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Abstract

The cash management problem with uncertain demands belongs to the class
of online problems which are free of any distribution assumptions. The de-
mands can either be globally bounded or interrelated. We consider the per-
formance measure competitive difference. This measure can be interpreted
as maximum regret for online problems. The minimization of maximum re-
gret is a major point of interest in the area of combinatorial optimization .
We derive new algorithms which aim at minimizing the maximum regret in-
curred. Their experimental performance is compared to already established
solutions, which consider the performance measure competitive ratio. From
this comparison we confirm the practicability of our solutions for real-case
scenarios. Hence, our algorithms are particularly relevant for risk averse cash
managers, who are interested in minimizing their maximum regret while en-
suring a solid performance in non-worst case scenarios.

Keywords: combinatorial optimization, cash management problem,
minmax regret, interrelated demands, bounded demands

1. Introduction

In an online problem a player must take an irrevocable decision without
knowing the future at every point of time. Ever since the work of [31], the so-
called competitive ratio renders online algorithms comparable to each other.
For minimization problems, the competitive ratio of an online algorithm is
the relative difference between the value obtained using the solution of the
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online algorithm and the lowest possible value in a worst-case scenario. The
online algorithm with the lowest competitive ratio solves the online problem
to optimality. Very famous online problems are the online portfolio selection
problem presented by [6] and the online conversion problem presented by
[8]. More recently, [7] combined online problems and financial leasing. They
developed algorithms that minimize competitive ratio. Because of their un-
certainty, financial problems are very suitable for an online setting. Another
financial problem is the cash management problem; our work considers an
online variant of this problem. The main cash management problem was
introduced by [3]. Here, a cash manager holds two distinct types of assets,
the first one being a ”cash balance into which periodic receipts of income are
deposited and from which a steady flow of expenditures are made” ([15], p.
413); the second asset is a non-cash asset which bears interest at a given con-
stant rate. The cash manager is allowed to convert one asset into the other
at any period; regardless of the direction of the conversion, the cash manager
must pay a ”broker fee”. Moreover, conversion takes place instantaneously
such that there is no need for a ”buffer stock”. Baumol’s model in essence
answers the question of when and how many units of the non-cash asset to
convert into cash.
[17] presented a literature review about cash management; they state that
most contributions of today focus on robust optimization and stochastic mod-
els. Regarding robust optimization, [19] designed an effective solution for the
cash management problem of stationary companies; their solution is based on
mixed integer linear programming and robust optimization. Moreover, risk
preferences for cash management decision were incorporated by [22]; based
on compromise programming, a multi-objective cash management model was
developed. Genetic algorithms and particle swarm optimization were applied
to the cash management problem using various assets in [16]; the objective is
to minimize the total costs of cash management. Concerning stochastic pro-
gramming, we can mention the works of [9] and [4]. In [4] the authors derive
the optimal transaction policy by applying a stochastic maximum principle.
A multi-stage stochastic linear program is formulated and various kinds of
assets are considered in [9]. A multi-dimensional cash management system
where cash balances fluctuate as a homogeneous diffusion process is con-
sidered in [2] and an optimal solution is developed. [11] presented another
stochastic model; they developed a solution which minimizes the transac-
tion costs when cash flows are not independently or identically distributed.
Recently, [18] combined the robust optimization with the stochastic program-
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ming approach into the distributionally robust optimization approach for the
newsvendor problem. [20] applied several data techniques to empirical cash
flows in order to select an appropriate cash management model. [25] pre-
sented an empirical analysis of daily cash flow time-series. Based on this,
[23] presented a framework for implementing machine learning techniques
into the cash management problem. [24] addressed the problem of selecting
a cash management model in terms of risk and cost. The effect of the ac-
curacy when forecasting the needed cash flow for the coming period on cost
minimization has been investigated by [21]. [13] used Monte-Carlo simulation
to minimize several different types of risk associated with cash management.
Our focus, however, is on neither of the two research directions; rather, we
focus on developing algorithms which minimize the maximum regret. The
min-max regret criterion was proposed by [26]. It ”aims at obtaining a solu-
tion minimizing the maximum deviation, over all possible scenarios, between
the value of the solution and the optimal value of the corresponding scenario”
(see [1] p. 427). As an example, the minimization of this criterion can be
used to construct robust algorithms for solving combinatorial optimization
problems ([12]). A min-max regret version for the scheduling problem with
outsourcing decision under processing time uncertainty has been given in
[5]. According to [10], combinatorial optimization problems which uses the
min-max regret criterion are oftentimes NP-hard. Recently, [32] proposed
the so called competitive difference analysis. Compared to the competitive
ratio analysis, this analysis aims at creating online algorithms which have
the smallest worst-case performance gap to the optimal solution. In other
words, the analysis aims at creating algorithms which fulfill the min-max
regret criteria. The competitive difference can be seen as a type of maximum
regret for online problems. While both types of analysis aim at deriving
risk-averse online algorithms, they differ in term of risk-averseness degree
([32]). In a sense, a competitive ratio analysis becomes a competitive dif-
ference analysis with a logarithmic utility function, while the competitive
difference analysis has a linear utility function. Those functions may re-
flect the decision maker’s attitude towards risk. [32] therefore stated that a
”cost-minimization decision maker is more risk-averse (or less risk-seeking)
under competitive difference analysis than under competitive ratio analysis.”
Therefore, online algorithms which minimize competitive difference are more
relevant to cash managers with high risk aversion than algorithms which min-
imize competitive ratio. [14] were the first to combine online problems, the
competitive ratio analysis and the cash management problem. They consider
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the cash management problem with uncertain, globally bounded demands.
A demand is an amount of cash needed to pay expenditures in a time pe-
riod. A cash manager has two types of assets, cash and earning assets. All
expenditures must be paid in cash; only earning assets bear interests. Both
types of assets can be converted into the other type for a fixed price. The
model further assumes that the amount of owned earning assets is limitless.
Therefore, they disregard cash to earning asset conversion. If more cash is
available than actually needed, then the surplus is transferred back into the
earning asset. The manager incurs opportunity costs for every unit that was
converted too early. In the case of a cash deficit, the manager has to borrow
the needed additional cash. The deficit is made up at the beginning of the
next period where the cash manager converts into cash. The objective is to
minimize the total costs associated with the expenditures. For this to hap-
pen, knowledge of the exact amount of future demands is needed just as in
the newsvendor problem. However, unlike the newsvendor problem, the cash
management problem can become a multi-period problem (see Subsection
3.2); furthermore it does not rely on complete knowledge about the under-
lying demand distributing. [14] bounded the demands by the minimum (m)
and maximum (M) amount of needed cash. Inspired by the work of [33]
and [30], [27] considered interrelated prices in the field of online conversion
problems. In essence, they derived online algorithms that always select the
price which implies the lowest competitive ratio as defined by [31].
The way the price pt is derived directly affects the demand of cash Dt to pay
this price in period t and thus the cash supply St. If pt is an element of [m,M ]
or [pt−1θ1, pt−1θ2] (with 0 < θ1 ≤ θ2 < ∞), then it must follow that Dt is
also an element of these intervals. Within a company for instance, there are
costs which vary only little over time (e.g. building maintenance, catering,
cleaning) while others vary extremely over time (e.g. heating, litigation).
Thus, both demand models have their respective field of application. Com-
bining the model of [14] and [33], [28] and [29] designed an optimal online
algorithm for uncertain, interrelated and bounded demands called balanced
cash supply for interrelated demands (BCSID), gave its competitive ratio and
proved optimality. Furthermore, [29] provided an extensive testing for the
cash management problem. We consider again both demand models. Hence
the demands vary between the factors θ1 and θ2 for two consecutive points
of time or m and M ; the overall number of points of time is T . We moti-
vate this assumption by the following idea. In real-world applications, cash
managers oftentimes use the so called scenario planning technique in order to
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take decisions. Among other ideas, this technique uses the current position
(the currently needed cash) and predicts extreme scenarios (the maximal rel-
ative increase and decrease of needed cash) until the next point of decision
making. Another reason for modeling demands to be interrelated is the fact
that for many departments within a business, the needed cash is allowed to
only differ slightly from the previously demanded cash. In addition, we only
consider cash outflows and disregard any inflows, i.e., θ1, θ2,m,M > 0. The
reason for this can be found in the fact that there is a substantial amount
of departments within a company that do not achieve a positive net income.
For instance, the human resource, R&D and marketing department of a com-
pany are usually not the recipients of income cash flows although their costs
are substantial. Since we consider only cash outflows, it must follow that
we assume the number of earning assets to be sufficiently large to cover all
possible future demands. This is justified by the observation, that many
businesses constantly invest part of their earned cash inflows in some kind of
earning asset (stocks, bonds and so on); only a small portion of their actual
wealth is kept as a liquid asset.
The contributions of this work are the following:

1. We present the algorithm min-max regret for bounded demands (MRBD)
for given m and M ,

2. we present the algorithm heuristic min-max regret for interrelated de-
mands (HMRID) for θ1, θ2 and D0,

3. we present the algorithm min-max regret for interrelated demands (MRID)
for θ1, θ2, D0 and T ,

4. we prove the competitive difference of MRBD, HMRID and MRID,

5. we prove that MRBD and MRID minimize competitive difference and

6. we carry out a numerical testing to demonstrate the solid performance
of the three new solutions to the solutions of [28] and [14] in non-worst
case scenarios.

The paper is organized in five sections. In Section 2 the formal description
of the cash management problem and the concepts of competitive difference
are given. In Section 3, we first consider the cash management problem
with given m and M and present the algorithm MRBD, prove competitive
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difference and show that the solution minimizes competitive difference. We
then consider the cash management problem with given θ1, θ2 and D0 and
derive the heuristic solution HMRID. We then add knowledge about T and
derive the optimal solution MRID. We then prove competitive difference and
show that MRID minimizes competitive difference. The section concludes
with a numerical example. In Section 4 we present the numerical testing and
carry it out. The paper ends with a conclusion in Section 5.

2. The cash management problem

In the cash management problem under uncertain demands, a manager
ON must decide on how much cash St to convert (or extract) from its (limit-
less) earning assets at the beginning of every period t = 1, . . . , T . At the end
of t the actual cash demand Dt is revealed to ON. At t = 1 ON knows the
value of D0. The sequences of all St and Dt are denoted as S and D respec-
tively. The sets of all the feasible sequences of S and D are denoted as S and
D. Formally, we have S = S1, . . . , ST , S ∈ S and D = D1, . . . , DT , D ∈
D.
ON incurs a transaction cost c for every converted unit of cash; for a selected
St ON incurs accumulated transaction costs cSt at the beginning of every
period t. When Dt is revealed there are three possible scenarios:

1. St = Dt, i.e. the supply equals the demand. In this case, the incurred
total costs of ON are cDt.

2. St > Dt, i.e. too much cash has been extracted. We first incur the
transaction costs cSt; this can be separated into cDt and c (St −Dt)
(because St > Dt) for the excess cash. An excess unit cannot yield
the interest rate i and must be transferred back into the earning asset
for cost cback. Hence, every excess unit incurs opportunity cost h with
h = c+ i+ cback. In this scenario, the incurred total costs of ON are

cDt + c (St −Dt) + i (St +Dt) + cback (St −Dt) = cDt + h (St −Dt) .

3. St < Dt, i.e. too little cash has been extracted. ON incurs additional
credit costs (Dt − St) j at the end of t; j is the difference of interest
rate paid to the creditor and interest rate of the earning asset per unit.
This difference is assumed to be always non-negative. At the end of t,
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ON has to extract the missing Dt−St and incurs also transaction costs
c (Dt − St). ON’s total costs are

cSt + c (Dt − St) + j (Dt − St) = cDt + j (Dt − St) .

In line with [14], [28] and [29], we only apply opportunity costs to the excess
cash not invested. If St = Dt, then ON incurs the lowest costs possible. If
St > Dt, then ON receives less interest payments. If St < Dt, then ON
receives more interest payments; this however is overcompensated by the
incurred credit costs. As can be seen, it is always best to convert exactly
Dt at t. If ON knew the future demands, then she could always ensure that
St = Dt for t = 1, . . . , T , or in other words, S = D. A player with such
knowledge is denoted as OPT.
ON’s costs for extracting St at t for an uncertain demand Dt is (regardless of
the occurring scenario) cDt + jmax (0, Dt − St) + hmax (0, St −Dt), while
OPT’s incurred costs are cDt.
ON’s total costs using S on sequence D is

ON (D,S) =
T∑
t=1

cDt + jmax (0, Dt − St) + hmax (0, St −Dt)

while OPT’s incurred accumulated costs are OPT (D) = c
T∑
t=1

Dt.

One simple online algorithm which has no knowledge about any parameters
is called learning cash supply (LCS) (see [28]). The idea behind LCS is the
assumption that the demand of yesterday resembles the demand of today.
Algorithm LCS: At period t, convert into cash until you have the amount
of SLCSt available, with

SLCSt = Dt−1 (1)

for all t = 1, . . . , T .
ON’s regret Rt (Dt, St) for using St in period t with demand Dt is the differ-
ence of the costs incurred by ON compared to the costs incurred by OPT,
formally

Rt (Dt, St) = jmax (0, Dt − St) + hmax (0, St −Dt) . (2)

In order for ON to minimize the maximal regret (i.e. the additional costs)
in period t, she needs to find that St which balances two possible max-regret
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movements. The first one is a maximization of j (Dt − St); the second one
is a maximization of h (St −Dt). Since minimizing the max regret when
extracting too little implies maximizing the regret when extracting too much
and viz versa, there must exists an S ′t for which the following holds,

jmax
Dt

(Dt − S ′t) = hmax
Dt

(S ′t −Dt) . (3)

This S ′t minimizes the maximal regret in period t. If (2) is independent of t,
then always selecting S ′t results in minimizing the competitive difference or
maximal regret until T . From this it follows also that S ′t must be independent
of time and thus constant.
If the demands are depending on time, then using S ′t in every t does not
minimize the competitive difference. Rather, whole sequences of possible
cash demands and supplies must be considered. ON’s competitive difference
(or overall regret) R (D,S) when using S on sequence D is merely

R (D,S) =
∑T

t=1Rt (Dt, St) . (4)

In order for ON to minimize the competitive difference after T periods, she
needs to use the supply sequence S∗ with

S∗ = arg min
S∈S

max
D∈D

R (D,S) . (5)

3. Min-max regret algorithms for the cash management problem

3.1. Cash management with known m and M

All demands Dt vary between m and M , i.e. Dt ∈ [m,M ]∀t, with 0 <
m ≤M <∞. Clearly, the arbitrary cash supply St must also be between m
and M . (3) thus becomes

j max
Dt∈[m,M ]

(Dt − S ′t) = h max
Dt∈[m,M ]

(S ′t −Dt)

j (M − S ′t) = h (S ′t −m) .

Thus the maximal regret is minimized for an arbitrary period t when select-

ing S ′t with S ′t = S ′ =
jM + hm

j + h
.

The algorithm min-max regret for bounded demands (MRBD) minimizes
competitive difference by constantly selecting S ′.
Algorithm MRBD: In the beginning of an arbitrary period t convert into

8



cash until you have the amount of SMRBD = S ′ available.
We now prove competitive difference when using MRBD followed by the
proof of MRBD minimizing competitive difference.

Theorem 1. The competitive difference of MRBD is

max
D∈D

R (D,S′) = Tjh
M −m
j + h

.

Proof. Assume ON uses S ′ in period 1. Since it is of no importance whether
demands drop to m or surge to M , we assume the latter. Using (2), ON
incurs a regret of

R1 (M,S ′) = jmax (0,M − S ′) + hmax (0, S ′ −M)
= j (M − S ′)

= jh
M −m
j + h

.

This repeats T − 1 times. The supply strategy S′ merely contains T times
the cash supply S ′. Consequently, the competitive difference after T periods
using MRBD is (using (4))

max
D∈D

R (D,S′) = Tjh
M −m
j + h

.

Theorem 2. MRBD minimizes competitive difference and thus achieves
min-max regret.

Proof. Assume ON deviates from S ′ by an εt ∈ [m− S ′,M − S ′] in an arbi-
trary period t. Thus, ON incurs the maximal regret

max
Dt∈[m,M ]

Rt (Dt, S
′ + εt) = jmax (0, Dt − S ′ − εt) + hmax (0, S ′ + εt −Dt)

= max (j (M − S ′ − εt) , h (S ′ + εt −m))
≥ Rt (M,S ′) .

We observe that it is not possible to obtain a lower maximal regret in an
arbitrary period. Therefore, deviating from S′ implies a higher competitive
difference; thus MRBD minimizes competitive difference and thus fulfills the
min-max regret criterion.
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The optimal online algorithm optimal strategy (OS) of [14] proposes to
extract

SOSt =
(j + h)mM

jm+ hM
∀t (6)

and incurs a competitive ratio of 1 +
jh (Mm−1 − 1)

c (hMm−1 + j)
.

3.2. Cash management with known θ1, θ2, D0 and T

The demands are interrelated with their preceding demands, i.e. Dt ∈
[Dt−1θ1, Dt−1θ2]∀t with θ1 being the maximal decrease factor and θ2 being
the maximal increase factor between two consecutive periods. Clearly, St
must also be an element of that interval. Note that in the beginning of t = 1
we have knowledge about D0.
Contrary to Subsection 3.1, in order to find an algorithm which minimizes
competitive difference, we must solve (5) since demands are interrelated. We
start the design of a min-max regret algorithm and use backward induction
to derive it. In the last period T ON must consider a demand interval of
DT ∈ [DT−1θ1, DT−1θ2]. Using (2), we have

j max
DT∈[DT−1θ1,DT−1θ2]

(DT − S∗T ) = h max
DT∈[DT−1θ1,DT−1θ2]

(S∗T −DT )

j (DT−1θ2 − S∗T ) = h (S∗T −DT−1θ1) ,

with S∗T being the value for which the competitive difference in the last period
is minimized. Consequently, S∗T is

S∗T = DT−1
θ1h+ θ2j

j + h
. (7)

From the above equation, we derive a heuristic algorithm called heuristic
min-max regret for interrelated demands (HMRID).
Algorithm HMRID: In the beginning of an arbitrary period t convert into
cash until you have the amount of SHMRID

t available with

SHMRID
t = Dt−1

θ1h+ θ2j

j + h
.

We now prove competitive difference when using HMRID.

Theorem 3. The competitive difference of HMRID is

max
D∈D

R
(
D,SHMRID

)
=
D0jh (θ2 − θ1)

(
θT2 − 1

)
(j + h) (θ2 − 1)

.

10



Proof. Assume ON uses HMRID until T . Then it is of no importance whether
the demand increases by θ2 or declines by θ1. Note that this only concerns
the last period. Clearly, the incurred maximal regret during period T is

RT

(
DT−1θ2,S

HMRID
t

)
= j

(
DT−1θ2 − SHMRID

T

)
=
DT−1jh

j + h
(θ2 − θ1) .

(8)

Denote rt (St) to be the ratio of Rt (Dt, St) and Dt−1, formally

rt (St) =
Rt (Dt, St)

Dt−1
.

Observing (8), we must maximize DT−1 in order to maximize the regret
during period T . This can only be achieved by a constant increase in demands
until DT−1 with DT−1 = D0θ

T−2
2 . Thus, the competitive difference when

using HMRID is (according to (4))

max
D∈D

R
(
D,SHMRID

)
=

D0jh

j + h
(θ2 − θ1) +

D0jh

j + h
θ2(θ2 − θ1) + . . .

+ · · ·+ D0jh

j + h
θT−12 (θ2 − θ1)

=
D0jh (θ2 − θ1)

j + h

T−1∑
t=0

θt2

=
D0jh (θ2 − θ1)

(
θT2 − 1

)
(j + h) (θ2 − 1)

.

We continue with the design of an algorithm for minimizing competitive
difference. We already found S∗T (see (7)) and the associated maximal regret
(see (8)). We consider now period T − 1; again, there are the two possible
demand movements that maximize regret in that period. They must be
balanced against each other again, keeping in mind the respective regret of
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the later period T . Formally, we solve the following expression

S∗T−1 = arg min
ST−1

max
DT−1∈[DT−2θ1DT−2θ2]

RT−1 (DT−1, ST−1) +RT (DT−1θ2, S
∗
T )

= arg min
ST−1

max
DT−1∈[DT−2θ1DT−2θ2]

RT−1 (DT−1, ST−1) +DT−1rT (S∗t )

= arg min
ST−1

max (RT−1 (DT−2θ1, ST−1) +DT−2θ1rT (S∗T ) ,

RT−1
(
DT−2θ2, S

∗
T−1
)

+DT−2θ2rT (S∗T )
)

= arg min
ST−1

max (h (ST−1 −DT−2θ1) +DT−2θ1rT (S∗T ) ,

(DT−2θ2 − ST−1) +DT−2θ2rT (S∗T )) .

Again, we balance the left-hand side against the right-hand side of the max
expression to find S∗T−1. Finally, we obtain

S∗T−1 = DT−2
θ1h+ θ2j + rT (S∗T ) (θ2 − θ1)

j + h
.

The resulting rT−1
(
DT−1, S

∗
T−1
)

is

rT−1
(
DT−1, S

∗
T−1
)

=
RT−1

(
DT−1, S

∗
T−1
)

DT−2

=
j
(
DT−2θ2 − S∗T−1

)
DT−2

=
j (θ2 − θ1)
j + h

(h− rT (S∗T )) .

Using the same approach as before, we obtain S∗T−2 in period T − 2 with

S∗T−2 =
DT−3 (θ1h+ θ2j + rT−1 (θ2 − θ1) + rT θ2 (θ2 − θ1))

j + h
.

The resulting rT−2
(
DT−2, S

∗
T−2
)

is

rT−2
(
DT−2, S

∗
T−2
)

=
j (θ2 − θ1)
j + h

(
h− rT−1

(
DT−1, S

∗
T−1
)
− rT (DT , S

∗
T ) θ2

)
.

From these above information we derive a recursive formula for S∗T−i and
rT−i

(
DT−i, S

∗
T−i
)

with i = 0, . . . , T − 1. Formally, we have

S∗T−i =
DT−i−1

j + h

(
θ1h+ θ2j + (θ2 − θ1)

i−1∑
τ=0

rT−i+τ+1

(
DT−i+τ+1, S

∗
T−i+τ+1

)
θτ2

)
.
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This can be written as

S∗t =
Dt−1

j + h

(
θ1h+ θ2j + (θ2 − θ1)

T−t−1∑
τ=0

rt+τ+1

(
Dt+τ+1, S

∗
t+τ+1

)
θτ2

)
.

Furthermore, we have

rT−i
(
DT−i, S

∗
T−i
)

=
j (θ2 − θ1)
j + h

(
h−

i−1∑
τ=0

rT−i+τ+1

(
DT−i+τ+1, S

∗
T−i+τ+1

)
θτ2

)
,

which can again be written as

rt (Dt, S
∗
t ) =

j (θ2 − θ1)
j + h

(
h−

T−t−1∑
τ=0

rt+τ+1

(
Dt+τ+1, S

∗
T−i+τ+1

)
θτ2

)
.

From the above formulas, we derive the algorithm called min-max regret for
interrelated demands (MRID).
Algorithm MRID: In the beginning of period 1, calculate rT−i

(
DT−i, S

∗
T−i
)

for i = 0 to T − 1. Then, in each period t = 1, . . . , T

1. Calculate SMRID
t = min (Dt−1θ2, S

∗
t ).

2. Receive Dt.

We now prove competitive difference when using MRID followed by the proof
of MRID minimizing competitive difference.

Theorem 4. The competitive difference of MRID is

max
D∈D

R
(
D,SMRID

)
=

jhD0 (θ2 − θ1)
j + h

T∑
t=1

θt−12 max (0, 1−

1

h

T−t−1∑
τ=0

rt+τ+1

(
Dt+τ+1, S

MRID
t+τ+1

)
θτ2

)
.

Proof. Assume ON uses MRID. In order to derive the competitive differ-
ence after T periods, let the demands always increase by θ2 between two
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consecutive periods. Using (4), ON’s competitive difference is

max
D∈D

R (D,S) = max
D∈D

T∑
t=1

Rt

(
Dt, S

MRID
t

)
=

T∑
t=1

R
(
D0θ

t
2, S

MRID
t

)
= j

T∑
t=1

D0θ
t
2 − SMRID

t

=
jD0

j + h

T∑
t=1

θt2 (j + h)−min
(
θt2 (j + h) , θt−12 (θ1h+ θ2j

+ (θ2 − θ1)
T−t−1∑
τ=0

rt+τ+1

(
Dt+τ+1, S

MRID
t+τ+1

)
θτ2

))
=

jD0

j + h

T∑
t=1

θt−12 (θ2 (j + h)−min (θ2 (j + h) , θ1h+ θ2j

+ (θ2 − θ1)
T−t−1∑
τ=0

rt+τ+1

(
Dt+τ+1, S

MRID
t+τ+1

)
θτ2

))
=
jD0 (θ2 − θ1)

j + h

T∑
t=1

θt−12 max (0, h−
T−t−1∑
τ=0

rt+τ+1

(
Dt+τ+1, S

MRID
t+τ+1

)
θτ2

)
=
jhD0 (θ2 − θ1)

j + h

T∑
t=1

θt−12 max (0, 1−

1

h

T−t−1∑
τ=0

rt+τ+1

(
Dt+τ+1, S

MRID
t+τ+1

)
θτ2

)
.

Theorem 5. MRID minimizes competitive difference and thus achieves min-
max regret.

Proof. This follows immediately from the design of MRID. An arbitrary
SMRID
t is bounded from above by Dt−1θ2 and represents the cash supply

which minimizes the maximal regret incurred in period t while observing
future worst-case demands. If ON were to deviate at the beginning of an ar-
bitrary period t from SMRID

t , then the overall incurred competitive difference
would increase.

The optimal online algorithm balanced cash supply for interrelated de-
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mands (BCSID) of [28] and [29] proposes to extract

SBCSIDt = Dt−1θ1θ2
(j + h)

jθ1 + hθ2
∀t (9)

and incurs a competitive ratio of 1 +
jh (θ2 − θ1)
c (jθ1 + hθ2)

.

3.3. Numerical example

We now consider the following numerical example in order to illustrate
the applicability of our algorithms in real world scenarios. A manager must
extract cash for five consecutive periods in order to form a budget for a de-
partment within a company, i.e. T = 5. The department needed $1, 000, 000
prior to the current period t = 1, i.e. D0 = 1.00E + 6. Due to internal reg-
ulations within the company, the manager knows that the department will
not increase (decrease) their spending by more than 5% (3%) between two
consecutive periods, i.e. θ1 = 0.97 and θ2 = 1.05. In addition, the manager
knows that the demands are globally bounded between $920, 000 = m and
$1, 030, 000 = M . The manager wants to minimize the cumulated additional
costs (regret) when extracting the cash supply sequence S. The opportunity
cost factor is h = 0.08 and the shortage cost factor is j = 0.05. The manager
uses the BCSID, OS, LCS, MRID, HMRID and MRBD. The results are given
in Table 1. The lowest values of regret are given in bold, the highest ones
are given in italic.
All supply strategies SALG are given in million dollars ($1MM = $1 · 106);

all regrets incurred are given in thousand dollars ($1M = $1 · 103). As
can be seen in the table, MRID incurs the lowest additional costs in se-
quence D1. All other algorithms are compared to MRID by calculating

R
(
D1,S

ALG
)
· R
(
D1,S

MRID
)−1 − 1. Although being a heuristic algorithm,

HMRID (4%) outperforms all other algorithms (except MRID). LCS (6%)
performs well compared to BCSID (8%) and all algorithms which need the
knowledge of m and M . OS (39%) and MRBD (31%) are worst. MRBD
performs best on sequence D2, followed by BCSID (10%); here we com-
pare the performance of all algorithms to the one of MRBD by calculating

R
(
D1,S

ALG
)
· R
(
D1,S

MRBD
)−1 − 1. Interestingly, MRID (34%) performs

worst.
We see that all three algorithms have their advantage; when MRID is per-
forming well, then HMRID can be relatively close to it. If it underperforms,
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ALG BCSID OS LCS MRID HMRID MRBD

D1 = 1.01, 0.98, 1.00, 1.03, 1.03 [in $1MM ]

in $1MM
SALG1 1.00 0.98 1.00 1.01 1.00 0.99
SALG2 1.01 0.98 1.01 1.02 1.01 0.99
SALG3 0.98 0.98 0.98 0.99 0.99 0.99
SALG4 1.00 0.98 1.00 1.01 1.01 0.99
SALG5 1.03 0.98 1.03 1.03 1.03 0.99

in $1M
R1

(
D1, S

ALG
1

)
0.72 1 .45 0.69 0.34 0.65 1.30

R2

(
D2, S

ALG
2

)
2.25 0.01 2.31 2 .74 2.37 0.22

R3

(
D3, S

ALG
3

)
1 .01 0.99 0.98 0.79 0.94 0.84

R4

(
D4, S

ALG
4

)
1.21 2 .16 1.17 1.06 1.13 2.01

R5

(
D5, S

ALG
5

)
0.14 2 .26 0.1 0.02 0.07 2.12

R
(
D1,S

ALG
)

5.33 6 .87 5.25 4.95 5.15 6.49

in %
R
(
D1,S

ALG
)

R (D1,SMRID)
− 1 8 39 6 0 4 31

D2 = 0.99, 1.01, 1.02, 1.00, 0.98 [in $1MM ]

in $1MM
SALG1 1.00 0.98 1.00 1.01 1.00 0.99
SALG2 0.99 0.98 0.99 0.99 0.99 0.99
SALG3 1.01 0.98 1.01 1.02 1.01 0.99
SALG4 1.02 0.98 1.02 1.02 1.02 0.99
SALG5 1.00 0.98 1.00 1.00 1.00 0.99

in $1M
R1

(
D1, S

ALG
1

)
0.83 0.21 0.89 1 .45 0.95 0.06

R2

(
D2, S

ALG
2

)
1.30 1 .47 1.26 0.99 1.22 1.32

R3

(
D3, S

ALG
3

)
0.20 1 .63 0.16 0.05 0.12 1.48

R4

(
D4, S

ALG
4

)
1.30 0.79 1.36 1 .54 1.42 0.64

R5

(
D5, S

ALG
5

)
1.55 0.35 1.61 1 .80 1.67 0.59

R
(
D2,S

ALG
)

5.18 4.45 5.28 5 .83 5.39 4.10

in %
R
(
D2,S

ALG
)

R (D2,SMRBD)
− 1 10 15 14 34 19 0

Table 1: Performance of online algorithms for two demands sequences

then HMRID can be substantially better. HMRID appears to be a balanced
solution between minimizing the maximal regret and average-case perfor-
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mance. MRBD can also perform well for some sequences of demand.

4. Numerical testing

In this section we conduct a numerical test of all three newly introduced
algorithms. We also add the already established algorithms BCSID (see (9))
and LCS (see (1)) of [28] and [29], and OS (see (6)) of [14]. We first present
the way the testing is done and then present and interpret the results.

4.1. Test-setup

We first need a random variable X ∼ U (0, 1) which originates from the
standard uniform distribution. The expected value E (X) is 0.5. The two
boundaries of X are 0 and 1. We now define the demand sequences based
on θ1, θ2, D0 and X. The demands in these sequences are generated in the
following way,

Dt (X) = Dt−1 (X) θ
1−2min(0.5,X)
1 θ

2max(0.5,X)−1
2 and D0 (X) = 1. (10)

The expected value of Dt (X) is Dt−1 (X). In other words, the demands
remain constant over time on average; this is highly beneficial for LCS.
The lower boundary of Dt (X) is Dt−1 (X) θ1 and the upper boundary is
Dt−1 (X) θ2. In other words, the demands cannot change more than by the
factor θ1 and θ2; this is consistent with the considered cash management
problem with given θ1, θ2, D0, h and j. Using (10) we generate arbitrary de-
mand sequences D using X,T = 50 and various θ1θ2, j and h. To enhance
interpretation, we fix j = 1. We calculate the median, the 5 permille and 995
permille and the standard deviation σ in terms of regret incurred in 1, 000
experiments for every unique combination. We use the standard parameter
setting of θ1 = 0.50, θ2 = 2, j = h = 1 and T = 50.
Note that we set j = h = 1 as a point of orientation; in cash management
practice these values are unrealistic. However, this setting does not ”overem-
phasize” one cost factor more than the other, i.e. one missing cash unit costs
as much as one excess cash unit.
As for the selected pairs of θ1 and θ2, we start with θ1 = θ2 = 1 and let θ2
absolutely increase by 0.05 until θ2 = 10. This yields 181 different values of
θ2. For θ1, we let it decrease by the following equation, where θn1 denotes the
new, lower θ1 and θo1 denotes the old, higher θ1,

θn1 =
(
(θo1)

−1 + 0.05
)−1

. (11)
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This continues until θ1 = 0.10; this yields again 181 different values for θ1
(overall there are 32, 761 combinations).
For hj we start at 10 and absolutely decline by 0.05 until 1 (yielding 181
values). From that value on, we let the values decline in the same way as θ1
(as can be seen in (11)) until hj = 0.10 (yielding 180 values).
Finally, all algorithms have knowledge about their needed parameters, i.e.
the correct values of θ1, θ2, T,D0 (X) ,m,M, j and h.

4.2. Results

We now consider the median performance of all six algorithms as depicted
in Figure 1. The following observations are made:

• MRID is worse than all other algorithms whenever θ1 → 10−1 and
θ2 → 10. MRBD’s median is highest for all other combinations of θ1
and θ2.

• MRID is better than all other algorithms (except for LCS) when θ2 → 1.

• HMRID and OS are better than MRBD regardless of the selected θ1
and θ2.

• OS tends to be better than HMRID whenever θ2 ≥ 3.

• LCS or BCSID always outperform all other algorithms.

• LCS is better than BCSID if either θ2 → 10 and θ1 → 1 or θ1 → 10−1

and θ2 → 1.

We now consider the 5 permille performance of all six algorithms as depicted
in Figure 2. The following observations are made:

• LCS is best whenever θ2 → 10 and θ1 → 1. BCSID is best for all other
combinations.

• BCSID is better than OS, MRBD and MRID regardless of the selected
θ1 and θ2.

• HMRID is best whenever θ2 ≈ 1.

• HMRID is better than MRID for arbitrary θ1 and θ2.
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Figure 1: Influence of θ1 and θ2 on the median performance of the algorithms using the
standard parameter setting with 1,000 experiments and T = 50

• MRBD is worst whenever θ2 → 10 and θ1 → 1 or θ2 < 2θ−11 . MRID is
worst for all other combinations.

We now consider the 995 permille performance of all six algorithms as de-
picted in Figure 3. The following observations are made:

• MRBD is worst, regardless of the selected parameter combination.

• MRID is worse than OS if θ2 > 2.
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Figure 2: Influence of θ1 and θ2 on the 5 permille performance of the algorithms using the
standard parameter setting with 1,000 experiments and T = 50

• Again, HMRID is better than MRID for arbitrary θ1 and θ2.

• Again, OS tends to be better than HMRID whenever θ2 ≥ 3.

• Again, LCS is best whenever θ2 → 10 and θ1 → 1. For all other
combinations, LCS does not outperform BCSID systematically and vice
versa.

We now consider the σ performance of all six algorithms as depicted in Figure
4. The following observations are made:
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Figure 3: Influence of θ1 and θ2 on the 995 permille performance of the algorithms using
the standard parameter setting with 1,000 experiments and T = 50

• OS is worst whenever θ2 ≈ 1. MRBD is worst for all other parameter
combinations.

• Again, MRID is better than all other algorithms (except for LCS) when
θ2 → 1.

• The observations made in Figure 3 also apply to this figure.

We now consider the performance of all six algorithms for various values of
h as depicted in Figure 5. We fix j = 1, θ1 = 0.5 and θ2 = 2. The following
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Figure 4: Influence of θ1 and θ2 on the σ performance of the algorithms using the standard
parameter setting with 1,000 experiments and T = 50

observations are made:

• MRID is worst when h > j (median and 5 permille performance)

• HMRID outperforms OS, MRID and MRBD (all four performance mea-
sures). Except for the 5 permille performance measure, HMRID tends
to be close to BCSID.

• BCSID outperforms all other algorithms if h > j or h < 4j (all four
performance measures)
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Figure 5: Influence of h on the performance of the algorithms using the standard parameter
setting with 1,000 experiments, and T = 50

• MRBD is worst whenever h < 2j (5 permille performance)
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5. Conclusion

In this paper we solve the cash management problem with uncertain de-
mands that are globally bounded or interrelated. We consider algorithms for
this problem that minimize the competitive difference and thus the min-max
regret. We first derive the algorithm MRBD when demands are globally
bounded. Furthermore, we derive a heuristic algorithm HMRID which solves
the problem for interrelated demands. We also derive the algorithm MRID
which minimizes maximal regret for interrelated demands. We then test
these three new algorithms against the established OS, LCS and BCSID.
When knowledge about θ1, θ2, D0 and T is given, then BCSID is clearly out-
performing MRID and MRBD; furthermore, if m and M are given, then OS
is clearly better than MRBD. The selection of the algorithm depends on the
given information and the desired quality of the solution, i.e. whether we
want to minimize competitive ratio and tend to perform well on non-worst
case sequences or whether we want to minimize competitive difference and
risk of performing poorly on non-worst-case sequences. In addition, HMRID
is performing well on non-worst case sequences and its competitive difference
is low (albeit not as low as the one of MRID).
It remains an open question whether the combined knowledge of m,M, θ1,
θ2, T and D0 would further lower the minimal competitive difference and
how such an algorithm performs against all tested algorithms. Ultimately,
one must evaluate the used model and implement further aspects considered
in cash management literature. For instance, we might also consider cash
inflows. A cash inflow Ct of period t can be modelled as Ct ∈ [Ctα1, Ctα2];
α1 (α2) is the maximal relative decrease (increase) in received cash. This will
improve the applicability to real life scenarios.
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A multi-objective approach to the cash management problem, Annals of
Operations Research, 1–15 .
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