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Abstract

Harry hides on an edge of a graph and does not move from there. Sally, starting from a known
origin, tries to �nd him as soon as she can. Harry’s goal is to be found as late as possible. At any given
time, each edge of the graph is either active or inactive, independently of the other edges, with a known
probability of being active. This situation can be modeled as a zero-sum two-person stochastic game.
We show that the game has a value and we provide upper and lower bounds for this value. Finally, by
generalizing optimal strategies of the deterministic case, we provide more re�ned results for trees and
Eulerian graphs.

AMS Subject Classi�cation 2010: Primary 91A24; secondary 91A05, 91A15, 91A25.
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1 Introduction

1.1 The problem

In a typical search game a hider hides in a space and a searcher, starting from a speci�ed point, searches
for the hider, trying to �nd him as fast as possible. Often the space where the hider hides is assumed to
be a network. In almost all existing versions of the game the network is �xed and all the edges are always
available to the searcher. In real life it is often the case that some edges of the network are momentarily
unavailable, for various reasons. For instance when the police are looking for a suspect in a city, it is
possible that the presence of tra�c, or civilians, or other unexpected obstacles, forces them to deviate
from the planned path. Most often the obstacles on the network are not permanent, but vary with time.
For instance, tra�c may be intense in an area of the city at some time and in a di�erent area at a di�erent
time. The vehicles involved in an accident at some point get removed from the road and tra�c goes back to
normal. In a more common scenario, a road may be unavailable because of a red tra�c light. This scenario,
although simple to describe, would require considering stochastic dependence among the availability of
di�erent edges.

Similar scenarios appear for instance when a rescue team is searching for miners in a mine. Explosions
or landslides may force the rescuers to change the course of actions. Although in this case we do not
have an adversarial hider, we can frame the situation as a zero-sum game, by considering the worst-case
scenario, a game against Nature.

It is clear that the stochastic elements that a�ect the shape of the network must be taken into account
by both the hider and the searcher. Consider the set of edges available to a searcher at a speci�c time. If
the edge that she would have chosen is unavailable, she has two options: she can either wait until the edge
becomes available, or she can take a di�erent edge. Her choice clearly depends on the probability that each
edge is available, on the structure of the network, and on her position in the game.

1.2 Our contribution

We study a hide-search model where a hider (Harry) hides on an edge of a graph and a searcher (Sally)
travels around the graph in search of Harry. Her goal is to �nd him as soon as possible.

The novelty of the model is that, due to various circumstances, at any given time, some edges may
be unavailable, so the graph randomly evolves over time. At each stage, each edge 4 of the graph is,
independently of the others, active with probability ?4 and inactive with probability 1 − ?4 .

At the beginning of the game, Harry hides on one edge of his choice and is immobile for the rest of
the game. Starting from an initial vertex, called the root of the graph, Sally chooses at each stage a vertex
among those reachable through active edges in the neighborhood of her current vertex. An equivalent
approach is to let Sally choose an available incident edge, if any. The game ends when Sally traverses
the edge where Harry is hidden, and his payo� is the number of stages needed for the game to end. So,
Sally tries to minimize this time needed to �nd Harry and Harry aims to maximize this time. This can be

2



modeled as a zero-sum two-person game.
We �rst examine the deterministic version of the game when ?4 = 1 for each edge 4 . This game has a

value and optimal strategies. Analogously to well-known models in continuous time, we provide an upper
and lower bound for this value, which correspond, for a �xed number of edges, to the value of games played
on trees and on Eulerian graphs, respectively. We also characterize optimal strategies when the graph is
either a tree or an Eulerian graph. We then turn to the stochastic framework and show that, even in this
case, the game has a value for all positive ?4 . We provide an upper and lower bound for this value and show
that it converges to the value of the deterministic game when ?4 → 1 for each edge 4 . We consider some
particular instances when all ?4 are equal. We generalize optimal strategies of the deterministic setting
to the stochastic one and obtain upper bounds on the value of the games played on binary trees and on
parallel Eulerian graphs. The upper bounds are tight when Sally is restricted to some search trajectories.
Finally we solve the stochastic search games played on the line and on the circle.

We are aware that the stochastic representation of reality in our model is quite simplistic, but we see
this as a �rst step to analyze search games under uncertainty on the network structure. Moreover, even
under our simplifying assumptions, the analysis is already quite complicated and general results are hard
to achieve.

1.3 Related literature

Several types of hide-search games (HSGs) have been studied by various authors under di�erent assump-
tions. von Neumann (1953) studied a discrete version of the model where a hider hides in a cell (8, 9) of
a matrix and a searcher chooses a row or column of the matrix; she �nds the hider if the row or column
contains the cell (8, 9). The problem was framed as a two-person zero-sum game. Several variations of
this discrete game were studied by various authors, among them Neuts (1963), Efron (1964), Gittins and
Roberts (1979), Roberts and Gittins (1978), Sakaguchi (1973), Subelman (1981), Berry and Mensch (1986),
Baston et al. (1990).

The search game with an immobile hider was introduced by Isaacs (1965). Beck and Newman (1970)
considered a continuous HSG with a hider hiding on a line according to some distribution and a searcher,
starting from an origin and moving at �xed speed, tries to �nd the hider as soon as possible. The continuous
model was then generalized by Gal (1972, 1974), Gal and Chazan (1976), who, among other things extended
the state space from a line to a plane.

More relevantly to our paper, some authors dealt with HSGs on a network. Among them, Bostock
(1984) studied a discrete version of a continuous HSG proposed by Gal (1980). This game is played on a
parallel multi-graph with three edges that join two vertices� and � and the searcher, starting from � has to
�nd an immobile hider. The fact that the network has an odd number of parallel edges and, therefore, is not
Eulerian makes the problem di�cult to solve. Kikuta (1990, 1991) considered a HSG where the hider hides
in one of = cells on a straight line and the searcher incurs some traveling cost. Anderson and Aramendia
(1990) considered a HSG on a network and framed the problem as an in�nite-dimensional linear program.

3



Gal (1979), Reijnierse and Potters (1993), Cao (1995), Dagan and Gal (2008), Alpern (2008) examined HSGs
on trees, Eulerian networks, and some more general classes. Pavlović (1995), Gal (2000), Kikuta (2004),
Alpern et al. (2008, 2009) extended the analysis to more general networks. Alpern (2011) considered a
�nd-and-fetch game on a tree where the searcher has to �nd a hider on a network and can travel at speed
1 to �nd him, and then has to return to the origin at a di�erent speed. Alpern and Lidbetter (2013, 2019a)
replaced the usual pathwise search with what they call expanding search, where the searched area of a
rooted network expands over di�erent paths from the origin at di�erent speeds chosen by the searcher, in
such a way that the sum of the speeds is �xed. Alpern and Lidbetter (2015) dealt with a situation where the
searcher can choose one of two speeds to travel and can detect the hider, when passing in front of him, only
if she travels at the lower speed. Alpern (2017) considered a model where the hider can hide anywhere
in a network and the searcher has to entirely traverse an edge before being able to turn around. This
constraints gives the problem a more combinatorial �avor. Alpern (frth) consider a search game where the
hider is constrained to hide in a �xed subset of the whole network. If this subset is the set of the midpoints
of all the edges, then the model becomes similar to the one we use here, where the hider hides on edges.
Related to our stochastic model, Boczkowski et al. (2018) dealt with a search model on a graph, where
randomness is induced by potentially unreliable advice, that is, with some �xed probability each node is
faulty and points to the wrong neighbor. von Stengel and Werchner (1997) studied the complexity of a
HSG on a graph when the hider hides on one of the nodes of the graph. Jotshi and Batta (2008) proposed
a heuristic algorithm to �nd a hider hidden uniformly at random on a network.

In the HSG studied by Alpern (2010), Alpern and Lidbetter (2014) the searcher moves on a network at
a speed that depends on her location and direction. An intuitive link can be established between the speed
variations considered in these two articles, and the expected time to cross some edges considered in the
present article. In particular the biased depth-�rst strategy that we de�ne and use in Section 6 is strictly
related to the depth-�rst search de�ned in Alpern (2010).

This article should also be put into perspective with Alpern and Lidbetter (2019b) which deals with the
question of knowing when depth-�rst search is optimal. Our article brings some elements to answer this
question in the stochastic setting.

In a forthcoming paper Glazebrook et al. (2019) considered a search game where an object is hidden
in one of many discrete locations and the searcher can use one of two search modes: a fast but inaccurate
mode or a slow but accurate one. The reader is referred to the classical book by Alpern and Gal (2003) for
an extended treatment of search games and to Hohzaki (2016) for a recent survey of the relevant literature.

To the best of our knowledge, the model where edges of a network are present only with some prob-
ability has not been studied before in the framework of search games, but is standard in other �elds. For
instance, it is at the foundations of the classical model of random graphs proposed by Erdős and Rényi
(1959, 1960, 1961), where, given a set of vertices, a random graph is generated by creating an edge between
any two pairs of vertices independently with probability ? . A similar model is studied in percolation theory,
where edges of a graph are independently active with probability ? and one relevant problem is the num-
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ber of clusters in the random graph and, as a consequence, the possibility of reaching one vertex starting
from another one. The reader is referred, for instance, to Grimmett (1999), Bollobás (2001), Bollobás and
Riordan (2006), van der Hofstad (2017) for a general treatment of random graphs and percolation. Bollobás
et al. (2013) considered a cop and robbers games played on a random graph. Some intriguing interactions
between percolation and game theory have been recently studied by Day and Falgas-Ravry (2018), Holroyd
et al. (2019), who considered two-person zero-sum games on a graph with alternating moves.

1.4 Organization of the paper

The paper is organized as follows. Section 2 describes the model. Section 3 deals with the deterministic
case, where all edges are active with probability 1. Section 4 shows existence of the value for the stochastic
case and provides upper and lower bounds for this value. Section 5 uses dynamic programming to �nd best
responses of the searcher against a known hiding distribution of the hider. Sections 6 and 7 are devoted to
the analysis of search games on trees and Eulerian graphs, respectively. Most of the proofs can be found
in Appendix A.

2 The model

2.1 Notation

Given a �nite set �, we call card� its cardinality and Δ(�) the set of probability measures on �.
Let G = (V , E ) be a connected undirected graph, where V is the nonempty �nite set of vertices and

E is the nonempty �nite set of edges. All edges have length 1. The degree of a vertex { is denoted degr({).
There exists a special vertex$ ∈ V , called the root of the graph G . Let � be the set of subgraphs of G . For
all { ∈ V , we call N (G , {) the immediate neighborhood of { in G :

N (G , {) = {{} ∪ {D ∈ V |{{,D} ∈ E }. (2.1)

The graph will evolve in discrete time as follows. Let p = (?4)4∈E ∈ (0, 1]E . At each stage C ≥ 1, each
edge 4 ∈ E is active with probability ?4 or inactive with probability 1 − ?4 , independently of the other
edges. This de�nes a random graph process on � denoted (GC )C = (V , EC )C ≥1, where EC is the random set
of active edges at time C .

2.2 The game

We consider a stochastic zero-sum game Γ = 〈G ,$,p〉 with two players: a maximizer, called the hider

(Harry), and a minimizer, called the searcher (Sally). We call this game a stochastic search game (SSG).
The game is played as follows. At stage 0 both players know G0 = G and the initial position of the

searcher {0 = $ . The hider chooses an edge 4 ∈ E . Then the graph G1 is drawn and the searcher chooses
{1 ∈ N (G1, {0). If {{0, {1} = 4 , then the game ends and the payo� to the hider is 1, otherwise the graph G2
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is drawn and the game continues. Inductively, at each stage C ≥ 1, knowing ℎC = (G0, {0, . . . ,GC−1, {C−1,GC ),
the searcher chooses {C ∈ N (GC , {C−1). If {{C−1, {C } = 4 , then the game ends and the payo� to the hider is
C , otherwise the graph GC+1 is drawn and the game continues.

Hence in this SSG, the state space is � × V , the action set of the hider is E , and the action set of the
searcher in state (G ′, {) ∈ � × V is N (G ′, {). We now describe the sets of strategies of the players. For
C ≥ 0, let HC = � × (� × V )C be the set of histories at stage C and let H =

⋃
C ≥0 HC be the set of all

histories. Call S the set of (behavior) strategies of the searcher, that is the strategies f : H → ∆(V ) such
that f (ℎC ) ∈ ∆(N (GC , {C−1)).

We call pure the strategies B such that, for all C ≥ 0 and all ℎC ∈ HC ,

B (ℎC ) = {C ∈ N (GC , {C−1) .

A behavior strategy f naturally induces a probability measure on each HC , for every C ≥ 1, which can
be uniquely extended to H∞ by Kolmogorov’s extension theorem. This probability is denoted ℙf and the
corresponding expectation is denoted �f .

A mixed strategy of the searcher is a probability distribution over pure strategies, endowed with the
product f-algebra. By Kuhn’s theorem, behavior and mixed strategies are equivalent (see, e.g., Aumann,
1964, Sorin, 2002). The sets of pure and mixed strategies of the hider are E and ∆(E ), respectively. Pure
strategies of the hider and the searcher will usually be denoted with the letters 4 and B respectively, while
mixed and behavior strategies will usually be denoted with the letters Y and f , respectively. We denote YU

the uniform distribution (UD) on E .
Finally, the payo� function of the hider is the function 6 : E ×S → ℝ+ ∪ {+∞}, de�ned as

6(4, f) = �f [inf{C ≥ 1|{{C−1, {C } = 4}], (2.2)

where the in�mum over the empty set is +∞. The function 6 is linearly extended to ∆(E ). The goal of the
hider is thus to maximize the expected time by which he is found by the searcher, while the goal of the
searcher is to minimize the expected time by which she �nds the hider.

3 Deterministic search games

Proposition 4.1 below will show that the search game 〈G ,$,p〉 has a value, which we denote val(p). If ?4
is equal to 1 for all 4 ∈ E , we then recover a search game with an immobile hider played on a graph. We
call this game a deterministic search game (DSG). DSGs have a value val(1).

We recall some important de�nitions and results for DSGs. Versions of these results are well known
when the game is played in continuous time over a continuous network (see, e.g., Alpern and Gal, 2003).

De�nition 3.1. (i) A cycle in an graph is called Eulerian if it uses each edge exactly once. If such a cycle
exists, the graph is called Eulerian.
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(ii) A Chinese postman tour is a cycle of minimal length that visits each edge. In Eulerian graphs, the
Chinese postman tours are the Eulerian cycles.

De�nition 3.2. (i) The uniform Eulerian strategy (UES) is a mixed strategy that mixes over all Eulerian
cycles with equal probability.

(ii) The uniformChinese postman strategy (UCPS) is a mixed strategy that mixes over all Chinese postman
tours with equal probability.

In De�nition 3.2 above, note that the UCPS is not the same as a Random Chinese Postman Tour usually
found in the literature. In a Random Chinese Postman Tour, the searcher follows equiprobably a Chinese
postman tour or its reverse. Both strategies would be optimal in Proposition 3.4 below, however only the
UCPS generalizes well to the stochastic setting.

When considering trees, we will endow them with an orientation outgoing from the root. This orien-
tation does not a�ect the behavior of the searcher, who can traverse any edge in any direction, but is just
needed to state and prove some of our results.

Let G = T be a tree. If { is a vertex of T , then T{ is the subtree that has { as a root and contains all
edges below { in the original tree T . Hence T = T$ .

If 4 is an edge of G , then T4 B {4} ∪ T{ where { is the head of 4 , i.e., T4 includes 4 and the maximal
subtree below the head of 4 . We denote E{ (resp. E4 ) the set of edges of T{ (resp. T4 ).

The following de�nition is an adaptation to our framework of what Alpern and Gal (2003, Section 3.3)
have in the continuous setting.

De�nition 3.3. The equal branching distribution (EBD) Y∗ of the hider is the unique distribution on E that
is supported on the leaf edges and, for every branching vertex { with outgoing edges 41, . . . , 4= , satis�es

Y∗(E48 )
card E48

=
Y∗(E41)
card E41

, for all 8 ∈ {1, . . . , =}. (3.1)

Proposition 3.4. Let Γ = (V , E ). In a DSG Γ = 〈G ,$, 1〉 we have

val(1) ≤ card E . (3.2)

Moreover, val(1) = card E if and only if G is a tree. In this case, the EBD and the UCPS are optimal strategies.

We �rst prove the following lemma.

Lemma 3.5. Let G = (V , E ) be a connected graph. Any Chinese postman tour has length

(i) 2 card E if G is a tree,

(ii) at most 2 card E − 2 if G is not tree.
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Proof. If G is a tree the result follows by induction on card E .
Suppose now that G is not a tree. We again proceed by induction on card E . There exists an edge

4 = {D, {} ∈ E such that G ′ = (V , E \ {4}) is connected.
If G ′ is a tree, we consider a Chinese postman tour W ∈ G ′ starting at D, such that the subtree with

root { is the last visited. Once the vertex { is visited for the last time on W , we replace the end of the cycle—
which has already been visited—with 4 , going straight from { to D. This new cycle in G has length at most
2(card E − 1) + 1 − 1 = 2 card E − 2, since the length of the cycle in G ′ is 2(card E − 1), the length of 4 is
1, and the number of the edges not visited a second time is at least 1.

If G ′ is not a tree, then it admits a Chinese postman tour W with length at most 2(card E − 1) − 2. We
now consider the cycle W ′ ∈ G which starts at D, goes back and forth on 4 and then follows the cycle W on
G ′. This cycle has length 2(card E − 1) − 2 + 2 = 2 card E − 2. �

The proof of Proposition 3.4 will make use of the following lemma, which refers to a model for contin-
uous networks in continuous time. Let & be a continuous tree network, and suppose that the edges of &
have integer length. Then & is mapped to a tree graph T in the natural way. The UCPS and the EBD are
de�ned in a similar way in T and in& , and are naturally mapped from the graph setting to the continuous
network setting, and vice versa.

Lemma 3.6 (Gal (1979), Alpern and Gal (2003, Theorem 3.21)). Let & be a continuous tree network with

total length `. Then

(i) The UCPS is an optimal search strategy.

(ii) The EBD is an optimal hiding strategy.

(iii) val(1) = `.

If the continuous network & with total length ` is not a tree, then val(1) < `.

Proof of Proposition 3.4. If G is a tree, the result follows from Lemma 3.6. Indeed, in the discrete setting,
hiding on edges that are not leaves is strictly dominated. Similarly in the continuous setting, hiding at
a point of the tree which is not terminal is strictly dominated. Hence the UCPS guarantees the value of
the continuous game in the discrete one—with the natural mapping. Moreover, since the set of hiding
strategies in the discrete setting is a subset of the set of hiding strategies on the continuous setting—again
with the natural mapping—the EBD guarantees in the discrete game the value of the continuous one.

If G is not a tree, suppose that the searcher uniformly chooses between any Chinese postman tour,
and let the hider choose an edge 4 . For any �xed Chinese postman tour of length =, 4 has position : in the
cycle and position = − : + 1 in the reverse cycle. By Lemma 3.5, = ≤ 2 card E − 2, hence, the payo� is at
most

: + 2 card E − 2 − : + 1
2 = card E − 1

2 < card E . �
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Proposition 3.7. Let G = (V , E ). In a DSG Γ = 〈G ,$, 1〉 we have

val(1) ≥ card E + 1
2 . (3.3)

Moreover, if card E > 1, then
val(1) = card E + 1

2 . (3.4)

if and only if G is Eulerian. In this case, the UD on E and the UES are optimal strategies.

Proof. Suppose the hider hides uniformly over E . Now let the searcher choose any sequence of edges
(without necessarily following a path in G ). Then if the searcher does not search the same edge twice
during his card E �rst picks, the payo� is (card E + 1)/2, hence the lower bound. Suppose card E > 1,
it is clear that this bound is reached only in Eulerian graphs, following an Eulerian cycle, because, if the
graph is not Eulerian, then an edge is visited twice. Finally, using an argument similar to the one used in
Proposition 3.4, we can show that the uniform Eulerian strategy yields the payo� (card E + 1)/2 against
any strategy of the hider. �

Together, Propositions 3.4 and 3.7 yield the next theorem, whose continuous version is a cornerstone
of the search game literature. It gives bounds on the value of deterministic search games played on any
graphs. Moreover, it shows that Eulerian graphs and trees are the two extreme classes of graphs in term
of value of the game.

Theorem 3.8. For any graph G = (V , E ), the value of the DSG Γ = 〈G ,$, 1〉 satis�es

card E + 1
2 ≤ val(1) ≤ card E . (3.5)

Moreover, if card E > 1, the upper bound is reached if and only if G is a tree and the lower bound is reached

if and only if G is an Eulerian graph.

If G is an Eulerian graph, then the UD on E and the UES are optimal strategies.

If G is a tree, then the EBD and the UCPS are optimal strategies.

In Sections 6 and 7 we focus on subclasses of these two extreme classes that are Eurelian graphs and
trees. Both subclasses have a recursive structure. We generalize the strategies of interest to our stochastic
setting and derive bounds on the value. We also prove that these strategies are optimal in the cases of
circles and lines.

4 Value of the game

Proposition 4.1. For any p ∈ (0, 1]E the SSG 〈G ,$,p〉 has a value val(p). Moreover both players have an

optimal strategy.
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The proof of Proposition 4.1 is postponed to Appendix A.

Proposition 4.2. For all p ∈ (0, 1]E the value of the SSG 〈G ,$,p〉 satis�es

val(1)
1 − (1 −min4∈E ?4)X

≤ val(p) ≤ val(1)
min4∈E ?4

, (4.1)

where X is the maximum degree of G .

As a consequence

val(p) → val(1), as min
4∈E

?4 → 1. (4.2)

Proof. The hider guarantees the lower bound by playing as in the DSG. In expectation the searcher waits
at least (1 − (1 −min4∈E ?4)X )−1 for a neighbor edge to be active.

We map a strategy of the searcher in the DSG to the strategy in the SSG following the same path, even
if it means waiting for an edge to be active. The searcher guarantees the upper bound since it takes in
expectation at most 1/min4∈E ?4 stages to cross a single edge. �

5 Dynamic programming

The next proposition is a dynamic programming formula which allows to �nd best responses of the
searcher against a known hiding distribution of the hider. The activation parameters p ∈ (0, 1]E are
�xed and we omit them.

For all G1 ∈ �, {0 ∈ V , � ⊂ E and Y ∈ Δ(� ), we de�ne

Val(G1, {0, � , Y) = min
B∈S

�B

[∑
4∈�

Y (4) inf{C ≥ 1|{{C−1, {C } = 4}
]
. (5.1)

This quantity represents the value of the (one player) game in which the searcher knows the graph G1 and
the distribution Y of the hider on � ⊂ E , starts from {0 and chooses immediately {1 ∈ N (G1, {0) at the �rst
stage, before G2 is drawn (and then the game continues). In other words, in the true game, a graph G1 is
drawn before Sally starts playing. Here the graph G1 is already �xed and Sally starts playing immediately.

Proposition 5.1. If � = ∅, then Val(G1, {0, � , Y) = 0. Otherwise

Val(G1, {0, � , Y) = 1 + min
{1∈N (G1,{0)

Y (� \ {{0, {1}) �
[
Val

(
G2, {1, � \ {{0, {1}, Y {{0,{1 }

)]
, (5.2)

where Y {{0,{1 } (·) = 1
Y (�\{{0,{1 }) Y (·), and the randomness in Eq. (5.2) is over G2.

Proof. If the searcher �nds the hider in the �rst stage, which happens with probability Y ({{0, {1}), then the
game ends and the continuation payo� is 0. On the other hand, if the searcher does not �nd the hider in
the �rst stage, which happens with probability 1 − Y ({{0, {1}), then the game continues with continuation
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payo�
�

[
Val

(
G2, {1, � \ {{0, {1}, Y {{0,{1 }

)]
, (5.3)

since the edge {{0, {1} has been visited and the next graph G2 is yet to be drawn. �

6 Stochastic search games on trees

In this section and in the following one we assume

?4 = ? ∈ (0, 1], for all 4 ∈ E . (6.1)

Moreover in this section we assume that G is a tree T with origin $ . Remark that in a tree, any strategy
of the hider that consists in hiding in edges other than leaf edges is strictly dominated.

6.1 Depth-�rst strategies and the equal branching density

We de�ne a particular class of strategies of the searcher in trees, called depth-�rst strategies. They have
the property of never going backward at a vertex before having visited the whole subtree. They generalize
the Chinese postman tours of the deterministic setting.

De�nition 6.1. A depth-�rst strategy (DFS) on a tree is a strategy of the searcher that prescribes the
following, when arriving at a vertex:

• if the set of un-searched and active outgoing edges is non-empty, take one of its edges (possibly at
random);

• if all the un-searched outgoing edges are inactive, wait;

• if all outgoing edges have been searched and the backward edge is active, take it;

• if all outgoing edges have been searched and the backward edge is inactive, wait.

The uniform depth-�rst strategy (UDFS) is the DFS that, at every vertex, randomizes uniformly between
all active and un-searched outgoing edges.

De�nition 6.2. A DFS on T induces an expected time to travel from the origin$ back to it, covering the
entire tree. This is called the cycle time of T and is denoted g ($). For any vertex or edge I, the cycle time
of TI is denoted g (I).

Notice that g ($) depends on p, but is independent of the choice of DFS.
We now generalize De�nition 3.3 to the stochastic setting, where the relevant quantity is not the

number of edges of the subtrees, but rather their cycle times.

11



De�nition 6.3. The equal branching distribution (EBD) Y∗ of the hider is the unique distribution on the
leaf edges such that, for every branching vertex { with outgoing edges 41, . . . , 4= , we have

Y∗(E48 )
g (48)

=
Y∗(E41)
g (41)

, for all 8 ∈ {1, . . . , =}. (6.2)

Notice that De�nitions 3.3 and 6.3 coincide when ?4 = 1 for all 4 ∈ E .

6.2 Binary trees

6.2.1 Generalities

In these sections we consider games played on binary trees, i.e., trees with at most two outgoing edges at
any vertex. We call � the set of binary trees. DFSs allow us to obtain an upper bound for the value, when
? is large enough. We also prove that this upper bound is the value of the game in which Sally is restricted
to play DFSs. As a by-product we will show that, for every ? ∈ (0, 1], the UDFS and EBD are a pair of
optimal strategies when the game is played on a line.

De�nition 6.4. Given a tree T = (V , E ), we de�ne the function Λ : �→ ℝ recursively as follows, where,
for the sake of simplicity we use the notations Λ(4) = Λ(T4) and Λ({) = Λ(T{):

If T has a single edge 4 = ($, {), as in Fig. 1, then

Λ($) = Λ(4) = Λ({) = 0. (6.3)

$

{

•

•

Figure 1: One edge

If degr($) = 1 and 4 = ($, {), as in Fig. 2, then Λ($) = Λ(4) = Λ({).

$

{

4

•

•

T{

Figure 2: $ has degree 1
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If T has two edges and degr($) = 2, as in Fig. 3, then

Λ($) = 1
2

(
1

1 − (1 − ?)2 −
1
?

)
. (6.4)

$

{1 {2

•

• •

Figure 3: Two edges

If degr($) = 2, 41 = ($, {1), and 42 = ($, {2), as in Fig. 4, then

Λ($) = g ({1)
g ({1) + g ({2)

Λ({1) +
g ({2)

g ({1) + g ({2)
Λ({2) +

1
2

(
1

1 − (1 − ?)2 −
1
?

)
. (6.5)

$

{1 {2

41 42

•

• •

T{1 T{2

Figure 4: $ has degree 2

The function Λ depends on ? , but we do not make the dependence explicit.

Lemma 6.5. Let { be a branching vertex with outgoing edges 41 and 42. Then for all ? ∈ (0, 1],

|Λ(41) | + |Λ(42) |
g (41) + g (42)

<
1
2 .

The proof of Lemma 6.5 is postponed to Appendix A. We now de�ne the biased depth-�rst (behavior)
strategy of the searcher.

De�nition 6.6. Assume that vertex { has outgoing edges 41 and 42 and they are both active and un-
searched. A DFS strategy fU is called the biased depth-�rst strategy (BDFS) if it takes 41 with probability

13



U (41) and 42 with probability U (42), where

U (41) = proj[0,1]
(
1
2 +

Λ(41) − Λ(42)
g (41) + g (42)

1 − (1 − ?)2
?2

)
(6.6)

U (42) = 1 − U (41), (6.7)

where proj[0,1] indicates the projection on [0, 1].

Theorem 6.7. There exists ?0 ∈ (0, 1) such that for all ? ≥ ?0, the time to reach any leaf edge using the

BDFS is 1
2g ($) + Λ($). Hence for all ? ≥ ?0, we have

val(?) ≤ 1
2g ($) + Λ($) . (6.8)

The proof of Theorem 6.7 is postponed to Appendix A.

Theorem 6.8. The EBD of the hider yields the same payo� against any DFS of the searcher, and this payo�

is 1
2g ($) + Λ($).

The proof of Theorem 6.8 is postponed to Appendix A.
Note that De�nition 6.6 and Theorems 6.7 and 6.8 above have a super�cial resemblance to results on

the value and on biased depth-�rst strategies in (Alpern, 2010, Alpern and Lidbetter, 2014), where the
searcher moves on a network at a speed that depends on her location and direction.

Theorems 6.7 and 6.8 imply that in a binary tree G , if DFSs are best responses to the EBD, then there
exists ?0 ∈ (0, 1) such that for all ? ≥ ?0 the value of the game is 1

2g ($) + Λ($). Moreover the BDFS and
the EBD are optimal.

Example 6.1 below is an important counterexample, as it refutes the conjecture that DFSs are best
responses to the EBD.

Example 6.1. We study the game played on the tree represented in Fig. 5.

$

{1

{2

{21

{22

•
•

•
•

•
•

•

• •

•

41 42

422421

4 ′22

4 ′1

Figure 5: A counter-example

Consider the case where Sally visits {22 before any other leaf vertex. When she plays a DFS, this event
has positive probability. Assume also that, when she has returned to {2, after visiting {22, the edge 42 is

14



active but 421 is not. At this point she can either take edge 42 and visit {1 before {21 or wait until 421 becomes
active and visit {21 before {1. The �rst choice yields a lower payo� to Sally.

Indeed, visiting {1 �rst yields the continuation payo�

61 = Y
∗(4 ′1)

(
1 + 5

?

)
+ Y∗(421)

(
1 + 12

?

)
,

whereas visiting {21 �rst yields the continuation payo�

62 = Y
∗(421)

(
1 + 1

?

)
+ Y∗(4 ′1)

(
1 + 8

?

)
.

The sign 61 − 62 is the same as the sign of 11Y∗(421) − 3Y∗(4 ′1), which is the same as

11
3

(
7
?
+ 1

1 − (1 − ?)2

)
− 30
?
,

which is negative for all ? ∈ (0, 1).

6.2.2 A simple binary tree

We now present a game played on a tree (Fig. 6) for which we give the value and a pair of optimal strategies
for any value of ? ∈ (0, 1].

$

{ {2

I C

•

• •

• •

41 42

422421

Figure 6: A simple binary tree

Let
?0 =

9 −
√

65
8 ≈ 0.12. (6.9)

First case ? ≥ ?0: In this case, Sally’s BDFS and Harry’s EBD are a pair of optimal strategies. The value
of the game is thus

val(?) = 1
2g ($) + Λ($) =

92 − 75? + 15?2

? (15 − 7?) (2 − ?) .

Second case ? ≤ ?0: Harry’s strategy
( 1

3 ,
1
3 ,

1
3
)

is optimal. We now describe an optimal strategy of Sally.

• If no leaf edges have been visited:

15



– At $ : if 41 is active, take it. Otherwise, if 42 is active but 41 is not, take 42.

– At {2: take the �rst active edge between 421 and 422, drawing uniformly, if they both are.

• If only 41 has been visited, play the UDFS in the continuation game.

• If only 421 (resp. 422) has been visited, at {2:

– If 422 (resp. 421) is active, take it.

– If 42 is active but 422 (resp. 421) is not, randomize, waiting at {2 with probability Z (?) and taking
422 (resp. 421) with probability 1 − Z (?).

• If two leaf edges have been visited, go to the third leaf edge as quickly as possible.

The waiting probability Z (?) is given by

Z (?) = 8(2 − ?) − (1 − ?) (1 + ?) (2 − ?)
8(2 − ?) (1 − ?) − ? (1 − ?)2 .

The value of the game is

val(?) = 1
3

37 − 33? + 7?2

? (2 − ?)2 .

6.2.3 The line

We consider a SSG played on a line. If the origin $ is an extreme vertex, then the value of the game is
card(E )/? . We now suppose that the origin $ is not an extreme vertex, and that the line has ! = _1 + _2

edges (_1 on the left side of $ and _2 on the right side) as shown in Fig. 7.

$

41

42

•

•

•

•

•

•

•

Figure 7: The line with _1 = 3 and _2 = 2

In this case, for all ? ∈ (0, 1] the BDFS is the UDFS f∗, and the EBD of the hider is

Y∗ =

(
_1
!
,
_2
!

)
.

Proposition 6.9. If the graph G is a line, then DFS are best responses to the EBD. Hence, (Y∗, f∗) is a pair of
optimal strategies.
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Proof. Harry plays Y∗. At $ , whatever active edge Sally takes, the continuation payo� is (_1 + _2 − 1)/? .
Hence she does not pro�t from waiting for one speci�c edge to be active. �

Together with Theorems 6.7 and 6.8, Proposition 6.9 yields the following corollary.

Corollary 6.10. The value of the game played on the line with ! edges is

val(?) = 1
2g ($) + Λ($) =

!

?
+ 1

1 − (1 − ?)2 −
1
?
,

for all ? ∈ (0, 1], if the root is not an extreme vertex. Moreover the EBD and the UDFS are optimal strategies.

7 Stochastic search games on Eulerian graphs

7.1 Eulerian strategies and the uniform density

For Eulerian graphs we de�ne a strategy of the searcher, called Eulerian strategy (ES), which generalizes
an Eulerian cycle of the deterministic setting. At any vertex an ES chooses an active outgoing edge that
had not previously been visited in such a way that the induced path is an Eulerian cycle. The ES that at
any vertex randomizes uniformly over the outgoing edges is called the uniform Eulerian strategy (UES)
and is denoted f∗.

De�nition 7.1. The UES on a Eulerian graph G induces an expected time to travel from the origin $
covering the entire Eulerian graph. This is called the cycle time of G and is denoted \ (G ).

7.2 Parallel Eulerian graphs

7.2.1 Generalities

We call parallel graph a graph where parallel paths link two vertices, one of these two vertices being the
root $ , as in Fig. 8. Such a graph is denoted P= (,), where , = (_1, . . . , _=) is the vector of the lengths
of the parallel paths. The parallel uniform strategy of Sally consists in choosing at $ uniformly between
active and unsearched edges and then going straight to � on the current parallel path (and similarly at �).

Remark that if the number of parallel paths = = 2< is even, then the parallel graph is Eulerian and we
call it a parallel Eulerian graph. In this case, the parallel uniform strategy is the UES. For a parallel Eulerian
graph P2< (,) with 2< parallel lines, the cycle time of P2< (,) is

\ (P2< (,)) =
2<∑
:=1

(
1

1 − (1 − ?):
+ _: − 1

?

)
.

The UES allows us to obtain an upper bound for the value. We also prove that this upper bound is the
value of the game in which Sally is restricted to play ESs. As a by-product we will show that, for every
? ∈ (0, 1], the UES and UD are a pair of optimal strategies when the game is played on a circle.
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$ �•

•
•

•
•

•

•
•

•
•

•
•

•
•

•
•

•
•

Figure 8: A parallel Eulerian graph

De�nition 7.2. Given a parallel Eulerian graph P2< (,) with 2< parallel lines, let Φ< be the following
quantity de�ned recursively:

Φ1 =
1
2

(
1

1 − (1 − ?)2 −
1
?

)
, (7.1)

and for eack< > 1,

Φ< =
1
2

1
1 − (1 − ?)2< +

(
1
2 −

1
2<

)
1

1 − (1 − ?)2<−1

− 1
2<

(2(<−1)∑
:=1

1
1 − (1 − ?):

+ 1
?

)
+ < − 1

<
Φ<−1.

Remark that Φ< only depends on the number of parallel paths and not on their length.

Theorem 7.3. On a parallel Eulerian graph P2< (,), the expected time to reach any edge using the UES is

\ (P2< (,)) + ?−1

2 + Φ< . (7.2)

Hence, for all ? ∈ (0, 1], we have

val(?) ≤ \ (P2< (,)) + ?−1

2 + Φ< . (7.3)

The proof of Theorem 7.3 is postponed to Appendix A.

Theorem 7.4. On a parallel Eulerian graph P2< (,), the uniform density of the hider yields the same payo�

\ (P2< (,)) + ?−1

2 + Φ<

against any Eulerian strategy of the searcher.

The proof of Theorem 7.4 is postponed to Appendix A. Theorems 7.3 and 7.4 imply that in a parallel
Eulerian graph P2< (,), if Eulerian strategies are best responses to the uniform density, for all ? ∈ (0, 1]

18



the value of the game is
\ (P2< (,)) + ?−1

2 + Φ< .

Moreover the UES and the UD are optimal.
However, Eulerian strategies are not always best responses to the UD, as we now argue.

Example 7.1. We study the game played on a parallel Eulerian graph with four parallel paths. Each path 8
has two edges 481 = {$, {8} and 482 = {{8 , �}, where {8 is the middle vertex of the 8-th path.

Consider the case where Sally visits 441, 442 and 412 before any other edge. When she plays an ES, this
event has positive probability. Assume also that, when at {1, the edge 412 is active but 411 is not. At this
point she can either wait at {2 until 411 becomes active in order to follow an ES, or she can take 412, then
the �rst active edge between 422 and 432 and continue with 421 or 431 respectively. Finally, she takes the
�rst active edge between 411 and the other edge at $ that has not been visited yet, and then visits the two
remaining edges as quickly as possible.

Following an ES yields the continuation payo�

61 =
1
5

(
5 + 11

?
+ 4

1 − (1 − ?)2

)
.

Following the second strategy yields the continuation payo�

62 =
1
5

(
5 + 17

2? +
8

1 − (1 − ?)2

)
.

Hence if ? < 2/5, the second strategy yields a lower payo� to Sally than an ES.

7.2.2 The circle

We now examine the game played on a circle.

Lemma 7.5. If the graph G is a circle, then Eulerian strategies are best responses to the uniform density.

The proof of Lemma 7.5 is rather straightforward and we omit it. Together with Theorems 7.3 and 7.4,
Lemma 7.5 yields the following corollary.

Corollary 7.6. The value of the game played on the circle with ! edges is

val(?) = \ (G ) + ?−1

2 + Φ2 =
1

1 − (1 − ?)2 +
! − 1

2? ,

for all ? ∈ (0, 1]. Moreover the uniform density and the uniform Eulerian strategy are optimal strategies.
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A Omitted proofs

A.1 Omitted proofs of Section 4

The following lemma is a corollary of Flesch et al. (2019, Theorem 12).

LemmaA.1. Positive zero-sum stochastic games with �nite state space and action spaces have a value. More-

over the minimizer has an optimal (stationary) strategy.

Proof of Proposition 4.1. We restate the stochastic search game as a positive zero-sum stochastic game with
�nite state and action spaces and apply Lemma A.1. The idea is that Sally’s stage payo� is 1 at each stage
until she �nds Harry, transitioning then to an absorbing state in which the payo� is 0 forever. The total
payo� is then the sum of the stage payo�s.

Let G = (V , E ) be the underlying graph. In order to cast our problem in the framework of Flesch
et al. (2019), we will use a �nite state space (V × � × (E ∪ {†})) ∪ {∗}, which is larger than the state
space � × V , used in Section 2. The state ({0, (V ,∅), †) is the initial state at stage 0, where † indicated
that the hider has not chosen an edge where to hide. In this state, the �nite action space of the searcher
is N ((V ,∅), {0) = {{0}, the �nite action space of the hider is E and the payo� is 0. The state ∗ is an
absorbing state in which the payo� is 0 forever. In any other state the payo� is 1.

The state moves from the initial state to ({0,G1, 4) where G1 is the graph drawn at stage 1 and 4 is the
edge chosen by the hider (which is �xed for the rest of the game). In any state ({,G ′, 4) ∈ V × � × E

the searcher selects { ′ ∈ N (G ′, {) and the hider selects 4 ∈ {4}. If {{, { ′} = 4 then the state next moves
to the absorbing state ∗. If {{, { ′} ≠ 4 , the state moves to ({ ′,G ′′, 4) where G ′′ is drawn according to the
activation parameter.

Finally, since E is �nite, the hider has an optimal strategy. �

A.2 Omitted proofs of Section 6

Proof of Lemma 6.5. We proceed by induction on the number of edges. The base case is immediate since
Λ(41) = Λ(42) = 0. For the induction step the situation is represented in Fig. 9. The vertex {1 is the �rst
vertex encountered in T41 with two outgoing edges, and similarly for {2 and T42 .
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{

{1 {2

41 42

4 ′1 4 ′2

4 ′11 4 ′12 4 ′21 4 ′22

•

• •
• •

• •

• •• •

Figure 9: The induction step

We have

|Λ(41) | = |Λ(4 ′1) | =
���� g (4 ′11)
g (4 ′11) + g (4 ′12)

Λ(4 ′11) +
g (4 ′12)

g (4 ′11) + g (4 ′12)
Λ(4 ′12) +

1
2

(
1

1 − (1 − ?)2 −
1
?

)����
<

1
2 max(g (4 ′11), g (4 ′12)) +

1
2

���� 1
1 − (1 − ?)2 −

1
?

����
by induction, and similarly for Λ(42). Moreover we have

g (41) > g (4 ′1) = g (4 ′11) + g (4 ′12) +
1
?
+ 1

1 − (1 − ?)2 ,

and similarly for g (42). Finally,

|Λ(41) | + |Λ(42) |
g (41) + g (42)

<

1
2

(
max(g (4 ′11), g (4 ′12)) +max(g (4 ′21), g (4 ′22)) +

2
?
− 2

1 − (1 − ?2)

)
g (4 ′11) + g (4 ′12) + g (4 ′21) + g (4 ′22) +

2
?
+ 2

1 − (1 − ?2)

<
1
2 . �

Proof of Theorem 6.7. We proceed by induction on the number of edges in the tree T . If T has only one
edge 4 , then

6(4, fU ) =
1
?
=

1
2

(
2
?
+ 0

)
. (A.1)

Suppose that for any tree that has less edges than T , the time to reach any leaf edge using the BDFS is
1
2g ($) + Λ($).

If the origin $ has degree 1 (as in Fig. 2), then, for any leaf edge 4 , we have

6(4, fU ) =
1
?
+ 1

2 (g ({)) + Λ({) =
1
2

(
g ({) + 2

?

)
+ Λ({) = 1

2g ($) + Λ($) . (A.2)
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Consider the case where $ has degree 2 (as in Fig. 4) and let 41 be a leaf edge in T{1 . Then

6(41, fU ) = (1 − ?)2(1 + 6(41, fU ))

+ ? (1 − ?)
(
1 + 1

2g ({1) + Λ({1) + 1 + g ({2) +
2
?
+ 1

2g ({1) + Λ({1)
)

+ ?2
(
U (41)

(
1 + 1

2g ({1) + Λ({1)
)
+ U (42)

(
1 + g ({2) +

2
?
+ 1

2g ({1) + Λ({1)
))
.

and

6(41, fU ) (1 − (1 − ?)2) = 1 + ? (1 − ?)
(
g ({1) + g ({2) +

2
?
+ 2Λ({1)

)
+ ?2

(
1
2g ({1) + Λ({1) + U (42)

(
g ({2) +

2
?

))
.

Furthermore,

g ($) = g ({1) + g ({2) +
3
?
+ 1

1 − (1 − ?)2

and

g (41) + g (42) = g ({1) + g ({2) +
4
?
= g ($) + 1

?
− 1

1 − (1 − ?)2 .

Hence, by Lemma 6.5, for ? large enough we do not need the projection in Eq. (6.6), so we have

6(41, fU ) (1 − (1 − ?)2) = 1 + ? (1 − ?)
(
g ($) − 1

?
− 1

1 − (1 − ?)2 + 2Λ(41)
)

+ ?2
(
1
2

(
g (41) −

2
?

)
+ Λ(41) +

(
1
2 +

Λ(42) − Λ(41)
g (41) + g (42)

1 − (1 − ?)2
?2

)
g (42)

)
.

Thus,

6(41, fU ) =
1

1 − (1 − ?)2 +
1
2

(
g ($) − 1

?
− 1

1 − (1 − ?)2 + 2Λ(41)
)
+ Λ(42) − Λ(41)
g (41) + g (42)

g (42)

=
1
2g ($) +

1
2

(
1

1 − (1 − ?)2 −
1
?

)
+ Λ(41)

g (41)
g (41) + g (42)

+ Λ(42)
g (42)

g (41) + g (42)

=
1
2g ($) + Λ($) . �

Proof of Theorem 6.8. The proof is by induction on the number of edges of the tree T . If T has only one
edge, the result is immediate. Suppose now that the results holds for any tree with fewer edges than T .

If the degree of the origin$ is 1, the result follows immediately from the induction hypothesis. Assume
now that the degree of $ is 2 (as in Fig. 4). Let B ({1) and B ({2) be two DFSs on T{1 and T{2 , respectively.
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Let B (41) be the pure DFS on T that, when both 41 and 42 are active, takes edge 41 concatenated with B ({1)
and then B ({2), in case Harry is not found in T{1 . The pure strategy B (42) is de�ned analogously. Given a
vertex {, call Y∗{ the conditional probability measure on E{ induced by Y∗. Then

6(Y∗, B (41)) = (1 − ?)2(1 + 6(Y∗, B (41)))

+ ?
(
Y∗(E41) (1 + 6(Y∗{1, B ({1)) + Y∗(E42)

(
1 + 2

?
+ g ({1) + 6(Y∗{2, B ({2))

))
+ ? (1 − ?)

(
Y∗(E42) (1 + 6(Y∗{2, B ({2)) + Y∗(E41)

(
1 + 2

?
+ g ({2) + 6(Y∗{1, B ({1))

))
.

Hence,

6(Y∗, B (41)) = 6(Y∗, B (42)) ⇐⇒ Y∗(E41)
(

2
?
+ g ({2)

)
= Y∗(E42)

(
2
?
+ g ({1)

)
⇐⇒ Y∗(E41) =

g (41)
g (41) + g (42)

. �

A.3 Omitted proofs of Section 7

Proof of Theorem 7.3. We denote 4 (8, 9) the 9-th edge of path 8 , starting from the root $ . We proceed by
induction on<.

Consider that, with probability (1 − ?)2< all edges starting from $ are inactive; if this happens, Sally
has to wait one turn and her payo� is (1 + 6(4 (8, 9), f∗)). With probability 1 − (1 − ?)2< at least one edge
is active and each of the available edges is chosen with equal probability. Given that Harry hides in 4 (8, 9),
if the chosen path is 8 , then the game ends in ( 9 − 1)/? units of time. If the chosen path is : ≠ 8 , then Sally
goes to � and the continuation payo� is 6: (4 (8, _8 − 9 + 1), f∗), where 6: is the payo� of the game played
on P2<−1(, \ _: ), in which path : has been visited, , \ _: is the vector (_1, . . . , _:−1, _:+1, . . . , _2<) of size
2< − 1, and the game starts in � .

In formula:

6(4 (8, 9), f∗) = (1 − ?)2< (1 + 6(4 (8, 9), f∗))

+ 1 − (1 − ?)2<
2<

(
1 + 9 − 1

?
+

∑
:≠8

(
1 + _: − 1

?
+ 6: (4 (8, _8 − 9 + 1), f∗)

))
.

The above expression yields

6(4 (8, 9), f∗) = 1
1 − (1 − ?)2< +

1
2<

(
9 − 1
?
+

∑
:≠8

(
_: − 1
?
+ 6: (4 (8, _8 − 9 + 1), f∗)

))
(A.3)
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A similar expression holds for 6: (4 (8, _8 − 9 + 1), f∗). Plugging it in Eq. (A.3), we obtain

6(4 (8, 9), f∗) = 1
1 − (1 − ?)2< +

1
2<

(
9 − 1
?
+

∑
:≠8

(
_: − 1
?
+ 1

1 − (1 − ?)2<−1

+ 1
2< − 1

(
_8 − 9
?
+

∑
:′≠:,8

(
_:′ − 1
?
+ 6:,:′ (4 (8, 9), f∗)

))))
,

(A.4)

where 6:,:′ is the payo� of the game played on P2(<−1) (, \_: , _:′), in which both path : and path : ′ have
been visited. The induction hypothesis is

6:,:′ (4 (8, 9), f∗) =
\ (P2(<−1) (, \ _: , _:′)) + ?−1

2 + Φ<−1. (A.5)

Therefore, plugging Eq. (A.5) into Eq. (A.4), we get

6(4 (8, 9), f∗) = 1
1 − (1 − ?)2< +

2< − 1
2<

1
1 − (1 − ?)2<−1

+ 1
2<

(
1 + 2< − 2

2< − 1

) ∑
:≠8

_: − 1
?
+ 1

2<
_8 − 1
?

+ 1
2<(2< − 1)

∑
:≠8

∑
:′≠8,:

(
\ (P2(<−1) (, \ _: , _:′)) + ?−1

2 + Φ<−1

)
.

Furthermore,∑
:≠8

∑
:′≠8,:

(
\ (P2(<−1) (, \ _: , _:′)) + ?−1) = (2< − 1) (2< − 2)

?

+ (2< − 1) (2< − 2)
2(<−1)∑
:=1

1
1 − (1 − ?):

+ (2< − 1) (2< − 2)_8 − 1
?

+ (2< − 2) (2< − 3)
∑
:≠8

_: − 1
?

.
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And �nally, one obtains the following simpli�cations

6(4 (8, 9), f∗) = 1
1 − (1 − ?)2< +

2< − 1
2<

1
1 − (1 − ?)2<−1 +

2< − 2
4<

(
1
?
+

2(<−1)∑
:=1

1
1 − (1 − ?):

)
+ 1

2<

(
1 + 2< − 2

2< − 1

) ∑
:≠8

_: − 1
?
+ 1

2<
_8 − 1
?
+ 2< − 2

4<
_8 − 1
?

+ (2< − 2) (2< − 3)
4<(2< − 1)

∑
:≠8

_: − 1
?
+ 2< − 2

2< Φ<−1

=
1

1 − (1 − ?)2< +
2< − 1

2<
1

1 − (1 − ?)2<−1

+ < − 1
2<

(
1
?
+

2(<−1)∑
:=1

1
1 − (1 − ?):

)
+ 1

2

2<∑
:=1

_: − 1
?
+ < − 1

<
Φ<−1

=
\ (P2< (,)) + ?−1

2 + Φ< . �

Proof of Theorem 7.4. The proof is by induction on the number of parallel paths. Let B be a ES of Sally, and
denote

! =

2<∑
:=1

_:

the number of edges of P2< (,). First,

6(YU, B) = 1
1 − (1 − ?)2< +

1
2<

(
1 − 1

!

) 2<∑
:=1

6_:−1(YU, B),

where 6_:−1(YU, B) is the payo� of the continuation game after one edge of path : has been visited. It is
not di�cult to prove that

(! − 1)6_:−1(YU, B) = (! − _8)6: (YU, B) + !(_: − 1)
?

− _: (_: − 1)
2? ,

where 6: is the payo� of the game played on P2(<−1) (, \_: ), in which path : has been visited. Therefore

6(YU, B) = 1
1 − (1 − ?)2< +

!

2<? −
1
?
+ 1

2<!

2<∑
:=1

(
−_: (_: − 1)

2? + (! − _: )6: (YU, B)
)
.
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Computing a similar expression for 6: (YU, B) and plugging it in the above equation one has

6(YU, B) = 1
1 − (1 − ?)2< +

2< − 1
2<

1
1 − (1 − ?)2<−1 +

!

2<? −
1
?
− 2< − 1

2<?

+ 1
2<!

2<∑
:=1

(
−_: (_: − 1)

2? + (! − _: )
2

(2< − 1)?

+ 1
(2< − 1)

∑
:′≠:

(
−_:′ (_:′ − 1)

2? + (! − _: − _:′)6:,:′ (YU, B)
))
,

where 6:,:′ is the payo� of the game played on P2(<−1) (, \_: , _:′), in which both path : and path : ′ have
been visited. From the induction hypothesis, one has

6:,:′ (YU, B) = 1
2

(
1
?
+ ! − _: − _:

′ − 2(< − 1)
?

+
2(<−1)∑
;=1

1
1 − (1 − ?);

)
+ Φ<−1.

Plugging this expression in the previous equation, one has

6(YU, B) = 1
1 − (1 − ?)2< +

2< − 1
2<

1
1 − (1 − ?)2<−1 +

!

2<? −
1
?
− 2< − 1

2<? +
< − 1
<

Φ<−1

+ < − 1
2<

(
1
?
− 2(< − 1)

?
+

2(<−1)∑
;=1

1
1 − (1 − ?);

)
+ 1

2<!

2<∑
:=1

(
−_: (_: − 1)

2? + (! − _: )
2

(2< − 1)? +
1

2< − 1
∑
:′≠:

(
−_:′ (_:′ − 1)

2? + (! − _: − _:
′)2

2?

))
.

Furthermore

1
2<!

2<∑
:=1

(
−_: (_: − 1)

2? + (! − _: )
2

(2< − 1)? +
1

2< − 1
∑
:′≠:

(
−_:′ (_:′ − 1)

2? + (! − _: − _:
′)2

2?

))
=

1
2<? +

(< − 1)!
2<? .

Finally, we have

6(YU, B) = 1
1 − (1 − ?)2< +

2< − 1
2<

1
1 − (1 − ?)2<−1 +

< − 1
2<

(
1
?
+

2(<−1)∑
:=1

1
1 − (1 − ?):

)
+ 1

2

2<∑
:=1

_: − 1
?
+ < − 1

<
Φ<−1

=
\ (P2< (,)) + ?−1

2 + Φ< . �
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