced651

length of the CLGP feature histogram (972 bins). In the case of ICDAR2011

database (cf. Fig 9), the highest identification rate of 100% is achieved with

the settings of (Nb = 2 × 2, Ncell = 9) and (Nb = 4 × 4, Ncell = 4). The

optimal value of (Nb = 2 × 2, Ncell = 9) is set as the one minimizing the di-

mensionality of the CLGP-feature histogram. On CVL database, the setting of

(Nb = 2 × 2, Ncell = 9) allows providing the highest performance with a score

of 99.51% in average accuracy as shown in Fig 10. The variation of the clas-658

sification rate is due to the variation of number of blocks and number of cells.
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For an acceptable writer identification performance, we used uniform block and

cell sizes to comprise considerable amount of writing features, i.e., windows size

must be wide enough and appropriate to ensure better characterization of the

writing style within it.
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Figure 5: System performance with respect to the number of blocks Nb and number of cells

Ncell on IFN/ENIT database.
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Figure 6: System performance with respect to the number of blocks Nb and number of cells

Ncell on IAM database.
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Figure 8: System performance with respect to the number of blocks Nb and number of cells

Ncell on AHTID/MW database.



75

80

85

90

95

100

1 4 9 16 25 36

100%100%

1×1 2×2

3×3 4×4

Number of cells (𝑵𝒄𝒆𝒍𝒍)

W
ri

te
r

id
e

n
ti

fi
c

a
ti

o
n

 a
c

c
u

ra
c

y
(%

)

Number of 

blocks 𝑵𝒃

Figure 9: System performance with respect to the number of blocks Nb and number of cells

Ncell on ICDAR2011 database.

35



99,51%

1×1 2×2

3×3 4×4

W
ri

te
r

id
e

n
ti

fi
c

a
ti

o
n

 a
v
e

ra
g

e
a

c
c

u
ra

c
y

(%
)

Number of 

blocks 𝑵𝒃

Number of cells (𝑵𝒄𝒆𝒍𝒍)

4 9 16 25 361

Figure 10: System performance with respect to the number of blocks Nb and number of cells

Ncell on CVL database.

3.4. Comparative evaluation of the proposed system with the state-of-the-art

Recent advances in image processing and machine learning allow developing665

new applications and approaches in off-line text-independent writer identifica-

tion. This would produce higher performance in identifying the writer indi-

viduality while reducing the processing time. However, it is still difficult to

perform direct one-to-one performance comparisons with the state-of-the-art,

and this is principally due to the two following limitations: (i) several existing
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works are heterogeneous with regard to the tested database setup, i.e., only one

subset of the evaluated handwritten database is used in evaluations (e.g. IAM672

and IFN/ENIT databases [55, 14, 56]), and (ii) different number of handwritten

samples (for training and testing) per writer is used. To allow fair and meaning-

ful performance comparison of our system with recently proposed approaches

on this subject, only well-known systems, which are evaluated on the total set

of writers for the six tested databases are considered in our comparative evalu-

ation. As regards the standard databases protocols, we adopted the same setup

as in [35] for IAM and IFN/ENIT, and in [37] (nearest competitive system) for679

AHTID/MW, CVL, ICDAR2011, and Firemaker.

Tables 3 and 4 summarize the Top-1 classification results obtained by our

system together with those of the current state-of-the-art systems on IFN/ENIT,

IAM, CVL, ICDAR2011, Firemaker, and AHTID/MW databases.

• Results on IFN/ENIT. From Table 3, one can clearly see that the

proposed system provides the best performance (Top-1 score of 97.81%)

among all compared systems investigated. The next top systems are the686

approaches presented in [4], [51], and [37] with classification rates all being

about 0.73%∼ 1.26% lower than the proposed one.

• Results on CVL. On this database, most of the state-of-the-art systems

are competitive. Our system allows achieving, in comparison with the ma-

jority of the state of the art systems including deep learning based ones,

the highest average accuracy of 99.51% and maximum score of 99.67%

in split.2 and split.3 (cf. Tables 2 and 3). Our method is slightly out-693

performed by only two deep learning approaches [44, 57], but it is still

competitive (99.67% (ours) vs. 99.7% [57] and 99.67% (ours) vs. 99.8%

[44]), as reported in Table 3.

• Results on AHTID/MW. As shown in Table 3, the proposed system

provides efficient and reliable solution to accurately identify the questioned

writers from AHTID/MW database. Our framework outperforms all the

literature approaches with an average accuracy of 99.53%.700
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• Results on IAM. As summarized in Table 4, the system introduced in

[37] performs best on IAM database (score of 97.85%), closely followed by

Xing and Qiao [25], and our system with classification rates of 97.3%, and

94.06% respectively. Nonetheless, our proposed system surpasses all other

approaches investigated [58, 51, 59, 4]. The drop in performance on IAM

database is related to the image segmentation step. Since handwritten

images of IAM are filled with an inhomogeneous background (gray-scale707

images), some writing traces are lost during the segmentation process and

some connected components are then incorrectly segmented. This affects

the ability of the system to accurately identify the query writers.
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Table 3: Performance comparison with the well-known writer identification systems on

IFN/ENIT, CVL, and AHTID/MW databases.

Method Year Language Database Writers Writer identification

accuracy

Khan et al. [36] 2017 Arabic IFN/ENIT 411 76%

Abdi and Khemakhem [34] 2015 Arabic IFN/ENIT 411 90.02%

Hannad et al. [35] 2016 Arabic IFN/ENIT 411 94.89%

Khan et al. [37] 2019 Arabic IFN/ENIT 411 97.28%

Chahi et al. [51] 2018 Arabic IFN/ENIT 411 97.56%

Chahi et al. [4] 2019 Arabic IFN/ENIT 411 97.81%

Proposed method Arabic IFN/ENIT 411 98.54%

Kanetkar et al. [60] 2016 English CVL 308 98.1%

Fiel and Sablatnig [61] 2015 English CVL 309 98.9%

Khan et al.[37] 2019 English CVL 310 99.03%

Chen et al. [28] 2019 English CVL 310 99.2%

Christlein, Vincent, et al. [23] 2015 English CVL 310 99.4%

Khan et al.[36] 2017 English CVL 310 99.6%

Christlein and Maier [26] 2018 English CVL 310 99.5%

Y. Tang and X. Wu [57] 2016 English CVL 310 99.7%

Mohammed et al. [44] 2017 English CVL 310 99.8%

Chahi et al. [51] 2018 English CVL 309
99.03% (1 split)

98.38% (4 splits)

Chahi et al. [4] 2019 English CVL 309
99.35% (1 split)

98.62% (4 splits)

Proposed method English CVL 310
99.67% (1 split)

99.51% (4 splits)

Khan et al. [36] 2017 Arabic AHTID/MW 53 71.6%

Khan et al. [37] 2019 Arabic AHTID/MW 53 95.60%

Chahi et al. [51] 2018 Arabic AHTID/MW 53 99.53%

Proposed method Arabic AHTID/MW 53 99.53%
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Table 4: Performance comparison with the well-known writer identification systems on IAM,

Firemaker, and ICDAR2011 databases.

Method Year Language Database Writers Writer identification

accuracy

Chahi et al. [51] 2018 English IAM 657 90.11%

Nguyen et al. [62] 2019 English IAM 650 90.12%

Chahi et al. [4] 2019 English IAM 657 91.17%

Khalifa et al. [59] 2015 English IAM 650 92%

Durou et al. [58] 2019 English IAM 650 92%

Xing and Qiao [25] 2016 English IAM 657 97.3%

Khan et al. [37] 2019 English IAM 650 97.85%

Proposed method English IAM 657 94.06%

He et al. [63] 2015 Dutch Firemaker 250 89.80%

Ghiasi et al. [64] 2013 Dutch Firemaker 250 91.80%

Nguyen et al. [62] 2019 Dutch Firemaker 250 92.38%

Khan et al. [37] 2019 Dutch Firemaker 250 97.98%

Proposed method Dutch Firemaker 250 97.60%

TEBESSA method. [41] 2011 Hybrid ICDAR2011 26 87.50%

TSINGHUA method. [41] 2011 Hybrid ICDAR2011 26 90.90%

Fiel and Sablatnig [22] 2015 Hybrid ICDAR2011 26 94.7%

Mohammed, Hussein et al. [44] 2017 Hybrid ICDAR2011 26 98.6%

Khan et al. [37] 2019 Hybrid ICDAR2011 26 100%

Proposed method Hybrid ICDAR2011 26 100%

• Results on Firemaker and ICDAR2011. Using our proposed sys-

tem, a Top-1 identification accuracy of 97.60% is achieved on Firemaker

database, slightly outperformed by the nearest best performing system in

[37] by about 0.38% (cf. Table 4). On ICDAR2011 database, the proposed714

CLGP method allows attaining 100% in Top-1 writer identification accu-

racy, which outperforms all experimental rates reported in the literature

(including those performed by deep learning based methods).
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As summarized in Tables 3 and 4, our approach is outperformed only by

0.38% and 0.13% versus the best performing systems on Firemaker and CVL

(one writer is misclassified on both databases). On these two datasets, we believe

that the slight drop in performance is due to the pre-processing stage when we721

particularly resized the connected component sub-images into the same uniform

window size. The original component sub-images comprise different writing

characters with different shapes stored in varied bounding boxes. Indeed, after

image resizing, some of connected components are either enlarged or compressed,

which impacts the CLGP feature method to correctly characterize the writing

content within these resized components. Note that the reason for the use of

uniform window size is to normalize the number of blocks (Nb) in each connected728

component, which is the key parameter of the proposed CLGP. This implies

the normalization of the final feature vector dimension according to (Dim =

9 × Ncell × Nb × Nσ). To address this point, we intend, in future work, to

perform dynamic sub-image window resizing based on the original pixels of each

connected component. The objective is to obtain uniform regions of interest

(from scanned documents) without overwriting the original shape of the writing

content.735

The above experimental results show that our proposed system works well

for six different challenging languages (i.e. English, Arabic, French, German,

Dutch, and Greek). This demonstrates that our system is language insensitive

and robust to characters shape variation with complex structures.

3.5. Stability of the system performance according to the number of writers

In this part, we evaluated and investigated, through extensive experiments,

the stability of the system performance by varying the number of writers Nbw742

from 10 to the total set of writers. The Top-1 identification accuracy with

respect to the number of writers Nbw on IAM database is depicted in Fig.

11. For BW-LBC and CLGP feature methods, it can be seen that gradually

increasing the number of writers produces regular and slight drop in system

performance. However, for LETRIST, LBP, LPQ and, LTP methods, there is a
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sharp decline in the classification performance as the number of writers grows.

The top two feature methods are CLGP followed by BW-LBC, all of which749

allow producing high classification accuracy, which commences with 96% for

25 writers and declines to 94.06% and 90.11% respectively for 657 writers. As

regards LETRIST, LPQ, LTP, and LBP, the classification accuracy of 90% is

recorded when using Nbw = 10, and afterward, the performance started to

acutely drop to 79.14%, 75.49%, 73.51%, and 68.49% respectively for the total

90.11%
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Figure 11: System performance with respect to the number of writers ranging from 10 to 657

writers on IAM database.
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of 657 writers. The same system behavior, i.e., the performance drop, is exper-

imentally remarked on the other five tested databases. The reason of this drop756

in performance is the classification intricacy when comparing the dissimilarity

measure of each writer with those of large number of writers, i.e., large amount

of available handwritten data in the testing and training sets.In this case, the

classification process gradually gets more difficult when increasing the number

of classes (writers). The classification results reported in Fig. 11 are congruous

with the findings given in Table 1. Evidently, the proposed CLGP achieves

the highest classification rates, which is the top performing method versus the763

evaluated feature methods.

3.6. Stability of the system performance according to the number of handwriting

samples

In this evaluation, we carried out comprehensive experiment on IAM and

CVL databases to further investigate the stability of the system performance

with respect to the amount of handwritten training data. To this end, we

empirically assessed different training/testing database configurations where the770

writer identification score is recorded for each partition. Particularly, on IAM

database, the writer identification process is first performed with at least 30%

of handwritten data available per writer for the training against 70% for the

testing. Afterwards, the amount of training data is gradually increased (by

10%) until reaching 70%. On CVL database, the 30%/70% up to 70%/30% setup

configuration can not be set since there is four handwritten samples available

per writer (cf. Subsection 3.1). In other words, CVL allows only fixing three777

possible partitions including 75%/25% (i.e., 75% in training data versus 25%

in testing data), 25%/75%, and 50%/50% (half-half partition) with an average

rate recorded after 6-fold cross-validation scheme (4-fold cross-validation in the

cases of 75%/25% and 25%/75% partitions). Note that we assessed for CVL

and IAM databases all probable scenarios to perform writer identification. The

objective here is to validate the effectiveness and stability of the proposed system

in characterizing the query writers over different conditions.784
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The classification results on IAM and CVL databases are illustrated in Ta-

ble 5 and Figure 12 respectively. It is depicted from the recorded results that

the classification score obtained by each feature method is progressively in-

creased when the training data grows. The proposed system typically requires

an acceptable amount of learning data (suitable training/testing partition) to

train the classifier in identifying the questioned writers with high precision.

The 60%/40% partition proved to be the convenient IAM database setup as791

it allows reaching the highest performance (score of 94.06%) when using the

proposed CLGP feature method (cf. Table 5). On CVL database, the best

average accuracy of 99.51% (obtained by CLGP feature method) is achieved

when using the 75%/25% database setup. From Table 5 and Figure 12, the

proposed CLGP feature method shows, compared to the evaluated descriptors,

an important performance stability over all databases partitions.

4. Conclusion798

In this work, we presented a novel approach for off-line text-independent

writer identification of handwritten. We introduced an effective feature rep-

resentation to characterize and model the overall within-writer and between-

writer variability. The proposed CLGP model computes the distribution of

local intensity gradients within small connected regions (cells) in multiple fea-

ture code maps constructed across multiple scales. These feature code maps

Table 5: Classification results on IAM database over different learning data partitions

Database setup

training-set(%)/test-set(%)

Feature methods

CLGP BW-LBC LPQ LTP LBP LETRIST

30/70 91.62 80.67 64.53 62.71 56.01 68.04

40/60 93.45 85.99 70.01 69.86 65.29 72.75

50/50 93.75 87.67 73.51 70.01 64.99 74.12

60/40 94.06 90.11 75.49 73.51 68.49 79.14

70/30 94.06 89.04 74.43 72.3 64.84 75.49
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Figure 12: Classification results on CVL database over different learning data partitions

are uniformly extracted from resized handwritten connected components using805

cross-scale joint coding process. Next, we trained the nearest neighbor classifier

(1NN) using Hamming distance metric to classify the query handwritten samples

(documents or set of words/text lines). The proposed system was evaluated on

six challenging public databases (Arabic IFN/ENIT and AHTID/MW, English

IAM and CVL, Dutch Firemaker, and Hybrid-language ICDAR2011). Exper-

imental results demonstrated the ability and strength of our method, which

surpasses or provides competitive performance to several old and recent state-812

of-the-art writer identification systems. Furthermore, we conducted extensive

experiments to investigate the performance stability of the proposed system with

respect to the number of writers and the amount of learning data used in each

handwritten database. In future work, it may be valuable to extend the eval-

uation of CLGP operator to other challenging databases, while also proposing

to construct mixed handwritten database to enlarge the scale complexity of the
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evaluated benchmarks. We plan to evaluate the robustness of the proposed sys-819

tem by adding noise, distortion, and blurring to the tested handwritten samples.

We also intend to assess other textural features and develop novel extraction

feature methods to characterize the writing style.
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[9] K. Franke, M. Köppen, A computer-based system to support forensic stud-

ies on handwritten documents, International Journal on Document Analysis

and Recognition 3 (4) (2001) 218–231.

[10] V. Pervouchine, G. Leedham, Extraction and analysis of forensic document

examiner features used for writer identification, Pattern Recognition 40 (3)

(2007) 1004 – 1013.

[11] S. N. Srihari, S.-H. Cha, H. Arora, S. Lee, Individuality of handwriting,861

Journal of forensic science 47 (4) (2002) 1–17.

[12] I. Siddiqi, N. Vincent, Text independent writer recognition using redundant

writing patterns with contour-based orientation and curvature features,

Pattern Recognition 43 (11) (2010) 3853–3865.

[13] S. M. Awaida, S. A. Mahmoud, Writer identification of arabic text using

statistical and structural features, Cybernetics and Systems 44 (1) (2013)

57–76.868

[14] D. Chawki, S.-M. Labiba, A texture based approach for arabic writer iden-

tification and verification, in: Machine and Web Intelligence (ICMWI),

2010 International Conference on, IEEE, 2010, pp. 115–120.

47



[15] D. Bertolini, L. Oliveira, E. Justino, R. Sabourin, Texture-based descriptors

for writer identification and verification, Expert Systems with Applications

40 (6) (2013) 2069 – 2080.

[16] H. Said, T. Tan, K. Baker, Personal identification based on handwriting,875

Pattern Recognition 33 (1) (2000) 149 – 160.

[17] T. Ojala, M. Pietikainen, T. Maenpaa, Multiresolution gray-scale and rota-

tion invariant texture classification with local binary patterns, IEEE Trans-

actions on Pattern Analysis and Machine Intelligence 24 (7) (2002) 971–987.
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[44] H. Mohammed, V. Mäergner, T. Konidaris, H. S. Stiehl, Normalised lo-
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