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Abstract

This paper presents a second order optimization method based on the WFEM framework that enables the optimization

of finite 1D periodic structures and 2D infinite ones. While optimization at the unit cell level has been done in previous

studies, it did not account for the boundary conditions and excitation on the system, which might have an important in-

fluence on its dynamics. The proposed methodology exploits semi-analytical derivatives in an optimization algorithm

that combines line search and trust region methods. It is tested and validated in a parameter identification procedure

and subsequently used to minimize the mean square velocity of metabeams with clamped free boundary conditions.

Finally, it is applied to the optimization of the sound transmission loss of a metapanel in the structural-acoustic coin-

cidence region. The proposed scheme is versatile and can be used in a wide range of applications including, model

updating, homogenization, design optimization and possibly damage detection.
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1. Introduction

As constraints on the weight and volume of vibro-acoustic packages become more important, the interest in

metamaterial based solutions increases. This interest is mostly driven by the stopband behavior exhibited by some

periodic structures enabling sound insulation properties that go beyond the mass law. So far, the Wave Finite Element

Method [1, 2, 3] and the Shift Cell Operator Method [4] have been the most popular tools to study and engineer

smart structures based on this concept because they allow the computation of the dispersion characteristics of a

periodic medium by the discretization of a single unit cell (UC). Studies based on the analysis of dispersion curves and

band diagrams have become standard and designs including perforations or resonant add-ons have been used to open

bandgaps around targeted frequencies [5, 6, 7, 8, 9]. More recently, numerical methods have been developed to obtain

bandgaps with maximal width and attenuation properties in phononic crystals [10, 11] or specific anisotropic behavior

in meta-structures [12]. However, most of the studies in the literature focus purely on the prediction of stopbands

without investigating the impact of boundary conditions, operating environment, load characteristics and finite size

effects on the performance of metamaterial solutions. While those topics have been studied from a theoretical or

qualitative point of view [13, 14, 15, 16], not many studies deal with them applying detailed numerical modeling [17].

This paper presents a second order optimization framework based on the WFEM that overcomes most of these issues.

The proposed framework combines semianalytical derivatives computed via an intrusive procedure to a second order

optimization algorithm. Because this class of algorithms has been successfully applied to structural optimization

and parameter identification problems [18, 19, 20, 21], the proposed optimization algorithm was designed to be an

instance of Sequential Quadratic Programming (SQP). It incorporates both an ellipsoidal trust-region method and a

line search method [22]. The former method ensures that the optimization algorithm rapidly escapes saddle points in

regions of negative curvature [23, 24] while the latter usually performs better in neighbourhoods where the optimized

function is convex. For 1D periodic structures, loads, boundary conditions and structure size can all be accounted for

by the proposed framework. This is because formulations for the forced response of periodic waveguides and coupled

periodic waveguides have been developed [3, 25]. In the 2D case, only the loads’ spatial characteristics (TBL, plane

waves, punctual source) can be included because a formulation for the forced response of finite 2D periodic structures

has yet to be developed.

The rest of the paper is organized as follows. Section 2 briefly recaps the theory behind the direct 1D WFEM

and presents formulas for derivatives in that framework. Section 3 presents the indirect 2D WFEM and the associated

infinite forced response scheme. Formulas for the derivatives of eigenfrequencies, waveshapes and displacements are

also provided. In Section 4, a second order optimization algorithm is presented and used for the numerical examples

of Section 5. Section 6 summarizes the main conclusions.
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Figure 1: Dofs’ partition for the UC of a 1D periodic structure

2. 1D WFEM

In this section, derivatives for propagation constants, waveshapes and forced response computed using the 1D

WFEM are derived. Using the proposed analytical formulas, it is possible to compute the gradient and hessian matrix

of objective functions considered in Section 5 at relatively low computational cost. These can then be used in the

algorithm described in Section 4 to optimize periodic structures in a unit cell modeling framework. Section 2 is

organized as follows. First, subsection 2.1 recaps the theory and main steps of the direct 1D WFEM while subsection

2.2 focuses on the derivatives’ computation.

2.1. Wavenumber, Waveshpapes, Forced Response

The mass matrix M, stiffness matrix K and damping matrix C of a periodic structure’s UC are considered. A

partition of its degrees of freedom U is established according to the UC’s spatial structure (see Figure 1):

U =


UL

UI

UR

 (1)

The subscripts R, L and I are used for variables associated with the right, left and internal dofs of the UC, respectively.

Additionally, the subscript B will be used for quantities associated to all interface dofs. The first step in the direct

formulation of the 1D WFEM is to compute the dynamic stiffness matrix G for a given circular frequency ω:

G = K + iωC − ω2M (2)

The internal dofs of the UC are then condensed out in order to form the condensed dynamic stiffness matrix D:

D = GBB −GBIG−1
II GIB (3)
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Applying Floquet-Bloch boundary conditions UR = λUL (displacement), FR = −λFL (load) leads to the eigenvalue

problem [26]: (
λDLR + (DLL + DRR) +

1
λ

DRL

)
Ψ = 0 (4)

The propagation constant λ is related to the wavenumber kx via the relation λ = e−ikxLx , Lx being the length of the UC

in the direction of propagation. The eigenvalue problem (4) yields the waveshapes Ψk and propagation constants λk

of free waves in the periodic medium at the circular frequency ω. It should be noted that the propagation constants

come in pairs
(
λk,

1
λk

)
with eigenvectors

(
Ψ+

k ,Ψ
−
k

)
that correspond to waves traveling in the positive and negative

direction. For passive structures, direction of propagation and direction of decay coincide, therefore, positives going

waves correspond to |λ| ≤ 1 and negative going waves to |λ| ≥ 1. In case λ ≈ 1, positive going wave have a positive

powerflow and negative going waves a negative one [27]. For active structures, waves should be sorted according to

their direction of decay to solve equation (5) hence the proposed sorting method may still be used. Once propagation

constants and waveshapes are properly sorted, it is possible to compute the forced response of a finite waveguide

comprised of N UCs by relating the waves’ amplitudes to the excitations and boundary conditions. The specific case

of Clamped-Free boundary conditions is detailed in equation (5) as it is used in Section 5 but similar formulas are

available for other types of boundary conditions [25, 3, 28]: Ψ+ Ψ−ΛN

DRLΨ+ΛN−1 + DRRΨ+ΛN DRLΨ−Λ + DRRΨ−


q+

q−

 =

V0

FN

 (5)

In equation (5), q+ and q− are the vectors of the positive and negative going waves’ amplitudes. V0 is the imposed

displacement at the left side of the waweguide while FN is the force applied at its right side. Ψ+ is an n by n matrix

whose columns are the eigenvectors Ψ+
k corresponding to positive going waves. Likewise, Ψ− is formed with the

eigenvectors Ψ−k of the negative going waves. Λ is a diagonal matrix with the positive propagation constants λk on the

diagonal. The displacement of the ith section of the waveguide is given by equation (6):

Vi = Ψ+Λiq+ + Ψ−ΛN−iq− (6)

2.2. Derivatives in the 1D WFEM Framework

In order to optimize a UC to obtain a desired behavior, some properties of the UC are parametrized. The vector

of these m parameters is noted p = (p1, ..., pm) ∈ Rm. It follows that the mass, stiffness and damping matrix, M(p),

K(p), C(p) are functions of the parameter vector p. Assuming the first and second order derivatives of the matrices

with respect to p are available, the derivatives of all the quantities derived in Subsection 2.1 can be computed. For a

given circular frequency ω the first order derivatives of the dynamic stiffness matrix are:

∂G
∂pk

=
∂K
∂pk

+ iω
∂C
∂pk
− ω2 ∂M

∂pk
(7)

Likewise, the second order derivatives of the dynamic stiffness matrix are:

∂2G
∂pk∂pl

=
∂2K
∂pk∂pl

+ iω
∂2C
∂pk∂pl

− ω2 ∂2M
∂pk∂pl

(8)
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Using equation (3), the derivatives of the condensed dynamic stiffness matrix can be derived:

∂D
∂pk

=
∂GBB

∂pk
−

(
∂GBI

∂pk
G−1

II GIB −GBIG−1
II
∂GII

∂pk
G−1

II GIB + GBIG−1
II
∂GIB

∂pk

)
(9)

Taking advantage of the fact that G and D are symmetric matrices this can be rewritten as:

∂D
∂pk

=
∂GBB

∂pk
+ ΘT

IB
∂GII

∂pk
ΘIB − 2sym

(
ΘT

IB
∂GIB

∂pk

)
(10)

With: 
ΘIB = G−1

II GIB

sym(A) =
1
2

(
A + AT

) (11)

That way, ΘIB needs only to be computed once and all first order derivatives of D can be computed without additional

matrix inversions. Following that trend, the second order derivatives of D are obtained:

∂2D
∂pk∂pl

=
∂2GBB

∂pk∂pl
+ ΘT

IB
∂2GII

∂pk∂pl
ΘIB + 2sym

[
∂ΘT

IB

∂pl

(
∂GII

∂pk
ΘIB −

∂GIB

∂pk

)
− ΘT

IB
∂2GIB

∂pk∂pl

]
(12)

With:
∂ΘIB

∂pl
= G−1

II

(
−
∂2GII

∂pl
ΘIB +

∂GIB

∂pl

)
(13)

Equation (12) and (13) show that it is necessary to invert GII m times to compute all derivatives of D. Consequently,

keeping the LU decomposition of GII the first time this operation is performed allows to reduce the computation time

of the derivatives’ evaluation. The derivatives of propagation constants and waveshapes can be computed by using

formulas of Appendix B with:

X(λ, p) = λDLR(p) + (DLL(p) + DRR(p)) +
1
λ

DRL(p) (14)

In order to keep formulas shorter we introduce the following matrix functions:

∂X(λ, p)
∂pk

= λ
∂DLR

∂pk
+

(
∂DRR

∂pk
+
∂DLL

∂pk

)
+

1
λ

∂DRL

∂pk

∂X(λ, p)
∂λ

= DLR −
1
λ2 DRL

dX(λ, p)
dpk

=
∂X(λ, p)
∂pk

+
∂λ

∂pk

∂X(λ, p)
∂λ

∂2X(λ, p)
∂λ2 =

2
λ3 DRL

∂2X(λ, p)
∂λ∂pk

=
∂DLR

∂pk
−

1
λ2

∂DRL

∂pk

∂2X(λ, p)
∂pk∂pl

= λ
∂DLR

∂pk∂pl
+

(
∂DRR

∂pk∂pl
+

∂DLL

∂pk∂pl

)
+

1
λ

∂2DRL

∂pk∂pl

d2X(λ, p)
dpkdpl

=
∂2X(λ, p)
∂pk∂pl

+
∂λ

∂pl

∂2X(λ, p)
∂λ∂pk

+
∂λ

∂pk

∂2X(λ, p)
∂λ∂pl

+
∂2λ

∂pk∂pl

∂X(λ, p)
∂λ

+
∂λ

∂pk

∂λ

∂pl

∂2X(λ, p)
∂λ2

(15)

It should also be considered that the parametric eigenvalue problem (14) is T-palindromic [29]. This means the

eigenvalues comes in pairs
(
λi,

1
λi

)
and that the right eigenvector for λi, Ψi, is the left eigenvector for 1

λi
. Conversely,
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the right eigenvector for 1
λi

, Φi, is the left eigenvector for λi. Because of this feature computing the left eigenvectors

of (14) is not required to evaluate the derivatives. Applying formulas from Appendix B the first order derivatives for

the propagation constants and the waveshapes are derived:

∂λi

∂pk
ΦT

i

DLR −
1
λ2

i

DRL

 Ψi = −ΦT
i

[
λi
∂DLR

∂pk
+

(
∂DRR

∂pk
+
∂DLL

∂pk

)
+

1
λi

∂DRL

∂pk

]
Ψi (16)

∂Ψi

∂pk
= −X+(λi, p)

( ∂λi

∂pk
DLR + λi

∂DLR

∂pk

)
+

(
∂DRR

∂pk
+
∂DLL

∂pk

)
+

− ∂λi

∂pk

1
λ2

i

DRL +
1
λi

∂DRL

∂pk

 Ψi (17)

For the second order derivatives, equations (B.11) and (B.12) are used with the expressions given in equation (15):

d2λi

∂pk∂pl

(
ΦT

i
∂X
∂λ

Ψi

)
= −ΦT

i

[(
∂2X
∂pl∂pk

+
∂λ

∂pl

∂2X
∂λ∂pk

+
∂λ

∂pk

∂2X
∂λ∂pl

+
∂λ

∂pk

∂λ

∂pl

∂2X
∂λ2

)
Ψi +

(
dX
dpk

∂Ψi

∂pl
+

dX
dpl

∂Ψi

∂pk

)]
(18)

∂2Ψi

∂pl∂pk
= −X+

(
d2X

dpkdpl
Ψi +

dX
dpk

∂Ψi
∂pl

+
dX
dpl

∂Ψi

∂pk

)
−<

((
∂Ψi

∂pl

∣∣∣∣∣∂Ψi

∂pk

))
Ψi (19)

The derivatives of the wave coefficients should be computed according to Appendix A. First, equation (5) is rewritten

to simplify the expression of the derivatives:

WQ =

W11 W12

W21 W22


q+

q−

 =

V0

FN

 (20)

Then using equations (A.4) and (A.5) expressions for the first and second order derivatives of the wave coefficients

are given:
∂Q
∂pi

= −W−1 ∂W
∂pi

Q (21)

∂2Q
∂pi∂p j

= −W−1
(
∂2W
∂pi∂p j

Q +
∂W
∂pi

∂Q
∂p j

+
∂W
∂p j

∂Q
∂pi

)
(22)

Expressions for the derivatives of W are given in Appendix C. Once the derivatives of the wave coefficients are

computed, the derivatives of the displacement at the ith section of the waveguide follow:

∂Vi

∂pk
=
∂Ψ+

∂pk
Λiq+ + iΨ+ ∂Λ

∂pk
Λi−1q+ + Ψ+Λi ∂q+

∂pk
+
∂Ψ−

∂pk
ΛN−iq− + (N − i)Ψ−

∂Λ

∂pk
ΛN−i−1q− + Ψ−ΛN−i ∂q−

∂pk
(23)

∂2Vi

∂pk∂pl
=
∂2Ψ+

∂pk
Λiq+ + Ψ+Λi ∂

2q+

∂pk∂pl
+
∂Ψ+

∂pk
Λi ∂q+

∂pl
+
∂Ψ+

∂pl
Λi ∂q+

∂pk

+ i
(
∂Ψ+

∂pk

∂Λ

∂pl
Λi−1q+ +

∂Ψ+

∂pl

∂Λ

∂pk
Λi−1q+ + Ψ+ ∂Λ

∂pk
Λi−1 ∂q+

∂pl
+ Ψ+ ∂Λ

∂pl
Λi−1 ∂q+

∂pk

)
+ i(i − 1)Ψ+ ∂Λ

∂pk

∂Λ

∂pl
Λi−2q+

+
∂2Ψ−

∂pk
ΛN−iq− + Ψ−ΛN−i ∂

2q−

∂pk∂pl
+
∂Ψ−

∂pk
ΛN−i ∂q−

∂pl
+
∂Ψ−

∂pl
ΛN−i ∂q−

∂pk
+

+ (N − i)
(
∂Ψ−

∂pk

∂Λ

∂pl
ΛN−i−1q− +

∂Ψ−

∂pl

∂Λ

∂pk
ΛN−i−1q− + Ψ−

∂Λ

∂pk
ΛN−i−1 ∂q−

∂pl
+ Ψ−

∂Λ

∂pl
ΛN−i−1 ∂q−

∂pk

)
+ (N − i − 1)(N − i − 2)Psi−

∂Λ

∂pk

∂Λ

∂pl
ΛN−i−2q−

(24)
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Figure 2: Dofs’ partition of a 2D UC

3. 2D WFEM

In this section, derivatives for eigenfrequencies, waveshapes and displacements computed using the inverse 2D

WFEM are derived. Using the proposed analytical formulas, it is possible to compute the gradient and hessian

matrix of objective functions considered in Section 5 at relatively low computational cost. They can then be used

in the algorithm described in Section 4 to optimize periodic structures in a unit cell modeling framework. Section

3 is organized as follows. First, subsection 3.1 recaps the theory and main steps of the indirect 2D WFEM while

subsection 3.2 focuses on the derivatives’ computation.

3.1. Band diagram and response to loads with Floquet-Bloch Symmetry

Similarly to the 1D case, the 2D WFEM applies Floquet-Bloch boundary conditions a posteriori on the discretized

model of the UC. The stiffness, mass and damping matrix of the UC are noted K, M and C respectively. The UC’s

displacement vector is referred to as U. The dofs of the UC are partitioned following its spatial structure as illustrated

in Figure 2, taken from [30]:

U =

[
q1 q2 q3 q4 qL qR qB qT qI

]T
(25)

The numbers of dofs in q1, q2, q3 and q4 are identical and noted n1. Likewise, the number of dofs in qL and qR is noted

nL. For qB and qT nB is used while nI is used for qI . The inverse form of the 2D WFEM proceeds by choosing two

wavenumbers (kx, ky) and enforcing the corresponding Floquet-Bloch boundary conditions on the UC:

q2 = λxq1, q3 = λyq1, q4 = λxλyq1, qR = λxqL, qT = λyqB (26)

f1 +
f2
λx

+
f3
λy

+
f4

λxλy
= 0

fL +
fR
λx

= 0

fB +
fT
λy

= 0

(27)
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In equations (26) and (27) λx and λy are the propagation constants in the x and y direction and are related to the

wavenumbers (kx, ky) in the periodic medium via the side lengths of the UC, Lx and Ly respectively:

λx = e−ikxLx , λy = e−ikyLy (28)

The Floquet-Bloch boundary conditions are enforced using two projection matrices PU and PF (see [31]):

U = PU(kx, ky)Ur =



In1 0 0 0

λxIn1 0 0 0

λyIn1 0 0 0

λxλyIn1 0 0 0

0 InL 0 0

0 λxInL 0 0

0 0 InB 0

0 0 λyInB 0

0 0 0 InC





q1

qL

qB

qI


(29)

PF(kx, ky) =



I 1
λx

In1
1
λy

In1
1

λxλy
In1 0 0 0 0 0

0 0 0 0 InL
1
λx

InL 0 0 0

0 0 0 0 0 0 InB
1
λy

InB 0

0 0 0 0 0 0 0 0 InC


(30)

By enforcing these relations a modified equation of the dynamics whose validity is restrained to loads and displace-

ments satisfying the Floquet-Bloch conditions associated to the wavenumber pair (kx, ky) is derived:

[
K(kx, ky) + iωC(kx, ky) − ω2M(kx, ky)

]
Ur = D(kx, ky)Ur = Fr (31)

For a generic matrix A ∈ Mn(C), the matrix A(kx, ky) is derived from matrix A according to equation (32).

A(kx, ky) = PF(kk, ky)APU(kx, ky); (32)

Equation (31) can be used to compute the response of an infinite periodic medium to a load with 2D Floquet-Bloch

symmetry (such as a plane wave) or to compute its band diagram when there is no load [32]:

[
K(kx, ky) + iωrC(kx, ky) − ω2

r M(kx, ky)
]
Ψr = 0 (33)

In most cases, the eigenvalue problem (33) is solved with kx and ky as real numbers. This means 1
λx

= λx, 1
λy

= λy

thus PF = P∗U which results in all matrices in (33) being hermitian. The eigenvalues come in pairs (ωr,−ωr) with

eigenvectors (Ψr,Φr). Additionally, Ψr is the left eigenvector for −ωr, therefore only the right eigenvectors of (33)

need to be computed.
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3.2. Derivatives in the 2D WFEM Framework

As in the 1D case, some properties of the UC are parametrized in order to optimize for a specific behavior. The

vector of these m parameters is noted p = (p1, ..., pm) ∈ Rm. It follows that the mass, stiffness and damping matrix,

respectively M(p), K(p) and C(p), are functions of the parameter vector p. It is also assumed that the first and second

order derivatives of the matrices with respect to p are available. Under these assumptions, the derivatives of all the

quantities defined in Subsection 3.1 can be computed. Starting with equation (31), the derivatives of the modified

dynamic stiffness matrix are:

∂D(kx, ky)
∂pk

= PF(kx, ky)
(
∂K
∂pk

+ iω
∂C
∂pk
− ω2 ∂M

∂pk

)
PU(kx, ky) (34)

∂2D(kx, ky)
∂pk∂pl

= PF(kx, ky)
(
∂2K
∂pk∂pl

+ iω
∂2C

∂pk∂pl
− ω2 ∂2M

∂pk∂pl

)
PU(kx, ky) (35)

Using equations (A.4) and (A.5) the derivatives of Ur are derived:

∂Ur

∂pk
= −D−1(kx, ky)

∂D(kx, ky)
∂pk

Ur (36)

∂2Ur

∂pk∂pl
= −D−1(kx, ky)

(
∂2D(kx, ky)
∂pk∂pl

Ur +
∂D(kx, ky)

∂pk

∂Ur

∂pl
+
∂D(kx, ky)

∂pl

∂Ur

∂pk

)
(37)

To efficiently compute the derivatives of Ur, it is important that the LU decomposition of D(kx, ky) is performed only

once and reused in all matrix-vector inversions. Finally, the derivatives of the waveshapes Ψr and eigenfrequencies

ωr are derived using Appendix B with the parametric matrix:

D(kx, ky, ω, p) = K(kx, ky, p) + iωC(kx, ky, p) − ω2M(kx, ky, p) (38)

In order to increase readability, the dependency in p will be omitted. Moreover, the following matrix functions are

defined: 

∂D(kx, ky, ωr)
∂pk

=
∂K(kx, ky)
∂pk

+ iωr
∂C(kx, ky)
∂pk

− ω2
r
∂M(kx, ky)

∂pk
∂D(kx, ky, ω)

∂ω
= iC(kx, ky) − 2ωM(kx, ky)

dD(kx, ky, ω)
dpk

=
∂D(kx, ky, ω)

∂pk
+
∂ω

∂pk

∂D(kx, ky, ω)
∂ω

∂2D(kx, ky, ω)
∂ω2 = −2M(kx, ky)

∂2D(kx, ky, ω)
∂ω∂pk

= i
∂C(kx, ky)

∂pk
− 2ω

M(kx, ky)
∂pk

∂2D(kx, ky, ω)
∂pk∂pl

=
∂2K(kx, ky)
∂pk∂pl

+ iω
∂2C(kx, ky)
∂pk∂pl

− ω2 ∂
2M(kx, ky)
∂pk∂pl

d2D(kx, ky, ω)
dpkdpl

=
∂2D(kx, ky, ω)

∂pk∂pl
+
∂ω

∂pl

∂D(kx, ky, ω)
∂ω∂pk

+
∂ω

∂pk

∂D(kx, ky, ω)
∂ω∂pl

+
∂2ω

∂pk∂pl

∂D(kx, ky, ω)
∂ω

+
∂ω

∂pk

∂ω

∂pl

∂2D(kx, ky, ω)
∂ω2

(39)
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The first order derivatives of the eigenvalues and eigenvectors are given in equations (40) and (41) according to the

formulas of Appendix B:
∂ωr

∂pk

(
ΦT

r
∂D(kx, ky, ωr)

∂ω
Ψr

)
=

(
ΦT

r
∂D(kx, ky, ωr)

∂pk
Ψr

)
(40)

∂Ψr

∂pk
= −D+(kx, ky, ωr)

(
dD(kx, ky, ωr)

dpk
Ψr

)
(41)

Likewise, their second order derivatives are:

∂2ωr

∂pk∂pl

(
ΦT

r
∂D(kx, ky, ωr)

∂ω
Ψr

)
=ΦT

r

(
∂2D(kx, ky, ω)

∂pk∂pl
+
∂ω

∂pl

∂D(kx, ky, ω)
∂ω∂pk

+
∂ω

∂pk

∂D(kx, ky, ω)
∂ω∂pl

)
Ψr+

ΦT
r

(
∂ω

∂pk

∂ω

∂pl

∂2D(kx, ky, ω)
∂ω2

)
Ψr+

ΦT
r

(
dD(kx, ky, ω)

dpk

∂Ψr

∂pl
+

dD(kx, ky, ω)
dpl

∂Ψr

∂pk

) (42)

∂2Ψr

∂pk∂pl
= −D+(kx, ky, ωr)

(
d2D(kx, ky, ω)

dpkdpl
Ψr +

dD(kx, ky, ω)
dpk

∂Ψr

∂pl
+

dD(kx, ky, ω)
dpl

∂Ψr

∂pk

)
−<

((
∂Ψr

∂pl

∣∣∣∣∣∂Ψr

∂pk

))
Ψr (43)

4. Second Order Optimization Algorithm

This Section describes the second order optimization strategy used in the examples of Section 5. The strategy

is developed to account for two characteristics of the Direct 1D WFEM. Firstly, obtaining accurate derivatives by

numerical differentiation is difficult due to the low numerical accuracy of the WFEM as compared to usual FEM

modeling [26]. Secondly, computing the response of a waveguide is relatively cheap because all computations are

done based on a single UC. It follows that semi-analytical gradients and Hessians of C2 objective functions can be

computed at an acceptable cost. Making use of the available second order information, an algorithm that combines

both line search and trust region methods is designed. The ellipsoidal trust-region approach [23, 24] is based on a

transformation of the local Hessian matrix of the objective function and ensures that the algorithm quickly escapes

saddle points in regions of negative curvature while the line search method performs better in neighborhoods where the

optimized function is convex. Because of these exotic features the proposed algorithm was implemented in Matlab.

It is an instance of sequential quadratic programming (SQP) [22, Chapter 18] thus possesses all the convergence

properties of that class of algorithms. An objective function f and the vector of optimization variables p ∈ Rm are

introduced. The variables may be subject to ne linear equality constraints:

∀i ∈ J1, neK , Ei(p) = 0 (44)

And nc convex inequality constraints:

∀ j ∈ J1, ncK , C j(p) ≤ 0 (45)

For a starting point p0, the function’s value f (p0), the gradient ∇ f (p0) and the Hessian ∇2 f (p0) are computed. A

surrogate function f̃ approximating f around p0 is introduced:

f (p) ≈ f̃ (p) = f (p0) + ∇ f (p0) (p − p0) +
1
2

(p − p0)T ∇2 f (p0) (p − p0) (46)
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If the Hessian is positive definite, a line search method is used [22, Chapter 3]. First, the search direction ν is

computed:

ν = argmin
{
f̃ (p0 + ν), Ei(p) = 0, C j(p) ≤ 0

}
(47)

Equation (47) can be solved using the interior point method [22, Chapter 19] or analytically when there are no

constraints. Once the search ν is computed, f is minimized in the corresponding direction:

αm = argmin { f (p0 + αν), α ∈ [0, 1]} (48)

Defining the next iteration:

p1 = p0 + αmν (49)

When the Hessian is not positive definite, a trust region method [22, 23, 24, 33] is used. First, the matrix
∣∣∣∇2 f (p0)

∣∣∣
is defined. This matrix is obtained by keeping the eigenvectors of ∇2 f (p0) and taking the absolute value of all its

eigenvalues. A supplementary constraint is then introduced:

T (p) = (p − p0)T
∣∣∣∇2 f (p0)

∣∣∣ (p − p0) − R2
0 ≤ 0 (50)

The next iteration is defined as:

p1 = argmin
{
f̃ (p), T (p) ≤ 0, Ei(p) = 0, C j(p) ≤ 0

}
(51)

The trust regions radius Ri is updated at each iteration to make sure that the surrogate function can be trusted. In

practice it is adjusted so that decreases or increases in the objective function are correctly predicted by the surrogate

model:

∀p ∈ Rn, T (p) ≤ 0,
f (p) − f (p0)
f̃ (p) − f̃ (p0)

>
1
4

(52)

Guidelines and algorithms about how to update the trust region radius Ri at each iteration can be found in [22, Chap-

ter 4]. Summarized, the optimization algorithm consists of the following steps:

1. Select an initial point p0.

2. Compute f (p0), ∇ f (p0) and ∇2 f (p0)

3. Assume: f (p) ≈ f̃ (p) = f (p0) + ∇ f (p0) (p − p0) + 1
2 (p − p0)T ∇2 f (p0) (p − p0)

4.a. If ∇2 f (p0) > 0 use line search with Newton-like direction ν:

- Find an approximate minimizer αm of: { f (p0 + αν), α ∈ [0, 1]}

- Define p1 = p0 + αmν

4.b. Else, a trust region method is used to take the step:

- Define p1 = argmin
{
f̃ (p), T (p) ≤ 0, Ei(p) = 0, C j(p) ≤ 0

}
11



5. Iterate steps 2 to 4 until convergence.

A mixed criterion combining change in function value and 1st order optimality, is used to defined convergence. At

least one of the conditions of equation (53) needs to be fulfilled for convergence to be achieved:
‖∇̂ f (p0)‖ ≤ ε1

|pk − pk+1| ≤ ε2

(53)

In equation (53), ∇̂ is the effective gradient that accounts for equality constraints and active inequality constraint. ε1

is the first order optimality tolerance and ε2 is the step size tolerance. These two parameters should be set by the

user. Lastly, it should be noted that the proposed algorithm can still be used when the equality constraints Ei are not

linear or the inequality constraints C j non-convex. In that case, step 4.b. should be used whether the matrix ∇2 f (p0)

is positive or not as line search methods are not valid for this type of optimization problems.

5. Examples

In this Section, the algorithm of Section 4 is used in the WFEM Framework with derivatives computed according

to Section 2 and 3. Additionally, the complexity of the proposed examples is limited to avoid introducing reduced

order modeling considerations or shape optimization formalism. First, the proposed method is used in a FRF-based

parameter identification procedure. This serves as a proof of concept and a validation of the implementation. The

method is subsequently used to optimize the vibro-acoustic performance of two resonant metabeams. Finally, the

optimization of the transmission loss of a metapanel in the coincidence region is considered.

5.1. FRF based parameter identification

In this subsection the method is used in a parameter identification scheme to validate its implementation. A

0.5 meter long beam with a 1cm by 3cm rectangular cross-section and unknown material properties is considered.

Assuming a Poisson’s ratio of 0.3, the cross section of a beam with unitary density ρ and unitary Young’s modulus E

is modeled with 108 SOLID 185 elements in ANSYS APDL 17.0 to serve as the basis for a parametric model. The

corresponding UC is shown in Figure 3. The mass matrix M0 and stiffness matrix K0 are used in a model for which

the density, the real part and the imaginary part of the Young’s modulus are the parameters as specified in equation

(54). 

K(p) = (Er + iEi)K0

M(p) = ρM(p)

p =


Er

Ei

ρ


(54)

Clamped-Free boundary conditions are used and a unit force of 1N is applied at the free end of the beam. The direct

12



Figure 3: Unit cell for the cross-section of the beam (1cm by 3cm by 0.556mm)

forced response is computed on the 10Hz-1000Hz frequency range for material parameters values corresponding to

those of aluminum:

• Real part of the Young’s modulus E0
r = 69.109Pa

• Hysteretic damping η0 = 0.3%

• Imaginary part of the Young’s modulus: E0
i = E0

r η0 = 2, 07.109Pa

• Density ρ0 = 2700kg.m−3

• Poisson’s ratio ν = 0.3

The response, X0(ω), is used to build an error function f that evaluates the difference between the reference and a

response obtained using a material property vector p.

f (p) =

∫ ω+

ω−

(log(|X0(ω)|) − log(|X(ω, p)|))2 dω (55)

In equation (55) the logarithm ensures that the objective function is sensitive to the information available on the full

frequency range. Without this precaution, modal frequencies would dominate the error evaluation as these are where

most of the signal’s energy is located. The optimization process is started with material properties ρ = 13000kg.m−3,

13



Figure 4: Comparison of the direct forced responses for the reference values and their initial estimates

Er = 90.109Pa and Ei = 1, 08.109Pa. The first order optimality tolerance, ε1, is set to 10−3 and the step size tolerance,

ε2, to 10−6. Additionally, all material properties are constrained to be positive during the optimization process. The

difference between the reference forced response and that obtained with the initial guess of the material properties

is showcased in Figure 4 while Figure 5 shows the parameter values at each step of the optimization along with the

value of the objective function. Looking at the optimization path of the real part of the Young’s modulus, iterations

1 and 7 particularly stand out as the value of the real part of the Young’s modulus becomes very low. To investigate

this, the forced responses for iterations 1, 7, 9 and 11 are displayed in Figure 6. From iterations 1 to 10 the values

of the material properties are adjusted so that the average logarithmic values of the forced response match that of the

reference case. This explains the very high values for the imaginary part of the Young’s modulus and the low values

for its real part. Once the mean values approximately correspond, the estimated material properties evolve so that the

modal features of the parametric model start matching that of the reference as evidenced from the forced response

for iteration 11. Ultimately, the optimization algorithm converges to the reference values of the material properties

despite the initial guess being quite off. This constitutes a proof of concept for the method and a validation of its

implementation.

5.2. optimization of a resonant metabeam

In this subsection, the wave-based methodology is applied to the optimization of the mean square velocity of a 1m

long aluminum beam with a square section of side length 1cm and Clamped-Free boundary conditions. The beam is

modeled using Euler-Bernoulli elements and is subjected to a 1N force applied on its free side. The resonant add-on is

14



Figure 5: Evolution the objective function and of the material properties’ estimates

Figure 6: Evolution of the direct forced response’s shape through the iterations
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Figure 7: Schematic representation of the metabeam and its parameters

modeled by introducing an additional degree of freedom corresponding to the mass and linked to the corresponding out

of plane dof of the bare structure via a spring element. The optimization variables are the mass, stiffness and damping

parameters of the periodic resonant add-ons used to treat the host structure. The length of the UC is decided beforehand

and fixed to 5cm, hence the beam contains 20 UCs. The variables of the vector of parameters are subsequently

introduced:

• The added mass to the UC m (cannot be negative and shall not exceed 20% of the host structure’s).

• The stiffness of the spring k (cannot be negative).

• The hystertic damping loss facor of the spring η ∈[0 , 0.1].

• The position of the resonator in the UC (should be between 5mm and 4.5cm). The corresponding optimization

variable β is normalized to be in the [0 ,1] interval.

Thus the vector of parameters is given in equation (56) while Figure 7 provides a schematic representation of the beam

and its parameters:

p =

[
k η m β

]T
(56)

The objective function takes the form:

f (p) =

∫ ω−

ω−

1
N

N∑
i=1

ω2 |Xi(p, ω)|2 dω (57)

16

u0113734
Highlight

u0113734
Highlight

u0113734
Highlight



Figure 8: Response of the bare structure (direct), starting point (direct and far field) and optimum (direct and

far field). The vertical dashed lines indicate the frequency band of optimization

Where Xi(p, ω) is the frequency forced response of the ith section of the waveguide for a unitary load on the

free side and N is the number of UCs. From a geometric point of view, moving the resonator e.g. to the right can

be accomplished by lengthening the elements to its left and shortening the elements to its right by an equal amount.

Therefore, the computation of derivatives with respect to β involves the matrix derivatives of Euler-Bernoulli elements

with respect to their length. However, when evaluating models with different resonator positions, elements are not

lengthened resp. shortened as it would lead to high length ratios between elements when the resonator approaches

one of the UCs end. Instead, for a given resonator position, a mesh size is decided according to the shortest distance

between the resonator and the UCs ends and re-meshing occurs at each iteration. For the optimization, the 5th mode of

the bare structure around 712Hz is targeted as shown in Figure 8. The frequency band of optimization, 648Hz-919Hz,

is defined by the two anti-resonances surrounding the 5th mode in the direct forced response of the bare structure.

The second order optimization methodology described in Section 4 is applied for a random starting point p0. The

first order optimality tolerance ε1 and the step size tolerance ε2 are set respectively to 10−5 and 10−6. In Figure 8,

the direct forced response for the bare structure, the starting point of the optimization, and the optimum are shown.

Additionally, the response at section 1 (near the clamped side) is presented for the starting point and the optimum so

that the stopband behavior can be evaluated in both cases. The value of the optimization variables at each iteration can

be observed in Figure 9 while Figure10 shows the evolution of the objective function. Unsurprisingly, maximizing

the added mass and loss factor results in optimal performances. However, having the tuned resonance frequency on

the targeted mode or at the center of the targeted frequency band does not. Similarly, the resonators position in the
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Figure 9: Evolution of the resonator’s tuned frequency, mass, damping ratio and position

Figure 10: Evolution of the objective function
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UC is not a neutral parameter. These observations cannot be predicted from simple dispersion analysis and highlight

the need to account for boundary conditions, finiteness and source location properties during the design phase.

5.3. optimization of a multi-resonant metabeam

Given the vibration attenuation obtained in subsection 5.2 the case of multi resonant systems is investigated to

see if it is possible to target several modes simultaneously without increasing the percentage of added mass. A 15

cm long UC with 3 resonators is considered. The resonator’s positions are fixed at 4.5cm of their respective 5cm

long sub-UCs. The length of the beam is also extended to 1.5m as to be a multiple of the 15cm long triple UC

and Clamped-Free boundary conditions are used. The targeted frequency band, 188Hz-408Hz is defined by the anti-

resonances surrounding the 4th and 5th modes of the host structure. As in the previous case, the added mass of each

resonator is limited to 20% of that of the host structure in its sub UC. The damping loss factors are also limited to

10%. The vector of material properties is given in equation (58):

p =

[
k1 η1 m1 k2 η2 m2 k3 η3 m3

]T
(58)

Likewise, the objective function is still that of equation (57):

f (p) =

∫ ω−

ω−

1
N

N∑
i=1

ω2 |Xi(p, ω)|2 dω

The starting point of the optimization is chosen randomly with the additional constraint that all three resonators have

identical material properties to see if this still holds for the optimum and during the optimization process. The values

of the convergence criteria are set to 10−4 for the first order optimality tolerance and 10−7 for the step size tolerance.

In Figure 11, the direct forced response for the bare structure, the starting point of the optimization, and the optimum

are shown. Additionally, the response at section 1 (near the clamped side) is presented for the starting point and the

optimum so that the stopband behavior can be evaluated in both cases. The values of the resonators’ attributes at each

iteration can be observed in Figure 12 along with that of the objective function. The optimum is not really surprising.

The added mass and damping loss factor of all resonators reached the maximal allowed values and the tuned resonance

frequencies are spread over the optimization zone in order to cover the maximum area.

5.4. Optimization of the diffuse field transmission loss of a resonant metapanel

In this subsection, the 2D WFEM framework is used in conjunction with the method developed by Christen et al.

[34] to evaluate and optimize the transmission loss through a metapanel. The general lines of the transmission loss

computation are discussed in subsection 5.4.1 in order to introduce the objective function. Then, the modeling of the

panel, its parameters and the optimization results are subsequently discussed in subsection 5.4.2.

19

u0113734
Highlight



Figure 11: Response of the bare structure (direct), starting point (direct and far field) and optimum (direct and

far field). The vertical dashed lines indicate the frequency band of optimization

Figure 12: Evolution of the objective function and all three resonators’ properties
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5.4.1. Transmission loss through a weakly periodic structure

Two semi-infinite acoustic domains separated by a periodic structure filling the space region −h ≤ z ≤ 0 are

considered. An incident acoustic field is present in the half space z ≤ −h which, by fluid structure coupling, leads to

a structural response X, a reflected acoustic field and a transmitted acoustic field. The transmission loss is defined as

the ratio between the intensity of the incident field and that of the transmitted one. In 2016, Christen et al. introduced

a method based on the 2D WFEM to compute the transmission loss through homogeneous multi-layer panels [34].

The method can be extended to periodic structures assuming that the dimensions of the UC are smaller than all

acoustic wavelengths considered and that the structural response to a spatially harmonic load is approximately spatially

harmonic. That is, the UC must be subwavelength and the structure weakly periodic. First, the transmission loss

for an incident acoustic plane wave at circular frequency ω, acoustic wavenumber k0 and incidence angles (θ, φ) is

considered. Using the complex notation, the plane wave has the form: Pinc = Pie−ikzze−ikyye−ikx x

kz = k0 cos φ, ky = k0 sin θ sin φ, kx = k0 cos θ sin φ
(59)

Its transmission loss, τ(ω, θ, φ), can be computed by linking the structural displacement to the transmitted and reflected

acoustic pressures. Indeed, the continuity of the normal velocity should hold at the two fluid-structure interfaces:

∂v
∂t

= −
∇P
ρair

(60)

In equation (60) P is the pressure on the fluid domain, v is the particle velocity and ρair is the density of the air. Taking

both the spatial and temporal Fourier transforms this equation can be written on both fluid-structure interfaces:

Pr = Pi −
iρairω

2

kz
X− (61)

Pt =
iρairω

2

kz
X+ (62)

with X− the out of plane structural displacement at the incident side and X+ the out of plane displacement at the

transmission side. The reflected and transmitted pressure fields take the form: Pre f = Preikzze−ikyye−ikx x

Ptra = Pte−ikzze−ikyye−ikx x
(63)

Following the logic of Section 3.1, the complete structural response X can be evaluated by solving:(
D(kx, ky) + A+(kz) + A−(kz)

)
X = 2Fi (64)

In equation (64), Fi is the force vector associated to the incident pressure field while A+(kz) and A−(kz) integrate the

parts of the reflected and transmitted pressure fields that scale linearly with the structural displacement. The factor 2

comes from the fact that the reflected pressure is derived from both the displacement and the incident pressure. Once

the structural displacement is known, the quadratic amplitude of transmitted pressure field can be evaluated:

|Pt |
2 =

ρairω
2

Nkz
X∗+X+ (65)
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Figure 13: Unit Cell of the host structure

With X+ the structural displacement at the interface and N the dimension of X+. The transmission loss τ(ω, θ, φ) is

then defined as:

τ(ω, θ, φ) =
|Pt |

2

|Pi|
2 (66)

The diffuse transmission loss at the circular frequency ω can then be obtained as:

τd(ω) =

∫ 2π
0

∫ π
2

0 τ(ω, θ, φ) sin θ cos θ dθ dφ∫ 2π
0

∫ π
2

0 sin θ cos θ dθ dφ
(67)

while the global diffuse field transmission loss on the frequency range [ω−, ω+] is defined by:

τg(ω−, ω+) =

∫ 2π
0

∫ π
2

0

∫ ω+

ω−
τ(ω, θ, φ) sin θ cos θ dθ dφ dω∫ 2π

0

∫ π
2

0

∫ ω+

ω−
sin θ cos θ dθ dφ dω

(68)

Finally, while the present section maintained the distinction between X+ and X− (in accordance to [34]) these vectors

are equal in subsection 5.4.2 because shell elements are used to model the metapanel.

5.4.2. Numerical modeling and results

The method described in subsection 5.4.1 is applied to a metapanel. The bare panel is 4 mm thick and mass spring

systems are added to it periodically. The UC is chosen to be 1cm by 1cm which guarantees that the subwavelength

condition is respected. The host structure’s UC is modeled in Ansys APDL 17.0 with elements SHELL181. Its mesh

is shown in Figure 13. The additional dof of the mass is connected to the central node of the UC and the parameters of
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Figure 14: Comparison of the performance of the host structure and the optimum

the model are the added mass, the stiffness of the spring and the hysteretic damping. The mass is constrained so that

it does not exceed 10% of the host structure’s mass while the damping is limited to 10%. The parameter vector is:

p =


k

η

m

 (69)

The aim of the optimization is to mitigate the decrease of transmission loss in the 1900-6000 Hz frequency range

caused by the structural-acoustic coincidence (see Figure 14) hence the objective function is:

f (p) =

∫ 2π
0

∫ π
2

0

∫ ω+

ω−
τ(ω, θ, φ, p) sin θ cos θ dθ dφ dω∫ 2π

0

∫ π
2

0

∫ ω+

ω−
sin θ cos θ dθ dφ dω

(70)

where τ(ω, θ, φ, p) is the transmission loss for an incident acoustic wave at circular frequency ω and angles (θ, φ)

and parameter vector p. This function satisfies the conditions of Appendix A.2 (see equation (66)), therefore the

additional cost of computing its derivatives is low. The optimization is carried out starting from a random point in the

design space with stopping criteria values set to 10−16 for the first order optimality tolerance and 10−7 for the minimal

step size. A comparison between the TL of the bare structure and that of the optimal design is given in Figure 14.

Additionally, Figure 15 shows the optimization path of the resonators attributes as well as the value of the objective

function. As expected, maximizing the TL requires to maximize both the mass and damping of the resonator and

the optimal tuned frequency is close to that of the minimal TL for the bare structure. The optimum is reached in a

few iterations despite the starting point being far from the optimal values, proving the efficiency of the optimization

methodology.
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Figure 15: Evolution of the objective function and of the TVA’s properties

6. Conclusion

In this paper, first and second order derivatives were derived for the 1D and 2D WFEM via an intrusive methodol-

ogy. Additionally, a second order optimization algorithm belonging to the class of sequential quadratic programming

was proposed to exploit the derivatives to their fullest. This algorithm combines an ellipsoidal trust-region approach

with a line search method when appropriate. When it is not, the algorithm reduces to a trust region method. Com-

bined, both contributions form a framework for the optimization of 1D and 2D periodic structures. In the 1D case,

the size of the waveguide, the boundary conditions and eventual loads can all be taken into account during the op-

timization process. In the 2D case, only infinite structures are considered but the load’s characteristics can still be

accounted for. This is demonstrated in the numerical examples in which the proposed methodology is used to suc-

cessfully optimize the vibro-acoustic performances of metabeams under clamped-free boundary conditions and the

diffuse field transmission loss of a metapanel. The proposed methodology accounts for both strong and weak points

of the WFEM. Namely, the decoupling of the computation cost from the size of the waveguide and the lower accuracy

of the WFEM as compared to FEM modeling. It is versatile and can be used in a wide range of applications includ-

ing parameter identification, homogenization, model updating, design optimization and potentially damage detection.

Further technical developments will focus on the incorporation of model order reduction in the proposed framework

and its extension to other UCM techniques such as the shift cell operator method. The former could prove challenging

because rigorously, the sensibilities of projection matrices are required to ensure the accuracy of the gradient and

Hessian matrix of objective functions. Finally, applications with complex cases including 3D geometric parameters

will be considered.
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Appendix A. First and second order derivatives for solutions of linear equations

This section details the computation of first of second order derivatives for functions using solutions of linear

systems of equations. This is relevant to the developments in subsections 2.1, 3.1 and 5.4. A C2 linear parametric

system is considered:

A(p)U(p) = F (A.1)

In equation (A.1), p ∈ Rn is the vector of parameters. Appendix A.1 deals with the derivative of the vector function

U while Appendix A.2 describes an efficient way to compute the gradient and hessian of a scalar quadratic objective

function based on U

Appendix A.1. Vector Derivatives

The solution of equation (A.1) can be written:

U = A−1F (A.2)

Practically, solving equation (A.1) numerically involves the computation of a decomposition of the matrix A which

may depend on its properties (LU, LDL, Cholesky, QR, etc). This decomposition should be stored as inverting A

again will be needed to compute the derivatives of U. Indeed differentiating equation (A.1) yields:

∂A
∂pi

U + A
∂U
∂pi

= 0 (A.3)

Hence:
∂U
∂pi

= −A−1 ∂A
∂pi

U (A.4)

The same can be done for the second order derivatives U.

∂2U
∂pi∂p j

= −A−1
(
∂2A
∂pi∂p j

U +
∂A
∂pi

∂U
∂p j

+
∂A
∂p j

∂U
∂pi

)
(A.5)

Since A−1 is used in equations (A.2), (A.4) and (A.5), keeping the matrix decomposition of A enables the computation

of the first of second order derivatives of U at a relatively low cost.
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Appendix A.2. Scalar Derivatives

For this case, the solution of equation (A.1) is used in a scalar objective function f (p) and the aim is to compute

the gradient and hessian of this function in a efficient manner. In light of the objective functions used in this article

we will focus on quadratic implicit vector functions corresponding to the system of equations (A.6). A(p)U(p) = F

f (p) = U∗BU
(A.6)

In (A.6) the matrix B can be chosen hermitian without loss of generality hence this assumption will be made in the

following developments. First, the first order derivatives of f are introduced:

∂ f
∂pi

= 2<
(
U∗B

∂U
∂pi

)
(A.7)

Then, the derivatives of U can be replaced using equation (A.4):

∂ f
∂pi

= 2<
(
−U∗BA−1 ∂A

∂pi
U

)
= 2<

(
(−U∗BA−1)

(
∂A
∂pi

U
))

(A.8)

Equation (A.8) introduces the adjoint:

Ad j = −U∗BA−1 = −(U∗B)A−1 (A.9)

It needs only to be computed once at the cost of one matrix-vector inversion. Then, all first order derivatives of f can

be computed at the cost of one matrix-vector multiplication and one vector-vector scalar product. This significantly

lowers the computation cost of f ’s gradient. The second order derivatives of f are given by:

∂2 f
∂pi∂p j

= 2<
(
U∗B

∂2U
∂pi∂p j

+
∂U∗

∂pi
B
∂U
∂p j

)
(A.10)

Using equations (A.5) and (A.9) this can rewritten as:

∂2 f
∂pi∂p j

= 2<
(
Ad j

(
∂2A
∂pi∂p j

U +
∂A
∂pi

∂U
∂p j

+
∂A
∂p j

∂U
∂pi

)
+
∂U∗

∂pi
B
∂U
∂p j

)
(A.11)

Unlike equation (A.10), equation (A.11) does not involve ∂2U
∂pi∂p j

: This means that the full hessian matrix of f can be

computed at the cost of only (n + 1) matrix inversions instead of n(n+3)
2 + 1. However, since both equation (A.10)

and (A.11) require the first order derivatives of U it is not necessary to use equations (A.8) and (A.9) to compute f ’s

gradient as equation (A.7) is equally fast under these conditions. That being said, using equation (A.8) never result in

a loss of computation time.

Appendix B. Derivatives of Simple Eigenvalues and Eigenvectors

This section is concerned with the first and second order derivatives of eigenvalues and eigenvectors. In order

increase readability, the following notations are introduced:
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• U/Ui : Right eigenvector.

• V/Vi : Left eigenvector.

• λ/λi : Eigenvalue, propagation constant.

• p ∈ Rm vector of parameters.

• pi The ith component of p.

• X+ Moore-Penrose inverse of the matrix X.

Appendix B.1. Nonlinear Eigenvalue Problem

Let m be a positive integer superior or equal to 1. A nonlinear eigenvalue problem of order n is defined by the

following equation: 
X : C→ Mn(C)

λ 7→ X(λ)

S ol = {λ ∈ C, det(X(λ)) = 0}

(B.1)

For each λ in S ol left and right eigenvectors can be defined. They are non-trivial solutions of equation (B.2):

X(λ)U = 0 = VT X(λ) (B.2)

For a given λ in S ol, the dimension of Ker(X(λ)) is at least one. Herein, the assumption that Ker(X(λ)) (the kernel of

X(λ)) is always of dimension 1 is made. In this case, single left and right eigenvectors can be arbitrarily chosen as all

possible choices differ only by a scalar multiplication.

Appendix B.2. Parametric Eigenvalue Problem

This time the matrix X is considered to also be a function of a parameter vector p ∈ Rm. The eigenvalues λ and

eigenvectors U and V become function of p. Assuming the matrix X is an analytic function of (λ, p), derivatives of

eigenvalues and eigenvectors with respect to the parameters pi can be computed. In order to simplify expressions we

define:
dX
dpk

=
∂X
∂pk

+
∂λ

∂pk

∂X
∂λ

(B.3)

Appendix B.2.1. First Order Derivatives

An arbitrary eigenvalue λi and the corresponding left and right eigenvectors Ui and Vi are chosen. The relationship

(B.4) holds:

∀p ∈ Rm, X(λi(p), p)Ui(p) = 0 = VT
i (p)X(λi(p), p) (B.4)

Differentiating with respect to pk we get:
dX
dpk

Ui + X
∂Ui

∂pk
= 0 (B.5)
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Since VT
i X = 0, premultiplying by VT

i yields:

VT
i

dX
dpk

Ui = 0 (B.6)

This scalar equation can be developed using equation (B.3):

∂λ

∂pk

(
VT

i
∂X
∂λ

Ui

)
= −

(
VT

i
∂X
∂pk

Ui

)
(B.7)

Equation (B.7) defines the first order derivatives of the eigenvalue λi. Once this quantity is known, equation (B.3) can

be evaluated and the derivatives of the eigenvectors can be obtained:

∂Ui

∂pk
= −X+ dX

dpk
Ui (B.8)

Since the matrix X is singular, there would be infinitely many solutions to equation (B.8) if the Moore-Penrose inverse

was not used. This corresponds to a choice of normalized rectified eigenvectors satisfying
(

dUi
dpk

∣∣∣∣Ui

)
= 0. This condition

can be enforced without making any particular hypothesis (see Appendix B.3).

Appendix B.2.2. Second Order Derivatives

It is assumed that the first order derivatives of eigenvalues and eigenvectors have been computed and stored in

memory. Differentiating equation (B.2) two times provides:

d2X
dpkdpl

U +
dX
dpk

∂U
∂pl

+
dX
dpl

∂U
∂pk

+ X
∂2U
∂pk∂pl

= 0 (B.9)

Since VT X = 0, premultiplying by VT yields:

VT
(

d2X
dpkdpl

U +
dX
dpk

∂U
∂pl

+
dX
dpl

∂U
∂pk

)
= 0 (B.10)

The term d2X
dpkdpl

can be developed leading to the expression for the second order derivatives of λ:

d2λ

∂pk∂pl

(
VT ∂X

∂λ
U

)
= −VT

[(
∂2X
∂pl∂pk

+
∂λ

∂pl

∂2X
∂λ∂pk

+
∂λ

∂pk

∂2X
∂λ∂pl

+
∂λ

∂pk

∂λ

∂pl

∂2X
∂λ2

)
U +

(
dX
dpk

dU
dpl

+
dX
dpl

dU
dpk

)]
(B.11)

Once that d2λ
∂pk∂pl

is known, the matrix d2X
dpkdpl can be evaluated and the second order derivatives of the eigenvector can

be obtained:
∂2U
∂pl∂pk

= −X+

(
d2X

dpkdpl
U +

dX
dpk

∂U
∂pl

+
dX
dpl

∂U
∂pk

)
−<

((
∂U
∂pl

∣∣∣∣∣ ∂U
∂pk

))
U (B.12)

For explanations about formula (B.12) see Appendix B.3

Appendix B.3. Proofs

The aim of this subsection is to determines how equation of the form:

XA = B (B.13)

Should be solved in the context of eigenvector derivatives computations. Indeed, equations (B.5) and (B.9) can be

used to evaluate the derivatives of the eigenvector. However, because the matrix function is singular when λ is an
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eigenvalue, an infinite number of solutions exists. This subsection shows that solving according to equation (B.14)

produces a coherent set of derivatives.
(
Ui(p)

∣∣∣∣∣∂Ui(p)
∂pk

)
= 0(

Ui(p)

∣∣∣∣∣∣∂2Ui(p)
∂pk∂pl

)
= −<

((
∂Ui(p)
∂pk

∣∣∣∣∣∂Ui(p)
∂pl

)) (B.14)

In what follows, it is assumed that the derivatives are computed for p = 0 and that they are C2 functions of the

eigenvalue λi and the eigenvectors Ui. We start by normalizing the eigenvector function. That is, we use 1
‖Ui(p)‖Ui(p)

instead of Ui(p). Since eigenvectors are defined up to a multiplicative constant this function is still ane eigenvector

function. Moreover it is also C2 since Ui cannot be equal to zero (eigenvectors are non-trivial solutions). In what

follows we still note this new function Ui(p).

∀p ∈ Rm, ‖Ui(p)‖ = 1 (B.15)

Tatking the first order derivative of equation (B.15) yields

∀p ∈ Rm, <

(
∂Ui
∂pk

∣∣∣∣∣Ui

)
= <

(
Ui

∣∣∣∣∣∂Ui
∂pk

)
= 0 (B.16)

Considering the second order derivatives leads to:

∀p ∈ Rm, <

(
Ui(p)

∣∣∣∣∣∣∂2Ui(p)
∂pk∂pl

)
= −<

(
∂Ui(p)
∂pk

∣∣∣∣∣∂Ui(p)
∂pl

)
(B.17)

Equations (B.16) and (B.17) are only true for the imaginary parts because the ( | ) is an hermitian inner product.

Therefore we still have to show that the imaginary part of the concerned inner products can be chosen equal to 0.

Equation (B.16) can be rewritten for p = 0 as:

∂Ui

∂pk
(0) = jαkUi(0) + Qk (B.18)

With

∀k ∈ J1,mK, αk ∈ R, (Ui(0)|Qk) = 0, j2 = −1 (B.19)

The eigenvector function R defined by equation (B.20) is considered:

∀p, ∈ Rm,Ri(p) = Ui(p)e− j(α|p) (B.20)

The function R is also a normalized eigenvector function since
∣∣∣e− j(α|p)

∣∣∣ = 1 hence, it satisfies equations (B.16) and

(B.17). Taking the first order derivatives of R leads to:

∂Ri

∂pk
=

(
∂Ui

∂pk
− jαkUi

)
e− j(α|p) (B.21)
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Therefore: 

R(0) = Ui(0)e− j(α|0) = Ui(0)

∂Ri

∂pk
(0) = Qke− j(α|0) = Qk

Hence,
(
R(0)

∣∣∣∣∣ ∂Ri

∂pk
(0)

)
= 0

(B.22)

The first condition of equation (B.14) is verified by the eigenvector function Ri but not necessarily the second one. It

follows that: 
∂2Ri

∂pk∂pl
(0) =

(
βk,l + jγk,l

)
Ui(0) + Wk,l

∀(k, l) ∈ J1,mK2, (βk,l, γk,l) ∈ R2,
(
Ri(0)

∣∣∣Wk,l
)

= 0
(B.23)

It should be noted that by Schwartz theorem βk,l = βl,k. The same holds true for γk,l and Wk,l. The m by m matrix H is

defined such that Hk,l =
γk,l

2 . H is real symmetric. We can now define the normalized eigenvector function S by:

∀p ∈ Rm, S i(p) = Ri(p)e− jpT Hp (B.24)

Let (νk)k∈J1,mK be the canonical basis of Rm. We have:

S i(p) = Ri(p)e− jpT Hp

∂S i

∂pk
=

(
∂Ri

∂pk
− 2 j

(
νT

k Hp
)

Ri

)
e− jpT Hp

∂2S i

∂pl∂pk
=

[
−2 j

(
νT

l Hp
) ( ∂Ri

∂pk
− 2 j

(
νT

k Hp
)

Ri

)
+

(
∂2Ri

∂pl∂pk
− 2 j

(
νT

k Hνl

)
Ri − 2 j

(
νT

k Hp
) ∂Ri

∂pl

)]
e− jpT Hp

(B.25)

Evaluating these expressions at p = 0 yields:

S i(0) = Ri(0)

∂2S i

∂pk
(0) =

∂Ri

∂pk
(0)

∂2S i

∂pl∂pk
(0) =

∂2Ri

∂pl∂pk
(0) − 2 jHk,lRi(0) = βk,lRi(0) + Wk,l

(B.26)

Hence the eigenvector function S i satisfies all the conditions of equation (B.14). This proves that the formulas (B.8)

and (B.12) produce a coherent system of eigenvector derivatives.

Appendix C. Derivatives of the wave stiffness matrix

This section details computation of the derivatives of the wave stiffness matrix in equations (5) and (20).

W11 = Ψ+

W12 = Ψ−ΛN

W21 = DRLΨ+ΛN−1 + DRRΨ+ΛN

W22 = DRLΨ−Λ + DRRΨ−

(C.1)
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The derivatives of W11 are trivial but that of the other submatrices are developed:

∂W12

∂pk
=
∂Ψ−

∂pk
ΛN + NΨ−

∂Λ

∂pk
ΛN−1 (C.2)

∂2W12

∂pk∂pl
=

∂2Ψ+

∂pk∂pl
ΛN + N

(
∂Ψ−

∂pk

∂Λ

∂pl
+
∂Ψ−

∂pl

∂Λ

∂pk
+ Ψ+ ∂2Λ

∂pk∂pl

)
ΛN−1 + N(N − 1)Ψ−

∂Λ

∂pk

∂Λ

∂pl
ΛN−2 (C.3)

∂W21

∂pk
=

(
∂DRL

∂pk
Ψ+ + DRL

∂Ψ+

∂pk

)
ΛN−1+(N−1)DRLΨ+ ∂Λ

∂pk
ΛN−2+

(
∂DRR

∂pk
Ψ+ + DRR

∂Ψ+

∂pk

)
ΛN +NDRRΨ+ ∂Λ

∂pk
ΛN (C.4)

∂2W21

∂pk∂pl
=

(
∂2DRL

∂pk∂pl
Ψ+ +

∂DRL

∂pk

∂Ψ+

∂pl
+
∂DRL

∂pl

∂Ψ+

∂pk
+ DRL

∂2Ψ+

∂pk∂pl

)
ΛN−1

+ (N − 1)
[(
∂DRL

∂pk
Ψ+ + DRL

∂Ψ+

∂pk

)
∂Λ

∂pl
+

(
∂DRL

∂pl
Ψ+ + DRL

∂Ψ+

∂pl

)
∂Λ

∂pk
+ DRLΨ

∂2Λ

∂pk∂pl

]
ΛN−2

+ (N − 1)(N − 2)DRLΨ+ ∂Λ

∂pk

∂Λ

∂pl
ΛN−3

+

(
∂2DRR

∂pk∂pl
Ψ+ +

∂DRR

∂pk

∂Ψ+

∂pl
+
∂DRR

∂pl

∂Ψ+

∂pk
+ DRR

∂2Ψ+

∂pk∂pl

)
ΛN

+ N
[(
∂DRR

∂pk
Ψ+ + DRR

∂Ψ+

∂pk

)
∂Λ

∂pl
+

(
∂DRR

∂pl
Ψ+ + DRR

∂Ψ+

∂pl

)
∂Λ

∂pk
+ DRRΨ

∂2Λ

∂pk∂pl

]
ΛN−1

+ N(N − 1)DRRΨ+ ∂Λ

∂pk

∂Λ

∂pl
ΛN−2

(C.5)

∂W22

∂pk
=

(
∂DRL

∂pk
Ψ− + DRL

∂Ψ

∂pk

)
Λ + DRLΨ−

∂Λ

∂pk
+
∂DRR

∂pk
Ψ− + DRR

∂Ψ−

∂pk
(C.6)

∂2W22

∂pk∂pl
=

(
∂2DRL

∂pk∂pl
Ψ− +

∂DRL

∂pk

∂Ψ−

∂pl
+
∂DRL

∂pl

∂Ψ−

∂pk
+ DRL

∂2Ψ−

∂pk∂pl

)
Λ

+

(
∂DRL

∂pk
Ψ− + DRL

∂Ψ−

∂pk

)
∂Λ

∂pl
+

(
∂DRL

∂pl
Ψ− + DRL

∂Ψ−

∂pl

)
∂Λ

∂pk
+ DRLΨ−

∂2Λ

∂pk∂pl

+
∂2DRR

∂pk∂pl
Ψ− +

∂DRR

∂pk

∂Ψ−

∂pl
+
∂DRR

∂pl

∂Ψ−

∂pk
+ DRR

∂2Ψ−

∂pk∂pl

(C.7)
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