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Abstract

This paper focuses on the nonlinear estimating of friction-induced vibrations (FIV) re-

lated to the mode-coupling mechanism. This task is a key step for implementing control

laws when FIV are required to be mitigated. Then, this study proposes nonlinear state

observers based on the gradient descent method. Two types are investigated: the first one

is the gradient descent nonlinear observer (GDNLO) which gives estimations of vibrations

by minimizing the gradient of the error between the system and observer outputs, while

the second, called the modified GDNLO, gives estimations by minimizing the gradient of

the errors between the high order derivatives of the system and observer outputs. Perfor-

mances of both observers are analysed by considering the properties of their convergences

when used for the estimation of the mode-coupling based vibrations and when used for

controlling the vibrations via linearizing and stabilizing feedbacks. Based on numerical

simulations, the modified GDNLO has shown better and more suitable convergence prop-

erties than the GDNLO. High accuracy levels are obtained for the estimated vibrations.

Moreover, this accuracy is kept when the modified GDNLO is inserted in a control loop

for the mitigating of the FIV.

Keywords: Nonlinear dynamical systems, Friction-induced vibration, mode-coupling,

nonlinear state observer, gradient descent method, nonlinear control, feedback

linearization.

1. Introduction

Fiction-induced vibrations (FIV) are required to be controlled in numerous engineer-

ing applications due to their negative impact on systems performances, varying from

Preprint submitted to Journal of LATEX Templates December 2, 2019

© 2019 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S088832701930809X
Manuscript_ecf94ee79b082511e4e882a1038e2c70

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S088832701930809X
https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S088832701930809X
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S088832701930809X


acoustic discomfort to a degradation of systems and operating safety. Brake squeal,

clutch chatter and vibrations in controlled positioning systems are well-known examples5

in this area.

Nowadays, it is common to classify FIV with respect to their origin into two main

families [1, 2, 3]. The first one explains the vibrations from tribological view point by the

variation of the friction coefficient against the relative velocity between the structures

in contact. The variation from a static to a dynamic value can be discontinuous or can10

evolve according to a smoother relation as given by the Stribeck model, exponential or

polynomial models [4, 5, 6, 7]. The second family points out the importance of structural

aspects in the process of generating vibrations. Indeed, it was shown that these vibrations

may occur even with a constant friction coefficient and are rather related to the so-called

mode coupling phenomenon [1, 2, 8, 9]. The latter is characterized by the approximation15

in frequency of two modes until equality at a particular value of the friction coefficient

called coalescence point. At this stage, a small perturbation of the equilibrium will drive

the system to a stationary vibratory state.

Numerous studies have been devoted to the analysis and prediction of FIV in de-

terministic framework by using the complex eigenvalue analysis [10, 11, 12] or by using20

nonlinear transient analysis [13, 14]. The prediction of FIV in uncertain frameworks

has also concentrated much of interest by using sensitivity approaches and probabilistic

meta-models [15, 16, 17, 18], non-probabilistic meta-models [19, 20] or hybrid metamod-

els [21, 22] and fuzzy approaches [23]. The key aim of all these studies is to predict

FIV in order to determine wether they can be neglected or must be mitigated or even25

suppressed.

Numerous schemes and methods have been proposed for efficient controlling of FIV.

A passive control strategy was proposed in [24] for the mitigating of friction-induced

stick-slip vibrations by means of the modulation of an externally imposed normal force.

A similar approach proposed in [6] consisted in the using of a high frequency tangential30

external excitation. The using of a dynamic vibration absorber of stick-slip vibrations

was proposed in [25] while Nonlinear Energy Sink (NES) was proposed in [26] for a pas-

sive mitigating of mode-coupling instabilities. Otherwise, structural modifications was

also proposed in [27] and were shown to be not always well suitable for assigning the
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system’s eigenvalues to the desired locations, which makes the friction system difficult35

to be stabilized. Active control strategies offer different other schemes that can prove to

be effective. The PID regulator proposed in [28] has shown unsatisfactory performances

when used for suppressing stick-slip vibrations issued from the discontinuous evolution

of friction coefficient from the static to the dynamic value, while the PID with a high

gain has shown better aptitudes for suppressing stick-slip vibrations when the friction40

coefficient is smoothly depending on the relative sliding velocity [29]. Numerous other

techniques based on linear delayed and non-delayed state feedbacks [30, 31, 32, 33, 34]

were proposed for controlling FIV. Most of them define control loops which permit the

assigning of the locations of the system eigenvalues to desired positions, imposing desired

dynamical behaviours. A robust assigning of eigenvalues was proposed in [35]. Otherwise45

and more recently, linearizing state feedback based strategies were developed in [36] for

the mitigating of mode-coupling instabilities. The main idea is to define a nonlinear coor-

dinate transformation for simplifying the non-linearities and thus for putting the system

into a linear form, the control of which can be performed more easily by using classical

linear techniques. However, an effective implementation of this nonlinear scheme and50

even all linear and nonlinear state feedbacks for controlling FIV requires the latter to be

measurable. For this purpose, using sensors is in numerous practical cases unsuitable due

to either the infeasibility and/or the cost of the measures or to the high impact of sen-

sors on the dynamical behaviour of the controlled system. Hence, using state observers

becomes mandatory.55

In fact, a state observer is a dynamical system which gives from the inputs and outputs

of the system to be controlled, estimations of the state variables. The aim is then to

use these estimations instead of measures that would be impossible or too expensive to

perform, for the controlling of FIV. This issue and more particularly the controlling of

stick-slip vibrations by using state observer was considered in a number of studies as60

in [37, 38, 39, 40]. Otherwise, the literature does not refer to any study dealing with

the controlling of mode coupling instabilities by using nonlinear state observers. Hence,

this paper focuses on this issue and proposes to investigate nonlinear observation and

control schemes when combined together for the mitigating of FIV issued from the mode

coupling mechanism. The linearizing feedback approach was proposed recently in [36]65
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for the controlling of mode-coupling instabilities. Then, this study proposes the imple-

menting of this nonlinear control scheme by using a nonlinear state observer. The latter

enjoys a reach literature [41]. The main issue concerning the using of nonlinear state

observers for control objectives is related to the separation principle which is not system-

atically verified when dealing with control of nonlinear dynamical systems. In fact, by70

opposite to linear systems, the calculation of the state feedback and the state observer

independently each other does not guarantee the stability of the whole closed loop system

[42, 43]. Two types of state observers are studied in this paper. The first one, named

GDNLO (gradient descent nonlinear observer) gives estimations of FIV in the direction

minimizing the gradient of the error between the outputs of the friction system and the75

corresponding state observer while the second, called the modified GDNLO, offers the

estimations by minimizing the gradient of the error between high order derivatives of

the system and observer outputs. So, the main contributions of this paper are mainly

related to the developing and the assessing of the gradient descent nonlinear based ob-

servers within the framework of active control of friction-induced vibrations issued from80

the mode-coupling mechanism. The corresponding objective consists in the analysis of

the performances of gradient descent based observers ([44]) when used for the estima-

tion of mode-coupling based vibrations and when inserted in control loops based on the

linearizing and stabilizing state feedbacks, recently proposed in [36] for the mitigating of

the vibrations.85

This paper is organized as follows. First, a brief description of the considered non-

linear dynamical systems and the problem we are concerned, are given in Section 2 .

Then, the GDNLO and the modified GDNLO are presented and developed in Section 3.

Efficiency of both state observers in the estimating of FIV issued from the mode coupling

mechanism is analyzed in Section 4. Performances of both observers when used in closed90

loops for the controlling of the vibrations are also discussed. Conclusion is given at the

end of the paper.
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2. Nonlinear dynamical systems and mathematical background

Consider mechanical systems described by the following second order differential equa-

tions:

MẌ +CẊ +KX + FNL(X) = Bu (1)

where M , C and K are the mass, damping and stiffness matrices respectively. X is the

vector of displacement with Ẋ and Ẍ the associated velocity and acceleration vectors,95

FNL is a vector of nonlinear forces that are supposed to be regular (smooth functions)

while u is a control input vector and B is the associated control matrix. The control

variable u and the displacement vector X and the associated velocity and acceleration

vectors Ẋ and Ẍ are time-dependent. For sake of simplicity, the time variable is omitted

in all equations.100

It is usual to put System (1) into a space representation by defining the state vector

x. In mechanical systems, the state vector is built by considering displacements and

velocities such as x = [X1, Ẋ1, X2, Ẋ2, ..., Xq, Ẋq]
T with q is the number of degrees

of freedom. In fact, state space representations are privileged in order to deal with

observation and control issues more easily. Hence, a set of first order differential equations

can be obtained as follows:

ẋ = f(x, u) (2)

Then f : Rn → Rn is a smooth nonlinear vector field, involving the existence and

the continuity of its successive derivatives. The first order derivatives are noted by:

(∇f)ij =
∂fi
∂xj

. n = 2× q is the dimension of the state vector.

Let y be the single output of System (2) given by

y = h(x) (3)

where h is a smooth scalar function of the state vector x, with the gradient denoted by

the row vector ∇h such (∇h)i =
∂h
∂xi

. The function h is considered nonlinear to keep a

general setting for the mathematical formulation. In fact, the function h is linear since

the output signal we are interested by in the considered framework is in general given by105

a displacement, or a velocity or by an acceleration.

5



2.1. Problem statement

Without lose of generality, lets consider that the origin (xe, ue) = (0, 0) is the equi-

librium of System (2). The initial problem considered in [36] is to determine a state

feedback control u = γ(x) such that the closed loop system

ẋ = f(x, γ(x)) (4)

is asymptotically stable i.e. the eigenvalues of the closed loop system around its equilib-

rium are with strictly negative real part.

However, the implementing of the state feedback u = γ(x) requires the state variables

xi, (i = 1, ..., n) to be measurable, which is not common in practice. In fact, measures

are often too costly and/or sensors can have non-negligible impact on the dynamical

behaviour of the system. In these cases, state observers are recommended to be used

instead of sensors for the estimating of the system states by using only the inputs and

outputs of System (2). The obtained estimations will be used instead of the real vari-

ables to define the obsever based feedback control as u = γ(x̂). The problem is then to

determine an estimated state vector x̂ to be used instead of the state vector x such that

the equilibrium of the resulting closed loop system

ẋ = f(x, γ(x̂)) (5)

is asymptotically stable.

The existence of a state observer for System (2) is conditioned by its observability

[45]. The latter must be analyzed as a preliminary step before the designing of the110

observer. A rank condition for the observability is given in the following [44, 45].

2.2. Observability analysis

Let ri be the relative degree of the output y with respect to the ith state variable

xi, which denotes the number of necessary time derivatives of the output y to make the

state variable xi appear:  Lk
fh(x) = 0 ∀k < ri − 1

Lri−1
f h(x) ̸= 0

(6)
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where Lk
fh(x) is the k-th Lie derivative of the output y = h(x) with respect to f , given

by Lfh = ∇hf . Hence, the ri-th time derivative of the output y can be expressed as a

function in the state variables and the time-derivatives of the input u as follows:

y(ri) = β
(ri)
i

(
xī, xi, u, u̇, ..., u

(ri−1)
)

(7)

with ī = {1, 2, ..., n} − {i}.

The vector of the output derivatives can be be expressed more generally by

Y (r) = β(r)(x,v) (8)

where β(r)(x,v) =
[
β
(r1)
1

(
x1̄, x1, u, u̇, ..., u

(r1−1)
)

· · · β
(rn)
n

(
xn̄, xn, u, u̇, ..., u

(rn−1)
) ]

with v =
[
u u̇ · · · u(rk−1)

]
, rk = max(ri) and Y (r) =

[
y(r1) · · · y(rn)

]
.

Hence System (2) is said observable if the Jacobian matrix associated to β(r)(x,v) is of

full rank, that is:

rank

(
∂β(r)(x,v)

T

∂x

)
= n ∀x ∈ Rn (9)

3. Nonlinear state observer with the gradient descent method

A state observer for System (2) is a dynamical system which aims to estimate the

state variables xi by only exploiting the input and output of System (2) as expressed by115

the following equations:

 ˙̂x = f(x̂, u) + ϕ (y, ŷ) , x̂(0) = x̂0

ŷ = h(x̂)
(10)

The estimated states x̂i are expected to asymptotically converge to the real states xi

when the function ϕ depending on the observer output ŷ and the system output y tends

to zero. The main question when dealing with nonlinear state observer is to define a120

suitable function ϕ. In this study, this function is defined as the gradient of the error

between the system and observer outputs or between the high order derivatives of the

system and observer outputs. These give rise to two different state observers namely the

gradient descent nonlinear observer (GDNLO) and the modified GDNLO respectively
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[44].125

The GDNLO gives state estimations by correcting them in the direction minimizing

the gradient of the squared error between the system output and the GDNLO output.

This lets the dynamical behaviour of the GDNLO to be expressed as follows: ˙̂x = f(x̂, u) +α∇x̂ϕ (y, ŷ) ; x̂(0) = x̂0

ŷ = h(x̂)
(11)

where ∇x̂ϕ (y, ŷ) is the gradient of the function ϕ:

∇x̂ϕ (y, ŷ) = −∂h(x̂)
T

∂x̂
(y − ŷ) (12)

with the function ϕ is defined as the quadratic error between the system and observer

outputs:

ϕ (y, ŷ) =
1

2
(y − ŷ)

2
(13)

while α = diag (α1, ..., αn) is a diagonal matrix of positive integers defining the step of

the gradient descent. This parameter which represents also the gain of the observer is

fixed to an arbitrary diagonal matrix [αii] (can be chosen not diagonal) but with ensuring

the stability of the dynamics of the estimation error x̃ = x̂−x, defined in [44] as follows:

˙̃x =
(
f x̂ (x, u)−αhx̂ (x)

T
hx̂ (x)

)
x̃ (14)

where f x̂ = ∂f
∂x̂ and hx̂ = ∂h

∂x̂ . Hence, as the step of the gradient descent α controls the

stability of the dynamics of the estimation error, it should be fixed in a such manner as to

obtain suitable convergence properties (convergence rate, steady state for the estimation

error).This point is discussed in later when dealing with the estimating and controlling130

of FIV issued from the mode-coupling mechanism.

The accuracy of the state estimation of the variable xi may be negatively impacted

in particular when ∂h(x̂)
∂x̂i

= 0. In this case, the output error (12) does not intervene in

the estimation of xi. To overcome this inconvenient, the following output error function

can be used:

ϕ (y, ŷ) =
1

2

(
Y (r) − Ŷ

(r)
)
W
(
Y (r) − Ŷ

(r)
)T

(15)
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where W = diag (w1, ..., wn) and wi are positive weighting coefficients of the output

derivatives. Considering the new output error function, the so-called modified GDNLO

can be defined. The dynamics of the corresponding i-th estimated state variable is

governed by the following equation: ˙̂xi = fi(x̂, u) + αi

∑n
l=1 wl

∂β
rl
l (x̂l,x̂l̄,v(t))

∂x̂i

(
y(rl) − ŷ(rl)

)
; x̂(0) = x̂0

ŷ = h(x̂)
(16)

Remark: The formal proof of the stability of the observer error system was developed

in [44] and, thus, is not included in this study.

4. Application and results135

In order to assess the efficiency of the proposed nonlinear state observers when used

for the mitigating of mode-coupling based vibrations, their capacities to be effective

in the estimating of the corresponding vibrations are first analyzed. Hence, the well

known Hultèn system represented in Figure (1) and defined in [46] for the modelling of

mode-coupling instabilities in drum brake systems is considered. Despite its simplicity140

and minimality (two-degrees of freedom), it was shown to be a suitable benchmark for a

reliable capture of the mode-coupling phenomenology, which permitted numerous studies

as in [9] for understanding the role of damping in mode-coupling, in [47, 17, 48] for

uncertainty propagation and quantification and in [26, 36] for the mitigating of mode-

coupling instabilities. Using minimal models such as the Hultèn one permits to overcome145

the numerical difficulties often involved by the considering of high dimensional models

and thus it permits to focus mainly on the methodology. It was the spirit of numerous

studies dealing with FIV [27, 49, 30, 35] and is the one in which the present study fits. So,

the Hultèn model is considered in the following for the analysis of the performances of the

gradient based state observers when used for the estimating and controlling of friction-150

induced vibrations issued from the mode-coupling mechanism. The Hultèn system and

the associated stability and nonlinear dynamical behaviour are firstly presented. The

GDNLO and the modified GDNLO are then applied and assessed by considering two

principal objectives: the first one is related to the convergence and the accuracy of the

generated estimations of the vibrations and the second consists in the performances of the155
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state observers when inserted in control loops defined by linearizing and stabilizing state

feedback controls. Otherwise, the control scheme based on linearizing state feedbacks is

not given in this study for making the paper shorter. Readers are invited to see [36] for

more details.

[Figure 1 about here.]160

4.1. Model description

As illustrated in Figure (1), the mechanical system consists in a mass assumed to be in

a permanent contact with a moving band. The contacts are modelled by two stiffnesses

with linear and nonlinear (cubic) parts. The friction coefficient µ at the contact is

assumed to be constant as well as the velocity of the band. The relative velocity between165

the band and the velocities Ẋ1 and Ẋ2 is assumed positive which makes constant the

direction of the friction force. According to the Coulomb’s law, the tangential force FT

is assumed proportional to the normal force FN that is: FT = µFN, see ([46, 9]) for more

details. The second order differential equation governing the dynamic behaviour of the

system can be expressed in the state space by considering the state vector170

x =


x1

x2

x3

x4

 =


X1

Ẋ1

X2

Ẋ2


, so that a system like (2) can be obtained as follows:

ẋ = f(x, u) =


x2

−w2
1x1 − η1w1x2 + µw2

2x3 − ψNL
1 x31 + µψNL

2 x33

x4

−µw2
1x1 − w2

2x3 − η2w2x4 − µψNL
1 x31 − ψNL

2 x33 + u

 (17)

with the output function given by y = h(x) = x1. Otherwise, wi =
√
ki/m are natural

pulsations, ηi = ci/
√
mki are the relative damping and ψNL

i = kNL
i , for i = 1, 2. For

numerical simulation, all magnitudes are given in the MKSA (Meter (m), Kilograme

(Kg), Second (s), Ampere) International System by: w1 = 2π× 100 rad/s, w2 = 2π× 75175

rad/s η1 = η2 = 0.02, ψNL
1 = w2

1, ψ
NL
2 = 0, µ = 0.4 and m = 1 Kg.
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4.2. Stability property and nonlinear dynamical behaviour

As previously explained in the introduction, the stability analysis and the prediction

of the dynamical solutions of systems that are submitted to mode-coupling instabilities

must be performed to determine if the mitigating or even the suppressing of the predicted180

vibrations is necessary. The stability being related to the equilibrium point, the latter

must be determined by solving the static equation associated to System (17). In the

studied case, it is easy to verify that (xe, ue) = (0, 0) is the equilibrium point the local

stability of which can be analysed by using the indirect Lyapunov method method [41].

Hence, xe is said to be asymptotically stable if all the eigenvalues are with strictly185

negative real parts and unstable if at least one eigenvalue is with a positive real part.

By applying this procedure for different values of the friction coefficient µ, the mode-

coupling phenomenon is pointed out as shown in Figure (2). The system presents a couple

of complex conjugate eigenvalues the imaginary parts (and thus the frequencies) of which

become equal at the coalescence point (µc ≈ 0.289) while the corresponding real parts190

separate. As one of the real part becomes positive, the system equilibrium becomes

unstable. Consequently, for the values µ > µc, when the system state is moved from

its equilibrium then the system state moves far away its equilibrium with a divergence

rate defined by the real parts of the unstable eigenvalues and converges to a stationary

oscillating regime. As example, the temporal evolutions of the displacement x1 and195

the corresponding velocity x2 that are obtained by performing time integration of the

nonlinear differential equations (17) with the initial state x0(0) = [0.001, 0, 0, 0] and

µ = 0.4 are plotted in Figures (3-(a,b)) and (3-(c,d)) respectively. A periodic oscillating

regime with a period tp = 10−2 s and stationary amplitudes (0.563 m for the displacement

x1 and 310.7 m/s for the velocity x2 is observed). The same observation can be made200

about the displacement x3 and the corresponding velocity x4 which also converge to the

same periodic oscillating regime with the same period. In order to mitigate the predicted

oscillations and since the latter are often not easily measurable in practice, they must be

estimated. The gradient descent based observers (GDNLO and modified GDNLO) are

developed and assessed in the following subsections.205

[Figure 2 about here.]

[Figure 3 about here.]
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4.3. Performance analysis of the GDNLO and the modified GDNLO

As previously presented, the existence of a state observer must be demonstrated before

the design step. For this purpose, the observability of System (17) is first analyzed. In210

a second step, the GDNLO and modified GDNLO are determined and assessed from

their capacities to be convergent and accurate when used for the estimating of the mode-

coupling based vibrations. Finally, both observers are introduced in control loops based

on linearizing feedbacks. Then, their performances are discussed.

4.3.1. Observability analysis215

The existence of a state observer for System (17) is conditioned by the observability

rank condition given by (9). The vector β of the successive derivatives of the system

output associated to System (17) is obtained as follows:

β(x,v) =


y

ẏ

y(2)

y(3)




x1

x2

−w2
1x1 − η1w1x2 + µw2

2x3 − ψNL
1 x31

−η1w3
1x1 + (η21w

2
1 − w2

1)x2 − µη1w1w
2
2x3 + µw2

2x4 + η1w1ψ
NL
1 x31 − 3ψNL

1 x2x
2
1


(18)

Then, it can be verified that the associated jacobian matrix is a full rank which proofs the

observability of the Hultèn system. Hence, a state observer exists and can be designed.

4.3.2. State estimation by using the GDNLO

The GDNLO corresponding to System (17) can be built according to (11), (12) and

(13). The stage a bit tricky concerns the determining of the step parameter α of the

gradient descent. As previously presented, this parameter is fixed such as the stability

of the dynamics of the estimation error (14) is ensured. The step size of the gradient

descent is chosen diagonal such as α = diag
(
[α1, 0, 0, 0]

T
)
. The other parameters α2, α3

and α4 are set to zero without loss of generality since the derivatives of the output with

respect to x2, x3 and x4 are equal to zero. The dynamical behaviour of the corresponding

12



GDNLO is given as follows:

˙̂x1 = x̂2 + α1(y − ŷ)

˙̂x2 = −w2
1x̂1 − η1w1x̂2 + µw2

2x̂3 − ψNL
1 x̂31

˙̂x3 = x̂4

˙̂x4 = −µw2
1x̂1 − w2

2x̂3 − η2w2x̂4 − µψNL
1 x̂31 + u

ŷ = x̂1

(19)

The α parameter controls the stability of the estimation errors and thus the conver-

gence properties of the observer. In order to observe the effect of the step parameter α220

of the gradient descent on the performances of the GDNLO, different values are consid-

ered for α1. The estimation errors defined by x1 − x̂1 are plotted in Figure (4-(a,b,c,d))

and Figure (5-(a,b)). It is useful to note that the GDNLO is initialized to the zero state

x̂(0) = [0, 0, 0, 0]T. The latter being unknown, is expected to converge to the real state of

the System (17). Results show that in the studies case, the parameter α1 must be chosen225

neither too small, which makes the convergence of the GDNLO very slow (Figure (4)-

(a,b) with α1 = 0.5) nor too high values may prevent the convergence of the GDNLO and

makes it unstable (Figure (4)-(c,d) with α1 = 10). Hence, a suitable compromise must

be determined. With α1 = 4, the stability and convergence properties of the GDNLO are

more convenient. The corresponding transient regime show high amplitudes which decay230

more rapidly (small amplitudes are reached from 0.9 second) to reach smaller error levels

as shown in Figure (5)-(a,b). It can be noted that in order to reach a level of error with

α1 = 0.5 as in the case with α1 = 4, the GDNLO must be simulated for a too much longer

time (80 seconds). The other estimation errors concerning the remaining state variables

x2, x3 and x4 are plotted in Figure (5)-(c,d,e,f,g,h). They show also high amplitudes235

in the transients but decay rapidly (smaller levels of amplitudes are reached after O.9

second) . In fact, all results show that the estimated displacements x̂1 and x̂3 and the

corresponding estimated velocities x̂2 and x̂4 converge to the real displacements x1 and

x3 and velocities x2 and x4 respectively, after short transient regimes however errors per-

sist in the stationary regime (which corresponds to the oscillatory regime for the Hulten240

system). These errors may be attributed to the fact that the function of the output error

does not explicitly intervene in the dynamics of the GDNLO since the system output is

independent on the state variables x(2,3,4). Only the estimation of the displacement x1
13



is clearly corrected according to the gradient descent of the output error function. The

pertinence of the using of the GDNLO for the mitigating of the mode-coupling based245

oscillations will be discussed later in this study.

[Figure 4 about here.]

[Figure 5 about here.]

4.3.3. State estimation with the modified GDNLO

As mentioned previously, estimation errors persists in the stationary regime charac-

terized by limit cycle oscillations. They may be related to the fact that the function

of the output error only intervenes in the estimation of the displacement x1. To make

the output error more important in the estimation dynamics, the modified GDNLO is

considered with α = [10−4, 10−4, 0, 0]T and v3 = 10−2 and v4 = 0. The corresponding

dynamics is governed by the following equations:

˙̂x1 = x̂2 + α1

[
v3
(
−w2

1 − 3ψNL
1 x̂21

) (
y(2) − ŷ(2)

)]
˙̂x2 = −w2

1x̂1 − η1w1x̂2 + µw2
2x̂3 − ψNL

1 x̂31 + α2

[
−v3η1w1

(
y(2) − ŷ(2)

)]
˙̂x3 = x̂4

˙̂x4 = −µw2
1x̂1 − w2

2x̂3 − η2w2x̂4 − µψNL
1 x̂31 + u

(20)

The estimation errors given by the modified GDNLO (20) are plotted in Figure (6)(a-250

h). Results show better convergence properties for the modified GDNLO than those

observed with the GDNLO. The high estimation errors previously observed with the

GDNLO transient are strongly mitigated. For example, the maximal estimation error

x1 − x̂1 is reduced with a high ratio (103). In fact, the taking into account of the error

between the output derivatives of the system and the modified GDNLO, has permitted255

the anticipating the errors induced by the gap between the initial states of the system and

the modified GDNLO. This has required a smaller step gradient. The accuracy at the

stationary regime of the modified GDNLO is also better than the accuracy given by the

GDNLO. Indeed, it can be observed that the corresponding estimation errors converge

to values close to zero (the estimation errors are strongly reduced compared to those260

obtained with the GDNLO). This shows the asymptotic convergence of the modified

GDNLO.

[Figure 6 about here.]
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4.4. The GDNLO and modified GDNLO within nonlinear control loops for the controlling

of FIV265

The aimed purpose behind the using of the GDNLO or the modified GDNLO is to

determine estimations of the system oscillations occasioned by mode-coupling. These

estimations are going to be used instead of measures (that are, in numerous practical

cases, difficult to be performed and/or too costly) in order to implement state feed-

backs mitigating or suppressing the oscillations. Performances of the GDNLO and the

modified GDNLO when used in control loops are analyzed in the following. For this

purpose, the input-state linearizing feedback which was developed and determined in

[36] is implemented by using the GDNLO and the modified GDNLO. For sake of brevity,

the procedure which permits to determine the input-state linearizing feedback for System

(17) is not given in this study. All details about this point are given in the previous study

of the author [36]. The main idea is to determine a nonlinear coordinate transformation

which algebraically puts System (17) into a linear canonical form, the control of which is

reduced to a classical pole placement problem. The nonlinear coordinate transformation

was obtained as follows:

z1 = x1

z2 = x2

z3 = −w2
1x1 − η1w1x2 + µw2

2x3 − ψNL
1 x31

z4 = η1w
3
1x1 +

(
η21w

2
1 − w2

1

)
x2 − η1w1w

2
2µx3 + µw2

2x4 + η1w1ψ
NL
1 x31 − 3ψNL

1 x2x
2
1

(21)

While the stabilizing feedback was determined as

vstab = −k0z1 − k1z2 − k2z3 − k3z4 (22)

where the constant coefficients ki are determined so the state matrix of the closed loop

system is Hurwitz. The eigenvalues are chosen to be placed at the positions given by

−20± j200, −5 and −80.

For the implementing of the determined nonlinear state feedback, the GDNLO and the

modified GDNLO previously determined are considered. Hence, the corresponding esti-270

mated state variables are used instead of the original state variables.
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4.4.1. Control with the GDNLO

The estimation errors xi−x̂i, (i = 1, ..., 4) given by the GDNLO in the closed loop con-

figuration are plotted in Figure (7)-(a,b,c,d).The convergence properties of the previously

determined GDNLO are drastically deteriorated. The GDNLO is clearly unsuitable for275

the control objective. The separation principle which consists in the independence of the

calculation of the GDNLO from the calculation of the feedback control, is not verified.

This has lead to unstable closed loop behaviour when the state variables are replaced

by their estimations in the control loop. The performed simulation attests the non-

convenience of the previous GDNLO to be used for the mitigating of the mode-coupling280

based oscillations.

[Figure 7 about here.]

4.4.2. Control with the modified GDNLO

The performance of the modified version used in the closed loop configuration is

evaluated. The estimation errors on the displacements and velocities are plotted in Figure285

(8)(a,b,c,d). By opposite to the GDNLO, results show asymptotic convergence for the

modified GDNLO in the closed loop. All the estimation errors converge to zero after short

transients. The convergence of the modified GDNLO is not significantly impacted when

introduced in the control loop. As shown in Figure (9), the performance of the nonlinear

state feedback based on the original state variables is lightly modified when the control290

law is determined by using the estimated state variables. The controlled displacement

x1 obtained by using the modified GDNLO is made asymptotically stable but with a

lightly longer transient than the same controlled displacement obtained by using the

system variables. The including of the high order derivatives of the output errors in

the dynamics of the modified GDNLO has drastically enhanced the performances of295

the previous GDNLO in closed loop configuration. The separation principle is verified

with the modified GDNLO. It has permitted the suppression of the mode-coupling based

vibrations.

[Figure 8 about here.]

[Figure 9 about here.]300
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4.5. Robustness of the modified GDNLO based controller

In order to analyse the robustness of the proposed modified GDNLO based controller

of FIV, the closed loop system is simulated by considering a noisy measured output. The

measured output is assumed to be tainted by a Gaussian noise of zero mean and different305

variances as plotted in Figure (10-a) where few periods of oscillations are represented.

The controlled displacement x1 corresponding to the noisy output is plotted in Figure

(10-b).

Results in Figure (10-b) show a non-negligible sensitivity of the control performance

with respect to the noise level in the output. Indeed, the closed loop system becomes310

more unstable with the increase of the variance of the Gaussian noise. The asymptotic

stability is lost. The original vibrations that were suppressed Figure (9) reappear when

the system output is submitted to noise. These vibrations are mitigated with a ratio

becoming increasingly bad by augmenting the level of the measurement noise. The

asymptotic stability of the closed loop system is not robust with respect to the considered315

disturbances. However, the attenuation level of the vibration amplitudes also depends

on the level of measurement noise.

[Figure 10 about here.]

5. Conclusion

This study has presented a nonlinear approach for the estimating and controlling of320

friction-induced vibration (FIV) in particular those generated from the mode-coupling

mechanism. The main perspective is to analyse the efficiency of gradient descent non-

linear observers when used for the mitigating of mode-coupling based instabilities. The

GDNLO considering only the gradient of the squared error between the system and

observer outputs is shown to be unsuitable when used in the closed loop despite its ac-325

ceptable accuracy in the estimating of the mode-coupling based vibrations. Hence, the

modified GDNLO which considers the gradient of the squared errors between high order

derivatives of the system and observer outputs has shown better and suitable convergence

properties in both the estimating of the mode-coupling based vibrations and also when

inserted in the closed loop and the vibrations were efficiently suppressed.330
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Otherwise, other nonlinear state observers may be considered. Indeed, the literature

refers to numerous methods for nonlinear state estimation. So, it would be useful to

analyze and investigate, through a comparative study, performances of other existing

nonlinear state observers and to determine which one can be more effective when dealing

with the controlling of friction-induced vibrations.335

This study has focused on the estimating and controlling of mode-coupling based

vibrations by using a minimal model. The main perspective is then to generalize this

approach to real world systems. Numerical difficulties would be occasioned in particular

by high dimension aspects. Associating the proposed approach together with reduced

order models should be the way to privilege in order to ensure the efficiency of the pro-340

posed observer based controller of mode-coupling instabilities. Otherwise, the proposed

approach has shown a non-negligible sensitivity to noisy output measurement. It is then

necessary to be improved for satisfying higher robustness levels.
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Figure 1: Mechanical system
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Figure 2: Evolution of the eigenvalues of the Hultèn system linearized around the origin xe = (0, 0),
versus the friction coefficient µ
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Figure 4: The estimation error x1 − x̂1 of the GDNLO with α1 = 0.5-(a,b) and α1 = 10 -(c,d)
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Figure 5: Estimation errors xi − x̂i, (i = 1, ..., 4) of the GDNLO with α1 = 4
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Figure 6: Estimation errors xi − x̂i, (i = 1, ..., 4) of the modified GDNLO
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Figure 7: The estimation errors xi − x̂i of the GDNLO in the closed loop configuration
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Figure 8: The estimation errors xi − x̂i of the modified GDNLO in the closed loop configuration
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Figure 9: The controlled displacement x1; solid line: without the modified GDNLO, dashed line: with
the modified GDNLO
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Figure 10: (a)-The uncontrolled noisy displacement x1 ; (b)- the controlled displacement x1 ; solid line:
variance = 0.001, dashed line: variance=0.002, dot line: variance=0.003
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