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Abstract 

This paper is to improve our previous phase-transformable material constitutive model 

(Chen et al. JMPS 2014) and implement it in a mass-spring configuration to study the 

recently discovered dynamic phenomena in (Zhang et al. IJP 2018a, b): the harmonic 

oscillator of the cyclic magnetic-field-induced deformation in Magnetic Shape Memory 

Alloys (MSMA) is modulated by a thermo-magneto-mechanical coupling feedback loop 

where the cyclic field-induced Martensite Reorientation (MR) provides cyclic dissipative 

deformation whose dissipation heat influencing the material temperature modifies the 

temperature-dependent MR process and/or triggers the martensite-to-austenite Phase 

Transformation (PT) to modify the martensite volume fraction so as to change the 

deformation oscillation amplitude. Such a feedback loop causing the amplitude modulation 

was ignored in the existing models. This paper develops a dynamic model to include the 

feedback loop by considering the heat balance (i.e. the interactions among heat generation 

due to MR, the latent heat release/absorption of PT and the heat transferred to the ambient), 

by introducing proper kinetics of the temperature–dependent MR and PT processes, and by 

taking into account the inertial dynamic effect with a simple mass-spring configuration. The 

simulation based on the model captures all the main features of the experimental phenomena 

and provides the relations between the macroscopic responses (the deformation amplitude 

and temperature evolution) and the microscopic physical mechanisms (the kinetics of MR 

and PT). The study reveals that, with the coupling effects, the MSMA system can be smart to 

keep its temperature constant by self-organized microstructures  
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under varying external thermo-magneto-mechanical. Moreover, the forward and reverse 

martensitic phase transformations influenced by the coupling dynamics show little hysteresis, 

contrasting to the usual hysteretic kinetics of the quasi-static martensitic phase transformation.  

 

 

Keywords: magnetic shape memory alloys, high-frequency magnetic actuation, martensite 

reorientation, phase transformation kinetics, hysteresis of phase transformation.   
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1. Introduction 

Magnetic shape memory alloy (MSMA) is a smart material exhibiting thermo-magneto-

mechanical coupling phenomena. It can be actuated by temperature, mechanical stress and 

magnetic field. Large strain up to 10% can be achieved in the material due to the martensite 

reorientation and/or the martensitic phase transformation (Bruno et al., 2016; Heczko et al., 

2000; Kainuma et al., 2006; Karaca et al., 2006; Murray et al., 2000; Sozinov et al., 2002; 

Ullakko et al., 1996). The main advantage of MSMA over the traditional shape memory 

alloys is its high-frequency magnetic-field-induced deformation, which makes it a promising 

candidate for the applications of sensors and actuators in the future (Asua et al., 2014; Hobza 

et al., 2018; Kohl et al., 2010, 2014; Stephan et al., 2011; Yin et al., 2016).  

Some dynamic behaviours of the high-frequency magnetic-field-induced martensite 

reorientation have been reported in the literature. Henry (2002) measured the output strain of 

MSMA at the magnetic field frequency ranging from 1 Hz to 250 Hz, and found that the 

strain kept constant at first and then decreased when the frequency reached a threshold. Such 

strain decrease is due to the decrease in the magnitude of the applied magnetic field strength 

when increasing the frequency. The evolution of the strain amplitude with frequency observed 

in (Henry, 2002) was successfully simulated by Sarawate and Dapino (2008) with the Maxwell’s 

equations which take into account the frequency effect on the field strength. 

Techapiesancharoenkij et al. (2009, 2011) conducted experiments at a constant magnitude of the 

applied magnetic field strength and found a resonance-type frequency dependence, i.e. the 

maximum output strain amplitude was obtained at the resonance frequency. Lai et al. (2008) 

observed the twin boundary motion in MSMA at various magnetic field frequencies up to 600 Hz 

and measured the corresponding twin boundary velocities. Faran and Shilo (2011, 2012, 2013) 

measured the velocities of individual twin boundary under pulsed magnetic fields and revealed 

different kinetic relations at high and low driving forces. They further developed a dynamic 

magneto-mechanical model based on the measured kinetics of twin boundary motion, and 

successfully simulated the resonance-type frequency-dependent response (Faran et al., 2017; 

Faran and Shilo, 2016). Pascan et al. (2015) measured the temperature rise of MSMA under high-

frequency magnetic field, and found that both Type I and Type II twin boundaries (with different 

mobility (Sozinov et al., 2011; Straka et al., 2011)) can be nucleated in the dynamic loading. It 

is seen that all these studies were focused on the magneto-mechanical coupling behaviours of 

MSMA, even though some of the researchers had already recognized the strong dissipation 

during the high-frequency actuation and the associated significant temperature rise (e.g. Lai, 2009; 

Pascan, 2015; Pascan et al., 2015, 2016). The temperature rise can influence the output strain 
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from the martensite reorientation as the driving force (so-called “twinning stress”) of the Type I 

twin boundary motion is sensitive to temperature (Straka et al., 2012). Such temperature rise 

during the actuation was usually thought to be harmful to the system’s performance and should be 

avoided, i.e. it should not exist in the normal applications. 

By contrast, recent experiments in (Zhang et al., 2018a, 2018b) focused on the thermo-

magneto-mechanical coupling dynamic behaviours have systematically demonstrated how the 

field-induced deformation depends on the magnetic actuation, the applied mechanical stress 

and the thermal boundary conditions. Particularly, in the experiments, the heat exchanging 

rate between the MSMA system and the ambient was controlled by an airflow from a 

compressed air whose velocity can be tuned. Generally, with the stronger ambient airflow (i.e. 

higher heat exchanging rate), the system temperature would be lower as the dissipation heat 

can be transferred to the ambient more quickly. Interestingly, at certain ambient conditions 

(i.e. at a certain range of the ambient airflow velocities), the system temperature kept constant 

(36 oC), around the material’s characteristic martensitic phase transformation temperature 

where both martensite and austenite phases exist in the MSMA system; that means, the field-

induced Martensite Reorientation (MR) and the temperature-induced Phase Transformation 

(PT) can simultaneously occur, leading to a thermo-magneto-mechanical coupling loop: the 

cyclic MR provides dissipative deformation whose dissipation heat influencing the system 

temperature modifies the temperature-dependent MR process and/or triggers the martensite-

to-austenite PT to modify the martensite volume fraction so as to change the deformation 

oscillation amplitude Δε. Such a feedback loop leads to a non-monotonic dependence of the 

deformation oscillation amplitude Δε on the thermal condition (i.e. on the ambient heat 

exchange rate in Fig. 10(a)). In other words, to achieve a large dynamic deformation 

amplitude, we need to choose not only a proper magnetic actuation frequency (the resonance 

frequency), but also a proper ambient heat transfer condition.  

The experimental observations and basic theoretical analysis in (Zhang et al., 2018a, 

2018b) reveal the significant temperature rise due to the combined effect of the high-

frequency cyclic martensite reorientation and the ambient heat exchange. To further describe 

the thermo-magneto-mechanical coupling dynamic behaviours (i.e. output strain and 

temperature evolutions) and predict the optimized working conditions of high-frequency 

MSMA-based actuators, a suitable dynamic model is demanded. However, the existing 

constitutive models of MSMA (e.g. Chen et al., 2014; Haldar et al., 2014; Kiefer and 

Lagoudas, 2005, 2009; Krevet et al., 2008; Morrison et al., 2008; Rogovoy and Stolbova, 

2016; Wang and Steinmann, 2012; Yu et al., 2018, 2019) describe the martensite 
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reorientation and the phase transformation separately, and cannot take into account the 

coupling feedback loop. In this paper, we extend our previous martensite-reorientation model 

(Chen et al., 2014) to include the coupling loop by considering the heat balance (the balance 

between the rates of heat generation due to MR, the latent heat release/absorption of PT and 

the heat transferred to the ambient), by introducing proper kinetics of the temperature–

dependent MR and PT processes, and by taking into account the inertial dynamic effect with 

a simple mass-spring configuration. The simulation based on the new model captures all the 

main features of the experimental phenomena and provides insights into the macro-micro 

relations governing the coupling dynamics. Moreover, with the aid of the model simulations, 

the features of the temperature-induced martensite transformation influenced by coupling 

dynamics are further studied.  

The remaining parts of the paper are organized as follows: The extended constitutive 

model of MSMA and the mass-spring dynamic model are presented in Section 2. Section 3 

presents the simulation results and their comparisons with the experiments. Discussions on 

the novel features of the coupling dynamics are given in Section 4. Section 5 is devoted to the 

summary and conclusions of the paper.   

 

2. Dynamic model 

2.1. Constitutive model of magnetic shape memory alloys 

2.1.1. Gibbs free energy and state equations 

The constitutive model is composed of two parts describing the processes of Martensite 

Reorientation (MR) and Phase Transformation (PT), respectively. The MR modelling is 

mainly based on our previous model (Chen et al., 2014) while the PT modelling is a new 

proposition. The studied magnetic shape memory alloy is Ni-Mn-Ga single crystal used in the 

experiments of (Zhang et al., 2018a). State variables in the constitutive model include the 

absolute temperature T, the Cauchy stress tensor �, the internal magnetic field strength vector 

�, the volume fraction z0 of austenite, and the volume fractions (�� , �� , ��) of the three 

pseudo-tetragonal 5M martensite variants, as shown in Fig. 1(a). The Gibbs free energy 

density g is expressed as: �(
, �, �, ��, ��, ��, ��) = ������ + ���� + ���� + ����                                           

(1) 
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with the thermal energy ������, the mechanical energy ����, the magnetic energy ���� and 

the interaction energy ���� given below: 

������(
, ��) = � �
 − 
� − 
 ln � �� !! + ��("� − "�
)                            

(2a) 

���� ��, ��, ��, ��, ��! = − �� ���: $%: � − �� (1 − ��)�: $': � + ��(�))*� −
(�++ + �,,-*�- + ��(�++*� − (�,, + �)))*�- + ��                              

(2b) 

����(�, ��, ��, ��, ��- = −�� .�� /�0�|�|� + 〈|�| − '34� 〉 �/�67%|�| − �� /�0�|�|� −
��� /�(67%)�!8 − ∑ �� .�� /�0�|�|� + 〈|�| − '3:�; 〉 �/�67'|�| − �� /�0�|�|� −��<�
���; /�(67')�!8          (2c) 

����(��, ��, ��, ��) = �� =���� + �� =(��� + ��� + ���)       (2d) 

where λ is the specific heat per unit volume, T0 is a reference temperature (e.g. the 

temperature of the environment), c0 is the internal energy difference between austenite and 

martensite at 0 K and c1 is the entropy difference between austenite and martensite at 0 K; $% 

and $' are respectively the elastic compliance tensors of austenite and martensite, εa and εc 

are the strain changes respectively along the long and the short axis of the pseudo-tetragonal 

martensite during the martensitic phase transformation; μ0 (= 4? × 10BC T ⋅ m ⋅ AB�) is the 

vacuum permeability, |�| is the magnitude of the magnetic field strength, 67% and 67'  are 

respectively the saturation magnetization of austenite and martensite, a0 and ai (i = 1, 2, 3) are 

respectively the magnetic susceptibility of austenite and martensite variant i, the function 〈I〉 
is defined as: J0, if I < 0;  1, if I ≥ 0P; k and k0 are interaction parameters accounting for 

the incompatibility among martensite variants and between austenitic and martensitic phases.  

It is noted that the magnetic susceptibility ai (i = 1, 2, 3) of the martensite variants 

reflect the overall effects of the magnetic domain wall motions and the local magnetization 

rotations on the global magnetization process (Likhachev and Ullakko, 2000). The 

parameters ai (i = 1, 2, 3) depend on the direction of the internal magnetic field and the 

magneto-crystalline anisotropy energy. The analytical expressions of ai and the detailed 

deductions are provided in Appendix A.  
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It is also noted that compared with the strain (6% ~ 10%) from the magnetic-field-

induced martensite reorientation, the magnetostrictive strain *7������Q� = 0.005%  (Heczko, 

2005a) of MSMA is negligible. Moreover, from the energy point of view, the 

magnetostrictive energy (= �� U*7������Q�� = 62.5 J/m� , with E being the Young’s modulus 

given in Table 1) is much smaller than the usual thermodynamic driving force for the 

martensite reorientation of MSMA, i.e. the magnetic energy difference between martensite 

variants, which is the magneto-crystalline anisotropy energy Z[ ≈ 1.65 × 10] J/m� in (He et 

al., 2011, 2012; Heczko, 2005b). Therefore, magnetostriction is ignored in this paper.  

The state equations can be obtained from Eqs. (1) and (2) as:  

• Stress−strain relation 

*∗ = − _�_`  

→ * = *∗ − *∗(�)(
 = 
�, � = 0, � = 0, ��(�), ��(�), ��(�), ��(�))  

       = �bcd � − cd �ef�! g + ���(*�h) ⊗ h) − *�h+ ⊗ h+- + ���(*�h+ ⊗ h+ − *�h, ⊗
h,- + ���(*�h, ⊗ h, − *�h) ⊗ h)- + ���(−*�h) ⊗ h) + *�h+ ⊗ h+ + *�h, ⊗
h,- + ���(*�h) ⊗ h) − *�h+ ⊗ h+ + *�h, ⊗ h,- + ���(*�h) ⊗ h) + *�h+ ⊗
h+ − *�h, ⊗ h,-                                                                      

(3) 

where * is the strain change during the thermal-magneto-mechanical loadings, E and ν 

are respectively the Young’s modulus and the Poisson’s ratio of MSMA (assuming that 

the austenitic and martensitic phases are elastically isotropic with identical E and ν), ef� 

is the trace of the stress tensor, g is the identity tensor, ε0 is the strain change due to 

martensite reorientation, z12, z23, z31, z01, z02 and z03 denote the volume-fraction 

transformations between the martensite variants and between martensitic and austenitic 

phases, as shown in Fig. 1(b), ��(�)
, ��(�)

, ��(�)
 and ��(�)

are the initial volume fractions of 

austenite and martensite variants. The current volume fractions z0, z1, z2 and z3 are related 

to the initial ones (��(�)
, ��(�)

, ��(�)
 and ��(�)

) by: 

�� = ��(�) − ��� − ��� − ���                                                                          

(4a) 

�� = ��(�) − ��� + ��� + ���                                                               

(4b) 
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�� = ��(�) − ��� + ��� + ���                                                                 

(4c) 

�� = ��(�) − ��� + ��� + ���                                                                  

(4d) 

• Magnetization−magnetic field relation 

|6| = − �j 
_�_|k|  

→ |6| = �� .0�|�| + 〈|�| − '34� 〉 (67% − 0�|�|)8 + ∑ �� .0�|�| + 〈|�| −��<�
'3:�; 〉 (67' − 0�|�|)8                                                                              

(5) 

• Thermodynamic forces for martensite reorientation 

The thermodynamic force l�↔n for the martensite reorientation between variant i (= 1, 2, 

3) and j (= 2, 3, 1) is (Chen et al., 2014): 

l�↔n = o− _�_,pq − �− _�_,;! → l�n = =(�� − �n- + *�(��� − �nn- + U�↔nk                        

(6) 

where ��� and �nn are respectively the normal stress along the short axis of variant i and j, U�↔nk  is the magnetic energy difference between variant i and j, being:  

U�↔nk = �� /�0n|�|� + 〈|�| − '3:�p 〉 o/�67'|�| − �� /�0n|�|� − ���p /�(67')�q −
�� /�0�|�|� − 〈|�| − '3:�; 〉 �/�67'|�| − �� /�0�|�|� − ���; /�(67')�!                      

(7) 

According to the model of martensite reorientation in (Chen et al., 2014), if the absolute 

value of the thermodynamic force rl�↔nr is smaller than ��s�tt*� , with ��s�tt
 being the 

effective twinning stress, there is no martensite reorientation between variant i and j. If rl�↔nr = ��s�tt*�, martensite reorientation takes place, and zi and zj can be determined 

with the aid of Eqs. (4), (6) and the condition rl�↔nr = ��s�tt*�.  

This simple threshold-like evolution law can describe the martensite reorientation of 

MSMA not only in the quasi-static tests, but also in most of the normal dynamic tests 

(Pascan, 2015; Pascan et al., 2015; Zhang et al., 2018a) where numerous interfaces/twin 

boundaries are nucleated so that the propagation speed of individual interface is not high 
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(i.e. less than 0.5 m/s). If an interface moves extremely fast as in the dynamic tests on a 

single twin boundary motion in (Faran et Shilo, 2011, 2012, 2013), the evolution law 

should include both the threshold and the rate-dependent parts.  

Studies on the kinetics of single twin boundary motion have been reported in the 

literature (Faran et Shilo, 2011, 2012, 2013; Zreihan et al., 2018). However, the rate 

dependence of singe twin boundary motion may not be simply applied to represent the 

rate sensitivity of the global (structural) twinning behaviour of a specimen at high 

loading rates because the simultaneous nucleation and propagation of numerous 

interfaces (twin boundaries) of different types and their interactions with the non-

uniform coupling thermo-magneto-mechanical fields in the MSMA specimen must be 

considered. Further systematic experiments/modelling at macro-, meso- and micro-scales 

are needed to better understand the strain-rate dependence of the global (structural) 

twinning behaviour in MSMA under various loading rates, especially the very high 

loading rates like the impact tests in the traditional shape memory alloys (e.g. 

polycrystalline NiTi in (Nemat-Nasser et al., 2005)).  

 

• Thermodynamic forces for phase transformation 

The thermodynamic force l��  for the phase transformation between austenite and 

martensite variant i (= 1, 2, 3) is (Gauthier, 2007): 

l�� = �− _�_,;! − �− _�_, !  

→ l�� = (=��� − =��) − ���*� + �ef� − ���! *� + ("� − "�
) + U��k                           

(8) 

where the magnetic energy difference U��k  between austenite and martensite variant i is: 

U��k = �� /�0�|�|� + 〈|�| − '3:�; 〉 �/�67'|�| − �� /�0�|�|� − ���; /�(67')�! −
�� /�0�|�|� − 〈|�| − '34� 〉 �/�67%|�| − �� /�0�|�|� − ��� /�(67%)�!                       

(9) 

 

2.1.2. Evolution laws for phase transformation 

An evolution law of phase transformation describes the relation between the volume-

fraction transformation rate �u�� (i = 1, 2, 3) and the corresponding thermodynamic force l�� 
as shown in Fig 2. To demonstrate the significant role of the evolution law, two typical 
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kinetics are adopted for a comparative study: the linear kinetics in Fig. 2(a) and the hysteretic 

kinetics in Fig. 2(b): 

• Linear kinetics (Fig. 2(a)) 

The volume-fraction transformation rate �u��  (i = 1, 2, 3) is proportional to the 

corresponding thermodynamic force l�� : �u�� = vl�� , with v being a linear coefficient. 

This is one of the simplest evolution laws and it is widely adopted in the phase field 

models of MSMA (e.g. Jin, 2009; Li et al., 2011; Peng et al., 2015; Wu et al., 2011). As 

shown in Fig. 2(a), this linear evolution law is a viscosity-like kinetics without the 

friction-like hysteresis between the forward and reverse martensitic transformations.  

• Hysteretic kinetics (Fig. 2(b)) 

This evolution law is normally used to account for the hysteresis of phase transformation. 

It is widely adopted in the models of the thermodynamic irreversible processes for the 

traditional shape memory alloys (e.g. Auricchio et al., 2014; Cisse et al., 2016; Lagoudas 

et al., 2006; Lexcellent et al., 2000; Patoor et al., 2006; Zaki and Moumni, 2007). In the 

simplest form of this evolution law (i.e. similar to plasticity), it is supposed that the phase 

transformation can only take place when the thermodynamic force l��  (i = 1, 2, 3) 

reaches a threshold Dp (related to some internal frictional force). Then the pseudo-

dissipation potential D of the phase transformation can be assumed as: w = wx ∑ |�u��|��<�                                                                            

(10) 

The directional derivatives of D define the yield surface for the thermodynamic forces l��. Using Eq. (10), we obtain: l�� ∈ z,u ;w → |l��| ≤ wx                                                                              

(11) 

From Eq. (11), we derive the following evolution law for the transformation rate �u��: 
� If |l��| < wx, there is no phase transformation between austenite (A) and martensite 

variant i (Mi), so �u�� = 0.  

� If |l��| = wx and lu�� % ;|% ;| < 0, there is no phase transformation between A and Mi, 

then �u�� = 0. 

� If |l��| = wx and lu�� = 0, phase transformation between A and Mi takes place. With 

the aid of Eqs. (4) and (8), we obtain: lu�� = 0 → �u�� = �(| b|) �−�u��*� +
�ef�u − �u��! *� − "�
u + Uu��k !.  
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2.1.3. Identification of model parameters 

The model parameters E, k, ε0, 67' and ai (i = 1, 2, 3) can be determined by a uniaxial 

compression test and two magnetization tests detailed in (Chen et al., 2014). Moreover, a 

magnetization test on austenite can determine a0 and 67%, and an X-ray diffraction test can 

determine εa and εc. The Poisson’s ratio ν can be assumed to be 0.33 since ν of the 

conventional engineering metals and alloys is around 1/3.  

Experiments in the literature (Sozinov et al., 2011; Straka et al., 2010, 2011) show that 

two types of twins can participate in the martensite reorientation of MSMA. They are: Type I 

twin whose twinning plane is rational, and Type II twin whose shearing direction is rational 

(Bhattacharya, 2003). Our high-frequency dynamic tests (Pascan et al., 2015; Zhang et al., 

2018a) further demonstrate that both the two types (I and II) can be nucleated in the dynamic 

loadings and their fractions depend on the material’s response frequency, i.e. Type I twin is 

dominant in low frequencies, while in high frequencies, Type II twin is dominant. The origin 

and the microscopic mechanism for such frequency effect on the nucleation of Type I and II 

twins are still unclear. To estimate the effective twinning stress ��s�tt
, we take the average 

twinning stresses of Type I and II twins according to the material’s response frequency. The 

twinning stresses of these two types of twins have different temperature dependences: the 

twinning stress of Type I twin increases linearly with decreasing temperature, while that of 

Type II is temperature independent (Straka et al., 2012). Based on our experiments and the 

previous experiments in the literature, we propose the following expression to estimate ��s�tt
, 

considering both the frequency effect on the fraction of twins and the temperature 

dependence (Zhang et al., 2018a):  

��s�tt(
, }7�����) = 0.2 − 0.04 × (
 − l7�) × ~(}7�����)         [MPa]                        

(12) 

where }7����� is the frequency of the output strain (i.e. mechanical response of the material), l7� is the austenite start temperature in the free state (without mechanical stress or magnetic 

field), and υ is the contribution fraction of Type I twin. The measured values of υ at different 

levels of }7�����  in (Zhang et al., 2018a) are summarized in Fig. 3, from which an 

approximation function is proposed for the experiments in (Zhang et al., 2018a): 

~(}7�����) = �� �1 − tanh t3���;�B����] !                                                  

(13) 
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Introducing Eq. (13) into Eq. (12), we finally obtain: 

��s�tt = 0.2 − 0.02 × (
 − l7�) × �1 − tanh t3���;�B����] !                         

(14) 

A DSC (Differential Scanning Calorimetry) test corresponding to the hysteretic phase 

transformation in the quasi-static loading condition can determine the model parameters λ, c0, 

c1, k0 and Dp. The test directly measures the specific heat per unit volume λ and the phase 

transformation temperatures 67� , 6t� , l7�  and lt� , which correspond respectively to the 

martensite start and finish temperatures, and the austenite start and finish temperatures in the 

free state (without mechanical stress or magnetic field). According to the evolution law for 

the hysteretic phase transformation in Subsection 2.1.2, during the forward martensitic 

transformation (z1, z2 and z3 are increasing), the corresponding thermodynamic forces A01, A02 

and A03 must be equal to Dp. At the start of the transformation, z0 = 1, z1 = z2 = z3 = 0, and 
 = 67�. Then using Eq. (8), we have: l�� = l�� = l�� = wx → =� + "� − "�67� = wx                                                  

(15a) 

At the end of the transformation, 
 = 6t� , z0 = 0, z1 = z2 = z3 = 1/3 (assuming that the 

martensite variants have the same volume fraction in the free state, i.e. without mechanical 

stress or magnetic field). Then we have: 

l�� = l�� = l�� = wx → − �� = + "� − "�6t� = wx                             

(15b) 

Similarly, for the reverse martensitic transformation we have: 

l�� = l�� = l�� = −wx ⇒ − �� = + "� − "�l7� = −wx                                    

(16a) 

                                                   =� + "� − "�lt� = −wx                                           

(16b) 

By solving Eqs. (15) and (16), we obtain: 

wx = �� (lt� − 67�-"� = �� (l7� − 6t�-"�                                                 

(17a) 

"� = �� = + �� (l7� + 6t�-"�                            

(17b) 
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=� = − �� = + (lt� − l7�-"� = − �� = + (67� − 6t�-"�                                               

(17c) 

The same parameter k0 is used in the model to account for the incompatibility during both 

forward and reverse martensitic transformations. This implies that: 67� − 6t� = lt� − l7� . 

Experiments in the literature also confirm that the difference between the martensite start and 

finish temperatures is close to that between the austenite start and finish temperatures, e.g. 67� − 6t� = 40 K and lt� − l7� = 45 K  in (Karaca et al., 2006), 67� − 6t� = 1 K  and lt� −l7� = 0.7 K in (Zhang et al., 2018a).  

The DSC test also measures the released (���) and the absorbed (���) latent heat during 

the phase transformations. From Eqs. (1) and (2), we can calculate the latent heat �� as: 

�� = � 
 _��_�_, ��� → �� = −"� � 
���                                                    

(18) 

For the forward martensitic transformation, z0 changes from 1 to 0, and T changes from 67� to 

6t�. By taking 
 = �� (67� + 6t�- in Eq. (18), we estimate the released latent heat ���(positive) 

for the forward martensitic transformation as: 

��� = − �� "�(67� + 6t�- � ����� → ��� = �� "�(67� + 6t�-  

from which the parameter c1 is obtained as: 

"� = �k��'3 b'�                                                                                       

(19a) 

Similarly, for the reverse martensitic transformation, we have:  

"� = − �k��%3 b%�                                                                                            

(19b) 

where ���  is the absorbed latent heat (negative) during the reverse transformation. 

Theoretically, the values of c1 obtained from Eqs. (19a) and (19b) are identical. By 

introducing the value of c1 into Eq. (17), the values of Dp, c0 and k0 can be determined.  

 

2.2. Mass-spring model of the MSMA dynamic system 

In order to take into account the inertial effect, we develop a mass-spring model to 

describe the dynamic behaviours of MSMA system in (Zhang et al., 2018a). The constitutive 

model in Subsection 2.1 is embedded in the mass-spring model. The modelling and the 
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simulation include the magnetic analysis, the mechanical analysis and the thermal analysis, 

which are described in details below.  

 

2.2.1. Magnetic analysis 

The experimental setup in (Zhang et al., 2018a) is shown in Fig. 4(a): The MSMA 

sample is supported at the bottom end by a sample holder and compressed at the top end by a 

spring along x-axis. At the same time, a magnetic field is applied by an electromagnet along a 

fixed direction, i.e. y-axis in Fig. 4(a). So the y-component of the magnetic field strength 

vector is the main component. For simplicity, we only consider the y-component of the 

magnetic field here. Due to the demagnetization effect, the magnetic field inside the MSMA 

sample, so-called the internal magnetic field H (y-component), is smaller than the applied one ��xx. H can be estimated as:  � = ��xx − �6                                                                                  

(20) 

where N is the demagnetization factor, whose value is given in Table 1 by using the formula 

for the volume average demagnetization factors of rectangular prisms in (Aharoni, 1998); M 

is the magnetization of the material, being: 6 = ��6� + ��6� + ��6� + ��6�                                                                   

(21) 

where 6�, 6�, 6� and 6� are respectively the magnetization of austenite, martensite variant 

1, 2 and 3 (denoted by A, M1, M2 and M3 in Fig. 1(a)).  

Before each test in (Zhang et al., 2018a), a large compressive stress along x-axis is 

applied on the MSMA sample so that the sample is in the initial state of single martensite 

variant, i.e. M1 in Fig. 1(a). Therefore, the initial volume fraction ��(�)
 of M1 is set to be 1 in 

the model, as shown in Table 1. To simulate the loading condition in Fig. 4(a), the 

compressive spring force along x-axis and the magnetic field along y-axis are considered in 

the model. M1 is energetically favoured by the compressive force along x-axis (i.e. M1 has 

the lowest mechanical energy calculated from Eq. 2(b)) and M2 (see Fig. 1(a)) is 

energetically favoured by the magnetic field along y-axis (i.e. M2 has the lowest magnetic 

energy calculated by Eq. 2(c)). But the third martensite variant, i.e. M3 in Fig. 1(a), is neither 

energetically favoured by the compressive stress along x-axis (largest mechanical energy 

calculated from Eq. (2b)) nor the magnetic field along y-axis (largest magnetic energy 

calculated from Eq. (2c)). As a result, the thermodynamic forces l�↔� and l�↔� given in Eq. 
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(6) never reach the effective twinning stress in the simulation and the associated martensite 

reorientation from M1 and M2 to M3 is never triggered, which agrees with the detailed 

analysis of the material under 3D magneto-mechanical loading conditions in (He et al., 2012). 

So the volume fraction z3 of M3 is always 0 and Eq. (21) can be reduced to: 6 = ��6� + ��6� + ��6�                                                                   

(22) 

From the magnetization−magnetic field relation (Eq. (5)), we can obtain the absolute 

value |6�| by taking �� = 1 and �� = 0, |6�| (i = 1, 2) by taking �� = 0 and �� = 1. The sign 

of the internal magnetic field H is further introduced as: positive H along y-axis and negative 

H along the opposite direction of y-axis. Then the values of 6� and 6�  (i = 1, 2) can be 

obtained from their absolute values as: 

6� =
���
��−67%              �� ≤ − '34� !

0��      (− '34� < � < '34� )
67%                    �� ≥ '34� !

                                                  

(23a) 

6� =
���
�� −67'                �� ≤ − '3:�; !

0��         (− '3:�; < � < '3:�; )
67'                        �� ≥ '3:�; !

           (� = 1, 2)                            

(23b) 

 

2.2.2. Mechanical analysis 

Figure 4(a) shows the experimental setup in (Zhang et al., 2018a). When the cyclic 

magnetic field is applied, cyclic martensite reorientation between variant 1 and 2 is triggered 

(see the inset of Fig. 4(b)). The MSMA sample and the upper sample holder (moving parts in 

the experiment) are treated as a lumped mass, and the corresponding dynamic system is 

shown in Fig. 4(b). 

The MSMA sample is in the initial state of martensite variant 1 (M1 in the inset of Fig. 

4(b)). An initial compressive stress σ0 is applied on the sample by a spring with stiffness ks. 

So the spring is compressed by an initial distance Δx1 and the mass in Fig. 4(b) has an initial 

displacement Δx2, being: 

∆I� = ` �|3                                                                                               
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(24a) ∆I� = − ` d ��                                                                                   

(24b) 

where S and l0 are respectively the cross-sectional area and the initial length of the MSMA 

sample. The 1D equilibrium equation of the mass-spring model in Fig. 4(b) is: �I� + "Iu + }7x���� + }'�'% = 0                                                            

(25) 

where m is the total mass of the dynamic system including the MSMA sample and the upper 

sample holder, x is the displacement of the mass with respect to its initial displacement, c is a 

damping coefficient, }7x���� is the spring force and }'�'% is the restoring force provided by 

the MSMA sample itself. The values of m and c are given in Table 1. }7x����  can be 

calculated as: }7x���� = =7(I + ∆I�)                                                                           

(26) 

where Δx1 is the initial length change of the spring given in Eq. (24a). 

Using the stress−strain relation given in Eq. (3) and only considering the components 

along x-axis, we obtain: *)) = `��d + ���*� − ���*� + ���*�                                                         

(27) 

The strain change *)) can also be calculated as: 

*)) = )b∆)��                                     

(28) 

where Δx2 is the initial displacement of the mass given in Eq. (24b). Introducing Eq. (28) into 

Eq. (27) and after several calculations we obtain: 

}'�'% = $�)) → }'�'% = U$ �)b∆)�� − ���*� + ���*� − ���*�!                           

(29) 

Introducing Eqs. (24), (26) and (29) into Eq. (25), we obtain the equilibrium equation for the 

mechanical analysis as: 

�I� + "Iu + �=7 + U �� ! I = U$(���(�) ⋅ *� − ���*� + ���*�)                         

(30) 
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When the internal magnetic field strength H reaches certain level, the martensite reorientation 

between M1 and M2 is triggered and the volume-fraction transformation z12 varies with H. So 

z12 is expressed as a function of H in Eq. (30). On the other hand, to trigger the phase 

transformation of MSMA, a large magnetic field (> 5 T) is required (Haldar et al., 2014; 

Karaca et al., 2009) since the saturation magnetization difference between austenite and 

martensite is small. In the experiments of (Zhang et al., 2018a), only a small magnetic field 

(< 1 T) is applied. So the applied magnetic field cannot trigger the phase transformation and 

the effect of the magnetic field strength H on z01 and z02 is ignored in Eq. (30) for simplicity.  

To detect the martensite reorientation and determine the expression of z12, we first use 

Eq. (6) to calculate the thermodynamic force l�↔� for the martensite reorientation between 

M1 and M2 as: l�↔� = =(�� − ��) + *��)) + U�↔�k                                                                     

(31) 

where the volume fractions z1 and z2, the stress �)) of the MSMA sample, and the magnetic 

energy difference U�↔�k  can be obtained from Eqs. (4), (7), (24) and (29) as: 

�� = ��(�) − ��� + ���                                                                                 

(32a) 

�� = ��(�) + ��� + ���                                                                                 

(32b) 

�)) = t��:4� = U �)� − ���*� + ���*� − ���*�! − ��                           

(32c) 

U�↔�k = �� /�0�|�|� + 〈|�| − '3:�� 〉 �/�67'|�| − �� /�0�|�|� − ���� /�(67')�! −
�� /�0�|�|� − 〈|�| − '3:�� 〉 �/�67'|�| − �� /�0�|�|� − ���� /�(67')�!                  

(32d) 

Introducing Eq. (32) into Eq. (31), we obtain: 

l�↔� = d  � I + =���(�) − ��(�) + ��� − ���! − ��*� + U�↔�k + U*�(���*� − ���*�) −
���(2= + U*��)                                    

(33) 

According to the constitutive model in Subsection 2.1, we have following three cases to 

consider:  
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• When |l�↔�| < ��s�tt*� , with ��s�tt
being given in Eq. (14), there is no martensite 

reorientation. So z12 does not vary with H and Eq. (30) can be reduced to: 

�I� + "Iu + �=7 + U �� ! I = U$(���*� − ���*� + ���*�)                           

(34) 

• When l�↔� = ��s�tt*�, M1 switches to M2. Then we can obtain z12 from Eq. (33) as: 

l�↔� = ��s�tt*� →  

���(�) = ��|bd  � �d  � I + =���(�) − ��(�) + ��� − ���! − ��*� + U�↔�k + U*�(���*� −
���*�) − ��s�tt*�!                                                                              

(35a) 

Introducing Eq. (35a) into Eq. (30), we have: 

�I� + "Iu + ¡=7 + �|  �
d

.db�¢£ �8
�� ¤ I = d�  �|bd  � �=���(�) − ��(�) + ��� − ���! − ��*� +

U�↔�k − ��s�tt*�! − �|d��|bd  � (���*� − ���*�)                                      

(35b) 

• When l�↔� = −��s�tt*�, M2 switches to M1. Following similar procedures, we obtain: 

���(�) = ��|bd  � �d  � I + =���(�) − ��(�) + ��� − ���! − ��*� + U�↔�k + U*�(���*� −
���*�) + ��s�tt*�!                                               

(36a) 

�I� + "Iu + ¡=7 + �|  �
d

.db�¢£ �8
�� ¤ I = d�  �|bd  � �=���(�) − ��(�) + ��� − ���! − ��*� +

U�↔�k + ��s�tt*�! − �|d��|bd  � (���*� − ���*�)                                      

(36b) 

 

2.2.3. Thermal analysis 

The temperature evolution due to heat generation and heat convection can be estimated 

by the following 1D heat equation (He and Sun, 2010a, 2011; Pascan et al., 2015): 

�
u = f�Q� − ��¥ (
 − 
�)                                                                                 

(37) 
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where R (= 
�¦�b¦, with a and b being respectively the width and thickness of the MSMA 

sample) is the effective radius of the MSMA sample; h is the heat convection coefficient, 

which is related to a characteristic ambient heat-transfer time th by: ℎ = ¨¥��© ; T0 is the 

temperature of the environment; f�Q� is the total heat generation rate, being: f�Q� = f�ªª+ + f'¥ + f«�                                                                      

(38) 

where f�ªª+, f'¥  and f«� are respectively the heat generation rate due to the eddy current 

power loss, the intrinsic dissipation of martensite reorientation, and the phase transformation:  f�ªª+ = 2320.7}7����� − 1.35 × 10]                                                    

(39a) 

f'¥ = ��s�tt*�|�u��|                                                                                

(39b) f«� = l���u�� + l���u�� + "�
(�u�� + �u��)                                           

(39c) 

Equation (39a) is proposed in (Zhang et al., 2018a) for the experiments in the strain 

frequency range of 100 Hz ~ 400 Hz. The sum of the first two terms on the right-hand side of 

Eq. (39c) is the intrinsic dissipation of phase transformation, and the third term is the latent 

heat obtained from Eqs. (4a) and (18). Introducing Eqs. (38) and (39) into Eq. (37), we obtain 

the following equation to calculate the temperature evolution: 

�
u = (2320.7}7����� − 1.35 × 10]) + ��s�tt*�|�u��| + (l���u�� + l���u�� + "�
(�u�� +
�u��)) − ��¥ (
 − 
�)                                                                   

(40) 

The thermodynamic forces l�� and l�� in Eq. (40) for the phase transformation can be 

calculated by only considering the x-components in Eq. (8): l�� = (=��� − =��) − �))*� + ("� − "�
) + U��k                                                  

(41a) l�� = (=��� − =��) + �))*� + ("� − "�
) + U��k                                    

(41b) 

where z1 and z2 are given in Eqs. (32a) and (32b), z0 is obtained from Eq. (4a) as: 

�� = ��(�) − ��� − ���                                                                                      

(42) 

Introducing Eqs. (32) and (42) into Eq. (41), we have: 
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l�� = − d ­� I − (=� + = + U*��)��� − (=� − U*�*�)��� + =���(�) − =���(�) − ���! +
U*�*���� + ��*� + ("� − "�
) + U��k                                                      

(43a) 

l�� = d �� I − (=� − U*�*�)��� − (=� + = + U*��)��� + =���(�) − =���(�) + ���! −
U*�*���� − ��*� + ("� − "�
) + U��k                                                     

(43b) 

Depending on the evolution laws proposed in Subsection 2.1.2, we have following two 

different procedures to conduct the thermal analysis: 

• Linear kinetics 

With l��  and l��  calculated by Eq. (43), we further calculate: �u�� = vl�� and �u�� =vl��. Introducing the obtained values of �u�� and �u�� into Eq. (40), we can calculate the 

temperature evolution. 

• Hysteretic kinetics  

� If the calculated thermodynamic force l�� (i = 1, 2) satisfies |l��| < wx, take �u�� = 0 

in Eq. (40) to obtain the corresponding heat equation. 

� If the calculated l�� (i = 1, 2) satisfies |l��| = wx, we obtain from Eq. (43) as: lu�� =
0 → �u�� = �(| b|bd ­�- �− d ­� Iu + (= + U*�*�)�u�� − "�
u + Uu��k !  for i = 1, and �u�� =

�(| b|bd ��- �d �� Iu − (= + U*�*�)�u�� − "�
u + Uu��k !  for i = 2. Introducing the 

calculated �u�� and �u�� into Eq. (40), we can calculate the temperature evolution.  

 

2.3. Program flowchart and values of model parameters 

The dynamic model developed in Subsection 2.1 and 2.2 is used to simulate the 

experiments in (Zhang et al., 2018a), where a cyclic triangular magnetic field of fixed 

amplitude /����x�xx
 is applied. Model simulations are conducted using the parameter values in 

Table 1 and the commercial software MATLAB. Every magnetic loading-unloading cycle is 

equally divided into 1000 time steps, and the flowchart of each time step is shown in Fig. 5. 

Since different evolution laws of phase transformation have different procedures of thermal 

analysis (see Subsection 2.2.3), two flowcharts corresponding to the two evolution laws 

proposed in Subsection 2.1.2 are shown. In each flowchart, there are two loops, i.e. an inner 

loop (indicated by a dotted rectangle) and an outer loop (enclosed by dashed lines): 
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• The inner loop is for the coupled martensite reorientation and phase transformation 

processes: if there is phase transformation, the temperature rate will change with the 

transformation rate (see Eq. (40)), which in return depends on the temperature, as shown 

by Eq. (43) for the thermodynamic forces of phase transformation. Moreover, the change 

of volume-fraction transformations (z01, z02) will affect martensite reorientation (see Eq. 

(33) for the thermodynamic force of matensite reorientation), which can change the 

temperature through Eq. (40).  

• The outer loop is for the coupled thermo-magneto-mechanical analysis: the internal 

magnetic field H varies with the volume fractions z1 and z2 (Eqs. (20), (22) and (23)), 

which are determined by the martensite reorientation process. Conversely, H also has an 

effect on this process (Eqs. (33)).  

It is noted that a constant demagnetization factor is used in the developed mass-spring 

model, as shown by Eq. (20) in Subsection 2.2.1. As most of the MSMA samples like that in 

(Zhang et al., 2018a) are rectangular, the magnetic field inside a rectangular sample is not 

homogeneous and a constant demagnetization factor cannot describe the accurate magnetic 

field distribution inside the sample. However, the inhomogeneous distributions of magnetic 

field are only around the corners of the sample, while most part (including the centre) of the 

sample has a nearly uniform distribution of magnetic field. Therefore, a constant 

demagnetization factor is valid to estimate the global effect of the magnetic field on the 

sample.  

It is also noted that the developed mass-spring model only accounts for the spring force. 

During the high-frequency magnetic loading, the magnetic body forces and surface traction 

may also be significant (Haldar et al., 2011; Haldar and Lagoudas, 2018). However, for the 

experiments in (Zhang et al., 2018a), a small magnetic field (< 1 T) is applied and the field 

frequency is not large (≤ 200 Hz). Moreover, the field is applied in a narrow gap (5 mm) and 

along a fixed direction, i.e. the 2-mm edge of the MSMA sample. In this case, the magnetic 

body forces and surface traction are not significant with respect to the spring force applied 

during the experiments. Therefore, the developed mass-spring model only considering the 

spring force can capture the characteristics of the dynamic behaviours observed in (Zhang et 

al., 2018a).  
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3. Simulation results 

The simulation result based on the flowchart of Fig. 5(a) with the linear phase 

transformation kinetics (Fig. 2(a)) is not the same as that based on the flowchart of Fig. 5(b) 

with the hysteretic phase transformation kinetics (Fig. 2(b)). Interestingly, the simulation with 

the simple linear kinetics is better in capturing the dynamic phenomena. Therefore, the 

simulation with the linear kinetics is reported in this section and that with the hysteretic 

kinetics is discussed for comparison in Section 4.  

 

3.1. Mass-spring harmonic oscillator of field-induced deformation  

A typical example of the simulation results is shown in Fig. 6(a) where the applied 

magnetic field cyclically changes between −0.78 Tesla and +0.78 Tesla with the frequency 

fmagnetic = 90 Hz (so, the output strain frequency }7����� = 2 × }�������� = 180 Hz), the initial 

compressive stress σ0 = 0.4 MPa, the characteristic ambient heat-transfer time th = 68.9 

seconds and the initial temperature T0 = 20 ºC. It is seen that, while the cyclic magnetic field 

is applied, the output strain oscillation amplitude Δε first increases and then decreases to a 

steady-state value (0.6%) and the specimen temperature T increases to a saturated value (39.2 

ºC). For a clear demonstration, the magnified views on the response curves at several 

representative times (t1 ~ t4) are also shown in Fig. 6(a). At the beginning (see time t1), the 

strain oscillation amplitude Δε = 2.9% and the volume fractions of the two martensite 

variants M1 and M2 (i.e., z1 and z2) have the oscillation amplitude of 0.50 while the volume 

fraction of the austenite (z0) is kept at 0. That means, such deformation oscillation is due to 

the field-induced Martensite Reorientation (MR) between the variants M1 and M2. 

Continuing the magnetic actuation leads to the increases in both Δε and T as shown in the 

magnified view at time t2 where Δε = 5.9% and the volume fractions z1 and z2 vary between 0 

and 1, implying a complete MR in the material. Such large dissipative deformation can result 

in a significant temperature rise. When the temperature T increases to a critical level 

triggering the Martensite-to-Austenite (M�A) phase transformation (e.g., z0 increases to 0.55 

while the variation amplitudes of z1 and z2 decrease to 0.45 as shown by the magnified view 

at t3), the output strain amplitude Δε decreases (i.e., from 5.9% at time t2 to 2.7% at time t3). 

That means, the reduction in strain amplitude Δε is due to the decrease in the volume 

fractions of the martensite variants and the austenite phase (A phase) under this cyclic 

magnetic field contributes little to Δε, which agrees with the in-situ microstructural 

observations in (Zhang et al., 2018a). The increase in z0 (i.e. increasing A phase) reduces not 
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only Δε, but also the temperature rising rate, as shown by the magnified views of temperature 

at t2 and t3. Finally, a steady state cyclic oscillation is obtained: T reaches a constant value of 

39.2 °C and Δε reduces to a much smaller level of 0.6% (see the magnified view at time t4 

where z0 = 0.91 implying that the A phase is dominant and only a little martensite phase 

remains). In other words, the appearance of A phase due to the temperature rise reduces the 

field-induced deformation significantly. This simulated strain drop (significant reduction in 

Δε) agrees with the experimental observation under the same loading condition in Fig. 6(b). 

This strain-drop phenomenon also exists in other loading conditions, for example, at different 

frequencies in Fig. 7. 

Figure 7 shows the dynamic evolutions of the magnetic-field-induced deformation at 

the output strain frequency }7����� = 130 Hz, 160 Hz, 200 Hz and 220 Hz, whose strain 

amplitudes all decrease to a small level due to the appearance of A phase when the 

temperature increases to a critical level around 39 ºC. The maximum strain amplitude before 

the strain drop (i.e., before M�A phase transformation) is denoted by ∆*[�7��¦�� , which 

significantly depends on the frequency }7����� (e.g. ∆*[�7��¦�� varies from 5.6% to 2.5% in 

Fig. 7). By contrast, the steady-state strain amplitude (denoted by ∆*7��¦��) and the steady-

state temperature ( 
7��¦�� ) hardly depend on }7����� (e.g. ∆*7��¦��  = 0.5% ~ 0.7 % and 
7��¦�� = 39.2 ℃  in Fig. 7). The frequency−dependence of ∆*[�7��¦��  and the 

frequency−independence of ∆*7��¦��  can be clearly demonstrated by summarising all the 

simulation data and experimental observations in Fig. 8. It is seen that the strain amplitude  ∆*[�7��¦�� significantly depends on }7����� with a resonance at around 180 Hz. That means 

the field-induced cyclic martensite reorientation in the material demonstrates the dynamics 

with the mass-spring effect (a harmonic oscillator). By contrast, the steady-state strain 

amplitude ∆*7��¦�� (after M�A phase transformation introducing the coexistence of the A 

phase and the martensite variants) has little dependence on }7�����  (without the obvious 

resonance frequency) and only takes very small values (< 1% in Fig. 8). It seems that the 

coupling of Martensite Reorientation (MR) and Phase Transformation (PT) introduces a large 

damping into the harmonic oscillator to weaken the resonance effect and reduce the 

oscillation. 

To keep the advantage of the large deformation oscillation in the material for 

engineering applications, a method has been proposed to avoid the temperature-induced PT 

during the dissipative MR: increasing (enhancing) the heat exchange between the material 

and the ambient (e.g. by controlling the ambient airflow) to reduce the temperature rise 
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(Zhang et al. 2018a). Interestingly, the controlled temperature variation not only influences 

PT, but also changes the effective twinning stress ��s�tt
 of MR (i.e. the temperature-dependent 

dissipation rate of MR in Eq. (12)). As a result, the change in the ambient heat-transfer 

condition does not simply restore the mass-spring harmonic oscillator, but introduces another 

resonance-like effect as shown in the following subsection.  

 

3.2. Resonance-like heat-transfer dependence 

Figure 9 shows the simulations on the field-induced deformation at different ambient 

heat-transfer conditions which are characterized by a time scale th (the characteristic heat-

transfer time). The time scale th changes from 0.1 second (close to the isothermal condition) 

to 350 seconds (close to the adiabatic condition) in Fig. 9. The simulation in Fig. 6(a) takes th 

= 68.9 s, which corresponds to the still-air ambient condition in the experiment. The detailed 

measurement of th can be found in (Zhang et al., 2018a).  

When the ambient heat transfer is very strong (e.g. th = 0.1 s in Fig. 9(a)), the specimen 

temperature T is always kept constant (i.e. close to the ambient temperature of 20 ºC) and the 

output strain oscillation amplitude Δε is kept at a constant value of 1.7% due to the cyclic 

martensite reorientation (i.e. z1 and z2 have the oscillation amplitude of 0.29).When th 

increases (i.e. the heat transfer becomes weaker) as shown in Figs. 9(b) ~ 9(d), it takes more 

time for T and Δε to evolve to the steady state. Moreover, with the increase of th, both the 

stable temperature Tstable and the stable strain amplitude ∆*7��¦�� become larger: ∆*7��¦�� = 

2.4%, 4.2% and 5.9% while Tstable = 25.3 ºC, 30.7 ºC and 38.2 ºC at th = 4 s, 6 s and 12 s, 

respectively. For all these cases, the volume fraction of the A phase z0 keeps at 0 (refer to 

Figs. 9(a) ~ 9(d)). That means, the strain oscillation is due to the cyclic Martensite 

Reorientation (MR), which is sensitive to the temperature (e.g., the friction-like dissipative 

stress ��s�tt
 decreases with increasing temperature as shown in Eq. (12)), and the temperature 

is influenced by the ambient heat-transfer rate (i.e. the characteristic ambient heat-transfer 

time th).  For the case of th = 12 s (Fig. 9(d)), the volume fractions of the martensite variants 

z1 and z2 oscillate between 0 and 1 in the steady-state oscillation (stable cycles), implying a 

complete cyclic MR in the specimen.  

If th further increases (see Figs. 9(e) ~ 9(g)), the large deformation amplitude (5.9% 

strain) becomes unstable when the temperature reaches around 39 ºC (i.e. the characteristic 

phase transformation temperature 
�� (6t� + lt�- ≈ 39 ℃). After the strain drop (the reduction 

in Δε), the temperature keeps around 39 ºC for all the three cases (i.e. th = 20 s, 30 s and 100 s) 
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where A phase and M phase coexist (the volume fraction of A phase z0 = 0.36, 0.65 and 0.96, 

respectively). Although their stable temperatures are almost the same, their stable strain 

amplitudes are different: ∆*7��¦�� = 3.9%, 2.2% and 0.3%, significantly depending on th due 

to the fact that the dissipation heat of the deformation oscillation must be balanced by the 

heat transferred to the ambient. That agrees with the experimental observation and the 

analytical calculation of the heat balance in (Zhang et al., 2018a).  

When th further increases to 350 s (close to the adiabatic condition) in Fig. 9(h), the 

specimen temperature rises rapidly and becomes higher than 40 ºC, making a complete M�A 

phase transformation (z0 = 1) and a strain drop to 0 due to the lack of Martensite 

Reorientation (MR). In this case (T > 40 ºC, z0 = 1 and Δε = 0), the temperature rise is solely 

caused by the eddy current in the material induced by the high-frequency magnetic field. 

Compared with the dissipation of a cyclic MR (Figs. 9(a) ~ 9(d)), the heat generated by eddy 

current is small (or negligible). But it can still be measured in the experiments (Pascan et al., 

2016; Zhang et al. 2018a) and modelled in Eqs. (38) and (39a). 

Figure 10 compares all the simulation results with the experiments in terms of the 

stable responses, i.e. the stable stain amplitude, the stable temperature and the stable volume 

fraction of A phase. The simulation covering a wide range of ambient conditions from the 

near-isothermal condition (th = 0.1 s) to the near-adiabatic condition (th = 500 s) agree with 

the experimental measurements: ∆*7��¦�� depends on th non-monotonically (resonance-like 

dependence) due to the combined effects of the temperature-dependent MR (temperature-

dependent effective twinning stress ��s�tt
) and the temperature-induced phase transformation 

between A phase and M phase. The wide range of the ambient dependence (th-dependence) 

can be classified into the following four domains. 

(I) Close to isothermal case (e� ≤ 1 s): 

The ambient heat exchange is so strong that the material’s temperature is always kept 

constant (around the ambient temperature of 20 ºC, well below the characteristic phase 

transformation temperature of about 39 ºC) and only M phase exists, i.e. z0 = 0. But, not all 

the M phase takes the reorientation in the dynamic response because the friction-like 

dissipative stress ��s�tt
 is high in the low temperature level, as shown in Eq. (12). 

Therefore, ∆*7��¦�� is not large, only around 2% in Fig. 10(a). 

(II) Significant increase in ∆*7��¦��  with increasing th (1 s ≤ e� ≤ 12 s) governed by the 

temperature-dependent MR process (temperature-dependent ��s�tt
): 
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In this domain, the ambient heat transfer is not very strong; Tstable increases with increasing 

th, leading to larger ∆*7��¦��  (because of the lower MR frictional stress ��s�tt
 at higher 

temperature). When th reaches 12 s, ∆*7��¦�� reaches the maximum value of around 6% 

and Tstable reaches the material’s phase transformation temperature of around 39 ºC where 

M�A phase transformation can almost occur, i.e. �� starts increasing from 0. 

(III) Special “isothermal” case due to the self-organized coexistence of M and A phases 

(12 s ≤ e� ≤ 300 s): 

In this domain, Tstable keeps almost constant (around 39 ºC); but  ∆*7��¦��  decreases 

significantly with increasing th due to the decreasing volume fraction of M phase (i.e. the 

increasing volume fraction z0 of A phase). When th increases to 300 s, the material is fully 

occupied by A phase (�� = 1) and ∆*7��¦�� is reduced to 0 (no MR exists). 

(IV) Close to adiabatic case (e� > 300 s) 

In this domain, the heat exchange between the specimen and the ambient is weak; the 

dissipation is easily accumulated to cause a large temperature rise. Therefore, Tstable is high 

(> 39 ºC) and no M phase exists (i.e. no MR and ∆*7��¦�� = 0). Due to the heat generated 

by the eddy current induced by the changing magnetic field, Tstable increases with th. 

 

3.3. Dependence of stable strain amplitude on two time scales 

The simulations in Figs. 8 and 10(a) of the previous Subsection 3.1 and 3.2 imply that 

the magnetic-field-induced deformation oscillation (strain amplitude ∆*) is influenced by two 

time scales, i.e. 
�t3���;� and th, related respectively to the external magnetic driving frequency 

(i.e. the strain oscillation frequency }7����� = 2}��������) and the ambient heat exchanging 

rate. To provide a whole picture of the dynamics of the field-induced deformation oscillation, 

our simulation results of the steady-state strain amplitude ∆*7��¦�� at different }7����� and th 

are summarized in Fig. 11, where the two time-scale axes (
�t3���;�  and th) represent 

respectively the mass-spring dynamic effect (i.e. inertial effect) and the effect of the ambient 

heat-exchange (diffusion dynamics) coupled with the temperature-dependent MR and PT. It 

is seen from the figure that the maximum stable strain amplitude ∆*7��¦�� is obtained at the 

resonance time scales:
�t3���;�∗ = ���� µ¶ = 5.56 ms  and e�∗ = 12 s . While the resonance 

frequency }7�����∗  is influenced by the mass-spring inertial effect, the resonance time scale e�∗  

is governed by the balance between the heat generated by MR and the heat transferred to the 
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ambient. Detailed experimental discussions and analytical estimation of the resonance time 

scale  e�∗   have been provided in (Zhang et al. 2018a).  

 

4. Discussions 

4.1. Little global hysteresis between forward and reverse phase transformations 

One of the interesting findings of the current study on the thermo-magneto-mechanical 

coupling in Fig. 10 is the non-trivial isothermal case of e� = 12 s ~ 300 s where the stable 

strain amplitude ∆*7��¦�� changes significantly while the stable temperature Tstable is always 

constant. That proposes a special design of an isothermal actuator whose output strain 

amplitude can be controlled by the ambient heat transfer condition. This proposition has been 

experimentally verified in (Zhang et al., 2018b) as shown in Fig. 12(a) where the 

characteristic ambient heat-transfer time th was varied by changing the ambient airflow 

velocity from 0 m/s to 16 m/s in the stages ① ~ ⑥ (the corresponding th = 68.9 s, 29.8 s, 

23.6 s, 16.0 s, 13.9 s, 12.0 s from (Zhang et al., 2018a)). It is seen from the experiment (Fig. 

12(a)) that in Stage ① with the still-air ambient condition, i.e. vair = 0 m/s, the large field-

induced deformation amplitude ∆*  decreases significantly from 5.8% to 1.0% when the 

temperature increases to a high level (see point A in Fig. 12(a)). Then, the ambient airflow is 

applied in Stage ②: the strain amplitude ∆* increases to 2.1% while the temperature reduces 

a little (see point B where the temperature is around 36.1 ºC). It should be noted that the 

significant strain drop at point A is due to the M�A phase transformation (as shown in the 

corresponding simulation result in Fig. 12(b) where the volume fraction z0 of A phase 

increases from 0) while the strain jump at point B is caused by the A�M phase 

transformation (z0 decreases from 0.91 to 0.65 in Fig. 12(b)). These M�A and A�M phase 

transformations have also been experimentally confirmed by the observations of the 

microstructural evolutions in (Zhang et al., 2018b).  

Both experimental observation (Fig. 12(a)) and simulation result (Fig. 12(b)) reveal that 

the global dynamic response of MSMA coupling phase transformation and martensite 

reorientation (with the simultaneous motions of numerous twin boundaries) shows little 

temperature hysteresis between the reverse (M�A) and the forward (A�M) martensitic 

Phase Transformation (PT). This contrasts with the large temperature hysteresis found from 

the DSC (Differential Scanning Calorimetry) measurement of the quasi-static PT in MSMA 

(i.e. lt� − 6t� = 42.2 ℃ − 35.5 ℃ = 6.7 ℃ in (Zhang et al., 2018b)) and with the hysteretic-
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type kinetics of the common PT models (e.g. Lagoudas et al., 2006; Lexcellent et al., 2000; 

Patoor et al., 2006; Zaki and Moumni, 2007). This global non-hysteretic phase transformation 

poses challenging topics for further studies with advanced experiments (e.g. in-situ ultra-fast 

observations of the dynamic nucleation/evolutions of the phases/variants and the associated 

mechanical/thermal properties) and with proper modelling (e.g. micromechanics/phase-field 

models linking the local twins/phases motions to the global responses).  

Nevertheless, the current macroscopic model with the linear kinetics of phase 

transformation (without hysteresis as shown in Fig. 2(a)) can capture all the main features of 

the global dynamic behaviors of MSMA as shown by the simulation results in Section 3 and 

this subsection 4.1. On the contrary, the simulation with the hysteretic-type kinetics (Fig. 2(b)) 

is shown in Fig. 12(c), which does not agree with the experimental observation in Fig. 12(a): 

(1) The difference between the simulated steady-state temperature after the strain amplitude 

drop in Stage ① and that after the strain amplitude jump in Stage ② is significant, i.e. 41.7 ℃ − 36.5 ℃ = 5.2 ℃ in Fig. 12(c), while the corresponding temperature difference 

in both Figs. 12(a) and 12(b) is small, i.e. < 0.5 ºC.  

(2) In Fig. 12(c), due to the hysteresis effect, the ①�② ambient change at t1 does not 

trigger the immediate Δε increase. In fact, the increase in Δε is delayed by almost 20 s (see 

point A in Fig. 12(c) where z0 starts to decrease from 0.85 to 0.74). On the contrary, both 

Figs. 12(a) and 12(b) show the immediate effect of the ①�② ambient change on Δε at 

t1. 

The above discussions indicate that, although the localized quasi-static temperature-

induced or stress-induced phase transformation in MSMA is hysteretic (e.g. DSC 

measurement in (Zhang et al., 2018b) and mechanical tests in (Martynov and Kokorin, 1992)), 

the observed global dynamic phase transformation in the inhomogeneous system of MSMA 

(i.e. including simultaneous nucleation/motion of numerous phases/boundaries) has little 

hysteresis.   

 

4.2. Quantification on global phase transformation speed 

Besides the quality of the global phase transformation (better described/simulated with 

a linear kinetics rather than a hysteretic-type kinetics), the quantification on the global phase 

transformation speed is surprising in the current study. For example, Fig. 13 shows the 

simulated effect of the latent heat absorption (∆H) on the speed of the M�A phase 

transformation (z0 increases from 0 to 0.91) during the strain-amplitude drop (∆ɛ decreases 



Page 29 of 55 
 

form 5.9% to 0.6%). It is seen that the time ∆eª�Qx for the strain drop (due to the M�A phase 

transformation) increases almost proportionally with ∆H: ∆eª�Qx increases from 4 s to 79 s 

(nearly 20-fold increase) when ∆H increases from 5.39 × 10¹ J ⋅ mB� to 1.08 × 10� J ⋅ mB� 

(20-fold increase). This proportional dependence is due to the heat balance between the latent 

heat adsorption of the M�A phase-transformation, the heat generation from the eddy current 

and the dissipation of martensite reorientation and phase transformation, and the ambient heat 

transfer as modelled in Eqs. (37) and (38). The surprising point is that, if ∆H takes the value 

(5.39 × 10C J ⋅ mB�) measured from the DSC test in (Zhang et al., 2018b), the simulated time 

of the strain drop (i.e. ∆eª�Qx ≈ 36 s in Fig. 13(c)) is much longer than the experimental 

observation (∆eª�Qx ≈ 5 s) in Fig 6(b). In order to understand this disagreement and double-

check the time scale, we perform the following simple cycle-average heat analysis based on 

the heat balance equation from Eq. (37):  

ª�ª� = �̈ (f'¥ + f«�+f�ªª+- − (�B� )�©                               (44) 

where e� = ¨¥�� = 68.9 s   (for the still-air ambient condition);  f'¥  , f«�  and f�ªª+ are 

respectively the heat generation rate due to the Martensite-Reorientation dissipation, the rate 

of the dissipation (Dp) and the latent heat adsorption (−∆H) due to the M�A Phase 

Transformation (PT), and the heat generation rate due to the eddy current power loss, which 

are expressed in cycle-average forms of the current case (with fstrain = 180 Hz and near the 

constant temperature T = 39.2 oC close to l7� during the strain drop) as: 

f'¥ = 2}7�������s�tt*�(1 − ��) = º�(1 − ��)                        

(45a) 

f«� = (wx − ∆�- ª, ª� = º� ª, ª�                            

(45b) f�ªª+ = 2320.7}7����� − 1.35 × 10] = 2.83 × 10]  W ⋅ mB�                                 

(45c) 

with º� = 2}7�������s�tt*� ≈ 2 × 180 Hz × 0.2 MPa × 6% = 4.32 × 10¹ W ⋅ mB� , using Eq. 

(14) and assuming all the existing martensite takes reorientation (a complete MR) like the 

case in Fig. 13 (*� = ∆*[�7��¦�� = 5.9% ≈ 6%); º� = wx − ∆� ≈ −∆�, because |ΔH| >> Dp 

whose value is given in Table 1. Since the calculated f�ªª+ in Eq. (45c) is much smaller than 

b1, we ignore f�ªª+ and substitute Eqs. (45a) and (45b) into Eq. (44) to describe the strain 

drop (in term of the increase in the A-phase volume fraction z0) near the constant temperature 



Page 30 of 55 
 

l7� (i.e. 
ª�ª� = 0):  

º�(1 − ��) + º� ª, ª� − º� = 0                                           

(46) 

where º� = ¨(%3B� )�©  . The solution to Eq. (46) is: 

�� =  ¾�hB �¿ÀÁ� + ¦�B¦Â¦�                                                                            

(47) 

where C1 is a constant determined by the initial condition; the characteristic phase 

transformation time (relaxation time) e«� = − ¦�¦� ≈ ∆k¦� = 12.5 s (using ∆� = 5.39 × 10C J ⋅
mB� measured in the DSC test of (Zhang et al., 2018b)). Normally, it takes around 3 times of 

the characteristic time scale to finish a relaxation process, i.e. strain drop in the current case. 

Therefore, the duration ∆eª�Qx of the strain drop can be estimated as ∆eª�Qx ≈ 3e«� = 37.5 s, 

which agrees with the simulation result in Fig. 13(c) where ∆eª�Qx ≈ 36 s, but does not agree 

with the experimental observation in Fig. 6(b) where ∆eª�Qx ≈ 5 s. That means, both the 

simple analysis above and the numerical simulation in Fig. 13(c) demonstrate the limitation 

of the macroscopic model about the quantification on the global dynamic phase 

transformation speed.  

The reason for this limitation might be that the macroscopic model describing the 

lumped sum of the inhomogeneous physical fields in the system containing various 

phases/variants is weak to capture some instability behaviours like phase nucleation. For 

example, the temperature T, as a system’s global state variable in the model, is just the 

average temperature of the inhomogeneous MSMA system where the phase-transformation-

induced self-heating (due to dissipation) and self-cooling (due to latent heat absorption) are 

localized, especially during the nucleation (appearance) of a new phase (i.e. z0 starts to 

increase from 0). The nucleation of new phases during phase transformations in traditional 

Shape Memory Alloys (SMA) has been well studied in the literature. For example, the stress-

induced martensitic phase transformation triggers the Lüders-like band formation (for the 

nucleation of the new phase), which indicates that the phase transformation does not take 

place uniformly in a SMA specimen, but is concentrated at certain parts of the specimen, 

causing strain concentration and localized heating/cooling (Shaw and Kyriakides, 1995, 1997; 

Zhang and He, 2018; Zheng et al., 2016). Particularly, the appearance of the new phase 

(phase nucleation) is an avalanche–like unstable process causing the macroscopic (global) 
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stress drop; such global stress drop is not obvious in some dynamic loading conditions (He 

and Sun, 2010b; Zhang et al., 2010). Similarly, in the current experiment on magnetic SMA, 

the temperature-induced M�A phase transformation during the strain drop is accompanied 

with a temperature drop as indicated in Fig. 6(b). It should be noted that in the experiments of 

(Zhang et al., 2018a), a thermocouple attaching to the specimen’s end to measure the 

temperature T might not accurately capture the peak (maximum) temperature in the specimen. 

In other words, the motion of numerous twin boundaries causes localized heating (due to the 

MR dissipation) leads to an inhomogeneous temperature distribution in the specimen, 

triggering the localized M�A phase transformation (when the local temperature reaches l7� 

or lt� ). Then the avalanche-like M�A phase transformation adsorbs large latent heat, 

reducing the temperature significantly, i.e. the temperature is reduced to be close to but 

higher than 67�  or 6t�  to avoid the reverse A�M phase transformation. This has been 

confirmed by many tests in (Zhang et al. 2018a) as shown in Fig. 14 where the tests with 

strain drop (i.e. with M�A phase transformation) have a global stable temperature around 67� (36.5 oC) and 6t� (35.5 oC).  

Based on this physical picture about the avalanche-like phase transformation (the strain 

drop is accompanied with the temperature drop), we can make a rough estimation of the 

required time (∆eª�QxB�Ã�������) for the strain-drop process (M�A phase transformation) by 

using the heat balance equation (Eq. (44)) and assuming the relaxation-type evolutions 

(“drops”) of T and z0 as:  

�� = l�hB�Ä + l�                                                                            

(48a) 

 
 = l�hB�Ä + lÅ                                                                                

(48b) 

where τ is a characteristic relaxation time scale to be determined; the constants A1 ~ A4 can be 

determined by the following initial/boundary conditions of the strain drop process: 

• At e = 0, �� = 0 and 
 ≈ lt� = 42.2 ℃ 

• At e → ∞ , �� ≈   B∆ 3��Ç�È  = 0.83  (from the experiment in Fig. 6(b)) and 
 ≈ 6t� =
35.5 ℃ (from the DSC measurement in (Zhang et al., 2018b)) 

from which the constants in Eq. (48) can be determined as: l� = −0.83, l� = 0.83, l� =6.7 ℃ and lÅ = 35.5 ℃. With Eqs. (45) and (48), we integrate Eq. (44) in the time period [0, 

3τ] to satisfy the total heat balance in the whole strain-drop process: 
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� ª�ª� �e�É� = � ��̈ (f'¥ + f«�) − (�B� )�© ! �e�É�       

Then the characteristic relaxation time scale τ can be determined as: 

Ê = �%Âb∆ËÌ %�!(�ÍÂB�)Ç�Ì (�(�B%�)b%�(�ÍÂB�)-b4Â�© (�ÍÂB�)bÂ(Î Í4Ï)�©
                                               

(49) 

The parameter b1 in Eq. (49) can be determined from Eq. (45a) where the effective twinning 

stress ��s�tt
 depends on the temperature: we take 
 ≈ �� (lt� + 6t�- ≈ 39 ℃ and use Eq. (14) 

to find ��s�tt = 0.26 MPa . So º� = 2}7�������s�tt*� ≈ 2 × 180 Hz × 0.26 MPa × 6% =5.62 × 10¹ W ⋅ mB�. By introducing the values of the related parameters into Eq. (49), we 

determine the characteristic time scale as: τ ≈ 4 s. Then the time of the strain drop can be 

roughly estimates as: ∆eª�QxB�Ã������� ≈ 3Ê = 12 s, close to the experimental observation in 

Fig. 6(b) where ∆eª�Qx ≈ 5 s.  

That means, due to the avalanche-like nucleation of phase transformation, the strain 

drop is accompanied with a temperature drop from l7�  (or lt�) to 67�  (or 6t�). With such 

temperature drop, the latent heat absorption of the M�A phase transformation can be 

provided/balanced quickly. That’s why the experimentally-observed M�A phase 

transformation speed during the strain drop can be faster than the expectation (the simulation 

result in Fig. 13(c)). As a phenomenological model, the current simulation adopts the value of 

the apparent latent heat ∆��xx����� = 1.08 × 10C J ⋅ mB�  (about one fifth of the 

experimentally-measured value of ∆�Ð�ÑB��7� = 5.39 × 10C J ⋅ mB�) to describe strain drop 

process in Section 3.  

 Moreover, the temperature drop from l7� (or lt�) to 67� (or 6t�) can explain the little 

hysteresis between the forward and reverse phase transformations discussed in Section 4.1. 

After the strain drop process with the avalanche-like M�A phase transformation causing the 

temperature drop, the specimen’s temperature is already very close to 67� (or 6t�). Therefore, 

just a small cooling (e.g. by the ambient airflow in Stage ② in Fig. 12(a)) is enough to 

immediately trigger the A�M phase transformation, showing apparently little hysteresis. 

 

5. Summary and conclusions 

This paper develops a dynamic model to study the thermo-magneto-mechanical 

coupling behaviours of Magnetic Shape Memory Alloys (MSMA) actuated by high-
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frequency magnetic fields under various thermal conditions. Our previous constitutive model 

focusing on martensite reorientation in MSMA is extended to the current model to describe 

the coupling between the temperature-dependent field-induced dissipative martensite 

reorientation and the temperature-induced forward/reverse martensitic phase transformation. 

The extended constitutive model is further embedded in a mass-spring dynamic configuration 

to study and understand the new experimental dynamic phenomena. Comparisons between 

experimental observations and model simulations (with different kinetics of phase 

transformation) demonstrate that the dynamic forward/reverse martensitic phase 

transformation shows little hysteresis, contrasting to the quasi-static cases. Detailed 

quantitative discussion on the time scale of the transient phase transformation process further 

reveals that the phase transformation, due to the coupling dynamics, leads to sudden changes 

in both deformation and temperature (i.e. strain-amplitude drop is accompanied with a 

temperature drop) even though the current experiments have not yet measured the 

temperature drop accurately. Three main conclusions are drawn from the study: 

 

(1) Due to the coupling of the martensite reorientation and the phase transformation, the 

mechanical deformation (strain oscillation) depends on both the magnetic loading and 

the thermal condition; particularly, the optimized performance (maximum stable strain 

amplitude) can be achieved only at the critical magnetic driving frequency and the 

critical ambient heat-exchange rate, which are characterized by the two time scales 

(
�t3���;� and th in Fig. 11) representing the effects of the inertial dynamics and the heat 

balance, respectively.  

 

(2) Generally, the higher the heat exchanging rate between the ambient and the MSMA 

system (with the field-induced dissipative martensite reorientation), the lower the stable 

system temperature. But, the system temperature does not totally change with the 

ambient condition in a passive way. In a certain range of the ambient conditions (such as 12 s ≤ e� ≤ 300 s in Fig. 10), the self-organized microstructure (self-adjusted volume 

fractions of the martensite and the austenite) leads to a special “isothermal” behaviour — 

the temperature keeps constant while the strain oscillation amplitude (due to the cyclic 

field-induced martensite reorientation) changes significantly with the ambient condition. 

In other words, the MSMA system can be smart to keep its temperature constant by self-
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organization under the varying external thermo-magneto-mechanical boundary 

conditions.  

 

(3) The global kinetics of the phase transformation in a dynamic MSMA system containing 

simultaneous multiple nucleation/motions of the phases/boundaries under the thermo-

magneto-mechanical dynamic loadings is significantly different from that of the quasi-

static phase transformation (such as that in the DSC measurement). Particularly, 

contrasting with the well-known hysteresis (e.g. the temperature hysteresis of (lt� − 6t�- 

from a DSC measurement), the global dynamic phase transformation has little hysteresis 

and can be phenomenologically modelled with a simple linear kinetics in Fig. 12.  

 

Appendix A. Magnetic susceptibility of martensite variants 

The magnetic susceptibility ai (i = 1, 2, 3) of the three pseudo-tetragonal 5M martensite 

variants of Ni-Mn-Ga single crystal in the magnetic energy formulation (Eq. (2c)) reflects the 

overall effects of the magnetic-domain-wall motions and local magnetization rotations on the 

global magnetization process (Likhachev and Ullakko, 2000). Two magnetization tests are 

needed to determine a1, a2, a3: one along the magnetic easy-axis of the martensite variant and 

the other along the hard-axis (see Fig. A.1). It is noted that the magnetic easy-axis is parallel 

to the short c-axis of the pseudo-tetragonal 5M martensite of Ni-Mn-Ga single crystal and the 

hard-axis is perpendicular to it.  

 

Fig. A.1. (a) Magnetization test along magnetic easy-axis. (b) Magnetization test along 
magnetic hard-axis with a large compressive stress σxx. (c) Magnetization curves (after linear 
approximation) of the magnetization along the magnetic easy-axis (dashed line) and that 
along the direction deviating from the easy-axis by an angle θ (solid line). The uniaxial 
magneto-crystalline anisotropy energy ua(θ) can be determined by the area between the two 
magnetization curves. The saturation magnetization 67' and the magnetic susceptibilities a(0) 
and a(θ) are also indicated.  
 

(a) Magnetization test along magnetic easy-axis (Fig. A.1(a)) 
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The sample in the state of single martensite variant with magnetic easy-axis along y-

coordinate is magnetized by a magnetic field Hy. By linearization of the magnetization curve 

(see Fig. A.1(c)), we can determine the saturation magnetization 67'  and the magnetic 

susceptibility a(0) for the magnetization along the magnetic easy-axis.   

(b) Magnetization along magnetic hard-axis (Fig. A.1(b))  

The sample in the state of single martensite variant with magnetic easy axis along x-

coordinate is magnetized by a magnetic field Hy. To prevent martensite reorientation during 

the experiment, a large constant compressive stress σxx is applied along x-coordinate. 

Following the same procedures as the previous experiment, the magnetization curve for the 

magnetization process along the magnetic hard-axis is obtained. 

The uniaxial magneto-crystalline anisotropy energy density ua for Ni-Mn-Ga 5M 

martensite can be expressed as (O’Handley et al., 2000):  Ò�(Ó) = Z[Ô�Õ�Ó                                                                      

(A.1) 

where Ku is the coefficient of magneto-crystalline anisotropy energy; θ is the equilibrium 

angle between the magnetic easy-axis of the martensite variant and its magnetization vector. 

ua(θ) can be determined by the area between the magnetization curve along the easy-axis and 

that along the direction deviating by an angle θ from the easy-axis (see the shaded area in Fig. 

A.1(c)). For the magnetization along the magnetic hard-axis (θ = π/2), we have ua = Ku. So Ku 

can be directly obtained by the magnetization curves from the previous two magnetization 

tests. From Fig. A.1(c), ua(θ) can be calculated as:  

Ò�(Ó) = �� /�(67')� � ��(Ö) − ��(�)!                                                    

(A.2) 

where a(0) and a(θ) are respectively the magnetic susceptibilities of the magnetization along 

the magnetic easy-axis (θ = 0) and that along the direction deviating by an angle θ from the 

easy-axis. With Eqs. (A.1) and (A.2), we can obtain the following expression of a(θ): 

0(Ó) = � ��(�) + �×Ø7���Öj ('3:)� !B�
                                                                                       

(A.3) 

The magnetic easy-axes for variants 1, 2 and 3 are respectively the x-, y- and z-coordinate. 

Let θ1, θ2 and θ3 be the angles between the magnetic field � and the x-, y-, z-coordinate, 

respectively. By Eq. (A.3), the magnetic susceptibilities of the martensite variants are: 

0� = � ��(�) + �×Ø7���Ö;j ('3:)� !B�
   for variant i  (i = 1, 2, 3)                                      
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(A.4) 
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Table 1. Values of model parameters.  

a0 

Magnetic 
susceptibility of 
austenite 

6 × 10� (Heczko, 
2005b) 

67%  
Saturation 
magnetization of 
austenite 

3.9 ×10] A ⋅ mB� 
(Heczko, 
2005b) 

a1 

Magnetic 
susceptibility of 
martensite variant 
1 

0.95 (Heczko, 2005b)  67'  
Saturation 
magnetization of 
martensite 

5 × 10] A ⋅mB� 
(Heczko, 
2005b) 

a2  

Magnetic 
susceptibility of 
martensite variant 
2 

5 × 10� (Heczko, 
2005b) 

N 
Demagnetization 
factor 

0.55 *  

l7�  
Austenite start 
temperature in free 
state  

41.5 ºC (Zhang et al., 
2018b) 

R 
Effective radius of 
MSMA sample 

1.2 mm 
(Zhang et 
al., 2018a) 

c  
Damping 
coefficient 

10.1 kg∙s−1  S 
Cross-sectional 
area of MSMA 
sample 

6 mm2 
(Zhang et 
al., 2018a) 

c0 

Internal energy 
difference between 
austenite and 
martensite at 0 K 

1.0768 × 10C J ⋅ mB�  T0 
Temperature of 
environment 

20 °C 

c1 

Entropy difference 
between austenite 
and martensite at 0 
K 

3.4534 × 10Å J ⋅ mB� ⋅KB�  
th 

Characteristic 
ambient heat-
transfer time 

0.1 s ~ 500 s 

Dp 

Threshold for 
phase 
transformation 

9.8422 × 10Å J ⋅ mB�  ��(�)
  

Initial volume 
fraction of austenite 

0 

E 
Young's modulus 
of MSMA sample 

50 GPa from 
mechanical tests in 
(Chen et al., 2013) 

��(�)
  

Initial volume 
fraction of 
martensite variant 1 

1 

fstrain 
Frequency of 
output strain 

120 Hz ~ 400 Hz 
(Zhang et al., 2018a) ��(�)

  

Initial volume 
fraction of 
martensite variant 2 

0 

k 

Interaction 
parameter 
accounting for 
incompatibility 
among martensite 
variants 

1.09 × 10� J ⋅ mB�  ε0 
Strain change due 
to martensite 
reorientation 

5.8% 
(Heczko, 
2005b) 

k0 

Interaction 
parameter 
accounting for 
incompatibility 
between austenite 
and martensite  

2.3810 × 10Å J ⋅ mB�  εa 

Strain change along 
long axis of 
pseudo-tetragonal 
martensite during 
martensitic phase 
transformation 

1.9% 
(Heczko et 
al., 2002) 
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ks Spring stiffness 
5.5 N∙mm−1 from tests 
in (Zhang et al., 
2018a) 

εc 

Strain change along 
short axis of  
pseudo-tetragonal 
martensite during 
martensitic phase 
transformation 

3.9% 
(Heczko et 
al., 2002) 

L Linear coefficient 1 × 10BÅ m ⋅ s ⋅ kgB�  λ 
Specific heat per 
unit volume 

4 × 10¹ J ⋅mB� ⋅ KB� 
(Zhang et 
al., 2018a)  

��  
Initial length of 
MSMA sample 

15 mm (Zhang et al., 
2018a)  

/����x�xx
 

Amplitude of 
applied magnetic 
field 

0.78 T 
(Zhang et 
al., 2018a) 

m 

Mass of the 
moving parts in 
MSMA dynamic 
system 

22.5 g from tests in 
(Zhang et al., 2018a) 

σ0 
Initial compressive 
stress 

0.4 MPa 
(Zhang et 
al., 2018a)  

      

* The MSMA sample in (Zhang et al., 2018a) is rectangular with the dimensions of 15 × 2 × 3 mm� 

(respectively along x-, y- and z-axis in Fig. 4(a)) and the magnetic field is applied along the 2-mm 

edge. Using the formula for the volume average demagnetization factors of rectangular prisms in 

(Aharoni, 1998), we calculate the demagnetization factor of the 15 × 2 × 3 rectangular prism in the 2-

edge direction as: N = 0.55.  
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Fig. 1. (a) Schematic diagram of the austenite and the martensite variants of magnetic shape 

memory alloys. a0 denotes the length of the austenite lattice; a and c denote the lengths of the 

long and short axes of the pseudo-tetragonal martensite lattice. The difference between a and 

c is exaggerated in the figure. (b) Martensite reorientation among three martensite variants 

(M1, M2, M3) and phase transformation between austenite (A) and martensite (M).  

 

 

 

 

Fig. 2. Kinetic relation between the transformation rate �u�� (i = 1, 2, 3) and the corresponding 

thermodynamic force A0i for the phase transformation between austenite and martensite 

variant i: (a) linear phase transformation kinetics (no hysteresis), (b) phase transformation 

with threshold Dp, which results in hysteresis.  
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Fig. 3. Contribution fraction υ of Type I twin boundary at different levels of output strain 

frequency fstrain.  

 

 

 

 

Fig. 4. (a) Experimental setup in (Zhang et al., 2018a). σ is the compressive stress applied by 

the spring and B is the magnetic flux density passing through the MSMA sample. (b) Mass-

spring model of the dynamic MSMA system. Martensite reorientation between variant 1 (M1) 

and 2 (M2) and phase transformation between austenite (A) and martensite (M1 & M2) are 

induced during the experiments.  
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Fig. 5. Flowchart for each time step: (a) linear phase transformation kinetics (no hysteresis), 

(b) phase transformation with threshold (hysteresis). The dotted rectangle indicates an inner 

loop for the coupled martensite reorientation and phase transformation processes, and the 

dashed lines enclose an outer loop for the coupled thermo-magneto-mechanical analysis.  

 

 



Page 47 of 55 
 

 
Fig. 6. A typical dynamic evolution of the magnetic-field-induced deformation in a Ni-Mn-Ga shape memory alloy: (a) simulation results, (b) 

experimental observations from (Zhang et al., 2018a). The experiment is conducted at the same loading condition as the simulation, i.e. }7����� =180 Hz, σ0 = 0.4 MPa, T0 = 20 ºC and airflow velocity vair = 0 (corresponding to th = 68.9 s). While the simulated evolutions of strain and 

temperature agree with the experimental observation, the simulated evolutions of the internal variables (i.e. volume fractions of austenite (z0) and 

martensite variants (z1, z2)) imply the physical mechanisms governing the experimentally-observed quantities (i.e. strain ε and temperature T).
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Fig. 7. Simulated dynamic evolution of the magnetic-field-induced deformation at different 

output strain frequencies: (a) }7����� = 130 Hz, (b) }7����� = 160 Hz, (c) }7����� = 200 Hz, 

(d) }7����� = 220 Hz. All simulations are conducted at the initial compressive stress σ0 = 0.4 

MPa, the characteristic ambient heat-transfer time th = 68.9 s, and the environmental 

temperature T0 = 20 ºC. While the strain amplitude ∆*[�7��¦��  of pure martensite 

reorientation (i.e. just before the phase transformation) depends on the frequency }7�����, the 

steady-state ∆*7��¦��  and 
7��¦��  hardly depend on }7�����  (e.g. 
7��¦�� ≈ 39.2 ℃ for all the 

frequencies in the figure).  
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Fig. 8. Frequency effects on the stable and the unstable strain amplitudes, i.e. the strain 

amplitudes before and after the martensite-to-austenite phase transformation (strain drop), 

respectively. Simulations are conducted at the initial compressive stress σ0 = 0.4 MPa, the 

characteristic ambient heat-transfer time th = 68.9 s and the environmental temperature T0 = 

20 ºC. Experimental results from (Zhang et al., 2018a) are shown by solid symbols.  
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Fig. 9. The simulated evolutions of strain ε, temperature T, volume fraction z0 of austenite, volume fraction z1 of martensite variant 1 and volume 

fraction z2 of martensite variant 2 under different ambient heat exchange conditions. The characteristic ambient heat-transfer time th changes 

from 0.1 s to 350 s, mimicking the ambient thermal condition from isothermal state to nearly adiabatic state. All simulations are conducted at the 

output strain frequency }7����� = 180 Hz, the initial compressive stress σ0 = 0.4 MPa,  and the environmental temperature T0 = 20 ºC.  
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Fig. 10. Stable strain amplitude Δεstable (a), stable temperature Tstable (b), and stable volume 

fraction ��_7��¦�� of austenite (c) at different levels of the characteristic ambient heat-transfer 

time th. All simulations are conducted at the output strain frequency }7����� = 180 Hz, the 

initial compressive stress σ0 = 0.4 MPa and the environmental temperature T0 = 20 ºC. Solid 

circles are the experimental results from (Zhang et al., 2018a).  
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Fig. 11. Stable strain amplitude at two time scales: the characteristic ambient heat-transfer 

time th and the characteristic material’s response time 
�t3���;�. (a) for a global 3D view; (b) and 

(c) for 2D views.  
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Fig. 12. Material’s responses under varying heat transfer condition: (a) experimental 

observation from (Zhang et al., 2018b), (b) simulation using the linear phase transformation 

kinetics (no hysteresis), (c) simulation using the hysteretic phase transformation kinetics. 

 

 

 

Fig. 13. Simulations of material’s responses at different levels of latent heat ΔH: (a) ∆� =5.39 × 10¹ J ⋅ mB� , (b) ∆� = 1.08 × 10C J ⋅ mB� , (c) ∆� = 5.39 × 10C J ⋅ mB�  (from DSC 

test in (Zhang et al., 2018b)), (d) ∆� = 1.08 × 10� J ⋅ mB�. All simulations are conducted at 

the output strain frequency }7����� = 180 Hz, the initial compressive stress σ0 = 0.4 MPa, the 

characteristic ambient heat-transfer time th = 68.9 s, and the environmental temperature T0 = 

20 ºC.   
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Fig. 14. Measured stable temperatures at different levels of strain frequency and initial 

compressive stress from (Zhang et al., 2018a). In all the tests where strain drop (M�A phase 

transformation) takes place, the stable temperature after the strain drop is close to 67� and 6t�, but far from l7� and lt�.  

 




