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We consider an integrated planning problem that combines production, inventory and inbound transportation decisions in a context where several suppliers each provide a subset of the components necessary for the production of a final product at a central plant. We provide a mixed integer programming formulation of the problem and propose several families of valid inequalities to strengthen the linear programming relaxation. We propose two new algorithms to separate the subtour elimination constraints for fractional solutions. The inequalities and separation procedures are used in a branch-and-cut algorithm. Computational experiments on a large set of generated test instances show that both the valid inequalities and the new separation procedures significantly improve the performance of the branch-and-cut algorithm.

Introduction

The literature on integrated planning in manufacturing industries highlights a significant potential for cost savings in the supply chain by combining production and transportation decisions [START_REF] Viswanathan | Integrating routing and inventory decisions in one-warehouse multiretailer multiproduct distribution systems[END_REF][START_REF] Fumero | Synchronized development of production, inventory, and distribution schedules[END_REF][START_REF] Chen | Integrated scheduling of production and distribution operations[END_REF][START_REF] Archetti | The inventory routing problem: the value of integration[END_REF]. The problem of simultaneously planning the production at a plant and the outbound delivery routing is known in the literature as the production routing problem (PRP) [START_REF] Archetti | Analysis of the maximum level policy in a production-distribution system[END_REF][START_REF] Adulyasak | The production routing problem: A review of formulations and solution algorithms[END_REF]. When the production plan at the plant is given and the decisions concern only the inventory and route planning, the problem is referred to as the inventory routing problem (IRP) [START_REF] Andersson | Industrial aspects and literature survey: Combined inventory management and routing[END_REF][START_REF] Coelho | Thirty years of inventory routing[END_REF]. There exist many models and solution algorithms for these two problems. In contrast, few studies have considered the integration of production planning with inbound transportation for the collection of components from suppliers to assemble a final product.

When the assembly plant is responsible for organizing the inbound transportation of the various components, significant gains can be achieved by integrating production planning with inbound transportation [START_REF] Carter | Transportation costs and inventory management: Why transportation costs matter[END_REF]. Automotive industry examples are studied in [START_REF] Blumenfeld | Reducing logistics costs at General Motors[END_REF] and [START_REF] Florian | Concept of transport-oriented scheduling for reduction of inbound logistics traffic in the automotive industries[END_REF] for US and German manufacturers. [START_REF] Fernie | Retail logistics: changes and challenges[END_REF] indicate that in the retail industry the logistics system should be effectively integrated with the suppliers. More specifically, they highlight the need for the optimization and management of the entire supply chain of retailers to be a single entity to obtain cost reduction advantages and service enhancements. Closing the supply chain loop is another example where the collection of the endof-life products should be coordinated with the disassembly planning [START_REF] Guide | OR FORUM-The evolution of closed-loop supply chain research[END_REF].

We study the assembly routing problem (ARP) which considers a joint planning problem with a central plant that produces a final product to satisfy a dynamic but deterministic demand.

The plant collects the necessary components from several suppliers, each providing a subset of the components. The plant coordinates the scheduling of the production as well as the routing decisions and shipment quantities from the suppliers. The aim is to minimize the total costs of production, inventory and routing subject to several types of capacity constraints. The planning is done over a finite and discrete time horizon. The quantities available at the suppliers are assumed to be known in advance. The plant has a limited capacity for the production and no backlogging or stockouts are allowed. Both the plant and the suppliers can carry inventory. The plant has separate and capacitated inbound and outbound storage areas for the incoming components from suppliers and for the final product, respectively. Each supplier has a global storage capacity for its own components. The plant manages a limited fleet of capacitated vehicles to handle the shipment of components from the suppliers to the plant. Similar to the basic variants of the IRP and PRP, we do not allow a supplier to be visited by more than one vehicle in a specific period (i.e., no split pickups). Some studies in the literature consider the optimization of the inbound transportation and inventory decisions without taking the production planning at the central plant into account. Pop-ken (1994) and [START_REF] Berman | Inbound logistic planning: minimizing transportation and inventory cost[END_REF] study a single-period inbound logistics problem. They consider a multicommodity network with the origin (suppliers), destination (plant), and transshipment terminal nodes. The origin-destination commodity flows are supposed to be optimally routed through this network using at most one terminal node. The cost function includes the transportation and pipeline inventory costs for all supplier-plant pairs. The optimization of the inventory decisions together with the explicit inbound vehicle routes through multiple planning periods is studied in [START_REF] Moin | An efficient hybrid genetic algorithm for the multi-product multiperiod inventory routing problem[END_REF] and [START_REF] Mjirda | A two phase variable neighborhood search for the multi-product inventory routing problem[END_REF]. Considering the automotive parts supply chain, these studies investigate the case of a single assembly plant for which multiple suppliers each provide a distinct part type.

A number of studies investigate the coordination of the inbound vehicle routes with the production rate in a just-in-time (JIT) environment where no end-period inventory exists in the planning horizon. [START_REF] Vaidyanathan | A capacitated vehicle routing problem for just-in-time delivery[END_REF] and [START_REF] Satoglu | Design of a just-in-time periodic material supply system for the assembly lines and an application in electronics industry[END_REF] study the parts delivery to an assembly line with the objective of minimizing the material handling equipment requirements in a central warehouse. [START_REF] Qu | An integrated inventory-transportation system with modified periodic policy for multiple products[END_REF] and [START_REF] Sindhuchao | An integrated inventory-routing system for multi-item joint replenishment with limited vehicle capacity[END_REF] study the joint replenishment of multiple items in an inbound material-collection system for a central warehouse under the assumption of an infinite planning horizon. [START_REF] Chuah | Routing for a just-in-time supply pickup and delivery system[END_REF], [START_REF] Ohlmann | Route design for lean production systems[END_REF], [START_REF] Stacey | The storage constrained, inbound inventory routing problem[END_REF] and [START_REF] Natarajarathinam | Near-optimal heuristics and managerial insights for the storage constrained, inbound inventory routing problem[END_REF] consider a JIT supply pickup problem for an automotive assembly plant to minimize the inventory and transportation costs. [START_REF] Jiang | Routing for the milk-run pickup system in automobile parts supply[END_REF] study a similar problem taking the storage space limit into account. [START_REF] Yücel | Optimizing specimen collection for processing in clinical testing laboratories[END_REF] consider the problem of transporting specimens from different sites to the central processing facility of a clinical testing company. [START_REF] Lamsal | Sugarcane harvest logistics in Brazil[END_REF] study a sugarcane harvest logistics problem in Brazil that requires the continuous operation of the production mill. Therefore, the inbound flow of raw material should never terminate.

One observes that the ARP includes a lot-sizing substructure with additional inventory constraints together with the distribution routing decisions in each period. Similar to the ARP, an inventory substructure exists in the uncapacitated lot-sizing problem (LSP) with inventory bounds which is well-studied in the literature. This problem was first introduced by [START_REF] Love | Bounded production and inventory models with piecewise concave costs[END_REF]. [START_REF] Atamtürk | An o (n2) algorithm for lot sizing with inventory bounds and fixed costs[END_REF] propose an O(n 2 ) dynamic programming algorithm. [START_REF] Van Den Heuvel | Four equivalent lot-sizing models[END_REF] show that the problem is equivalent to the LSP with a remanufacturing option, the LSP with production time windows, and the LSP with cumulative capacities. Di Summa and Wolsey (2010) consider a variable upper bound on the initial inventory and give valid inequalities and extended formulations to describe the convex hull. More recently, [START_REF] Hwang | Improved algorithms for a lot-sizing problem with inventory bounds and backlogging[END_REF] and [START_REF] Phouratsamay | Two-level lot-sizing with inventory bounds[END_REF] study this problem and propose polynomial and pseudopolynomial algorithms for different cost structures. [START_REF] Akbalik | Capacitated lot sizing problems with inventory bounds[END_REF] study the multi-item LSP with stationary production capacity, time-dependent inventory bounds and concave costs as well as a global capacitated storage space for all the items. They show that the problem is NP-hard even when each item has stationary and identical production cost and capacity over periods. Also, other integrated problems such as the IRP [START_REF] Archetti | A branch-and-cut algorithm for a vendor-managed inventory-routing problem[END_REF][START_REF] Solyalı | A branch-and-cut algorithm using a strong formulation and an a priori tour-based heuristic for an inventory-routing problem[END_REF][START_REF] Avella | Single-item reformulations for a vendor managed inventory routing problem: Computational experience with benchmark instances[END_REF], maritime IRP [START_REF] Agra | A maritime inventory routing problem: Discrete time formulations and valid inequalities[END_REF], and PRP [START_REF] Archetti | Analysis of the maximum level policy in a production-distribution system[END_REF][START_REF] Adulyasak | Formulations and branch-and-cut algorithms for multivehicle production and inventory routing problems[END_REF] consider bounded inventory in the problem structure. Even though these integrated problems all show some similarities with respect to the inventory structure, they possess a very different lot sizing structure. More specifically, the IRP and PRP have a distribution structure, whereas the ARP is based on an assembly structure. Furthermore, another difference is that the ARP considered in this paper takes into account a given rate of supply at the suppliers.

To the best of our knowledge, there are two papers that studied a problem close to the one being addressed in this paper. A general case with multiple components and products is introduced by [START_REF] Hein | Quantitative insights into the integrated supply vehicle routing and production planning problem[END_REF]. The authors consider two scenarios. In the first scenario, the plant is allowed to keep the components in stock while in the second scenario, which represents a JIT environment, the components that arrive at the plant must be used immediately in production.

They examine both scenarios under the traditional sequential planning approach and under the integrated approach. In the sequential planning process, an LSP is solved first to obtain the production plan for the final product. Then, in the second step, they solve an IRP for the first scenario and one vehicle routing problem (VRP) for each period in the second scenario. The computational experiments are performed on randomly generated instances with either 4 suppliers, 8 components, 3 final products, and 5 periods or 6 suppliers, 12 components, 4 final products, and 10 periods. They report cost savings of up to 12% with the integrated planning approach compared to the classical sequential approach. According to this study, one may expect a higher potential for cost savings in the JIT scenario when applying the integrated approach. Because the authors did not consider the holding cost at the suppliers in their study, the integrated decision making is entirely focused on the costs associated with the plant. This is appropriate when the suppliers and the assembly plant are separate organizations and the assembly plant is not concerned with the inventory costs at the suppliers.

In the case where both the suppliers and the assembly plant belong to the same firm, one should ideally take into account the suppliers' inventory costs and capacities in the integrated decision making process. [START_REF] Chitsaz | A unified decomposition matheuristic for assembly, production and inventory routing[END_REF] study the case with multiple components and one final product but consider the inventory costs and storage capacity of the suppliers as well as a component storage area at the plant. They assume that every supplier provides a unique component. Consequently, a one-to-one relationship exists between the suppliers and components. The authors develop a three-phase decomposition-based matheuristic that iteratively solves different subproblems. They apply their algorithm not only to the ARP, but also to the IRP and the PRP with the same parameter setting. The computational experiments show that this algorithm returns high quality solutions for the ARP instances and outperforms existing heuristics on largescale multi-vehicle instances of the IRP and PRP. The algorithm finds new best-known solutions to many standard test instances of these two problems.

We extend the model of [START_REF] Chitsaz | A unified decomposition matheuristic for assembly, production and inventory routing[END_REF] to consider the case where each supplier may provide a subset of the components necessary for the final product and some components can be obtained from more than one supplier. This is the first contribution of this paper. Second, we develop several new valid inequalities to strengthen the linear programming (LP) relaxation of the mixed integer programming formulation of the problem. Although several of the proposed inequalities are inspired from existing lot-sizing inequalities, a novelty is that some of the inequalities use the known supply instead of the known demand. Third, we present novel algorithms to efficiently separate the subtour elimination constraints for the LP solutions that contain fractional routes, which can be adapted for other vehicle routing problems with the same feature. The inequalities and separation procedures are used in a branch-and-cut algorithm (BC). We generate a large test bed consisting of small to large instances with diverse ranges for the number of suppliers, products and planning periods. Finally, we analyze the impact of each class of valid inequalities on the value of the LP relaxation and on the final solution. Our extensive computational experiments show that both the valid inequalities and the new separation procedures notably enhance the performance of the branch-and-cut algorithm.

The remainder of the paper is organized as follows. We formally define the ARP and express it mathematically in Section 2. Section 3 is devoted to the presentation of the inequalities and to the proof of their validity. In Section 4, we present the upper bound generation procedure. To separate the subtour elimination constraints for our multi-period VRP, we present two heuristic algorithms in Section 5. The generation of the test instances and computational experiments are presented in Section 6. Finally, Section 7 concludes the paper.

Problem Definition and Mathematical Formulation

We consider a many-to-one assembly system with n suppliers represented by the set N = {1, ..., n}. The planning horizon includes l discrete time periods forming the set T = {1, .., l}.

To produce the final product, k distinct components, represented by the set K = {1, ..., k}, are required. We extend the basic ARP introduced in Chitsaz et al. ( 2019) by assuming that each supplier i may provide a subset of the components

K i ⊆ K, where K = i K i . Moreover, each component k can be provided by a subset of suppliers N k ⊆ N , where N = k N k .
We define the problem on a complete undirected graph with the node set N + = N ∪ {0}, where 0 represents the plant, and the edge set E = {(i, j) : i, j ∈ N + , i < j}. We let K + = K ∪ {0} represent the set of all items, where 0 represents the final product. The suppliers as well as the central plant each have a global storage area for the components and may have some component inventory at hand at the beginning of the planning horizon. Moreover, the central plant has a separate storage space for the final product. A fleet of m homogeneous vehicles, each with a capacity of Q, is available to transport the components from the suppliers to the plant.

The decisions to make include whether or not to produce the final product and the quantity to be produced at the plant in each period, the supplier visit schedule and order in each vehicle route, and the shipment quantities from the suppliers to the plant. The manufacturing plant needs to minimize the production, inventory and transportation costs simultaneously for the entire planning horizon. The complete list of notations is presented in Table 1.

A compact formulation for the ARP can be written as the following M ARP model: 

(M ARP ) min t∈T up t + f y t + k∈K + h 0k I 0kt + i∈N k∈K i h ik I ikt + (i,j)∈E c ij x ijt (1) s.t. I 00,t-1 + p t = d t + I 00t ∀t ∈ T (2)
K + = K ∪ {0}. K i Set of available components at supplier i ∈ N , K i ⊆ K. N k Set of suppliers that provide component k ∈ K, N k ⊆ N . T
Set of time periods, indexed by t ∈ T = {1, .., l}.

E(S)

Set of edges (i, j) ∈ E such that i, j ∈ S, where S ⊆ N + is a given set of nodes.

δ(S)

Set of edges incident to a node set S, δ(S) = {(i, j) ∈ E : i ∈ S, j / ∈ S or i / ∈ S, j ∈ S}. 

s ikt Supply of component k ∈ K at node i ∈ N k in period t. s ikt 1 t 2 Cumulative supply of component k ∈ K at node i ∈ N k from period t 1 to period t 2 (inclusive), t 1 , t 2 ∈ T, t 1 ≤ t 2 . b k Unit size of component k ∈ K. dt
Demand for the final product at the plant in period t. dt 1 t 2

Cumulative demand for the final product at the plant from period t 1 to period t 2 (inclusive),

t 1 , t 2 ∈ T, t 1 ≤ t 2 . L i
Global inventory capacity at supplier i ∈ N for the components k ∈ K i .

L

Global inventory capacity at the plant for the components k ∈ K. L 0 Inventory capacity at the plant for the final product.

I ik0

Initial inventory of component k ∈ K available at supplier i ∈ N k .

I 0k0

Initial inventory of component or final product k ∈ K + available at the plant.

I 0k,t-1 + i∈N k q ikt = p t + I 0kt ∀k ∈ K, ∀t ∈ T (3) I ik,t-1 + s ikt = q ikt + I ikt ∀i ∈ N, ∀k ∈ K i , ∀t ∈ T (4) p t ≤ Cy t ∀t ∈ T (5) 
I 00t ≤ L 0 ∀t ∈ T (6) k∈K b k I 0kt ≤ L ∀t ∈ T (7) k∈K i b k I ikt ≤ L i ∀i ∈ N, ∀t ∈ T (8) z 0t ≤ m ∀t ∈ T (9) k∈K i b k q ikt ≤ Qz it ∀i ∈ N, ∀t ∈ T (10) 
(j,j )∈δ(i)

x jj t = 2z it ∀i ∈ N + , ∀t ∈ T (11) Q (i,j)∈E(S) x ijt ≤ i∈S Qz it - k∈K i b k q ikt ∀S ⊆ N, |S| ≥ 2, ∀t ∈ T (12) p t ≥ 0, y t ∈ {0, 1}, z 0t ∈ Z ∀t ∈ T (13) 
I 0kt ≥ 0 ∀k ∈ K + , ∀t ∈ T (14) I ikt , q ikt ≥ 0 ∀i ∈ N, ∀k ∈ K i , ∀t ∈ T (15) x ijt ∈ {0, 1} ∀(i, j) ∈ E : i = 0, ∀t ∈ T (16) x 0it ∈ {0, 1, 2}, z it ∈ {0, 1} ∀i ∈ N, ∀t ∈ T. ( 17 
)
The objective function (1) minimizes the total production, setup, inventory, and transportation costs. The inventory costs include both component inventories at the suppliers and at the plant, as well as the final product at the plant. The set of constraints ( 2) ensures the final product inventory flow while constraints (3) do the same for each component at the plant. Constraints (4) guarantee the inventory flow balance for each component at each supplier. Constraints (5) force a setup at the plant in each period where production takes place. They also impose a maximum limit on the production quantity. Constraints (6) consider the storage capacity of the final product at the plant. Constraints (7) impose the shared storage capacity of the components at the plant. The shared storage capacity of components at each supplier is enforced by constraints (8). Constraints (9) impose the limit on the fleet size. Constraints (10) force a vehicle visit whenever components are shipped from a certain node to the plant. The total component shipment quantity from each supplier in each period will also be limited by the vehicle capacity. Constraints (11) are the degree constraints. Constraints (12) are the subtour elimination constraints (SEC). These constraints are the modified version of the VRP capacity-cuts (Toth andVigo 2001, Iori et al. 2007). They require each route to be connected to the plant and the total shipments on each route to not exceed the vehicle capacity. There exists an exponential number of these constraints. They are referred to in the literature as generalized fractional subtour elimination constraints (GFSEC) [START_REF] Adulyasak | Formulations and branch-and-cut algorithms for multivehicle production and inventory routing problems[END_REF]. Constraints ( 13)-( 17) are domain constraints.

Strengthening the LP Relaxation Bound

We present valid inequalities to improve the LP relaxation of M ARP . Moreover, we present the links between these inequalities and related polyhedral studies in the literature. The polyhedral structure of the LSP and VRP has been researched extensively. [START_REF] Barany | Uncapacitated lot-sizing: The convex hull of solutions[END_REF] give a complete linear description of the convex hull of the solutions for the uncapacitated LSP. [START_REF] Pochet | Valid inequalities and separation for capacitated economic lot sizing[END_REF], [START_REF] Miller | On the capacitated lot-sizing and continuous 0-1 knapsack polyhedra[END_REF], and [START_REF] Atamtürk | A study of the lot-sizing polytope[END_REF] present inequalities for the capacitated LSP with unlimited storage capacity. [START_REF] Atamtürk | Lot sizing with inventory bounds and fixed costs: Polyhedral study and computation[END_REF] [START_REF] Pochet | Production Planning by Mixed Integer Programming[END_REF]. These inequalities take advantage of the aggregated available inventory of each component k at the suppliers (that provide component k) and the production plant for each period t ∈ T .

(l,S,WW)-type inequalities

The (l,S) inequalities were introduced in [START_REF] Barany | Uncapacitated lot-sizing: The convex hull of solutions[END_REF] and provide the convex hull of the single-item uncapacitated LSP. In the (l, S) inequalities, l refers to a period (l ≤ |T |) where T is the number of periods, and S is a subset of periods {1, ..., l} not necessarily connected (S ⊆ {1, ..., l})

such as periods {1, 3, 7} when l = 10. For a numerical example, we refer to Pochet and Wolsey (2006), pp. 122-123. Although there is an exponential number of these constraints for a general cost structure, [START_REF] Pochet | Polyhedra for lot-sizing with Wagner-Whitin costs[END_REF] showed that under the Wagner-Whitin (WW) cost condition it is sufficient to consider only O(l 2 ) inequalities to describe the convex hull of the single item uncapacitated lot-sizing problem which are referred to as (l, S, W W ) inequalities. The WW nonspeculative cost structure requires the sum of unit production and inventory costs in every period to be larger than or equal to the unit production cost in the next period. Therefore, when the unit production costs are the same for all periods, the WW cost condition holds because the inventory costs are nonnegative. We first present the known (l, S, W W ) inequalities applied to the lot-sizing structure ( 2) and (5):

t 2 e=t 1 p e ≤ I 00t 2 + t 2 e=t 1 d et 2 y e ∀t 1 , t 2 ∈ T, t 1 ≤ t 2 . ( 18 
)
These inequalities link the production and setup variables at the plant with the predetermined downstream demand in order to improve the LP relaxation lower bound. Next, we derive three new families of valid inequalities for the ARP. The new inequalities are inspired from the standard (l, S, W W ) inequalities, but present some novelties. In Proposition 1, we develop new inequalities that link the production and setup variables at the plant with the known upstream supply. The structure of the proof (given in Section 1 of the online supplementary material) follows a similar structure as for the (l, S) inequalities [START_REF] Pochet | Production Planning by Mixed Integer Programming[END_REF], but with an inverted logic as it takes into account the known supply at the suppliers. Moreover, in Propositions 2 and 3 we propose new inequalities linking the shipment quantities and node visit variables with the given supply and demand, respectively. The novelty in the structure of these constraints is that, for a given period, the shipment variables are defined for each supplier-component combination, whereas the supplier visit variables are only related to the supplier. There is no setup-type constraint in the model that directly links each component shipment variable to its supplier visit variable. This is different from a traditional lot-sizing structure.

Proposition 1. Inequalities

t 2 e=t 1 p e ≤ I 0k,t 1 -1 + i∈N k I ik,t 1 -1 + t 2 e=t 1 i∈N k s ikt 1 e y e ∀k ∈ K, ∀t 1 , t 2 ∈ T, t 1 ≤ t 2 (19)
are valid for the M ARP .

Notice that although both inequalities ( 18) and ( 19) provide bounds on the total production quantities, the first set of inequalities considers the cumulative demand and the remaining product inventory at the last period (t 2 ) while the second set of inequalities takes the cumulative component supply and the available inventory at the beginning of the first period (t 1 ) into account.

Proposition 2. Inequalities

t 2 e=t 1 q ike ≤ I ik,t 1 -1 + t 2 e=t 1 s ikt 1 e z ie ∀i ∈ N, ∀k ∈ K i , ∀t 1 , t 2 ∈ T, t 1 ≤ t 2 (20)
are valid for the M ARP .

Proposition 3. Inequalities

t 2 e=t 1 i∈N k q ike ≤ I 00t 2 + I 0kt 2 + t 2 e=t 1 d et 2 i∈N k z ie ∀k ∈ K, ∀t 1 , t 2 ∈ T, t 1 ≤ t 2 (21)
are valid for the M ARP .

Both inequalities ( 20) and ( 21) provide bounds on the total shipment quantities. The first set of inequalities considers the cumulative component supply and the available inventory at the beginning of the first period (t 1 ) at each supplier while the second set of inequalities takes the cumulative demand and the remaining product and component inventory at the plant in the last period (t 2 ) into account.

Bounds on variables

The bounds we propose in this subsection are linked to the cut-set type inequalities. [START_REF] Atamtürk | Lot sizing with inventory bounds and fixed costs: Polyhedral study and computation[END_REF] observe that (l,S) inequalities may not cut off fractional LP extreme solutions for lot-sizing with inventory bounds and fixed costs if for the subset of periods S incoming or outgoing inventory is at capacity. They introduce cut-set type inequalities to enforce one production setup for a certain number of periods. We introduce inequalities that are both a generalization and an extension of the cut-set type inequalities. We generalize the cut-set type inequalities to provide integer lower bounds on the number of required production setups from period e = 1 to t ∈ T (Proposition 4). We further extend these cut-set type inequalities to enforce integer lower bounds on the number of vehicles dispatched (Proposition 5), and supplier visits from period e = 1 to t ∈ T (Propositions 6-7).

Let Q it (measured in required space) be a parameter equal to the sum of cumulative supply of components and the initial inventory of the components at supplier i minus its available storage capacity, i.e.,

Q it = k∈K i b k (s ik1t + I ik0 ) -L i . Proposition 4. Inequalities max 0, d 1t -I 000 , ( k∈K b k I 0k0 + i∈N max{0, Q it } -L)/ k∈K b k min{C, max e∈{1,...,t} {d e } + L 0 } ≤ t e=1 y e ∀t ∈ T (22)
are valid for M ARP .

Notice that k∈K b k in the last expression of the LHS of the inequalities (22) represents the total required space by the components which are required to produce one unit of the final product.

Next, we present valid inequalities for the lower bound on the total number of necessary vehicles dispatched from period e = 1 to t.

Proposition 5. Inequalities

1 Q max k∈K b k max{0, d 1t -I 000 -I 0k0 }, i∈N max{0, Q it } ≤ t e=1 z 0e ∀t ∈ T (23) 
are valid for M ARP .

Next, we present valid inequalities for a lower bound on the total number of necessary node visits from period e = 1 to t in the following proposition.

Proposition 6. Inequalities

max{0, Q it } min Q, L i + max e∈{1,...,t} { k∈K i b k s ike }, k∈K i b k (I ik0 + s ik1t ) ≤ t e=1 z ie ∀i ∈ N, ∀t ∈ T (24)
are valid for M ARP .

At any supplier, when the initial inventories plus the cumulative supply of components in the first t periods exceed the storage capacity, inequalities (24) provide a lower bound on the number of required visits to that supplier during these periods. The cumulative shipments from the supplier in the first t periods is limited first by the vehicle capacity, second by the available storage plus the maximum total component supply in any of those periods, and third by the sum of the initial inventories and the total supply of all components during these periods.

max{0, d 1t -I 000 -I 0k0 } min Q b k , max i∈N k {I ik0 + s ik1t } ≤ t e=1 i∈N k z ie ∀k ∈ K, ∀t ∈ T (25)
are valid for M ARP .

For the periods whose cumulative demand cannot be satisfied from the initial product inventory and in the case where the initial inventory of a given component is not sufficient for the production, inequalities (25) force visits to the nodes which supply that specific component. The cumulative shipments of a component from any of the associated suppliers in the first t periods is limited not only by the vehicle capacity but also by the maximum of the initial inventory of that component plus the total supply of the component from those suppliers in the same periods. It is possible to state inequalities ( 24)-( 25) for the edge variables (x ijt ) instead of node visits (z it ). This leads to identical constraints due to the degree constraints (11).

General inequalities

Without the SECs ( 12) added a priori to the model (e.g., as in the case of a BC algorithm), it may happen that the plant would not be connected to the other visited nodes in certain periods. In these cases, the following inequalities impose a positive value on the number of dispatched vehicles and hence on the degree of the plant if any node is visited in the same period:

z it ≤ z 0t ∀i ∈ N, ∀t ∈ T. (26) 
Another type of SEC is Dantzig-Fulkerson-Johnson (DFJ), which can be represented for the M ARP as follows:

(i,j)∈E(S)

x ijt ≤ i∈S z it -z et ∀S ⊆ N, |S| ≥ 2, ∀e ∈ S, ∀t ∈ T. ( 27 
)
DFJ inequalities are referred to in the literature as connectivity constraints [START_REF] Laporte | Generalized subtour elimination constraints and connectivity constraints[END_REF]), infeasiblepath constraints [START_REF] Ascheuer | A polyhedral study of the asymmetric traveling salesman problem with time windows[END_REF][START_REF] Iori | An exact approach for the vehicle routing problem with two-dimensional loading constraints[END_REF], or clique constraints [START_REF] Bektaş | Requiem for the Miller-Tucker-Zemlin subtour elimination constraints?[END_REF]. They were first proposed by [START_REF] Dantzig | Solution of a large-scale traveling-salesman problem[END_REF] for the travelling salesman problem (TSP). These inequalities imply that the number of edges that can be chosen from the set of all edges with both endpoints in a subset of nodes S cannot be more than |S| -1. The cardinality of these inequalities is exponential and thus they cannot be added a priori to the model in practical The following inequalities enforce node visits for each edge traversal:

x ijt ≤ z it and x ijt ≤ z jt ∀(i, j) ∈ E(N ), ∀t ∈ T. (28) 
Inequalities ( 26) and ( 28) are used by [START_REF] Archetti | A branch-and-cut algorithm for a vendor-managed inventory-routing problem[END_REF] for the IRP, and by Archetti et al.

(2011) and [START_REF] Adulyasak | Formulations and branch-and-cut algorithms for multivehicle production and inventory routing problems[END_REF] for the PRP. Inequalities ( 28) are special cases of DFJs for node pairs [START_REF] Gendreau | A branch-and-cut algorithm for the undirected selective traveling salesman problem[END_REF], which can be added to the model a priori due to their polynomial cardinality.

Generating Upper Bounds

We adapted the unified matheuristic proposed in [START_REF] Chitsaz | A unified decomposition matheuristic for assembly, production and inventory routing[END_REF] and applied it to the generalized ARP, where each supplier provides a subset of the components, to obtain high quality feasible solutions as well as cutoff values that can be used to prune branches in our BC algorithm.

This matheuristic (CCJ-DH) works by decomposing the problem into three separate subproblems and solving them iteratively. The first subproblem is a special LSP which determines a setup schedule with an approximation of the total transportation cost using the number of dispatched vehicles. The second subproblem returns node visits and shipment quantities. The latter employs another approximation of the total transportation cost using the node visit transportation cost.

Finally, the third subproblem considers a separate VRP for each period t.

The solutions of the routing subproblems are used to update the node visit cost approximation in the second subproblem for the next iteration. This procedure is repeated to reach a local optimum. Then, a change in the setup schedule is imposed to explore other parts of the feasible solution space and diversify the search. The algorithm uses diversification constraints [START_REF] Fischetti | A local branching heuristic for mixed-integer programs with 2-level variables, with an application to a telecommunication network design problem[END_REF]) to generate both new setup schedules using the first subproblem, and new node visit patterns using the second subproblem. The method terminates when a stopping condition is met.

We present the detailed adaptation of CCJ-DH in Section 2 of the online supplementary material.

Separating Fractional Multi-Period Subtour Elimination Constraints

Subtour elimination constraints (12) belong to the family of capacity-cut constraints (CCC) which were developed for the capacitated VRP (Toth andVigo 2001, Iori et al. 2007). The RHS of these constraints represents the number of vehicles required to serve the subset of nodes for which the inequality is applied. Depending on how the RHS is computed, different classes of this set of constraints can be obtained. The direct use of the fractional RHS results in the fractional capacity inequalities. This class of capacity constraints can be separated by solving a series of max-flow or min-cut problems in polynomial time [START_REF] Semet | Classical exact algorithms for the capacitated vehicle routing problem[END_REF]. The next three classes of CCCs need specific algorithms and their separation is known to be NP-complete [START_REF] Augerat | Approche polyèdrale du problème de tournées de véhicules[END_REF]. When the RHS is rounded up, one obtains the rounded capacity inequalities. Using the optimal value of the bin-packing problem (where the weights of the items are equal to the shipment sizes and the bin capacity is equivalent to the vehicle capacity) in the RHS results in the weak capacity inequalities.

Finally, computing the minimum number of required vehicles results in global capacity constraints and gives the tightest form.

Unlike the other types of CCCs, the quantities in the RHS of GFSECs are not given parameters but node visit (z it ) and shipment quantity (q ikt ) variables. For the non-vehicle index formulations of the IRP and the PRP, GFSECs are necessary to maintain the vehicle capacity of each route.

To the best of our knowledge, there is no exact algorithm to separate GFSECs in polynomial time and it is not known whether separating GFSECs is NP-hard or not. Instead, a weak form of them (with z it = 1) is usually separated using separation procedures designed for the TSP and VRP CCCs. Most of the BC algorithms in the IRP and the PRP literature use the separation procedure of [START_REF] Padberg | A branch-and-cut algorithm for the resolution of large-scale symmetric traveling salesman problems[END_REF] or heuristics that are included in the CVRPSEP package of [START_REF] Lysgaard | A new branch-and-cut algorithm for the capacitated vehicle routing problem[END_REF]. The procedures of [START_REF] Padberg | A branch-and-cut algorithm for the resolution of large-scale symmetric traveling salesman problems[END_REF] and [START_REF] Lysgaard | A new branch-and-cut algorithm for the capacitated vehicle routing problem[END_REF] were originally developed for the TSP and the VRP, respectively. The algorithm of [START_REF] Padberg | A branch-and-cut algorithm for the resolution of large-scale symmetric traveling salesman problems[END_REF] is used by [START_REF] Archetti | A branch-and-cut algorithm for a vendor-managed inventory-routing problem[END_REF][START_REF] Archetti | Analysis of the maximum level policy in a production-distribution system[END_REF], [START_REF] Solyalı | A branch-and-cut algorithm using a strong formulation and an a priori tour-based heuristic for an inventory-routing problem[END_REF], [START_REF] Avella | Single-item reformulations for a vendor managed inventory routing problem: Computational experience with benchmark instances[END_REF] and [START_REF] Archetti | Inventory routing with pickups and deliveries[END_REF]. The CVRPSEP package is used by [START_REF] Adulyasak | Formulations and branch-and-cut algorithms for multivehicle production and inventory routing problems[END_REF]. If a violated inequality is found by one of these procedures, one has to check whether the corresponding GFSEC is violated or not [START_REF] Solyalı | A branch-and-cut algorithm using a strong formulation and an a priori tour-based heuristic for an inventory-routing problem[END_REF]. In Section 3 of the online supplementary material, we

present two examples for the LP solutions to the routing problem containing fractional values for the node visit (z it ) and edge traversal (x ijt ) variables. One example shows the case where a non-violated subtour elimination constraint is returned. The other example demonstrates the case where a violated subtour elimination constraint cannot be identified when the weak GFSEC is separated.

The separation problem for GFSECs in the ARP is to find a subset of nodes S ⊆ N with cardinality greater than or equal to 2 (|S| ≥ 2) for which the corresponding constraint is violated by the fractional solution. In each period t, the non-zero z * and x * values of the optimal LP solution form a subgraph G t (N t , E t ). Each node in G t has a shipment volume of k∈K i b k q * ikt . In order to define the separation problem, let the binary variable v i be equal to 1 if and only if node i ∈ N t is selected and binary variable w ij be equal to 1 if and only if edge (i, j) ∈ E t is chosen.

We formulate the GFSECs separation problem for each period t as follows:

(S t GF SEC ) min i∈N t (Qz * it - k∈K i b k q * ikt )v i -Q (i,j)∈E(N t ) x * ijt w ij (29) s.t. i∈N t v i ≥ 2 (30) 
w ij ≤ v i ∀(i, j) ∈ E t (31) w ij ≤ v j ∀(i, j) ∈ E t (32) v i , w ij ∈ {0, 1} ∀i ∈ N t , ∀(i, j) ∈ E t . ( 33 
)
Since G t is defined for (i, j) ∈ E t , it may not be a complete subgraph nor a connected one.

Observe that any feasible solution to this problem which has a strictly negative value returns one or more violated GFSECs. Notice that unlike the separation problem for the VRP CCCs, this problem is independent of the plant's (depot's) adjacent edges (x 0it ). Moreover, the problem S t GF SEC is separable over the disconnected elements of the subgraph of period t, as was first implemented by [START_REF] Laporte | Optimal routing under capacity and distance restrictions[END_REF] for the VRP under capacity and distance constraints.

To separate violated GFSECs with fractional node degrees, we propose two heuristics which can also be adapted for other vehicle routing problems. We define e = (i e , j e ) ∈ E t , the index of edges in the subgraph edge set of period t. We initialize sets Ω 1 , ..., Ω |E t | indexed by , and populate each Ω with edge ∈ E t . We define Φ(Ω ) as the set of nodes corresponding to all the edges in Ω . Let 

C i = Qz * it -k∈K i b k q * ikt represent the node cost and C e = Q (i,j)∈E(N t ) x *
Ω ← Ω ∪ {e * } 6:
if Φ(Ω ) introduces a violated GFSEC and Φ(Ω ) is not found yet then 7:

Add Φ(Ω ) to the list of violated GFSECs 8:

end if 9:
end for 10: end for 11: return the list of violated GFSECs

The second algorithm (Algorithm A2) has a similar structure as A1 with the difference that it terminates the search procedure for each set Ω when the set returns the first violated GFSEC and then proceeds to the next set. Moreover, Algorithm A2 does not accept the node sets which have (node) overlap with the violated GFSECs found earlier in the current call of the algorithm.

Because every violated GFSEC needs to have at least two nodes, there is an explicit upper bound of |N t |/2 on the number of violated GFSECs that A2 returns for each period t.

Computational Experiments

The experiments were performed on the Calcul Québec computing infrastructure with Intel Xeon X5650 @ 2.67 GHz processors and a memory limit of 25 GB. The BC procedure is implemented in C++ using the CPLEX 12.6 callable library. All experiments are performed in sequential form using one thread. The algorithm applies the valid inequalities at the root node and adds GF-SECs and DFJs at each node of the search tree as cutting planes whenever they are violated by more than 0.1 unit. To separate GFSECs, we either use CVRPSEP, A1 or A2. When a violated GFSEC is found, the BC method also adds the corresponding DFJ. In our experiments we set a time limit of one hour both for the BC and for CCJ-DH. We run the BC experiments with and without the CCJ-DH cutoff values to measure the performance of both methods in providing upper bounds.

We introduce a diverse set of instances to better study and evaluate the performance of the BC. We present the test bed generation procedure for the ARP in Section 6.1. We analyze the performance of CCJ-DH on the new instances in Section 6.2. We report the sensitivity analysis of the effect of valid inequalities on the LP relaxation of the M ARP model, and the performance of the BC in Section 6.3. The performance analysis of the BC with different separation procedures is presented in Section 6.4. In Section 4 of the online supplementary material, we report the performance of the BC on the existing large instances of [START_REF] Chitsaz | A unified decomposition matheuristic for assembly, production and inventory routing[END_REF] and compare our results with the two lower bounding methods presented in that paper. For each combination of the number of planning periods and suppliers we randomly generated five instances. Overall, 600 instances are generated for three classes, five planning horizons, eight numbers of suppliers, and five instances per category. As a result, the test bed includes small to large size instances. The rest of the specifications for the ARP instances are developed similar to the practices of [START_REF] Archetti | Analysis of the maximum level policy in a production-distribution system[END_REF] for the PRP. Table 2 presents an overview of the ARP instance parameters.

Performance of the Heuristic

Table 3 shows the performance of the adapted CCJ-DH on different classes of the new ARP instances compared to the BC when using the best-bound node selection strategy and algorithm A1 for separating fractional subtours, and with the imposed time limit of one hour. The second [START_REF] Archetti | Analysis of the maximum level policy in a production-distribution system[END_REF] column in this table presents the number of instances (#). The rest of the columns show the number of best upper bounds (#BUB) found by CCJ-DH, the average solution time (CPU), and the gaps of the heuristic solution with respect to the upper bound (Gap UB) and lower bound (Gap LB) obtained by the BC, respectively. The results highlight the fact that the instances of the second class need significantly more computing time. In these instances, each supplier provides multiple components. There are consequently more shipment variables (q ikt ), which results in a larger lot-sizing part compared to the instances in the two other classes. For the instances that are not solved to optimality by BC (larger instances), the matheuristic finds 122 best upper bounds (BUB) out of 161 instances (all classes). For these instances, CCJ-DH is able to improve the UBs found by the BC by 59%, 62.2% and 15.5% on average for the instances in the first, second and third class, respectively. For the instances solved to optimality, the heuristic provides high quality solutions within 1.2%, 1.2% and 1.6% of the optimal solution for the first, second and third class, respectively. 
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Analysis of Valid Inequalities

To evaluate the effect of applying valid inequalities, we solve the LP relaxation of the M ARP model where the SECs (12) are relaxed. We present in Table 4 the average LP solution times and values when no valid inequality is added to the model (None), and compare it with the cases where known valid inequalities (Known) from the literature (i.e., ( 18), ( 26)-( 27)), or all valid inequalities (All) (i.e., ( 18)-( 27)) are added to the model. Each row in this table shows the results for a periodsupplier size combination. For the ease of comparison, the LP solution values are presented as a percentage of the BUB (LP%) for each instance. The average LP solution values without the valid inequalities vary in the range 63% to 65.9% for different classes and this range increases to 70.8% to 76.9% when the known inequalities are added and further to 88.7% to 90.2% with all valid inequalities added to the model. This is a significant improvement which is obtained at the expense of longer LP solution times. The average CPU times grow by a factor of 34, 22 and 10 for the instances in the first, second and third class, respectively when comparing the formulation without the valid inequalities to the formulation with all inequalities. We present details on the average LP solution values with and without considering each valid inequality type in the model in Section 5 of the online supplementary material.

We also compare the effect of the valid inequalities on the BC performance. In Table 5, we report a summary of the results on the performance of the BC when the default or the best-bound node selection strategies are employed, and either no inequality (None), only known inequalities (Known) or all inequalities (All) are applied. In all of these experiments we used algorithm A1 to 12) and ( 27). This table presents the number of optimal solutions (#Opt), CPU time, the average lower bound values as a percentage of the upper bound obtained by the BC without applying the CCJ-DH cutoffs (%UB) and as a percentage of the BUB (%BUB) for each BC scenario and each class. To calculate the BUB for each BC scenario, we considered the upper bounds obtained by either that BC scenario or CCJ-DH.

The results indicate that the BC returns better results, in terms of the number of optimal solutions, average solution time, and optimality gap, when all inequalities are applied and the best-bound node selection strategy is selected. The BC returns better %UB with the default node selection strategy on all classes of instances. This highlights the fact that without applying CCJ-DH cutoffs, the default node selection strategy performs better than the best-bound. By comparing %UB and %BUB for each node selection strategy and each class, one observes the effect of applying CCJ-DH cutoffs within the BC. The best-bound node selection strategy results in better average lower bounds and consequently better results for %BUB.

On the instances of the first class, applying all inequalities and the best-bound node selection strategy enables the BC to obtain 149 (out of 200) optimal solutions in an average of 1422 seconds compared to 52 optimal solutions when known inequalities are employed, and only 8 optimal solutions when no valid inequality is considered. On the harder instances of the second class, the BC finds 119 optimal solutions within the time limit when all inequalities are added to the model while it is able to find 64 optimal solutions with known inequalities and only 5 optimal solutions without the valid inequalities. The same difference in the performance of the BC exists on the instances of the third class where 171 optimal solutions are found with all valid inequalities compared to 107 optimal solutions with known inequalities, and 14 optimal solutions without the valid inequalities. Overall, compared to the cases with no or only known inequalities, using all inequalities in BC with both node selection strategies notably increases the number of optimal solutions and significantly improves the %UB and %BUB for all classes. These results show that our new valid inequalities make a substantial difference in the success of the BC.

The detailed results for the same scenarios of the BC are presented in Tables 6 and7. Similarly, in all of these experiments we used algorithm A1 to separate SECs ( 12) and ( 27). These tables present CPU, %UB, and %BUB for every period-supplier combination group of each instance class.

The number of instances (out of five) that are not solved to optimality is specified in parentheses within the %BUB figures. 18), ( 26) and ( 27), All: With all inequalities (18)-( 27)

Analysis of Different Separation Procedures

In Table 8, we present the performance of the BC with all valid inequalities added when the CVRPSEP package, A1 and A2 are applied to separate SECs ( 12) and ( 27). We used the bestbound node selection strategy for all these experiments. In this table we report CPU, %BUB and the number of instances that are not solved to optimality (inside the parentheses) for each combination of the period-supplier setting. One observes that both of our separation procedures outperform the CVRPSEP package by enabling the BC to find more optimal solutions within the time limit. The results in this table suggest that the BC is capable of closing the optimality gap for many more period-supplier combinations in each class with a better solution time when it uses A1 and A2 compared to when it employs the CVRPSEP package. Furthermore, the BC with A2 is performing better on larger instances compared to the case with A1. This is why we use A2 in our BC when we apply it to solve the large ARP instances of [START_REF] Chitsaz | A unified decomposition matheuristic for assembly, production and inventory routing[END_REF] presented in Section 4 of the online supplementary material. The BC is capable of solving instances with up to 4 periods and 33 nodes, 6 periods and 30 nodes, 8 periods and 27 nodes, 10 periods and 24 nodes, and 12 periods and 21 nodes within the time limit.
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The numbers in parentheses present the number of instances out of five that are not solved to optimality within the time limit 2142 99.9 (1) 3292 96.4 (5) 3296 97. * Best-bound node selection strategy is used for all these experiments l/n: Number of periods/number of suppliers, The numbers in parentheses present the number of instances that are not solved to optimality within the time limit (Clique), mixed integer rounding cuts (MIR), flow path cuts (Path), implied bound cuts (ImplBd), zero-half cuts (ZeroHalf), and lift-and-project cuts (LiftProj). The results indicate that for each class the BC has to explore many more nodes and finds fewer optimal solutions when it employs the CVRPSEP package compared to when it uses one of the proposed separation procedures.

Another observation is that the average violation amount of the SECs (both GFSECs and DFJs) found by the CVRPSEP package is higher than the ones found by the other separation procedures.

The reason is that CVRPSEP is not able to find violated SECs in the initial stages of the search tree because the node visit values are small in a fractional solution. In other words, because the CVRPSEP package is not effective on the initial fractional solutions, the BC explores more different node visit patterns within the search tree. The same is also true for other types of cuts that are generated by CPLEX. Overall, the performance of the BC when it uses one of the proposed separation algorithms, A1 or A2, is better than when it employs CVRPSEP.

The results in Tables 56789indicate that instances in the second class are generally harder and it takes longer for the BC method to solve them (higher average CPUs and lower %UB and %BUB).

Within the specified time limit, the BC obtains fewer optimal solutions for the instances in this class compared to when it is applied to the instances in the first and the third class. Instances in the third class are relatively easier to solve compared to the other ones. The BC method obtains the largest number of optimal solutions and lowest average gaps for the instances in this class within the smallest average solution time.

Summary

We generalized the assumptions of the assembly routing problem (ARP) to the case where each supplier may provide a subset of the components necessary for production. We presented a mixed integer linear programming model for this problem. We also developed many randomly generated test instances for this problem, for which we obtained good quality upper bounds by adapting the matheuristic of [START_REF] Chitsaz | A unified decomposition matheuristic for assembly, production and inventory routing[END_REF]. To solve the problem to optimality, we proposed several types of valid inequalities and analyzed their performance with respect to the LP solution value of the model. Based on the valid inequalities, we proposed a branch-and-cut algorithm and performed extensive experiments to analyze different aspects of the algorithm. In addition, we have developed two algorithms to separate multi-period fractional capacity cut constraints and compared their efficiency with the state-of-the-art separation procedures of [START_REF] Lysgaard | A new branch-and-cut algorithm for the capacitated vehicle routing problem[END_REF] for the single-period VRPs.

Our extensive computational experiments indicate that applying our newly developed valid inequalities significantly improves the performance of the branch-and-cut algorithm. Furthermore, the performance of the branch-and-cut algorithm is substantially enhanced when it employs any of our new separation procedures compared to the case when it uses the separation procedures offered in [START_REF] Lysgaard | A new branch-and-cut algorithm for the capacitated vehicle routing problem[END_REF].

An interesting avenue for future research on the ARP is to compare different reformulations.

The ARP is an integrated problem that considers lot-sizing (with an assembly structure) and capacitated vehicle routing problems at the same time. Beside the standard formulation for the LSP, it is possible to consider echelon stock, facility location, and shortest path, among others [START_REF] Pochet | Production Planning by Mixed Integer Programming[END_REF]. Available formulations for the VRP [START_REF] Toth | Vehicle routing: problems, methods, and applications[END_REF] are standard, single-/two-/multi-commodity formulations as well as path-based formulations. These result in a large number of promising possibilities to present reformulations for the ARP.

Online Supplementary Material

A Branch-and-Cut Algorithm for an Assembly Routing Problem 1. Proofs Proposition 1. Inequalities

t 2 e=t 1 p e ≤ I 0k,t 1 -1 + i∈N k I ik,t 1 -1 + t 2 e=t 1 i∈N k s ikt 1 e y e ∀k ∈ K, ∀t 1 , t 2 ∈ T, t 1 ≤ t 2 (19)
are valid for the M ARP .

Proof. The inequalities for t 2 e=t 1 y e = 0 are trivial because t 2 e=t 1 p e = 0. Otherwise, let θ be the last period in which the production setup is performed, i.e., θ = max e {t 1 ≤ e ≤ t 2 |y e = 1}. Then,

t 2 e=t 1 p e = θ e=t 1 p e = θ e=t 1 (I 0k,e-1 -I 0ke + i∈N k q ike ) = θ e=t 1 I 0k,e-1 -I 0ke + i∈N k (I ik,e-1 -I ike + s ike ) = I 0k,t 1 -1 -I 0kθ + i∈N k (I ik,t 1 -1 -I ikθ + s ikt 1 θ ) ≤ I 0k,t 1 -1 + i∈N k I ik,t 1 -1 + i∈N k s ikt 1 θ = I 0k,t 1 -1 + i∈N k I ik,t 1 -1 + i∈N k s ikt 1 θ y θ ≤ I 0k,t 1 -1 + i∈N k I ik,t 1 -1 + t 2 e=t 1 i∈N k s ikt 1 e y e .
The first four equations follow from the definition of θ, constraints (3), constraints (4), and the definition of s ikt 1 t 2 , respectively. The first inequality holds due to the non-negativity of inventory variables. The next equation is valid because y θ = 1. The last inequality holds because the y e variables are nonnegative. Proposition 2. Inequalities

t 2 e=t 1 q ike ≤ I ik,t 1 -1 + t 2 e=t 1 s ikt 1 e z ie ∀i ∈ N, ∀k ∈ K i , ∀t 1 , t 2 ∈ T, t 1 ≤ t 2 (20)
are valid for the M ARP .

Proof. If t 2 e=t 1 z ie = 0, then the supplier i will not be visited during periods t 1 to t 2 . Therefore, for these periods no shipment is possible ( t 2 e=t 1 q ike = 0) and inequalities (20) are satisfied. Otherwise, let θ be the last period in which the supplier i will be visited, i.e., θ = max e {t 1 ≤ e ≤ t 2 |z ie = 1}. Then,

t 2 e=t 1 q ike = θ e=t 1 q ike = θ e=t 1 (I ik,e-1 -I ike + s ike ) = I ik,t 1 -1 -I ikθ + s ikt 1 θ ≤ I ik,t 1 -1 + s ikt 1 θ = I ik,t 1 -1 + s ikt 1 θ z iθ ≤ I ik,t 1 -1 + t 2 e=t 1 s ikt 1 e z ie .
The first three equations hold due to the definition of θ, constraints (4), and the definition of s ikt 1 t 2 , respectively. The first inequality is valid because of the non-negativity of inventory variables. The next equality is valid for the reason that z iθ = 1. The last inequality holds because the z ie variables are nonnegative.

Proposition 3. Inequalities

t 2 e=t 1 i∈N k q ike ≤ I 00t 2 + I 0kt 2 + t 2 e=t 1 d et 2 i∈N k z ie ∀k ∈ K, ∀t 1 , t 2 ∈ T, t 1 ≤ t 2 (21)
are valid for the M ARP .

Proof. If t 2 e=t 1 i∈N k z ie = 0, then no visit to the suppliers i ∈ N k will be made during periods t 1 to t 2 and hence no shipment of component k is possible during this period ( t 2 e=t 1 i∈N k q ike = 0). Then, inequalities (21) are satisfied because the left-hand-side (LHS) will be equal to zero and the inventory variables in the right-hand-side (RHS) are nonnegative. Otherwise, let θ be the first period in which at least one node i ∈ N k is visited, i.e., θ = min e {t 1 ≤ e

≤ t 2 | i∈N k z ie ≥ 1}. 3 Then, t 2 e=t 1 i∈N k q ike = t 2 e=θ i∈N k q ike = t 2 e=θ (I 0ke -I 0k,e-1 + p e ) = t 2 e=θ I 0ke -I 0k,e-1 + (I 00e -I 00,e-1 + d e ) = I 00t 2 -I 00,θ-1 + I 0kt 2 -I 0k,θ-1 + d θt 2 ≤ I 00t 2 + I 0kt 2 + d θt 2 ≤ I 00t 2 + I 0kt 2 + d θt 2 i∈N k z iθ ≤ I 00t 2 + I 0kt 2 + t 2 e=θ d et 2 i∈N k z ie = I 00t 2 + I 0kt 2 + t 2 e=t 1 d et 2 i∈N k z ie .
The first four equations follow from the definition of θ, constraints (3), constraints [START_REF]Class/Number of periods/Number of suppliers, Var Bnd: Bounds on the variables, Gen Ineq: General inequalities Table 14: Effect of individual valid inequality types on average LP solution value as a percentage of BUB (class 3) Including only one type Excluding only one type Set (l,S,WW)-type Var Bnd Gen Ineq (l,S,WW)-type[END_REF], and the definition of d t 1 t 2 , respectively. The first inequality holds due to the non-negativity of inventory variables. The next inequality is valid because at least one node is visited in period θ, i.e., i∈N k z iθ ≥ 1. The last inequality is valid since the z ie variables are nonnegative. The last equation holds due to the assumption that θ is the first period in which at least one node i ∈ N k is visited.

Lemma 1. Inequalities max{0, Q it } ≤ t e=1 k∈K i b k q ike ∀i ∈ N, t ∈ T are valid for M ARP .
Proof. We have

Q it ≤ k∈K i b k (s ik1t + I ik0 ) - k∈K i b k I ikt = k∈K i b k t e=1 (s ike + I ik,e-1 -I ike ) = t e=1 k∈K i b k q ike ,
where the inequality follows from the storage capacity constraints (8), and the equations hold due to the definition of s ikt 1 t 2 and constraints (4), respectively. Because only a strictly positive Q it triggers the shipment to the plant, we obtain:

max{0, Q it } ≤ t e=1 k∈K i b k q ike . Proposition 4. Inequalities max 0, d 1t -I 000 , ( k∈K b k I 0k0 + i∈N max{0, Q it } -L)/ k∈K b k min{C, max e∈{1,...,t} {d e } + L 0 } ≤ t e=1 y e ∀t ∈ T (22)
are valid for M ARP .

Proof. We first obtain two lower bounds on the cumulative production from period 1 to t. (I 0k,e-1 -

I 0ke + i∈N k q ike ) = k∈K b k I 0k0 - k∈K b k I 0kt + i∈N t e=1 k∈K i b k q ike ≥ k∈K b k I 0k0 -L + i∈N max{0, Q it }.
The first equation follows from constraints (3). The second equation is obtained by rearranging the terms. The inequality holds based on the component storage capacity at the suppliers and Lemma 1. Next, we determine two upper bounds on the cumulative production from period 1 to t. The cumulative production amount forces a minimum number of production setups due to production capacity constraints (5): t e=1 p e ≤ C t e=1 y e . Then, we present another expression for the minimum number of required production setups: The first inequality is valid since p t = d t + I 00t -I 00t-1 ≤ d t + I 00t , and the fact that y t = 0 forces p t = 0. The second inequality and the equation hold trivially. The last inequality is valid because of the product storage capacity (L 0 ). Combining the two parts of the proof, we obtain:

max 0, d 1t -I 000 , k∈K b k I 0k0 + i∈N max{0, Q it } -L / k∈K b k ≤ t e=1 p e ≤ min C, max e∈{1,...,t} {d e } + L 0 t e=1 y e . Proposition 5. Inequalities 1 Q max k∈K b k max{0, d 1t -I 000 -I 0k0 }, i∈N max{0, Q it } ≤ t e=1 z 0e ∀t ∈ T (23) 
are valid for M ARP .

Proof. We obtain the first expression as follows:

t e=1 Qz 0e ≥ t e=1 k∈K i∈N k b k q ike = t e=1 k∈K b k (d e + I 00e -I 00,e-1 + I 0ke -I 0k,e-1 ) = k∈K b k (d 1t + I 00t -I 000 + I 0kt -I 0k0 ) ≥ k∈K b k (d 1t -I 000 -I 0k0 ).
The first inequality is valid since the LHS is the total capacity of the dispatched vehicles from period e = 1 to t, and the RHS is the total shipped amount over the same periods, all components and all suppliers. The first equation follows from constraints (3), and by replacing the p t variables using constraints [START_REF]Class/Number of periods/Number of suppliers, Var Bnd: Bounds on the variables, Gen Ineq: General inequalities Table 14: Effect of individual valid inequality types on average LP solution value as a percentage of BUB (class 3) Including only one type Excluding only one type Set (l,S,WW)-type Var Bnd Gen Ineq (l,S,WW)-type[END_REF]. The second equation is valid due to the definition of d t 1 t 2 . The second inequality holds due to the non-negativity of inventory variables. Next, we have

t e=1 Qz 0e ≥ t e=1 i∈N k∈K i b k q ike ≥ i∈N max{0, Q it },
where the first inequality is valid because of the total fleet capacity, and the second inequality follows from Lemma 1.

Proposition 6. Inequalities max{0, Q it } min Q, L i + max e∈{1,...,t} { k∈K i b k s ike }, k∈K i b k (I ik0 + s ik1t ) ≤ t e=1 z ie ∀i ∈ N, ∀t ∈ T (24) 
are valid for M ARP .

Proof. Based on Lemma 1 we know that max{0, Q it } ≤ t e=1 k∈K i b k q ike . Now, we present upper bounds on the cumulative shipments from node i during period 1 to t. The vehicle capacity constraints (10) provide the first upper bound:

t e=1 k∈K i b k q ike ≤ Q t e=1 z ie . Next, we have t e=1 k∈K i b k q ike ≤ t e=1 (L i + k∈K i b k s ike )z ie ≤ t e=1 L i + max e ∈{1,...,t} { k∈K i b k s ike } z ie = L i + max e ∈{1,...,t} { k∈K i b k s ike } t e=1 z ie .
Where the first inequality follows from k∈K i b k q ikt ≤ L i + k∈K i b k s ikt which is valid due to constraints (4) and ( 8), and the fact that z it = 0 forces k∈K i b k q ikt = 0. The second inequality and the equation hold trivially. Moreover, we have

t e=1 k∈K i b k q ike ≤ t e=1 k∈K i b k (I ik0 + s ik1e )z ie ≤ t e=1 k∈K i b k I ik0 + max e ∈{1,...,t} {s ik1e } z ie = t e=1 k∈K i b k (I ik0 + s ik1t )z ie = k∈K i b k (I ik0 + s ik1t ) t e=1 z ie .
Where the first inequality is valid for the reason that q ike ≤ I ik0 + s ik1e which is valid due to constraints (4), the definition of s ikt 1 t 2 , and the fact that z it = 0 forces k∈K i b k q ikt = 0. The second inequality holds trivially. The first equation follows from max e ∈{1,...,t} {s ik1e } = s ik1t . The second equation holds trivially. Consequently, we obtain max{0,

Q it } ≤ t e=1 k∈K i b k q ike ≤ min Q, L i + max e∈{1,...,t} { k∈K i b k s ike }, k∈K i b k (I ik0 + s ik1t ) t e=1 z ie . Proposition 7. Inequalities max{0, d 1t -I 000 -I 0k0 } min Q b k , max i∈N k {I ik0 + s ik1t } ≤ t e=1 i∈N k z ie ∀k ∈ K, ∀t ∈ T (25) 
are valid for M ARP .

Proof. We have

d 1t -I 000 -I 0k0 ≤ t e=1 i∈N k q ike ,
which can be obtained by replacing p t using constraints (2) in constraints (3), and the nonnegativity of the inventory variables. Next, we have

t e=1 i∈N k q ike ≤ Q b k t e=1 i∈N k z ie ,
which is valid due to b k q ikt ≤ Qz it . Furthermore, we have

i∈N k t e=1 q ike ≤ i∈N k (I ik0 + s ik1t ) t e=1 z ie ≤ i∈N k max i ∈N k {I i k0 + s i k1t } t e=1 z ie = max i ∈N k {I i k0 + s i k1t } i∈N k t e=1 z ie .
Where the first inequality comes from constraints (4), and by checking for 

-I 0k0 } ≤ t e=1 i∈N k q ike ≤ min Q b k , max i∈N k {I ik0 + s ik1t } t e=1 i∈N k z ie .

Adaptation of CCJ-DH

In this section, we present the adaptation of CCJ-DH [START_REF] Chitsaz | A unified decomposition matheuristic for assembly, production and inventory routing[END_REF] to the generalized version of the ARP. The algorithm decomposes the problem into three distinct subproblems. The framework of the heuristic is presented in Figure 1. 

min t∈T up t + f y t + k∈K + h 0k I 0kt + i∈N k∈K i h ik I ikt + σ 0t z 0t (26) 
where σ 0t is the cost of each vehicle dispatch. This objective function does not include any routing decision and hence constraints (11)-( 12) become redundant. To impose the aggregate fleet capacity in the first subproblem, the algorithm adds the following constraints to constraints (3)-( 10), and ( 13)-( 15):

i∈N k∈K i b k q ikt ≤ Qz 0t ∀t ∈ T. (27) 
After solving this subproblem using CPLEX, the algorithm fixes the setup schedule and uses it as a given parameter in the second subproblem.

The second subproblem returns node visit and shipment quantity decisions. The algorithm employs another approximation of the transportation cost in the objective function based on the cost associated with visiting each supplier (node). This results in the following objective function:

min t∈T up t + k∈K + h 0k I 0kt + i∈N k∈K i h ik I ikt + i∈N σ it z it (28) 
where σ it represents the node visit cost estimation. Similarly as in the first subproblem, this subproblem ignores the routing decisions. To enforce the vehicle capacity and to make sure that the shipments can be packed into the available vehicles, the algorithm considers the following constraints as well as constraints ( 3)-( 8), (10), and ( 14)-( 15) in the second subproblem:

i∈N k∈K i b k q ikt ≤ λ t mQ ∀t ∈ T. (29) 
Here, λ t = 1 -2 n is a parameter. CCJ-DH solves this subproblem using CPLEX. Having the node visit and the shipment quantity decisions fixed for each time period, the algorithm solves one capacitated VRP for each period as the third subproblem. CCJ-DH uses the tabu search heuristic of [START_REF] Cordeau | A tabu search heuristic for periodic and multi-depot vehicle routing problems[END_REF] to solve the VRPs.

To intensify the search, CCJ-DH updates the node visit cost estimates (σ it ) for the next iteration. The algorithm uses two estimation mechanisms. The first mechanism is the cheapest insertion cost among all existing routes. The second mechanism splits the cost of each route (in each period) over its nodes proportional to their direct shipment cost. In this mechanism, if a node is not visited in a certain period, the algorithm considers the direct shipment cost as the estimated cost for that node. CCJ-DH switches between these two mechanisms after using each for 7 consecutive iterations.

To diversify the search, the algorithm adds a local branching type cut [START_REF] Fischetti | A local branching heuristic for mixed-integer programs with 2-level variables, with an application to a telecommunication network design problem[END_REF]) to the set of constraints in the first subproblem in order to consider a new setup schedule. The stopping condition for the overall algorithm is a maximum of 200 intensification iterations. To perform a diversification, CCJ-DH considers two stopping conditions: a maximum of 80 intensification iterations, or 60 intensification iterations without incumbent solution improvement.

Examples for Fractionally Violated and Non-Violated Subtours

Figure 2 shows an example where CVRPSEP returns a violated VRP CCC which is a nonviolated ARP GFSEC in the ARP (or the IRP and the PRP). Figure 3 shows an example for the case that a fractionally violated GFSEC or DFJ in the ARP (or the IRP and the PRP) cannot be found if the node visit variables (z it ) are not considered. 

z * 1 = 1, q * 1 = 15 1 z * 2 = 1, q * 2 = 20 2 3 z * 3 = 0.7, q * 3 = 25
x * 03 = 0.35 Vehicle capacity (Q) = 100

x * 01 = 0.95

x * 12 = 1 x * 13 = 0.05 Plant

x * 23 = 1 Violated VRP subtour, S = {1, 2, 3} : 1 + 1 + 0.05 = 2.05 > |S| -1 = |3| -1 = 2 LHS = Q (i,j)∈E(S) x * ij = 100 * (1 + 1 + 0.05) = 205 RHS = i∈S (Qz * i - k∈K i b k q * ik ) = 100 * (1 + 1 + 0.
z * 1 = 1, q * 1 = 10 1 z * 2 = 0.9, q * 2 = 10 2 3 z * 3 = 1, q * 3 = 10
x * 03 = 0.9 Vehicle capacity (Q) = 30

x * 01 = 0.9

x * 12 = 0.9

x * 13 = 0.2

x * 23 = 0.9

Non-violated VRP DFJ, S = {1, 2, 3} : 0.9 + 0.9 + 0.2 = 2 = |S| -1 = |3| -1 = 2

Non-violated VRP CCC:

LHS = Q (i,j)∈E(S)
x * ij = 30 * (0.9 + 0.9 + 0. 2019) presented two lower bounding methods for the ARP. The first method (BC-T) is a truncated BC with a time limit of 12 hours. BC-T uses the best-bound node selection strategy. It adds inequalities ( 26) and ( 28) a priori to the model, and SECs ( 12) and ( 27) dynamically through the search using the CVRPSEP package for separation. The second method (MIP-CP) relaxes SECs (12) from the model and solves the resulting MIP. Then, it iteratively adds the violated SECs (12) as cutting planes for the resulting integral subtours and re-solves the new MIP. A time limit of five hours is set for this method.

In Table 10, we present the performance of CCJ-DH, BC-T, and MIP-CP, and compare them with our BC. In these experiments, the BC uses all inequalities and implements algorithm A2 to separate SECs. Two branching node selection strategies are examined: balanced between optimality and feasibility (default) or the best-bound node selection. Because BC-T is able to solve the small instances with 14 suppliers in the first set (MV-C1) to optimality in a very short time, we did not apply our BC to these instances. Columns four to six present the results for CCJ-DH: CPU, #BUB, and the average solution value as a percentage of the best lower bound obtained by the BC method (%BLB). Columns 7 to 11 show the results for BC-T: CPU, #BUB, the number of best lower bounds (#BLB), %UB, and %BUB. Columns 12 to 14 show the results for MIP-CP which only generates lower bounds: CPU, #BLB, and %BUB. Columns 15 to 19, and 20 to 24 include similar results as columns 7 to 11 for the BC of this paper with the default and with the best-bound node selection strategies, respectively.

Columns under #BUB and %UB for the BC-T and our BC methods reflect the results without considering the CCJ-DH cutoffs. The comparison of columns under %UB and %BUB for each of the BC-T and our BC methods shows the effectiveness of CCJ-DH in finding upper bounds for these large instances. Most of the BUBs for the instances with n = 50 and all of the BUBs for the instances with n = 100 are obtained by CCJ-DH. BC-T is unable to find upper bounds for the instances with n = 100. Therefore, it returns zero under column %UB in all four classes of these instances. Our BC with the best-bound node selection strategy is performing better than with the default node selection strategy. Moreover, it outperforms the two other methods presented in [START_REF] Chitsaz | A unified decomposition matheuristic for assembly, production and inventory routing[END_REF], both in terms of number of BLBs, and %BUBs.

Finally, we present more details on the performance of our BC with the default and with the Size: Number of instances, † Time limit = 12 hours and maximum 30 GB memory, ‡ Time limit = 5 hours and maximum 30 GB memory, † † Time limit = one hour and maximum 25 GB memory best-bound node selection strategies in Table 11. In this table we present #Node, GFS, AV GF S , DFJ, and AV DF J . Although within the default node selection strategy the BC explores more nodes, the best-bound strategy returns better lower bounds. Another interesting observation is that the method with the default node selection strategy applies more GFSECs and DFJs with almost the same average violation on the instances with n = 50. This reflects the fact that the method with the default node selection strategy explores some nodes that do not contribute much to improve the lower bound. 

Detailed Results on Effect of Valid Inequalities

Each type of valid inequality introduced in Section 3 of the main paper has a different effect on the LP relaxation value and solution time of the M ARP model. To evaluate the effect of applying different inequality types, we performed a sensitivity analysis considering different scenarios. We consider the effect on the LP solution value when only one inequality type is added to the model. Also, we evaluate the effect when all types of valid inequalities but one are added. Furthermore, we consider the cases where no valid inequality (None), known valid inequalities (Known) from the literature (i.e., ( 18), ( 26), and ( 28)), or all valid inequalities (All) (i.e., ( 18)-( 26), and ( 28))

are added to the model. Similar to the results presented in Table 4, we present the obtained lower bound as a percentage of the best upper bound found by the BC method or CCJ-DH.

Tables 12, 13 and 14 present the results for each class of instances. Each column number in these tables refers to the associated valid inequality type number presented in Section 3 of the paper.

For the first class of instances, inequalities ( 18), ( 21) and ( 24) have the greatest impact. For the second and third classes of instances, inequalities (18), ( 22) and ( 24) show the largest LP solution value improvements. 

  applications. Both GFSECs and DFJs can be added to the model at the same time. Observe that DFJs do not impose the vehicle capacity.[START_REF] Archetti | A branch-and-cut algorithm for a vendor-managed inventory-routing problem[END_REF] and[START_REF] Archetti | Inventory routing with pickups and deliveries[END_REF] employ DFJ constraints for the IRP, and[START_REF] Archetti | Analysis of the maximum level policy in a production-distribution system[END_REF] and[START_REF] Adulyasak | Formulations and branch-and-cut algorithms for multivehicle production and inventory routing problems[END_REF] use them for the PRP.

  6.1. ARP Tests InstancesTwo out of three ARP data sets introduced in[START_REF] Chitsaz | A unified decomposition matheuristic for assembly, production and inventory routing[END_REF] include instances with 50 and 100 suppliers, all with 6 periods. Therefore, they are too large to be solved by our exact algorithm. Moreover, those instances only consider the case where every supplier provides a unique component. To cover the general case of the ARP presented in this paper, and to test the BC on different sizes of instances, we generated three new classes of instances. The first class includes instances where each supplier provides a unique component type. The second class represents the case where each supplier provides a subset of components. The third class corresponds to the situation in which one single component is offered by all suppliers. Each class includes data sets with five different planning horizons ranging from 4 to 12 periods with a step of two. For each planning horizon we consider eight different numbers of suppliers, increasing by steps of 3.
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  + I 00e -I 00,e-1 ) = d 1t + I 00t -I 000 ≥ d 1t -I 000 .The first and the second equations hold because of constraints[START_REF]Class/Number of periods/Number of suppliers, Var Bnd: Bounds on the variables, Gen Ineq: General inequalities Table 14: Effect of individual valid inequality types on average LP solution value as a percentage of BUB (class 3) Including only one type Excluding only one type Set (l,S,WW)-type Var Bnd Gen Ineq (l,S,WW)-type[END_REF], and the definition of d t 1 t 2 , respectively. The inequality is valid due to the non-negativity of the inventory variables. Moreover,

  ie ≥ 1. The second inequality and the equation are valid trivially. Finally, we obtain max{0, d 1t -I 000
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  ik ) = 30 * (1 + 0.9 + 1) -(10 + 10 + 10) = 57 LHS > RHS Violated fractional ARP GFSEC 4. Results on the Large ARP Instances of Chitsaz et al. (2019) Chitsaz et al. (
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Table 1 :

 1 ARP notation list Set of nodes, N + = {0, ..., n}, where 0 represents the plant, and N = N + \{0} represents the set of suppliers.

	Sets:
	N +

E Set of edges, E = {(i, j) : i, j ∈ N + , i < j}. K

Set of components indexed by k ∈ {1, ..., |K|}. We let

  Decision variables: pt Production quantity in period t at the plant. yt Equal to 1 if there is production at the plant in period t, 0 otherwise. I ikt Inventory of component k ∈ K i at supplier i ∈ N at the end of period t. I 0kt Inventory of component or final product k ∈ K + at the plant at the end of period t. x ijt Number of times a vehicle traverses the edge (i, j) ∈ E in period t. z it Equal to 1 if node i ∈ N is visited in period t, 0 otherwise. z 0t Number of vehicles dispatched from the plant in period t. q

	Parameters:
	f, u	Fixed setup and unit production costs, respectively.
	h	

ikt Shipment quantity of component k ∈ K from node i ∈ N k to the plant in period t. ik Unit holding cost of item k at the plant or at supplier i ∈ N +. c ij Transportation cost between nodes i and j, (i, j) ∈ E. m Fleet size. C, Q Production and vehicle capacity, respectively.

  Ω the edge e which has the least marginal cost (C ie + C je -C e ), not necessarily a negative cost, at each iteration. We only check for e > to force every initial set Ω to deal with a different subset of edges. Otherwise, different sets eventually may end up with the same result.Notice that the last set, Ω |E t | , will not examine other edges. Initialize |E t | sets Ω , for all ∈ E t 2: for all ∈ {1, ..., |E t |} do

	Algorithm 1: GFSEC Separation Procedure: A1
	1: 3:	for all e ∈ E t \ Ω , e > do
	4:	e

ijt the edge gain. The first algorithm (Algorithm A1) finds violated GFSECs (for each period t) by adding to set * = arg min e {C ie + C je -C e } 5:

Table 2 :

 2 ARP test instances* Supplier inventory capacity: L i k∈K i b k (I ik0 + 2s ik ) Plant initial inventory of final product: I 000 UDRI † † [0, 1.5d] Plant initial inventory of components:

	Class	1	2	3
	Number of instances	200	200	200
	Number of periods: l		4 to 12	
	Number of suppliers: n (for l = 4)		18 to 39	
	Number of suppliers: n (for l = 6)		15 to 36	
	Number of suppliers: n (for l = 8)		12 to 33	
	Number of suppliers: n (for l = 10)		9 to 30	
	Number of suppliers: n (for l = 12)		6 to 27	
	Number of components: k	n	0.4n	1
	Number of vehicles: m		UL ‡	
	Vehicle capacity: Q		2 max i L i	
	Demand (final product): dt = d	Constant and UDRI † † [50, 100]
	Production capacity: C		UDRI † † [d, 3d]	
	Component supply: s ikt = s ik	Constant and UDRI † † [5, 0.5d]
	Component size: b k		UDRI † † [1, 2]	
	Plant inventory capacity for final product: L 0		UDRI † † [2d, 3d]	
	Plant inventory capacity for components: L		i∈N L i	

Table 3 :

 3 Summary of the CCJ-DH resultsGap UB = (UB CCJ-DH -UB BC ) / UB BC ‡ Gap LB = (UB CCJ-DH -LB BC ) / LB BC

	Data Set	# #BUB CPU Gap UB † (%) Gap LB ‡ (%)
	Class 1					
	Not Optimal 51	43	248.9	-59.04	2.74
	Optimal	149	1	119.6	1.19	1.19
	Total	200	44	152.6	-14.17	1.59
	Class 2					
	Not Optimal 81	66	2963.1	-62.24	3.62
	Optimal	119	4	1786.3	1.22	1.22
	Total	200	70	2262.9	-24.48	2.2
	Class 3					
	Not Optimal 29	13	90.8	-15.54	2.86
	Optimal	171	5	44.1	1.55	1.55
	Total	200	18	50.9	-0.93	1.74
	†					

Table 4 :

 4 Effect of valid inequalities on LP solution Size CPU LP% CPU LP% CPU LP% Size CPU LP% CPU LP% CPU LP% Size CPU LP% CPU LP% CPU LP%

	Class 1 Class 2 Class 3	Set None Known All Set None Known All Set None Known All	l/n	4/18 5 0.004 60.4 0.016 69.9 0.022 86.6 5 0.01 71.9 0.02 82 0.042 92.8 5 0 68.1 0.01 70.9 0.012 92.5	4/21 5 0.01 57.2 0.028 70.3 0.03 86.3 5 0.012 69 0.026 77.2 0.066 89.7 5 0 66.5 0.01 68.9 0.012 90.6	4/24 5 0.004 56.5 0.032 68.9 0.038 86.3 5 0.016 64.6 0.044 78.9 0.074 91.3 5 0.002 64.7 0.01 68.5 0.018 92.9	4/27 5 0 59.1 0.034 70.4 0.05 86.6 5 0.02 66.7 0.066 81.5 0.122 92.9 5 0.006 65.3 0.018 68 0.028 94.3	4/30 5 0.01 62.1 0.066 76.6 0.058 91 5 0.034 68.7 0.12 80.9 0.196 92.6 5 0.008 67 0.022 71 0.018 93.9	4/33 5 0.004 61 0.084 73.7 0.076 89.7 5 0.04 69.4 0.12 80.7 0.246 92.3 5 0.008 64.6 0.022 68.9 0.03 92.9	4/36 5 0.01 61.2 0.094 72.5 0.1 87.9 5 0.052 65.6 0.194 77.8 0.294 91.7 5 0.002 61.5 0.03 67.8 0.032 92.3	4/39 5 0.008 53.9 0.112 64.2 0.13 83.3 5 0.074 55.2 0.362 70.6 0.478 88.4 5 0.006 46.1 0.034 53.9 0.078 88.7	6/15 5 0.01 67.5 0.014 79.5 0.044 92.4 5 0.012 72.9 0.032 82.4 0.092 92.7 5 0.002 70.4 0.016 74 0.016 92	6/18 5 0.002 65.8 0.032 74.2 0.056 89 5 0.012 63.1 0.046 77.9 0.148 90.6 5 0.006 69.3 0.024 73.2 0.03 89.9	6/21 5 0.008 56.4 0.068 72.4 0.106 87.4 5 0.026 73.1 0.104 79.5 0.258 90.9 5 0.01 63.6 0.03 69.6 0.034 88.2	6/24 5 0.006 60.3 0.05 74.3 0.114 90 5 0.034 72.8 0.152 84.2 0.434 93.2 5 0.004 65.9 0.028 68.8 0.032 88.4	6/27 5 0.006 63.5 0.078 76.4 0.154 91.3 5 0.056 56.7 0.262 76.1 0.428 89.7 5 0.006 67.3 0.032 71.9 0.042 91	6/30 5 0.01 60.5 0.15 74.7 0.194 89.8 5 0.09 59.8 0.29 73.7 0.75 90.3 5 0.01 60.9 0.05 67.3 0.046 90.5	6/33 5 0.016 55.9 0.176 69.7 0.264 88 5 0.116 59.4 0.566 76.7 1.1 90.7 5 0.01 65.5 0.072 69 0.056 87.1	6/36 5 0.014 54 0.154 74 0.31 89.7 5 0.206 53.8 0.72 75.6 0.952 91.8 5 0.01 60.3 0.074 70.2 0.088 89.3	8/12 5 0.01 69.7 0.01 79.3 0.062 91.7 5 0.008 73.7 0.034 84 0.082 92.1 5 0.002 73.4 0.016 74.9 0.018 91	8/15 5 0.002 68.9 0.016 79.5 0.092 91.5 5 0.018 71.1 0.064 83.5 0.256 92.6 5 0.008 65.8 0.024 72.7 0.032 89.3	8/18 5 0.01 64.6 0.032 79.3 0.118 92.2 5 0.02 76.4 0.09 82.9 0.386 92.2 5 0.002 71.5 0.038 76.3 0.044 89.8	8/21 5 0.01 62.7 0.078 75.5 0.228 88.4 5 0.042 63 0.154 78.2 0.692 90.2 5 0.006 67.7 0.038 71.1 0.044 87.9	8/24 5 0.012 65.4 0.18 77.7 0.33 90.4 5 0.048 58 0.262 73.4 0.98 88.7 5 0.012 63.5 0.058 68.1 0.076 85.3	8/27 5 0.012 66.6 0.206 80 0.408 91.2 5 0.082 52.3 0.37 71.1 0.88 90.1 5 0.01 71.5 0.044 74.7 0.064 89.3	8/30 5 0.018 61.3 0.166 74.5 0.34 89.7 5 0.178 60.6 0.604 79.4 2.258 91.9 5 0.016 70.6 0.096 74.8 0.108 88	8/33 5 0.022 63 0.36 74.4 0.614 86.9 5 0.242 63.8 1.17 79.6 3.008 91.9 5 0.01 65.4 0.122 73.3 0.17 87.4	10/9 5 0.008 67 0.012 83.1 0.074 93.5 5 0.006 69.6 0.014 80.1 0.074 90.6 5 0.004 66 0.016 73 0.032 88.8	10/12 5 0 67.3 0.02 78.8 0.126 92 5 0.01 62 0.038 74.1 0.204 88.3 5 0.004 64.2 0.022 70.6 0.044 85.8	10/15 5 0.002 64.5 0.066 79.4 0.21 90.7 5 0.02 60.8 0.096 77.2 0.454 90.1 5 0.006 67.3 0.036 73.8 0.068 87.4	10/18 5 0.012 68.2 0.124 80.8 0.37 90.8 5 0.034 51.8 0.158 70.4 1.136 90.6 5 0.008 63 0.048 67.9 0.092 84	10/21 5 0.014 67.3 0.132 80.7 0.52 91.7 5 0.056 65 0.252 79.2 2.104 90.8 5 0.008 65.7 0.086 67.7 0.126 85.6	10/24 5 0.016 64.2 0.238 77 0.682 89.9 5 0.136 59 0.502 74.5 3.27 90.8 5 0.01 65.8 0.078 70.3 0.158 86.1	10/27 5 0.02 64.6 0.298 74.9 0.886 87.8 5 0.174 62.2 0.906 77.6 5.01 89.8 5 0.018 67.7 0.108 72.1 0.178 87.1	10/30 5 0.026 62.8 0.382 74.4 1.094 88.2 5 0.278 52.6 1.296 66.2 8.244 82.5 5 0.018 66.3 0.142 72.5 0.244 86.9	12/6 5 0.004 71.2 0.01 83.3 0.058 93.1 5 0 70.5 0.01 79.7 0.042 89.3 5 0.002 70.4 0.01 74.3 0.032 88.2	12/9 5 0 63.8 0.014 76 0.126 88.5 5 0.008 68.7 0.022 77.7 0.108 89.8 5 0.004 69.5 0.024 74.1 0.098 87.6	12/12 5 0.006 61 0.028 78.4 0.244 91.1 5 0.01 65.2 0.046 76.1 0.474 89.3 5 0.008 67.6 0.042 72.2 0.106 85.8	12/15 5 0.008 66.2 0.106 82.4 0.452 93 5 0.03 55.3 0.144 74 1.352 90.6 5 0.008 68.7 0.052 71.8 0.09 84.5	12/18 5 0.012 68.6 0.216 80.7 0.726 91.6 5 0.048 52.4 0.284 72.4 2.012 85.4 5 0.01 65.7 0.066 70.8 0.134 86.2	12/21 5 0.016 63.9 0.274 74.5 1.096 87.9 5 0.084 52.5 0.42 62.5 4.228 82.9 5 0.012 65.2 0.1 70.4 0.196 85.8	12/24 5 0.022 66.2 0.262 79.5 1.474 90.6 5 0.124 56.5 0.688 73.6 5.074 88.2 5 0.012 66.3 0.138 72.4 0.212 87.4	12/27 5 0.03 56.8 0.334 77.7 1.474 91.1 5 0.188 54.6 0.702 73.1 9.02 89.6 5 0.02 60.1 0.17 69.7 0.286 86.9	Total 200 0.010 63.0 0.119 76.1 0.339 89.7 200 0.066 63.0 0.286 76.9 1.426 90.2 200 0.008 65.9 0.051 70.8 0.081 88.7	Note. l/n: Number of periods/Number of suppliers

Table 5 :

 5 Summary of the results of the BC with the default and the best-bound node selection strategies, and with and without the valid inequalities on different instance classes*

	Node	Valid			Class 1				Class 2					Class 3
	Selection	Ineq.	Size #Opt CPU %UB %BUB Size #Opt CPU %UB %BUB Size #Opt CPU %UB %BUB
	Default	None	200	11	3157 69.6	96.7	200	5	3234 65.4	95.2	200	22	3045 79.6	95.9
		Known 200	51	2576 86.3	96.8	200	44	2729 83.9	95.2	200	107	1912 96.1	97.5
		All	200	103	1980 91.2	99	200	69	2420	85	97.9	200	155	1205 98.3	99.5
	Best-Bound None	200	8	3207 56.5	97.3	200	5	3260 36.9	96.3	200	14	3098 64.5	96.6
		Known 200	52	2578 57.3	97.3	200	64	2418 61.8	96.3	200	107	1872 89.8	98.1
		All	200	149	1422 84.7	99.4	200	119	1976 74.4	98.7	200	171	938	97.4	99.8
	* Separation procedure used for all BC scenarios: algorithm A1								
	Size: Number of instances, None: With no inequality, Known: With known inequalities (					

Table 6 :

 6 Detailed results of the BC with the best-bound node selection strategy, and with and without the valid inequalities*

	Total 3207 2578 1422 56.5 57.3 84.7 97.3 (192) 97.3 (148) 99.4 (51) 3260 2417.7 1975.6 36.9 61.8 74.4 96.3 (195) 96.3 (136) 98.7 (81) 3097.7 1871.8 938.4 64.5 89.8 97.4 96.6 (186) 98.1 (93) 99.8 (29)	12/27 3297 3294 3295 0 8.8 25.6 94.1 (5) 94.4 (5) 97 (5) 3296.3 3290.9 3293.6 7.6 7.6 7.7 93 (5) 91.9 (5) 94.8 (5) 3295 3294.3 3297.2 13.8 56.8 77.5 93.1 (5) 93.8 (5) 98.3 (5)	12/24 3295 3296 3206 34 20.8 66.8 96.5 (5) 95 (5) 98.8 (4) 3293.2 3296.9 3296.5 15.2 0 25.5 94.4 (5) 92.7 (5) 95.5 (5) 3296.3 3293.7 2375.3 21.5 25.2 79.7 93.6 (5) 93.6 (5) 98.9 (3)	12/21 3297 3296 2686 41.2 37.6 100 97.9 (5) 97 (5) 100 (1) 3296.5 3298.1 3296.1 9.2 29 26.5 96.2 (5) 96.3 (5) 97.2 (5) 3294.8 3024.3 1837.1 25 95 100 94.4 (5) 96.6 (4) 100 (1)	12/18 3295 3298 969 32.2 41 100 97.9 (5) 97.6 (5) 100 3293.6 2642.7 2581.4 0 40 60 96.6 (5) 98 (3) 98.9 (2) 3296.6 2067.8 1061.7 77.5 98.6 100 96.1 (5) 99.6 (2) 100	12/15 3295 2727 686 60 77 100 98.2 (5) 99.4 (4) 100 3292.2 1381.9 1902.7 0 80 80 97.2 (5) 99.7 (1) 99.7 (1) 3292.9 2663.8 860.8 76.9 98 100 96.3 (5) 98.7 (3) 100	12/12 3293 140 606 36.4 100 100 98.9 (5) 100 100 3292.4 214.2 562.2 51.2 100 100 97.6 (5) 100 100 3293.4 303.4 313.2 91 100 100 97.9 (5) 100 100	12/9 2906 354 281 59.8 100 100 99 (4) 100 100 3292.1 155.2 317.5 57.6 100 100 97.4 (5) 100 100 3297.6 128.9 144.6 99.1 100 100 99.2 (5) 100 100	12/6 1241 6 10 99.9 100 100 99.9 (1) 100 100 1889.7 8.8 17.5 100 100 100 100 100 100 1554.4 4.8 14.8 99.6 100 100 99.7 (2) 100 100	10/30 3298 3296 3294 7.4 6.8 13.5 94.1 (5) 94.3 (5) 97.2 (5) 3296.2 3297.8 3293.7 5.4 5.4 23.9 92.3 (5) 91.3 (5) 95.3 (5) 3294 3294.3 2755.4 0 35.7 82.9 93.7 (5) 94 (5) 98.8 (3)	10/27 3291 3294 3073 28.7 28.1 37.5 94.7 (5) 95.1 (5) 97.2 (4) 3296 3292.6 3292.3 0 0 0 93.3 (5) 91.8 (5) 95.1 (5) 3293.8 3292.5 2403.7 22.8 94.3 99.5 95 (5) 96.3 (5) 99.5 (2)	10/24 3296 3297 2477 30.5 9.8 70.2 96.6 (5) 95.6 (5) 98.9 (2) 3295.5 3297.9 3293.5 0 8.2 27.8 95.4 (5) 92.9 (5) 97.4 (5) 3297.9 2692.3 1164.6 15.3 93.7 100 93.9 (5) 94.7 (4) 100	10/21 3297 3296 1104 59 52.8 100 97 (5) 97 (5) 100 3295.2 2805.3 2944.4 0 78.5 79.5 97 (5) 97.7 (4) 98.6 (4) 3296.6 3294.5 817.1 50.2 94.7 100 94.4 (5) 96.1 (5) 100	10/18 3297 3296 745 59.8 38.9 100 97.3 (5) 97.5 (5) 100 3292.5 3172.4 1914.6 8.4 97.7 100 96.6 (5) 99 (4) 100 3294.9 2548.3 615.5 58.4 99.8 100 96.2 (5) 99.8 (2) 100	10/15 3293 2831 511 65.2 95 100 97.7 (5) 99.3 (3) 100 3296.7 513.4 1522.4 17.3 100 100 97.7 (5) 100 100 3294 777.9 467.7 97.8 100 100 97.9 (5) 100 (1) 100	10/12 3293 724 437 59.5 98.1 100 99.1 (5) 99.6 (1) 100 3296.6 162.5 274.5 72.9 100 100 97.4 (5) 100 100 3294.4 679.7 275.2 78.9 99.9 100 98.1 (5) 99.9 (1) 100	10/9 2738 208 237 99.7 100 100 99.7 (3) 100 100 3296.6 93.5 120.7 95.6 100 100 97.5 (5) 100 100 961.8 671.9 86 99.8 99.8 100 99.8 (1) 99.8 (1) 100	8/33 3297 3293 3296 14.7 12.8 13.1 93.4 (5) 93.8 (5) 96.4 (5) 3293.5 3296 3297.4 12.1 12 19.6 93.1 (5) 92.2 (5) 95.9 (5) 3295.4 3292.6 2804.9 27.9 74.4 97.5 94.1 (5) 96.1 (5) 99.3 (4)	8/30 3297 3295 2850 32.4 38.1 57.7 95.8 (5) 94.4 (5) 98.7 (4) 3297.3 3298.5 3296.5 17.2 12.8 20.6 95.1 (5) 93.2 (5) 96.4 (5) 3296.3 3221.5 1828.6 11.1 40 63.9 94.6 (5) 96.4 (3) 98.6 (2)	8/27 3293 3296 1807 30 25.7 100 96.8 (5) 95.7 (5) 100 3299.2 3297 3297.1 34.7 42.2 46.2 95.7 (5) 94.8 (5) 97.4 (5) 3293.8 2457.5 1196.3 50.8 77.8 99.9 96.3 (5) 98.2 (3) 99.9 (1)	8/24 3295 3295 1141 56.8 27.6 100 97.4 (5) 96.8 (5) 100 3292.4 3293.7 3138 11.8 53.3 78.6 96.5 (5) 95.4 (5) 98.3 (4) 3293.8 2593.5 1053.4 47.1 75.7 100 95.7 (5) 97.3 (3) 100	8/21 3295 3293 1037 51.1 33.3 100 97.4 (5) 97.2 (5) 100 3294.2 2805.9 1591.1 14.9 93.8 100 97.5 (5) 98 (4) 100 3297.7 2705.7 652 80.6 97.1 100 97.2 (5) 98.6 (4) 100	8/18 3297 2712 962 66.6 88 100 98.1 (5) 98.4 (4) 100 3294.1 2886 1446.2 0 77.8 100 97.2 (5) 98.3 (4) 100 3292.4 1735.9 292.1 77.8 99.4 100 97.5 (5) 99.7 (2) 100	8/15 3296 978 252 76.5 99.9 100 98.8 (5) 99.9 (1) 100 3293.8 893 1074.1 50.8 100 100 97.5 (5) 100 100 3294.7 187.5 272.1 97.8 100 100 98.1 (5) 100 100	8/12 3295 117 78 79.5 100 100 99.3 (5) 100 100 3297.2 440.1 570 78.6 100 100 98.3 (5) 100 100 2683.7 692.8 663.7 99.6 100 100 99.6 (4) 100 100	6/36 3297 3294 3297 40.1 24.8 34.5 94.2 (5) 93.2 (5) 96.7 (5) 3292.6 3295.5 3296.8 29.7 29.2 24.2 93.7 (5) 92.4 (5) 96.8 (5) 3297.7 3295.1 2665.7 30.2 86.1 97.6 94.6 (5) 93.5 (5) 98.6 (4)	6/33 3296 3295 3297 45.4 32.4 46.3 96.1 (5) 95.2 (5) 98.1 (5) 3295.9 3295.9 3293.9 11.9 5.7 39 94.3 (5) 90.8 (5) 97.1 (5) 3294.7 3297.3 1948.7 34.4 91.4 99.8 95.4 (5) 95.7 (5) 99.8 (2)	6/30 3293 3296 1639 40.9 39.7 99.5 97.2 (5) 96.4 (5) 99.5 (2) 3296.5 3296.4 2862 26 5.3 71.1 95.5 (5) 92.4 (5) 97.7 (4) 3297 2098.8 606.4 37.6 98.4 100 95.4 (5) 98.8 (2) 100	6/27 3296 3295 1092 62.9 36.9 100 97.8 (5) 95.7 (5) 100 3295.4 3295.3 2292.9 22.4 57.1 99.8 96.6 (5) 95.2 (5) 99.8 (1) 3296.2 1530.5 420.2 74.1 98.9 100 95.8 (5) 99.7 (1) 100	6/24 3297 3297 1050 41.7 57 100 97.6 (5) 96.7 (5) 100 3297.1 3296.3 2320.3 13.6 35.8 99.9 96.7 (5) 94.4 (5) 99.9 (1) 3294.4 1724.6 311.6 81.2 97.5 100 96 (5) 97.5 (2) 100	6/21 3295 3290 830 65.6 44.2 100 96.7 (5) 97 (5) 100 3295.6 3297.7 1514.7 60 95.2 100 96.8 (5) 96.4 (5) 100 3295 1351.7 221.8 91.7 99.8 100 97 (5) 99.8 (2) 100	6/18 3295 2675 562 91.8 98.2 100 98 (5) 98.9 (3) 100 3296.4 2134.9 818.3 58.3 97.7 100 97.2 (5) 98.1 (3) 100 3293.6 467.3 100.9 96.5 100 100 98.5 (5) 100 100	6/15 3296 996 450 97.9 99.9 100 99.4 (5) 99.9 (1) 100 3296.6 963.6 424.1 89.9 99.9 100 97.5 (5) 99.9 (1) 100 2955.4 1002.5 285.9 99.2 99.8 100 99.2 (4) 99.8 (1) 100	4/39 3295 3292 2716 41 19 48.1 95.3 (5) 95.4 (5) 97.5 (4) 3294.8 3294.4 3293.7 13 33.2 65 94.2 (5) 91.5 (5) 97.5 (5) 3298.4 2793.9 1407.4 9.1 88.6 99.3 93.8 (5) 95 (4) 99.3 (1)	4/36 3292 3296 2663 39.5 32.3 75.6 96.5 (5) 97 (5) 98.8 (4) 3293.9 3296.2 2343.1 25.4 41.3 79.7 95.9 (5) 94.4 (5) 99.1 (3) 3293.2 3183.6 1229.3 59.8 79.4 99.1 95.4 (5) 96.7 (4) 99.5 (1)	4/33 3295 3295 1374 80.6 46.8 99.8 97.7 (5) 96.8 (5) 99.8 (1) 3294.2 3297.9 2178.9 43.6 60.1 99.9 97 (5) 94.5 (5) 99.9 (1) 3294.8 1829 509.7 83 96.4 100 97.2 (5) 99.2 (2) 100	4/30 3295 3295 812 76 57.4 100 97.8 (5) 97.6 (5) 100 3295.3 3298.1 1494.1 77.9 79.8 100 97.1 (5) 95.7 (5) 100 3291.5 2153.4 294.1 97.9 98.4 100 98.2 (5) 99.4 (2) 100	4/27 3295 2943 741 88.7 93.7 100 97.7 (5) 98.5 (3) 100 3297 2687.4 587.2 73.7 96.6 100 97.4 (5) 97.2 (4) 100 3292.8 346.4 72.7 77.4 100 100 98.2 (5) 100 100	4/24 3294 3299 750 91.3 70.8 100 97.8 (5) 97.6 (5) 100 3292.2 3026.1 1156.4 77.5 96.9 100 97.4 (5) 97.9 (4) 100 3297.4 126.1 30.2 91.3 100 100 98.7 (5) 100 100	4/21 3296 1558 317 77.7 98.4 100 98.2 (5) 99.3 (2) 100 3295.9 1582.5 892.5 95.8 99.8 100 97.6 (5) 99.8 (2) 100 2237.9 699 151.7 97.8 100 100 98.2 (3) 100 100	4/18 2778 1782 265 98.4 99.7 100 99.1 (4) 99.7 (1) 100 3296.8 2214.9 622.9 96.3 99.1 100 98.1 (5) 99.1 (2) 100 1483.2 54.9 27.8 99 100 100 99 (2) 100 100	l/n None Known All None Known All None Known All None Known All None Known All None Known All None Known All None Known All None Known All	Set CPU %UB %BUB CPU %UB %BUB CPU %UB %BUB	Class Class Class

Table 7 :

 7 Detailed results of the BC with the default node selection strategy, and with and without the valid inequalities*

			All	
		%BUB	Known	
			None	
	Class	%UB	None Known All	
			All	
		CPU	None Known	
			All	
		%BUB	Known	
	Class	%UB	None Known All None	96.3 99.1 99.9 96.8 (5)
		CPU	None Known All	3295 2199.1 862.6
			All	100
		%BUB	Known	99.8 (1)
			None	98.9 (4)
	Class	Set CPU %UB	l/n None Known All None Known All	4/18 2855 1175 438 98.9 99.8 100

Table 8 :

 8 Performance of the BC with different separation procedures*

	4/18 1446 99.9 (1)	l/n CPU %BUB CPU %BUB CPU %BUB CPU %BUB CPU %BUB CPU %BUB CPU %BUB CPU %BUB CPU %BUB	Set CVRPSEP A1 A2 CVRPSEP A1 A2 CVRPSEP A1 A2	Class 1 Class 2 Class 3

  Total 2264 98.6 (122) 1422 99.4 (51) 1322 99.5 (52) 2347 98 (123) 1976 98.7 (81) 1973 98.7 (95) 1688 99.1 (83) 938 99.8 (29) 806 99.8 (26)

	12/27 3295	12/24 3297	
	95.7 (5)	97.4 (5)	
	3295 97 (5) 3298 97 (5) 3300 92.3 (5) 3294 94.8 (5) 3298 94.7 (5) 3291 96.1 (5) 3297 98.3 (5) 3119 98.4 (4)	3206 98.8 (4) 3063 98.9 (3) 3294 93.6 (5) 3296 95.5 (5) 3295 95.2 (5) 3296 95.3 (5) 2375 98.9 (3) 2440 98.4 (3)	2 (5) 3298 97 (5) 3297 97.2 (5) 1837 100 (1) 1910 100

Table 9 :

 9 Summary of added SECs and CPLEX cuts for different classes of instances when different separation procedures are applied*

	Sep	Class Size #Opt #Node GFS AV GF S	DFJ	AV DF J Cover Flow Clique MIR Path ImplBd ZeroHalf LiftProj
	CVRPSEP	1 200	78	7016	561.3	0.4	3432.3	0.62	172.2 254.2	19.2	745.9	26.1	69.9	295.9	17.8
		2 200	77	2898	209.1	0.4	1607.3	0.75	156.1 628.5	1.4	2010.5	89	377.4	151.7	24.4
		3 200	117	4452	562.3	0.42	4753.7	0.76	120.4 232.2	3.3	661.1	2.2	68.4	137.7	22.2
		Total 600	272	4768	442.2	0.41	3252.6	0.71	149.5 373.8	7.9	1146.4 39.5	173.6	194.4	21.5
	A1	1 200	149	3940	981.2	0.29	4528	0.4	96.6 133.1	16.1	349.8	8	44.1	93.2	16.2
		2 200	119	2295	1024.9	0.24	3958.7	0.37	99.6 359.9	1.3	1034.8 39.3	253.7	68.3	17.5
		3 200	171	1887	748.9	0.22	3839.1	0.42	56.5 114.1	3.3	359	0.8	39.7	45.4	13.4
		Total 600	439	2707	918.3	0.25	4108.6	0.4	84.3 202.4	6.9	581.2	16	112.5	69	15.7
	A2	1 200	148	5013	432.1	0.21	1473	0.44	127.8 187.6	18.1	510.3	13.2	58.2	168	14.7
		2 200	105	1962	349.3	0.18	1148.5	0.43	110	419.1	1.4	1320.2 45.2	304.4	79.6	17.6
		3 200	174	2047	305.9	0.19	1481.8	0.48	78.2 173.5	3.3	535.9	1	50.1	70.5	13.5
		Total 600	427	3007	362.4	0.2	1367.7	0.45	105.3 260.1	7.6	788.8	19.8	137.5	106	15.3
	* Best-bound node selection strategy is used for all these experiments								
	Sep: Separation procedure													

Table 10 :

 10 Comparison of the BC performance with the lower bounding methods presented in[START_REF] Chitsaz | A unified decomposition matheuristic for assembly, production and inventory routing[END_REF] 

Table 11 :

 11 Summary of the results of the BC on the large ARP instances of Chitsaz et al. (2019) with different node selection strategies Node Selection n Class Size %UB %BUB #Node GFS AV GF S DFJ AV DF J

	Default	50	1	120 47.6	98.6	2014.3 1625	0.21	0.4
		50	2	120 40.6	98.6	1778.9 1533	0.21	0.4
		50	3	120 29.5	94.6	1547	1814	0.21	0.39
		50	4	120 51.3	98.9	2434.6 1069	0.22	0.48
		Total		480 42.3	97.7	1944.2 1510	0.21	0.42
		100	1	120	1.4	97.1	4.6	1939	0.28	0.37
		100	2	120	2.6	97.4	5.3	2032	0.28	0.36
		100	3	120	0.3	90.5	0.6	2263	0.25	0.32
		100	4	120	2.5	97.7	35.8	1346	0.32	0.48
		Total		480	1.7	95.7	11.5	1896	0.28	0.38
	Best-Bound	50	1	120	23	99	987.1	1160	0.22	0.39
		50	2	120 23.7	99	1070.1 1146	0.22	0.39
		50	3	120 10.1	96.2	653	1336	0.22	0.37
		50	4	120	24	99.3	2255.2	700	0.24	0.5
		Total		480 20.2	98.4	1242.1 1085	0.23	0.41
		100	1	120	3.4	97.9	1.7	1921	0.28	0.38
		100	2	120	2.6	97.9	1.3	2098	0.28	0.37
		100	3	120	0	91.3	0.1	2140	0.26	0.33
		100	4	120	2.6	98.5	22.6	1442	0.32	0.48
		Total		480	2.2	96.4	6.4	1899	0.28	0.39

Size: Number of instances, Time limit = 1 hour

Table 12 :

 12 Effect of individual valid inequality types on average LP solution value as a percentage of BUB (class 1)

				Including only one type			Excluding only one type
		Set	(l,S,WW)-type	Var Bnd	Gen Ineq	(l,S,WW)-type	Var Bnd	Gen Ineq
	C/l/n	Size None (18) (19) (20) (21) (22) (23) (24) (25) (26) (28) Known (18) (19) (20) (21) (22) (23) (24) (25) (26) (28) All

Table 13 :

 13 Effect of individual valid inequality types on average LP solution value as a percentage of BUB (class 2)

				Including only one type			Excluding only one type
		Set	(l,S,WW)-type	Var Bnd	Gen Ineq	(l,S,WW)-type	Var Bnd	Gen Ineq
	C/l/n	Size None (18) (19) (20) (21) (22) (23) (24) (25) (26) (28) Known (18) (19) (20) (21) (22) (23) (24) (25) (26) (28) All
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Highlights

• We study integrated production, inventory and inbound transport planning problem