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Abstract:  24 

Decision-making is a conserved evolutionary process enabling us to choose one option among 25 

several alternatives, and relies on reward and cognitive control systems. The Iowa Gambling 26 

Task allows the assessment of human decision-making under uncertainty by presenting four 27 

card decks with various cost-benefit probabilities. Participants seek to maximise their monetary 28 

gain by developing long-term optimal-choice strategies. Animal versions have been adapted 29 

with nutritional rewards, but interspecies data comparisons are scarce. Our study directly 30 

compares the non-pathological decision-making performance between humans and wild-type 31 

C57BL/6 mice. Human participants completed an electronic Iowa Gambling Task version, while 32 

mice a maze-based adaptation with four arms baited in a probabilistic way. Our data shows 33 

closely matching performance between both species with similar patterns of choice behaviours. 34 

However, mice showed a faster learning rate than humans. Moreover, both populations were 35 

clustered into good, intermediate and poor decision-making categories with similar 36 

proportions. Remarkably, mice characterised as good decision-makers behaved the same as 37 

humans of the same category, but slight differences among species are evident for the other 38 

two subpopulations. Overall, our direct comparative study confirms the good face validity of 39 

the rodent gambling task. Extended behavioural characterisation and pathological animal 40 

models should help strengthen its construct validity and disentangle the determinants in 41 

animals and humans decision-making. 42 
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 43 

Introduction 44 

Do animals gamble for food just like humans gamble for money? Most species, including human 45 

beings, have to make accurate assessments of the cost-benefit trade-off in reward-driven 46 

contexts. For example, the longer an animal is searching for food, the more likely it is to 47 

accumulate more and better rewards, however, the more likely it is to encounter a predator. 48 

Thus, decision-making (DM) is an essential mechanism for survival in partly predictable 49 

situations (de Froment et al., 2014). The underlying principles of how living beings achieve 50 

efficient DM are still not fully understood, and assessing human DM using animal models 51 

requires further validation. Laboratory tests simulating real-life DM, such as gambling tasks, 52 

have been developed. Particularly, the Iowa Gambling Task (IGT) is widely used to assess 53 

human DM under uncertainty. Participants are required to maximise the monetary gains by 54 

selecting cards from four decks with various cost-benefit probabilities (Bechara et al., 1994). 55 

Players face a choice-conflict between playing from long-term disadvantageous decks yielding 56 

higher gains but frequent losses, or from advantageous ones associated with smaller immediate 57 

rewards and less frequent penalties. Thus, optimal decisions involve the animal refraining from 58 

the preferred large immediate rewards whilst opting for lower but more frequent gains, leading 59 

to long-term benefits. 60 

The IGT was originally created to study DM impairments in patients with ventromedial 61 

prefrontal cortex damage. Compared to healthy participants who progressively learn to select 62 

the advantageous decks, the impaired patients decisively underperform by being unable to set 63 

the optimal strategy from repeated negative outcomes. Besides this, many IGT studies with 64 

healthy populations have shown a high interindividual performance variability (Bechara and 65 

Damasio, 2002; Bechara et al., 2002; Steingroever et al., 2013). Indeed, several clinical reports 66 

indicated that, while a majority of healthy participants develop the optimal strategy (good DM 67 

individuals), others do not acquire a preference for one deck over the others, which is indicative 68 

of a lack of learning (poor DM individuals) (Bechara et al., 2001, 2002; Glicksohn et al., 2007a). 69 

The literature has shown that many factors may account for this variability in gambling 70 

performance. For example, Bechara et al. explain the poor IGT performance in terms of atypical 71 

sensitivity to the reward or punishment. Mechanisms underlying this atypical sensitivity are 72 

numerous and still not fully elucidated. Among the potential contributors to IGT failure, the 73 

presence of personality characteristics associated with risky behaviour (Buelow and Suhr, 74 

2009), of weaknesses in executive functioning (Brand et al., 2007), a low motivation (Giustiniani 75 

et al., 2015), a negative affect at the time of task (Suhr and Tsanadis, 2007) as well as low 76 

educational (Davis et al., 2008) and low intellectual levels (Barry and Petry, 2008) have been 77 

reported. These data illustrate a behavioural continuum with an overlap in choice strategies 78 

between human non-pathological and pathological conditions. 79 

 80 

Interestingly, animal versions of the IGT with species-appropriate adjustments to assess DM in a 81 

design comparable to humans (van den Bos et al., 2006; van Enkhuizen et al., 2013; 82 

Heilbronner, 2017; Pittaras et al., 2016; Rivalan et al., 2009, 2013; Visser et al., 2011; Young et 83 

al., 2011; Zeeb et al., 2009) have been developed. For example, in rodent gambling tasks the 84 

decks of cards have been replaced by mazes or operant chambers equipped with different 85 
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options of varying outcomes; monetary gains are replaced with nutritional rewards since 86 

money and food are thought to drive similar behaviours (Lehner et al., 2017). 87 

Similar to human studies, rodents with lesions perform sub-optimally in adapted IGT versions 88 

and show a delay in adopting a consistent strategy compared to healthy individuals (Rivalan et 89 

al., 2011; Winstanley and Clark, 2015). For the majority of healthy rodents, as the task 90 

progresses a raise in advantageous choices is observed, which is commonly accompanied by 91 

individuals clustering in three subpopulations who reflect the variable choice strategies (van 92 

Enkhuizen et al., 2014; Pittaras et al., 2016; Rivalan et al., 2009). Good DM individuals quickly 93 

develop a strong preference for the advantageous options, while poor DM individuals display 94 

the worst performances, either not showing any preference for neither advantageous nor 95 

disadvantageous options or displaying a long-term preference for the disadvantageous ones. 96 

Intermediate DM individuals perform between the other two subgroups. Whether these 97 

interindividual variabilities observed in both healthy human and animal populations are similar 98 

has never been directly assessed to substantiate the face validity of the models. 99 

 100 

Animal and human versions of gambling tasks usually evaluate performance with different 101 

analytical methods (Bechara et al., 2001; Zeeb and Winstanley, 2013) and are hence not 102 

compared in a direct manner even if animal gambling tasks have been specially created to 103 

simulate human DM processes. However, direct comparative research will be a valuable 104 

approach allowing clinicians and researchers to bridge their findings, rendering translational 105 

studies as a direct tool genuinely meaningful (van Enkhuizen et al., 2014). 106 

Here, we bridge the clinical and preclinical findings on DM processes featuring uncertainty by 107 

directly comparing the performance of healthy humans and mice for the first time in the same 108 

study using IGT-adapted tasks and identical analytical methods. 109 

Based on the recent literature addressing the validity of mouse gambling tasks (mGT) (van den 110 

Bos et al., 2013; van Enkhuizen et al., 2014; Heilbronner, 2017; Pittaras et al., 2016; Winstanley 111 

and Clark, 2015), we forecasted a good face validity of our animal model with a similar overall 112 

performance regarding the human population (Giustiniani et al., 2015). To check for the 113 

existence of a similar variability in the choice strategies among the species, we then compared 114 

the stratification of both populations according to the endpoint performances. To evaluate the 115 

construct validity, we further studied the behavioural indexes of the cognitive processes sub-116 

serving the optimal choices. Finally, we sought to find the correlations with an endpoint 117 

performance, focusing on the parameters of rigidity (Pittaras, 2013), flexibility (van Enkhuizen 118 

et al., 2014) and win-stay and lose-shift choices (de Visser et al., 2011). We also analysed the 119 

psychometric scores from human participants and reward sensitivity data in mice, to relate the 120 

performance or choice strategies to additional behavioural traits. 121 

 122 

 123 

Experimental procedures 124 

 125 

Participants. To reduce conceptual and methodological differences between the tasks, we 126 

controlled factors known to interfere with the results such as sex differences and the presence 127 

of instructions, especially in humans. In that respect, we recruited only male subjects because 128 

they have been described as less risky than females, choosing the advantageous options more 129 
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frequently in the IGT (Singh, 2016) and its rodent adaptations (van den Bos et al., 2006). Further 130 

characterisations will include both genders, allowing us to take into account the variability we 131 

accepted to overlook in the present study (Prendergast et al., 2014). 132 

 133 

Humans. Forty healthy right-handed participants (mean age ± SEM = 24.7 ± 5.1; range 19-38) 134 

were involved in the study. None reported a previous medical history of psychiatric disorders, 135 

substance or alcohol abuse, neurological diseases, traumatic brain injury or stroke, and none 136 

reported taking any medication. 137 

Participants received information regarding the aim of the task and gave their written informed 138 

consent to take part in the study. Given the influence of real money playing a significant role on 139 

motivation, subjects were informed that the monetary payment would be proportional to the 140 

global gain obtained in the task (Meyer, 2004; Meyer et al., 2000; Miedl et al., 2010). Due to the 141 

ethical considerations and independent of individual performance, all participants received the 142 

maximum amount of €85 at the end of the experiment. The protocol was approved by the 143 

Committee of Protection of Persons (CPP-Est-11; authorisation given by the General Health 144 

Administration (ANSM 2016-A00870-51 and NCT 02862821)). 145 

 146 

Mice. Forty C57BL/6JRj mice (Ets Janvier Labs, Saint-Berthevin, France) were used for this study. 147 

Inbred animals such as C57BL/6J are known to behave uniformly and display low interindividual 148 

variability (Festing, 2014) (but see recent work by Tuttle et al. (Tuttle et al., 2018)). All animals 149 

were 3-5 months old at the time of testing, group-housed and maintained under a 12 hour-150 

circadian cycle with a constant temperature (22 ± 2ºC). Water was available ad libitum and all 151 

mice were food-restricted at 80-90% of their free-feeding weight (mean weight (g) ± SEM = 22.2 152 

± 0.2) in order to motivate exploration and completion of the nutritionally rewarding task 153 

(Rivalan et al., 2009). Experiments were performed in behavioural rooms with tight luminous 154 

intensity. All procedures met the NIH guidelines for the care and use of laboratory animals and 155 

were approved by the University of Franche-Comte Animal Care and Use Committee (CEBEA-156 

58). All efforts were taken to minimise animal suffering during the testing according to the 157 

Directive from the European Council on the 22nd of September 2010 (2010/63/EU). 158 

 159 

Human gambling task. The task was an adapted electronic version of the IGT (Giustiniani et al., 160 

2015), whose aim was to maximise monetary gain through successive selections between four 161 

decks. The decks’ composition, values and scheduled reward-penalty were predetermined 162 

identically to match the original IGT (Bechara, 1997; Bechara and Damasio, 2005; Bechara et al., 163 

1994). The decks looked identical, but differed in composition. Decks A and B were 164 

disadvantageous, yielding immediate rewards but involved major economic losses on the long 165 

run. Decks C and D were advantageous, yielding frequent small wins and smaller long-term 166 

penalties, resulting in long-term gain. The decks also varied in their schedule of losses, with 167 

decks B and D featuring infrequent, decks A and C frequent losses, respectively. All decks 168 

contained an infinite number of cards in this computerised version of the IGT.. The monetary 169 

reward was converted from US Dollars to Euros in order to match the currency of the test 170 

subjects.  At the beginning of the task, participants had a loan of €2,000. 171 

Contrary to most IGT experiments, participants were not provided with information regarding 172 

the presence of advantageous or disadvantageous decks and the number of trials. This ensured 173 
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that a somewhat partial advantage compared to the animals was avoided (Macphail, 1996) (but 174 

see Rivalan’s work (Rivalan et al., 2011)). In the absence of such information the final 175 

performance usually worsen; therefore, the exploration phase typically lenghtens and the 176 

optimal strategy is hardly found in 100 trials (Balodis et al., 2006; Fernie and Tunney, 2006; 177 

Glicksohn et al., 2007b). However, when more trials are allowed, many individuals performing 178 

poorly in the first 100 trials are able to achieve good final performance (Balodis et al., 2006; 179 

Buelow et al., 2013; Bull et al., 2015). To that purpose, the number of trials was increased from 180 

100 to 200. A full description of the electronic version of the IGT is given in Giustiniani et al. 181 

(2015). 182 

 183 

Mouse gambling task. DM was evaluated using an mGT adapted from published protocols 184 

(Pittaras et al., 2016; Visser et al., 2011). The experiment took place in a completely opaque 185 

four-arm radial maze (identical and equidistant arms, 37 cm long and 5.7 cm wide),  with the 186 

common central zone used as a start-point. Mice were rewarded with grain-based pellets (20 187 

mg Dustless Precision Pellets® Grain-Based Diet, PHYMEP s.a.r.L., Paris, France) or punished 188 

with grain-based pellets previously treated with quinine (180 mM quinine hydrochloride, 189 

Sigma-Aldrich, Schnelldorf, Germany). Quinine pellets were poorly palatable but edible. 190 

Prior to every experimental session, the animals were acclimatised to the behavioural room for 191 

30 minutes. The experimental design was composed of 5 blocks of 20 trials over five days (a 192 

total of 100 trials per animal). The first ten trials of each block took place during the morning, 193 

the second ten trials during the afternoon. Before the first trial of the first block, mice had 3 194 

minutes to explore and eat inside the maze (first habituation period). From the second block, 195 

mice had 2 minutes to explore the maze before the first trial, but no food was available 196 

(general habituation period). These habituation periods aimed to reduce the stressing effect of 197 

the animals’ first exposure to the dispositive. After this habituation, mice were placed at the 198 

start-point inside an opaque cylindrical structure to avoid early orientation. The cylinder was 199 

removed after 5 seconds and animals were allowed to choose an arm. Mice had one minute to 200 

choose an arm, explore it and eat the reward. An extra-minute was given if the choice was not 201 

made in time.. 202 

Our mGT was adapted in order to minimise the effect of satiety during the task. For that, two 203 

arms gave access to a small reward (1 pellet) in the first trial of each half block (trials 1, 11, 21, 204 

31, 41, 51, 61, 71, 81 and 91) and bigger rewards (3-4 pellets) in the other 18 choices of each 205 

block with a small probability of presenting a punishment (3-4 quinine pellets, twice in 18 206 

possible choices) (advantageous arms C’ and D’). Arm C’ and D’ provided a maximal amount of 207 

50 and 66 rewards per block, respectively.  208 

The other two arms (disadvantageous arms A’ and B’) gave access to a bigger reward (2 pellets) 209 

during the first trials of each half block, but bigger punishments (4-5 quinine pellets) and a 210 

smaller reward-possibility (4-5 pellets, once in 18 possible choices) in the block’s remaining 18 211 

choices.  Arm A’ gave access to a maximal amount of 10 rewards per block, arm B’ until 14. 212 

Between consecutive trials, the animals were placed in their home cages for 90 seconds. The 213 

localisation of advantageous and disadvantageous arms was randomised with different award 214 

and punishment sequences for each animal. 215 

 216 
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Determination of interindividual differences. A k-mean clustering method, already used in 217 

mouse gambling tasks (Pittaras, 2016; Pittaras et al., 2016), was applied to identify 218 

interindividual differences in both, human and mice populations. This enabled the automatic 219 

identification of the objects’ optimum  partition into a specific number of clusters, minimising 220 

and maximising the intra and inter-cluster variance, respectively (Timmerman et al., 2013). In 221 

accordance with the literature (Pittaras et al., 2016), the mean percentage of advantageous 222 

choices was calculated for the tasks’ final 30% when performance was highly stable (W: p < 0.01 223 

in mice and humans). The individual performances were then divided into three groups: good, 224 

intermediate and poor decision-makers (DMs).  225 

 226 

Choice behaviours: rigidity, flexibility, lose-shift and win-stay scores. Maximisation of benefits 227 

and the reduction of costs, which characterise optimal performances, require flexibly adapting 228 

contingencies in order to favourably orient future choices. To compare different DM strategies, 229 

behavioural measures of cognitive processes at the beginning and the end of the task have 230 

been calculated. We measured our populations’ rigidity score by calculating the highest 231 

percentage of choice of a deck or arm. The flexibility score is then the proportion of switches 232 

from one deck or arm to another. The lose-shift score, as a measure of negative outcome 233 

aversion, was assessed by calculating the proportion of switches after a penalty outcome. Win-234 

stay scores likewise reflect the choice of the same option after receiving a reward. Each 235 

behavioural measure was calculated at the beginning (first 40% of the task) and at the end of 236 

the experiment (last 40% of the task), according to previous studies (Pittaras et al., 2016). 237 

 238 

Reward sensitivity. In humans, the Behavioural Inhibition and Activation System scales 239 

(BIS/BAS) allowed us to approach behavioural motivation (Rizvi et al., 2016). In mice, reward 240 

sensitivity was evaluated at the end of the mGT using the sucrose preference test (adapted 241 

from (Lutz et al., 2013)). For details, see Supplementary data.  242 

 243 

Data analysis 244 

 245 

Whole group analyses. A population’s overall performance in terms of the advantageous 246 

choices for the gambling tasks was analysed with Bayesian and frequentist approaches. To 247 

consider learning rates, the relative risk (the ratio of the ‘risk’ of success in both populations 248 

(humans/mice) -RR) was measured. The resulting proportions were compared by Beta laws, 249 

whose parameters are interpreted in terms of the number of successes and failures, 250 

establishing the probability law of success rates’ ratio. A credibility interval, inside which a 251 

parameter has a given probability (CI), was then calculated.  252 

Hereafter, in order to address the behavioural kinetics the performance was divided into five 253 

blocks, each representing 20% of the task. The performance of each block was compared to the 254 

chance level using Student’s tests (t-tests). The evolution of the performance was assessed by 255 

the analysis of variance (ANOVA), with the factor being 20%-blocks. Differences between 256 

populations were analysed using a partially repeated ANOVA with species as the between-257 

subject variable and 20%-blocks as the within-subject variable. 258 
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The evolution of choice behaviours scores was first compared for each group using a t-test, 259 

followed by a comparison of the overall population’s scores by two-way repeated-measures 260 

ANOVA with factors species and time course (first and last 40% of the task). 261 

BIS/BAS data in humans and sucrose preference in mice were analysed using the Kruskal-Wallis 262 

(KW) test (see Supplementary data).Correlations between the endpoint performance 263 

(percentage of advantageous choices in the last 30% of the task) and choice behaviours were 264 

also carried out.Comparisons were Bonferroni corrected when necessary to account for the 265 

multiple comparisons. 266 

 267 

Interindividual data analysis. For each group, the evolution of the gambling performance was 268 

assessed by repeated-measures ANOVAs, with the factors being 20%-Blocks and clusters (good, 269 

intermediate and poor DMs), followed by Mann Whitney U (MW) tests to show subgroup 270 

differences two by two. Each interindividual distribution was also compared between mice and 271 

humans using an MW test. 272 

We used Wilcoxon (W) tests to compare, for each subgroup, the evolution of the gambling 273 

performance relative to the chance level. The subgroup’s proportions of each population were 274 

compared using the Chi-square test. Differences in the choice behaviour scores between the 275 

subgroups in mice and humans were assessed by KW tests for the beginning and the end of the 276 

task. These measures were also compared between the species using MW tests. All MW and W 277 

tests were Bonferroni corrected. 278 

The statistical significance threshold of all the tests was set at p < 0.05. 279 

 280 

Results  281 

 282 

Overall gambling performance: mice learn faster than humans (Figure 1 and Supplementary 283 

Analysis 1) 284 

The Bayesian analysis revealed a difference in the learning rate between the species (Fig. 1A), 285 

showing that mice learned faster than humans did: after 100 trials, mice had better overall 286 

gambling performance (CI 95% = 1.191 to 1.277). However, comparing the last 100 mice and 287 

human trials shows similar performances (CI 95% = 0.956 to 1.016). 288 

 289 

In order to circumvent variations in the gambling tasks’ designs and to allow for the direct 290 

comparison of data, we analysed performance as a function of task progression, expressed as 291 

percentages. Splitting all trials into five 20% trial-blocks (Fig. 1B) clearly shows that humans 292 

acquired the task contingencies after completion of 40% of the task, performing above the 293 

chance level from the third 20%-block onwards (t-test, p < 0.01). A learning effect has been 294 

evidenced as the performance gradually improved over time (F (4,156) = 15.4; p < 0.0001) after 295 

20% of the task was completed and till the end (p < 0.0001, above the behavioural output of 296 

the 1st 20%-block). 297 

Mice, however, performed above the chance level already after the first 20% of the task, thus, 298 

orientating towards the favourable choices earlier than humans (t-test, p < 0.0001). The 299 

performance progressively improved over time (F (4,195) = 11.9; p < 0.0001) from the second 300 

20%-block (2nd block: p < 0.05, 3rd block: p < 0.001, 4th and 5th blocks: p < 0.0001) and compared 301 

to the beginning of the task. 302 
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The comparison of the IGT and mGT performances shows no significant effect of the species in 303 

the percentage of advantageous choices (F (1,78) = 3.1; p = 0.80). Both populations performed 304 

similarly along the task progression, as shown by the absence of a statistical difference in the 305 

interaction between factors (species and 20%-Blocks) (F (4,312) = 0.06; p = 0.99). 306 

 307 

These results show that both species learn the task contingencies, however demonstrating that  308 

mice are faster learners than humans are. When compared as function of task progression, 309 

both populations display a similar improvement in performance and reach equivalent final 310 

performance despite the design differences. 311 

 312 

Comparable categories of good, intermediate and poor DMs with similar proportions among 313 

the species (Figure 2 and Supplementary Figure 1 and Analyses 2 & 3) 314 

In Fig. 2, A1 and B1 we plot individual data showing larger dispersion in humans than in mice. 315 

Intraspecies variability was investigated using k-mean clustering stratification according to the 316 

endpoint performance, discriminating three subpopulations: good, intermediate and poor DMs. 317 

Individuals majoratively displaying the optimal strategy were referred to as good DMs and 318 

represent 42.5% of the human population (mean percentage of advantageous choices ± SEM: 319 

97.4 ± 0.8) and 40% of the mice population (91.3 ± 1.5). Poor DMs remained at around 50% of 320 

advantageous choices, hence showing no significant preference for advantageous nor for 321 

disadvantageous options, represent 25% of humans (34.3 ± 5.2) and 22.5% of mice (54.1 ± 2.5). 322 

The third subpopulation corresponds to individuals that developed a preference towards some 323 

options -although they did not find the optimal strategy. These intermediate DMs represent 324 

32.5% of humans (64.5 ± 2.4) and 37.5% of mice (73.8 ± 1.0). The proportions of each 325 

subpopulation in humans and mice were compared, and no significant differences were found 326 

(Chi-square test = 0.011, p = 0.99; confirmed by Bayesian analysis, see Supplementary Analysis 327 

2) (Fig. 2, A2 and B2). 328 

 329 

In humans, good DMs performed above the chance level after 40% of the task was completed 330 

(W, p < 0.01), while intermediate and poor DMs differed from the chance level only in the last 331 

20%-block (p < 0.05). Furthermore, the ANOVA revealed a significant interaction between the 332 

clusters and 20%-blocks (F (8,148) = 16.2; p < 0.0001). Good DMs performed differently than 333 

poor DMs from the second 20%-block onwards (MW, 2nd block: p < 0.05, 3rd to 5th blocks: p < 334 

0.0001), and differently than intermediate DMs in the last 60% of the task (3rd block: p < 0.001, 335 

4th and 5th blocks: p < 0.0001). Intermediate and poor DMs performed differently from the third 336 

block onwards (3rd block: p < 0.01, 4th block: p < 0.05, 5th block: p < 0.0001) (Fig. 2, A3). 337 

Regarding mouse data, intermediate and good DMs performed above the chance level soon 338 

after 20% of the task was completed (W, good 2nd to 5th blocks: p < 0.01; intermediate 2nd and 339 

3rd blocks: p < 0.05, 4th and 5th blocks: p < 0.01 ), while poor DMs did not differ from the chance 340 

level (p > 0.05). The ANOVA also revealed a significant interaction between the factors (F 341 

(8,185) = 5.3; p < 0.0001). Mice from the good DM category performed differently than poor 342 

DMs after 40% of the task was completed (MW, 3rd block: p < 0.05, 4th and 5th blocks: p < 343 

0.0001), and differently from the intermediate DMs later on (4th block: p < 0.001; 5th block; p < 344 

0.0001). Mice from the intermediate and poor DM categories performed differently only during 345 

the last 20% of the task (p < 0.0001). 346 
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 347 

When comparing the gambling performance in mice and humans for each subpopulation, 348 

differences were found for intermediate DMs (MW, p < 0.05), with mice making more 349 

advantageous choices than humans. On the contrary, humans from the good DM category 350 

achieved more advantageous choices than mice of the same subgroup (p < 0.01). Furthermore, 351 

humans from the poor DM category made worse decisions than mice (p < 0.01). In addition, 352 

mice from the intermediate subgroup developed a weaker preference for the most 353 

advantageous option (D’) than good DMs did, whilst humans from the same category chose the 354 

best deck (D) as good DMs did (see Supplementary Fig.1 and Analysis 3).  355 

 356 

Collectively these data reveal that both mice and human populations clustered into three 357 

comparable DM categories with closely matching proportions. However, the performance 358 

dispersion was more pronounced in the human population.  359 

 360 

Relationship between the DM performance and choice behaviours in humans and mice 361 

(Figure 3 and Supplementary Figures 2 and 3) 362 

Correlations between the endpoint performance and behavioural determinants of DM 363 

(Supplementary Fig. 2) 364 

In humans, rigidity scores significantly correlated with the final performance at the beginning (r 365 

= 0.428, p < 0.05) and at the end of the task (r = 0.489, p < 0.01). Flexibility scores showed a 366 

negative correlation with the endpoint performance at the beginning of the task (r = -0.509, p < 367 

0.01), which disappeared at the end (p>0.05). No significant correlation was found for the lose-368 

shift choices and the endpoint performance, independently of the moment of the experiment. 369 

However, the win-stay choices at the beginning of the task significantly correlated with the 370 

endpoint performance (r = 0.518, p < 0.01). 371 

In mice, like in humans, rigidity scores significantly correlated with the endpoint performance at 372 

the end of the task (r = 0.669, p < 0.001) but not at the beginning (p > 0.05). On the contrary, no 373 

correlation was found for flexibility and the endpoint performance at the beginning of the task 374 

(p > 0.05), but a negative correlation was found at the end (r = -0.595, p < 0.001). In the same 375 

way as humans, no correlation was found regarding the lose-shift choices (p > 0.05), but a 376 

significant correlation between the win-stay choices and endpoint performance at the end of 377 

the task (r = 0.582, p < 0.001). 378 

 379 

In brief, DM strategies in humans and mice seem to rely on comparable adaptive choice 380 

behaviours that correlate with the endpoint performance. 381 

 382 

Evolution of choice behaviours during task progression (Fig. 3 and Supplementary Fig. 3) 383 

In both populations, a significant effect of the time course was found for flexibility (F (1,78) = 384 

48.4, p < 0.0001), lose-shift (F (1,78) = 15.8; p < 0.001) and the win-stay scores (F (1,78) = 51.9, 385 

p < 0.0001) (Fig. 3). 386 

Whereas no global difference among the species was found for any parameters, a significant 387 

interaction between the factors (species and time course) was found for rigidity (F (1,78) = 4.6, 388 

p < 0.05). Both populations became more rigid along the task (t-test, p < 0.0001), humans were 389 
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significantly less rigid than mice at the beginning (p < 0.05) but not at the end of the experiment 390 

(p = 1) (Fig. 3). 391 

 392 

The interspecies comparisons in all subpopulations revealed that, at the beginning of the task, 393 

humans from the intermediate and poor DM categories were significantly less rigid than the 394 

corresponding mice (MW, intermediate: p < 0.0001; poor: p < 0.01) but not good DMs (p > 395 

0.05). At the end of the task, this property only remained preserved for humans from the 396 

intermediate DM subgroup (p < 0.01).  397 

Flexibility scores were similar in both species for the intermediate and poor DMs at the 398 

beginning and the end of the experiment (p > 0.05). However, humans from the good DM 399 

category remained less flexible than mice of the same subgroup throughout the experiment 400 

(beginning: p < 0.05; end: p < 0.001). No subgroup differences in the lose-shift and win-stay 401 

choices were observed between the populations at the beginning of the task (p > 0.05). In the 402 

end, only mice from the good DM category were more prone to switch from an option after a 403 

penalty than humans (p < 0.05). However, humans from the good DM category continued 404 

choosing the same option after a positive outcome more frequently than mice (p < 0.01). No 405 

differences were found for the other subgroups (p > 0.05) (see Supplementary Fig. 3). 406 

 407 

Overall, these data show that humans and mice do not differ in their choice strategies at the 408 

population level, but suggest there are slight differences in the intermediate and poor DMs 409 

subpopulations among the species. Remarkably, mice and humans from the good DM category 410 

behaved alike. 411 

 412 

 413 

Discussion 414 

The goal of this study was to directly compare DM under uncertainty between humans and 415 

mice using IGT adaptations according to the literature (van den Bos et al., 2006; Giustiniani et 416 

al., 2015; Pittaras et al., 2016). Our study shows closely related performance curves when 417 

comparing data as a function of task progression, suggesting that our animal model is a suitable 418 

candidate to bridge the findings between preclinical and clinical data. Therefore, our study 419 

offers a chance to get a better insight into the common conserved cognitive processes among 420 

mammals. 421 

Humans rewarded with money and mice rewarded with food started the task with an 422 

explorative search, displaying an equal preference for either the advantageous or 423 

disadvantageous options. A preference for advantageous choices progressively emerged in 424 

both populations during what has been referred to as the exploitation phase (Daniel et al., 425 

2017; Rivalan et al., 2013; Visser et al., 2011). The overall performance was very similar, 426 

however, mice more promptly selected advantageous options than humans. The learning 427 

curves observed in our mice confirm previous animal results obtained in similar conditions 428 

(Pittaras, 2013; Pittaras et al., 2016) and in other variants of rodent gambling tasks (van 429 

Enkhuizen et al., 2014; de Visser et al., 2011). 430 

Mice being faster than humans in developing a favourable strategy could be explained in terms 431 

of the rewards’ nature, which is considered a major limitation for animal versions of gambling 432 

tasks. Modelling loss of reward in animals in a similar manner as in humans is a challenge. Food 433 
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aids in the survival of species: it is a primary reinforcer since it strengthens behaviour and 434 

satiates the basic biological drives. Money, hoverwer, is a secondary reinforcer: its value is 435 

relative to the primary reinforcer. Hunger and satiety are factors difficult to control, which 436 

patently influence animals motivational state (Bos et al., 2014; Brevers et al., 2013). However, 437 

due to its subjective nature, the interest in money is also difficult to control, which raises similar 438 

concerns and can lead to similar consequences. This is the reason why the performance 439 

alignment in our mice and human participants is relevant. 440 

In addition to the challenge associated with the reward nature and processing, the internal 441 

state (see the somatic marker theory (Verdejo-García and Bechara, 2009)) and context also 442 

generate differences in behaviour. Animal automated operant testing would also help deepen 443 

the analysis of motivational aspects for instance (Nithianantharajah et al., 2015). 444 

 445 

A good validity of the model should also be substantiated by similar choice strategies, which 446 

can be investigated from additional cognitive proxies sub-serving behaviour (Winstanley and 447 

Clark, 2015). A closer look at the endpoint performance revealed that they correlated with the 448 

choice behaviours similarly but not identically in both populations. In fact, as advantageous 449 

choices increased along the task progression, preference for one option progressively emerged 450 

(increased rigidity), while fewer options were explored (decreased flexibility) with individuals 451 

becoming more sensitive to the reward (increased win-stay choices) and tending to more easily 452 

cope with penalties (decreased lose-shift choices). 453 

Our results also highlighted close common interindividual variability in mice and humans when 454 

clustered into three subgroups of individuals, ranging from good over intermediate to poor 455 

DMs. Whether this clustering reflects the speed of acquiring a favourable strategy, or actually 456 

to different behavioural strategies could be further investigated (by a computational modelling 457 

analysis, for instance). However, the similar matched proportions of these subgroups for both 458 

species strengthen the face validity of our animal model. 459 

Good DMs composed the largest subgroup in both species. Several human studies correlate a 460 

good performance predominantly with the development of an optimal strategy, accepting risky 461 

options (Barbalat et al., 2010; Charpentier et al., 2017). In mice studies a good performance is 462 

related to a secure strategy (Pittaras et al., 2016). Interestingly, mice from this category needed 463 

less time than humans to perform above chance level. Regarding the other subgroups, humans 464 

from the good DM category developed a stronger preference for one option over the 465 

intermediate and poor DMs, whereas mice of the same category differed only from the poor 466 

DMs. The evolution of the penalty aversion was also similar for both species, suggesting that 467 

the cognitive strategies underlying the DM performance might be similar in both species, at 468 

least for the good DM subgroup. 469 

Individuals conforming to the intermediate DM category, while selecting advantageous choices 470 

more often, maintained a high level of exploration of all the options but did not achieve the 471 

best strategy to maximise their rewards. However, IGT studies have shown that the 472 

performance can be significantly enhanced with additional trials (Overman and Pierce, 2013). 473 

Furthermore, mice from this category became more sensitive to a reward along the task 474 

progression, whereas humans did not. This suggests that intermediate categories might not 475 

completely overlap between the species. 476 
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The subgroup with the worst performance, poor DMs, maintained the exploration of all the 477 

available options, exhibiting high behavioural flexibility. Nevertheless, they did not manage to 478 

find a favourable strategy along the task, suggesting an ineffective exploration of options. 479 

However, humans from this category ended the task performing significantly below the chance 480 

level in terms of the advantageous choices, which did not happen in the animal population. This 481 

kind of deleterious preference has also been described in mice following singled-session mGT 482 

protocols (van Enkhuizen et al., 2014) and other rodent IGT versions (Rivalan et al., 2009, 2013). 483 

Mice performing poorly in the gambling tasks have been proposed as models for the 484 

vulnerability of pathological gambling or addiction (van den Bos et al., 2013; Pittaras et al., 485 

2016), in the same line of clinical studies seeking behavioural markers of pathological 486 

predisposition or endophenotypes (Cavedini et al., 2010; Zhang et al., 2015). Indeed, these 487 

animals seem less risk-averse, a trait that has been already interpreted as an indicator of 488 

weaker cognitive control over immediate loss (de Visser et al., 2011). 489 

Concerning the endpoint performance, interindividual variabilities show a larger spread in the 490 

human population, accounting for better and worse decisions. The extreme upper scores in 491 

humans might be a consequence of a longer gambling design (Balodis et al., 2006; Buelow et 492 

al., 2013; Bull et al., 2015). Food restriction in our animals could also explain why they never 493 

preferred the disadvantageous options. Noticeably, very low performance more reminiscent of 494 

human data than ours (Rivalan et al., 2009, 2013), illustrates that performance output highly 495 

depends on task design. 496 

 497 

A general common pattern between humans and mice subpopulations has not been fully 498 

revealed when the endpoint performance is correlated with choice behaviours. By themselves, 499 

rigidity, flexibility and sensitivity to positive and negative outcomes cannot explain the 500 

evolution of the performance, neither their emergence, in the three subgroups equally. The IGT 501 

alone, unfortunately, does not allow to distinguish reward maximisation from ambiguity 502 

aversion for instance; its output is insufficient to determine why a participant selected an 503 

option. In this perspective, further behavioural characterisation has been attempted. In 504 

humans, we evaluated the motivation to avoid aversive and to approach goal-oriented 505 

outcomes, respectively by the behavioural inhibition and activation system’s scales (BIS/BAS). 506 

The endpoint performance did not correlate with the BIS/BAS scores in humans (data not 507 

shown). In parallel, the reward sensitivity assessed by the sucrose preference task in mice did 508 

not significantly differ between the subgroups (see Supplementary Fig. 4). These results 509 

contrast with those from Pittaras et al. (2016), who described a stronger sucrose preference for 510 

good decision-makers ("safe") compared to mice which perform poorly ("risky"). Moreover, 511 

reward sensitivity did not correlate with the endpoint performance either (data not shown), 512 

whereas poor performance was likely mediated by sensitivity to a high reward in a single 513 

session mGT (van Enkhuizen et al., 2014). These apparent discrepancies could be accounted for 514 

by protocol variations and suggest complex relationships between reward sensitivity and DM 515 

strategies (van Enkhuizen et al., 2014). 516 

 517 

A similar overall performance and comparable gambling strategies observed between both 518 

species suggest that they share conserved cognitive processes essential for successful DM. A 519 

wide range of comparative approaches, in rodents and in humans, have been proposed to 520 
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discern between these processes during cognitive tasks, both at the attentional and the 521 

mnemonic level (Steckler and Muir, 1996). The literature has also shown that there is a 522 

strikingly similar range of cognitive abilities between rodents and humans, as well as a 523 

remarkably high degree of anatomical overlap in their brain functions (Woolley et al., 2013). 524 

Rodents are even able to outperform humans in some learning tasks (Vermaercke et al., 2014), 525 

but we do believe that our slightly differing kinetics are mainly accounted for by the task design 526 

variability (including the rewards’ nature, the number of trials and the tasks ‘probabilistic 527 

schedule). 528 

 529 

To conclude, our data thus far suggest that in DM, mice behave in a way similar to humans: 530 

they tend to choose the option with the best long-term payoff more often as the task 531 

progresses. Our results point to close patterns of choice behaviours present across species, but 532 

the parameters we evaluated are insufficient to draw a firm conclusion for the relationship 533 

between reward maximisation and risk aversion. Extensive behavioural characterisations and 534 

validated animal models will be crucial to study brain regions and circuits involved in DM, and 535 

the relationships between reward and cognitive control systems. Nonetheless, our results 536 

directly support good face validity of the mouse version of IGT. Future studies including 537 

pathological animal models, manipulations with pharmacological tools or brain stimulation 538 

techniques and computational modelling should help disentangle processes sub-serving choice 539 

strategies, clarifying DM in animals and humans.  540 
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Figure Legends 

 

Figure 1. Gambling performance in human and mice populations 

(A) Performances expressed as percentage of advantageous choices (mean ± SEM) during 

task progression (blocks of 20 trials). After 100 trials, mice performed better than humans 

did (CI 95% = 1191 to 1.277), but final performances were similar (CI 95% = 0.956 to 1.016). 

(B) No significant (ns) differences between species when comparing performance in 20% 

trial-blocks (repeated measures ANOVA). Human performance differed from chance level 

from the 3rd 20%-block onwards, while mice performance was already different from the 2nd 

block (t-test: mice: ####, p < 0.0001; human: **, p < 0.01: ****, p < 0.0001). 

 

Figure 2. Comparable categories of good, intermediate and poor DMs with similar 

proportions among species  

Distribution in humans (A1) and mice (B1) of individual performance at the end of the task 

used for k-mean clustering. 

Proportions in humans (A2) and mice (B2) of individuals in good (red), intermediate (pink) 

and poor (grey) DM subpopulations (Chi2, p = 0.99).  

Gambling performance in human (A3) and mice (B3) during task progression (20% trial-

blocks). W tests to show group performance different from chance level (50%) (*, p < 0.05; 

**, p < 0.01). MW tests to show group differences (good vs intermediate: &, p < 0.05; &&, p 

< 0.01; &&&, p < 0.001; &&&&, p < 0.0001; good vs poor: ¤; intermediate vs poor: §). 

 

Figure 3. Evolution of choice behaviors during task progression 

Significant progression of the rigidity, flexibility, lose-shift and win-stay choices for human 

and mice populations, between the beginning and the end of the task. Comparison of choice 

strategies at the population level by repeated measures ANOVA and post hoc t-tests 

(beginning vs end of the task: #, p < 0.05; ##, p < 0.01; ####, p < 0.0001; humans vs mice: *, 

p < 0.05). 

 

 










