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Our aim in this article is to study the asymptotic behavior of a Cahn-Hilliard/Allen-Cahn system coupled with a heat equation based on the type III heat conduction law with singular potentials. We also show further regularity results and we prove a strict separation property (from the pure states) in one space dimension.

Introduction

The Cahn-Hilliard/Allen-Cahn system

∂u ∂t = h 2 ∆(f (u + v) + f (u -v) -h 2 ∆u), ∂v ∂t = -f (u + v) + f (u -v) -γv + h 2 ∆v,
The function u represents the concentration of one of the components and it is a conserved quantity, the function v is an order parameter, the variable h is a (positive) parameter which represents the lattice spacing, the variable γ is a parameter that reflects the location of the system within the phase diagram (it may be either positive or negative), and the nonlinear term f is the derivative of a double-well potential F .

The system models simultaneous order-disorder and phase separation in binary alloys on a BCC lattice in the neighborhood of the triple point. We note that it also represents a gradient flow in H 1 × L 2 for the free energy

J(u, v) = Ω F (u + v) + F (u -v) + γ 2 v 2 + 1 2 h 2 (|∇u| 2 +|∇v| 2 ) dx.
The mathematicians A. Novick-Cohen, D. Brochet, and D. Hilhorst studied the previous system with Neumann boundary conditions in [START_REF] Brochet | Finite-Dimensional exponential attractor for a model for order-disorder and phase separation[END_REF]. They proved the well-posedness and the existence of maximal attractors and exponential attractors for the classic cubic nonlinear term f (s) = s 3 -βs in three space dimensions. These results were recently improved in [START_REF] Miranville | Asymptotic behavior of a model for order-disorder and phase separation[END_REF]. There, the authors took initial conditions in H 2 (Ω) which allowed them to prove the existence of exponential attractors and of the finite-dimensional global attractor for a large class of nonlinear terms containing polynomials of arbitrary odd degree, with a strictly positive leading coefficient in three space dimensions. This model has been also studied in [START_REF] Miranville | On the Cahn-Hilliard/Allen-Cahn equations with singular potentials[END_REF], where an exponential attractor for singular potentials was found, and by consequence a global attractor of finite dimension.

Likewise, in [START_REF] Passo | Existence for an Allen-Cahn/Cahn-Hilliard system with degenerate mobility[END_REF], the authors studied a similar system with a non-constant mobility. They proved the existence of weak solutions for the Neumann problem for a degenerate parabolic system. In addition, asymptotics for a similar system was studied in [START_REF] Novick-Cohen | Triple-junction motion for an Allen-Cahn/Cahn-Hilliard system[END_REF]. Then the partial wetting case was studied in [START_REF] Novick-Cohen | Geometric motion for a degenerate Allen-Cahn/Cahn-Hilliard system: The partial wetting case[END_REF].

Solving coupled AC/CH systems using numerical methods was also studied in, e.g. [START_REF] Millett | Void nucleation and growth in irradiated polycrystalline metals: A phase-field model[END_REF][START_REF] Rokkam | Phase field modeling of void nucleation and growth in irradiated metals[END_REF], and [START_REF] Tonks | An object-oriented finite element framework for multiphysics phase field simulations[END_REF]- [START_REF] Yang | NKS Method for the Implicit Solution of a Coupled Allen-Cahn/Cahn-Hilliard System[END_REF].

In the Cahn-Hilliard theory, a thermodynamically relevant potential F is the following logarithmic function which follows from a mean-field model (see [START_REF] Miranville | The Cahn-Hilliard equation and some of its variants[END_REF][START_REF] Miranville | The Cahn-Hilliard equation: recent advances and applications[END_REF][START_REF] Miranville | The Cahn-Hilliard equation with singular potentials and dynamic boundary conditions[END_REF][START_REF] Miranville | Robust exponential attractors for Cahn-Hilliard type equations with singular potentials[END_REF]):

F (s) = θ c 2 (1 -s 2 ) + θ 2 (1 -s) ln 1 -s 2 + (1 + s) ln 1 + s 2 , ( 1.1) 
s ∈ (-1, 1), 0 < θ < θ c .

Furthermore,

f (s) = (F (s)) = -θ c s + θ 2 ln 1 + s 1 -s . (1.2)
This logarithmic potential F is usually approximated by regular ones, typically,

F (s) = 1 4 (s 2 -1) 2 , ( 1.3) 
leading to the cubic nonlinear term f (s) = s 3 -s.

It should be noted that this approximation is acceptable when the absolute temperature θ is close to the critical one θ c . Also note that the nonlinear term f given by (1.2) leads to essential difficulties, due to the fact that that the order parameter has to remain in the physically relevant interval (-1, 1) (see, e.g. [START_REF] Cherfils | The Cahn-Hilliard equation with logarithmic nonlinear terms[END_REF][START_REF] Miranville | Robust exponential attractors for Cahn-Hilliard type equations with singular potentials[END_REF][START_REF] Miranville | The Cahn-Hilliard equation with singular potentials and dynamic boundary conditions[END_REF]). Now, a critical disadvantage of the Fourier law is that it predicts the propagation of thermal signals with an infinite speed, which violates the 'paradox of heat conduction', (see, e.g., [START_REF] Christov | Heat conduction paradox involving second-sound propagation in moving media[END_REF]). Therefore, many efforts have been done to correct this unrealistic feature.

For example, in [START_REF] Miranville | A generalization of the Caginalp phase-field system based on the Cattaneo heat flux law[END_REF], the authors assumed the classical Fourier law q = -∇θ and considered

1 + η ∂ ∂t q = -∇θ, η > 0. That leaded to η ∂ 2 θ ∂t 2 + ∂θ ∂t -∆θ = -η ∂ 2 v ∂t 2 - ∂v ∂t ,
(see also [START_REF] Jiang | Convergence to equilibrium for a parabolic-hyperbolic phase-field model with Cattaneo heat flux law[END_REF], [START_REF] Jiang | Convergence to equilibrium for a fully hyperbolic phase field model with Cattaneo heat flux law[END_REF] the Maxwell-Cattaneo law).

Another example was proposed in [START_REF] Green | A re-examination of the basic postulates of thermomechanics[END_REF]- [START_REF] Green | A new thermoviscous theory for fluids[END_REF] by Green and Naghdi. It is a different treatment for a thermomechanical theory of deformable media that replaces the usual entropy inequality by an entropy balance.

We recall that three different theories concerning the heat conduction were proposed. They were entitled: type I (the Fourier law linearized), type II and type III. The linearized versions of the types II and III are given by: q = -k∇α, k > 0, (

and

q = -k∇α -k * ∇θ, k, k * > 0, (1.5) 
respectively, where

α(t) = t t 0 θ(τ )dτ + α 0 ,
is the thermal displacement variable and θ = ∂α ∂t .

The qualitative study of the solutions was also treated in [START_REF] Quintanilla | Damping of end effects in a thermoelastic theory[END_REF]- [START_REF] Quintanilla | Energy bounds for some non-standard problems in thermoelasticity[END_REF]. Non-linear acceleration waves for types II and III and fluids without energy dissipation have been studied too, in [START_REF] Quintanilla | A note on discontinuity waves in type III thermoelasticity[END_REF] and [START_REF] Quintanilla | Nonlinear waves in a Green-Naghdi dissipationless fluid[END_REF].

Observe that if we sum equations (1.4) and (1.5) with

∂H ∂t + div q = 0, (1.6)
where H is the enthalpy defined by

H = v + θ
and θ is the relative temperature, we obtain

∂ 2 α ∂t 2 -k∆α = - ∂v ∂t (Type II),
and

∂ 2 α ∂t 2 -k * ∂ ∂t ∆α -k∆α = - ∂v ∂t (Type III).

Setting of the problem

We consider the following initial and boundary value problem, in a bounded and regular domain Ω ⊂ R n , n = 1, 2 or 3, with boundary Γ, (for simplicity, we take k = k * = 1):

∂u ∂t + ∆ 2 u -∆(f (u + v) + f (u -v)) = 0, (1.7) ∂v ∂t -∆v + f (u + v) -f (u -v) = ∂α ∂t , (1.8) ∂ 2 α ∂t 2 -∆ ∂α ∂t -∆α = - ∂v ∂t , ( 1.9 
)

u = ∆u = v = α = 0 on Γ, (1.10 
)

u| t=0 = u 0 , v| t=0 = v 0 , α| t=0 = α 0 , ∂α ∂t | t=0 = α 1 . (1.11)
As far as the nonlinear term f is concerned, we assume more generally that

f ∈ C 1 (-1, 1), f (0) = 0, (1.12) 
lim s→±1 f (s) = ±∞ and lim s→±1 f (s) = +∞. (1.13) 
In particular, it follows from these assumptions that

f -c 0 , c 0 0, (1.14) and -c 1 F (s) f (s)s + c 2 , c 1 , c 2 0, s ∈ (-1, 1), (1.15) 
where F (s) = s 0 f (τ ) dτ (in particular, in order to obtain the right-hand side of (1.15), we can study the variations of the function s → f (s)s -F (s) + c 0 2 s 2 , whose derivative has, owing to (1.15), the sign of s).

Remark 1.1. In particular, the thermodynamically relevant logarithmic functions (1.2) satisfy the above assumptions.

In this work, we study the Cahn-Hilliard and Allen-Cahn equations coupled with a heat equation based on the type III law of thermoelasticity that was first studied in [START_REF] Miranville | Asymptotic Behavior of a Cahn-Hilliard/Allen-Cahn System with Temperature[END_REF], with regular potentials and exponential attractors were found. Here, we first prove the existence of weak solutions for (1.7)-(1.11) with a singular nonlinear term that satisfies (1.13). First, we approximate the singular nonlinear terms by regular ones and prove the convergence of the solution for the approximated problem to that of the limit singular one. Then, we prove the uniqueness of the solution, which allows us to define the corresponding dissipative semigroup. We finally prove some higher-order regularity results which lead to a strict separation property in one space dimension.

We note that, in [START_REF] Krasnyuk | Long-time oscillating properties of confined disordered binary alloys[END_REF], the authors also studied a coupled AC/CH system with temperature and long-time oscillating properties were found.

Notations

We denote by (( • , • )) the usual L 2 -scalar product, with associated norm • . We further set ((

• , • )) -1 = (((-∆) -1 2 •, (-∆) -1 2 •)), with associated norm • -1
, where (-∆) -1 denotes the inverse minus Laplace operator associated with Dirichlet boundary conditions. Note that • -1 is equivalent to the usual H -1 -norm on H -1 (Ω) = H 1 0 (Ω) . More generally, • X denotes the norm in the Banach space X.

Throughout the article, the same letter c, c , c (and, sometimes, C) denotes (generally positive) constants which may vary from line to line.

Following the idea of Debussche and Dettori (see [START_REF] Debussche | On the Cahn-Hilliard equation with a logarithmic free energy[END_REF] and [START_REF] Dupaix | A singularly perturbed phase field model with a logarithmic nonlinearity[END_REF]), we consider the following approximated function

f N ∈ C 1 (R), for N ∈ N, by f N (s) =              f (-1 + 1 N ) + f (-1 + 1 N )(s + 1 - 1 N ), s < -1 + 1 N , f (s), |s| 1 - 1 N , f (1 - 1 N ) + f (1 - 1 N )(s -1 + 1 N ), s > 1 - 1 N .
Then, we introduce the approximated problem:

∂u N ∂t + ∆ 2 u N -∆(f N (u N + v N ) + f N (u N -v N )) = 0, (1.16 
)

∂v N ∂t -∆v N + f N (u N + v N ) -f N (u N -v N ) = ∂α N ∂t , (1.17) 
∂ 2 α N ∂t 2 -∆ ∂α N ∂t -∆α N = - ∂v N ∂t , ( 1.18 
)

u N = ∆u N = v N = α N = 0 on Γ, (1.19 
)

u N |t=0 = u 0 , v N |t=0 = v 0 , α N |t=0 = α 0 , ∂α N ∂t t=0 = α 1 , (1.20) 
As far as the approximated function f N is concerned, we have

f N -c 0 (1.21)
and, setting

F N (s) = s 0 f N (τ ) dτ , -c 3 F N (s) c 4 f N (s)s + c 5 , c 4 > 0, c 3 , c 5 0, s ∈ R, (1.22 
)

f N (s)s c 6 |f N (s)|-c 7 , c 6 > 0, c 7 0, s ∈ R, (1.23) 
where the constants c i , i = 3, • • • , 7, are independent of N (see [START_REF] Miranville | The Cahn-Hilliard equation with singular potentials and dynamic boundary conditions[END_REF]).

A Priori Estimates

We start by assuming that :

u 0 + v 0 L ∞ (Ω) 1 -δ, δ ∈ (0, 1) (2.1) and u 0 -v 0 L ∞ (Ω) 1 -δ , δ ∈ (0, 1), (2.2) 
where δ and δ are fixed positive constants.

We rewrite (1.16) in the equivalent form

(-∆) -1 ∂u N ∂t -∆u N + f N (u N + v N ) + f N (u N -v N ) = 0. (2.3)
We multiply (2.3) by u N , (1.17) by v N and sum the resulting equalities to obtain

1 2 d dt ( u N 2 -1 + v N 2 ) + ∇u N 2 + ∇v N 2 + ((f N (u N + v N ), u N + v N )) + ((f N (u N -v N ), u N -v N )) = ∂α N ∂t , v N .
(2.4)

Now, owing to (1.23), the previous equation gives

1 2 d dt ( u N 2 -1 + v N 2 ) + ∇u N 2 + ∇v N 2 + f N (u N + v N ) L 1 (Ω) + f N (u N -v N ) L 1 (Ω) c ∂α N ∂t 2 + v N 2 +1 .
(2.5)

Multipling then (1.18) by α N we obtain 

d dt ∇α N 2 +2 ∂α N ∂t , α N + c ∇α N 2 c ∂v N ∂t 2 + c ∂α N ∂t 2 . ( 2 
+ ∂v N ∂t 2 + 1 2 
d dt ∇u N 2 + ∇v N 2 +2 Ω [F N (u N + v N ) + F N (u N -v N )] dx = ∂α N ∂t , ∂v N ∂t .
(2.7)

We then multiply (1.18) by ∂α N ∂t to obtain 1 2

d dt ∇α N 2 + ∂α N ∂t 2 + ∇ ∂α N ∂t 2 = - ∂v N ∂t , ∂α N ∂t . (2.8)
Now, summing (2.7) and (2.8), we find 1 2

d dt ∇u N 2 + ∇v N 2 +2 Ω [F N (u N + v N ) + F N (u N -v N )] dx + ∇α N 2 + ∂α N ∂t 2 + ∂u N ∂t 2 -1 + ∂v N ∂t 2 + ∇ ∂α N ∂t 2 = 0 (2.9)
Summing finally (2.9), 1 times (2.5) and 2 times (2.6), where 1 , 2 > 0 are chosen small enough so that ∂α N ∂t 2

+ 2 ∇α N 2 +2 ∂α N ∂t , α N c ∂α N ∂t 2 + ∇α N 2 , (2.10) 2 -1 c -2 c > 0, (2.11) 2 -2 c > 0, (2.12) 
we obtain an inequality of the form

d dt E N 1 + c E N 1 + f N (u N + v N ) L 1 (Ω) + f N (u N -v N ) L 1 (Ω) + ∂u N ∂t 2 -1 + ∂v N ∂t 2 + ∇α N 2 + ∇ ∂α N ∂t 2 c, (2.13) 
where

E N 1 = 1 u N 2 -1 + 1 v N 2 + ∇u N 2 + ∇v N 2 +2 Ω [F N (u N + v N ) + F N (u N -v N )] dx + (1 + 2 ) ∇α N 2 +2 2 ∂α N ∂t , α N + ∂α N ∂t 2 , (2.14) satisfies E N 1 c ∇u N 2 + ∇v N 2 + 2 Ω [F N (u N + v N ) + F N (u N -v N )] dx + ∇α N 2 + ∂α N ∂t 2 -c , c > 0.
(

We note that (2.13) and Gronwall's lemma imply the dissipative estimate

E N 1 (t) e -ct E N 1 (0) + c , c > 0, t 0. (2.16)
Integrating now (2.13) with respect to time, we have, for r > 0 fixed,

f N (u N + v N ) L 1 ((t,t+r)×Ω) + f N (u N -v N ) L 1 ((t,t+r)×Ω) ce -c t u 0 2 -1 + v 0 2 + α 0 2 + ∇u 0 2 + ∇v 0 2 + ∇α 0 2 + α 1 2 +c Ω (F N (u 0 + v 0 ) + F N (u 0 -v 0 )) dx + c (r).
(2.17) Furthermore,

t+r t ∂u N ∂t 2 -1 + ∂v N ∂t 2 + ∇ ∂α N ∂t 2 dτ ce -c t u 0 2 -1 + v 0 2 + α 0 2 + ∇u 0 2 + ∇v 0 2 + ∇α 0 2 + α 1 2 +c Ω (F N (u 0 + v 0 ) + F N (u 0 -v 0 )) dx + c (r), c > 0, t 0.
(2.18) Also, we note that, owing to (2.1)-(2.2), we have

Ω (F N (u 0 + v 0 ) + F N (u 0 -v 0 )) dx c.
Consequently, (2.17) yields

f N (u N + v N ) L 1 ((t,t+r)×Ω) + f N (u N -v N ) L 1 ((t,t+r)×Ω) ce -c t u 0 2 -1 + v 0 2 + α 0 2 + ∇u 0 2 + ∇v 0 2 + ∇α 0 2 + α 1 2 +c (r) . (2.19)
We have thus found an estimate on the

L 1 -norm of f N (u N + v N ) and f N (u N -v N ).
We finally multiply (2.3) by -∆u N , (1.17) by -∆v N and (1.18) by ∂α N ∂t . Summing the result and using (1.21), we obtain 1 2

d dt u N 2 + ∇v N 2 + ∇α N 2 + ∂α N ∂t 2 + ∆u N 2 +c ∆v N 2 +c ∇ ∂α N ∂t 2 c ( ∇u N 2 + ∇v N 2 ) + ∂v N ∂t 2 .
(2.20)

Using an interpolation inequality and Young's inequality, we have

u N 2 H 1 (Ω) c u N u N H 2 (Ω) 1 2 ∆u N 2 +c u N 2 , c 0.
Therefore,

d dt u N 2 + ∇v N 2 + ∇α N 2 + ∂α N ∂t 2 + c ∆u N 2 + ∆v N 2 + ∇ ∂α N ∂t 2 c ( u N 2 + ∇v N 2 ) + ∂v N ∂t 2 .
(2.21)

Using now Gronwall's lemma, we obtain

u N 2 + ∇v N 2 + ∇α N 2 + ∂α N ∂t 2 e c t ( u 0 2 + ∇v 0 2 + ∇α 0 2 + α 1 2 ) + c . (2.22)
Furthermore, multiplying (1.18) by -∆ ∂α N ∂t yields

d dt ∆α N 2 + ∇ ∂α N ∂t 2 + ∆ ∂α N ∂t 2 ∂v N ∂t 2 .
(2.23)

Existence of solutions

Theorem 3.1. We assume that (u

0 , v 0 , α 0 , α 1 ) ∈ (H 2 (Ω) ∩ H 1 0 (Ω)) 3 × H 1 0 (Ω) such that u 0 , v 0 satisfies (2.1)-(2.2). Then, the problem (1.7)-(1.11) admits at least one solution (u, v, α, ∂α ∂t ) such that, ∀T > 0 (u, v) ∈ L ∞ (R + ; H 1 0 (Ω) 2 ) ∩ L 2 (0, T ; H 2 (Ω) 2 ), α ∈ L ∞ (R + ; H 1 0 (Ω)) ∩ L ∞ (0, T ; H 2 (Ω)), ∂u ∂t , ∂v ∂t ∈ L 2 (0, T ; H -1 (Ω) × L 2 (Ω)) and ∂α ∂t ∈ L ∞ (R + ; H 1 0 (Ω)) ∩ L 2 (0, T ; H 2 (Ω)). Furthermore, ∀ t > 0, u(t) + v(t) L ∞ (Ω) 1 and u(t) -v(t) L ∞ (Ω) 1,
and the sets

{(t, x) ∈ (0, T ) × Ω; |u(t, x) + v(t, x)| 1} and {(t, x) ∈ (0, T ) × Ω; |u(t, x) -v(t, x)| 1}, are of null measures.
Proof. We have, owing to the dissipative estimate (2.15), that sup

[0,T ] u N (t) 2 H 1 (Ω) + v N (t) 2 H 1 (Ω) + α N (t) 2 H 1 (Ω) + ∂α N ∂t (t) 2 c , (3.1)
where c is independent of N . Letting N tends to +∞ and considering a subsequence, we have by estimation (3.1)

u N → u weak star in L ∞ (0, T ; H 1 (Ω)), (3.2) v N → v weak star in L ∞ (0, T ; H 1 (Ω)) (3.3) α N → α weak star in L ∞ (0, T ; H 1 (Ω)) (3.4) ∂α N ∂t → ∂α ∂t weak star in L ∞ (0, T ; L 2 (Ω)) (3.5)
Integrating now (2.13) between 0 and t, we have, in view of (3.1),

E N 1 (t) + c t 0 ∂u N ∂t 2 -1 + ∂v N ∂t 2 + ∇ ∂α N ∂t 2 ds c , ∀ t ∈ [0, T ], c > 0, (3.6) 
where c is independent of N . It thus follows that

∂u N ∂t → ∂u ∂t weakly in L 2 (0, T ; H -1 (Ω)), (3.7 
)

∂v N ∂t → ∂v ∂t weakly in L 2 (0, T ; L 2 (Ω)). (3.8)
Also, integrating (2.23) between 0 and t, we have,

∆α N (t) 2 + ∇ ∂α N ∂t (t) 2 + t 0 ∆ ∂α N ∂t (s) 2 ds c , ∀ t ∈ [0, T ], (3.9) 
where c independent of N . It thus follows that

α N → α weak star in L ∞ (0, T ; H 2 (Ω)), (3.10 
)

∂α N ∂t → ∂α ∂t weak star in L ∞ (0, T ; H 1 0 (Ω)), weakly in L 2 (0, T ; H 2 (Ω)). (3.11)
Integrating (2.21) between 0 and t, we deduce

u N (t) 2 + ∇v N (t) 2 + ∇α N (t) 2 + ∂α N ∂t (t) 2 + c t 0 ∆u N (s) 2 + ∆v N (s) 2 ds c , ∀ t ∈ [0, T ], (3.12) 
where c is independent of N . This results that ∆u N ∆u weakly in L 2 ((0, T ) × Ω), ∆v N ∆v weakly in L 2 ((0, T ) × Ω).

(3.13)

The only difficulty, when passing to the limit, is to pass to the limit in the nonlinear terms containing

f N . First, it follows from (2.19) that f N (u N + v N ) and f N (u N -v N ) are bounded, independently of N , in L 1 ((0, T ) × Ω). Then, it follows from the explicit expression of f N that meas(F N,M ) µ( 1 N ), N M,
where

F N,M = {(t, x) ∈ (0, T ) × Ω; |u M (t, x) + v M (t, x)|> 1 - 1 N } and µ(s) = c min(|f (1 -s)|, |f (s -1)|) ,
where, here, the constant c is independent of N and M . Note that there holds

T 0 Ω |f M (u M + v M )| dx dt F N,M |f M (u M + v M )| dx dt c meas (F N,M ) 1 µ( 1 N ) , ( 3.14) 
where the constant c is independent of N and M .

Passing now to the limit M tends to +∞ (employing Fatou's lemma on (3.14)) and the N tends to +∞ (noting that lim 

s→0 µ(s) = 0) to find meas{(t, x) ∈ (0, T ) × Ω; |u(t, x) + v(t, x)| 1} = 0, so that -1 < u(t, x) + v(t,
f N (u N + v N ) → f (u + v) a.e. (t, x) ∈ (0, T ) × Ω (3.17) and f N (u N -v N ) → f (u -v) a.e. (t, x) ∈ (0, T ) × Ω. (3.18)
Finally, rewriting (1.17) and (2.3) as

f N (u N + v N ) + f N (u N -v N ) = -(-∆) -1 ∂u N ∂t + ∆u N , (3.19) f N (u N + v N ) -f N (u N -v N ) = ∂α N ∂t - ∂v N ∂t + ∆v N . (3.20)
We sum (3.19) and (3.20), then we subtract them, to have

2f N (u N + v N ) = -(-∆) -1 ∂u N ∂t + ∆u N + ∂α N ∂t - ∂v N ∂t + ∆v N , 2f N (u N -v N ) = -(-∆) -1 ∂u N ∂t + ∆u N - ∂α N ∂t + ∂v N ∂t -∆v N .
Therefore,

f N (u N + v N ) 2 + f N (u N -v N ) 2 c ∂u N ∂t 2 -1 + ∆u N 2 + ∂α N ∂t 2 + ∂v N ∂t 2 + ∆v N 2 , ( 3.21) 
integrating (3.21) between 0 and t, owing to (3.6) and (3.12), we have

f N (u N + v N ) 2 L 2 ((0,T )×Ω) + f N (u N -v N ) 2 L 2 ((0,T )×Ω) c, (3.22)
where c is independent of N . Thus, it follows from (3.17) and (3.18) that

f N (u N + v N ) → f (u + v) weakly in L 2 ((0, T ) × Ω),
and

f N (u N -v N ) → f (u -v) weakly in L 2 ((0, T ) × Ω),
which finishes the proof of the passage to the limit (the weak continuity property follows from Strauss's lemma, see, e.g., [START_REF] Temam | Navier-Stokes Equations: Theory and Numerical Analysis[END_REF]).

The following result gives us the uniqueness of the solution of the problem (1.7)-(1.11). Proof. We actually prove a more general result, namely, the uniqueness of solutions such that |u(t, x) + v(t, x)|< 1 and |u(t, x) -v(t, x)|< 1 almost everywhere in (0, T ) × Ω and which does not necessarily satisfy the separation property (when this property is satisfied, the proof of uniqueness is straightforward).

Let u (1) , v (1) , α (1) , ∂α ∂t [START_REF] Adams | Sobolev Spaces[END_REF] and u (2) , v (2) , α (2) , ∂α ∂t [START_REF] Brochet | Finite-Dimensional exponential attractor for a model for order-disorder and phase separation[END_REF] be two solutions of (1.7)-(1.11) with the same initial data.

We set u, v, α, ∂α ∂t = u (1) , v (1) , α (1) , ∂α ∂t

(

-u (2) , v (2) , α (2) , ∂α ∂t [START_REF] Brochet | Finite-Dimensional exponential attractor for a model for order-disorder and phase separation[END_REF] .

Then (u, v, α) satisfies (-∆) -1 ∂u ∂t -∆u + f (u (1) + v (1) ) -f (u (2) + v (2) ) + f (u (1) -v (1) ) -f (u (2) -v (2) ) = 0, (3.23) ∂v ∂t -∆v + f (u (1) + v (1) ) -f (u (2) + v (2) ) -f (u (1) -v (1) ) + f (u (2) -v (2) ) = ∂α ∂t , (3.24) ∂ 2 α ∂t 2 -∆ ∂α ∂t -∆α = - ∂v ∂t , (3.25) u = ∆u = v = α = 0 on Γ, (3.26 
)

u |t=0 = v |t=0 = α |t=0 = ∂α ∂t t=0 = 0. (3.27)
We multiply (3.23) by u, (3.24) by v and sum to obtain

1 2 d dt ( u 2 -1 + v 2 ) + ∇u 2 + ∇v 2 +((f (u (1) + v (1) ) -f (u (2) + v (2) ), u + v)) + ((f (u (1) -v (1) ) -f (u (2) -v (2) ), u -v)) = ∂α ∂t , v .
(3.28)

Now, let p = u (1) + v (1) , q = u (2) + v (2) , h = u (1) -v (1) , l = u (2) -v (2) and have, owing to (1.14)

((f (u (1) + v (1) ) -f (u (2) + v (2) ), u + v)) = ((f (p) -f (q), p -q)) -c 0 u + v 2 (3.29)
and

((f (u (1) -v (1) ) -f (u (2) -v (2) ), u -v)) = ((f (h) -f (l), h -l)) -c 0 u -v 2 . (3.30)
Employing the interpolation inequality

u 2 c u 2 -1 ∇u 2 1 2 ∇u 2 +c u 2 -1 , we obtain d dt ( u 2 -1 + v 2 ) + ∇u 2 + ∇v 2 c u 2 -1 + v 2 + ∂α ∂t 2 . ( 3.31) 
We then integrate (3.25) between 0 and t and have, noting that u(0 

) = v(0) = α(0) = ∂α ∂t (0) = 0, ∂α ∂t -∆α -∆ t 0 α ds = v. ( 3 
d dt δ 2 ( u 2 -1 + v 2 ) + E + c ∇u 2 + ∇v 2 + ∇α 2 + ∂α ∂t 2 c ( u 2 -1 + v 2 ), c > 0. (3.37)
The uniqueness follows from (3.35), (3.37) and Gronwall's lemma. We can note that this would not give a continuity result (with respect to the initial data) for ∂α ∂t , but such a continuity would then follow from (3.3).

Moreover, it follows from Theorems 3.1 and 3.2 that we can define the continuous family of operators

S(t) : Φ 1 → Φ, (u 0 , v 0 , α 0 , α 1 ) → (u(t), v(t), α(t), ∂α(t) ∂t ), t 0,
where

Φ := {(u, v, α, ∂α ∂t ) ∈ H 1 (Ω) 2 × H 2 (Ω) × L 2 (Ω); |u + v|< 1 and |u -v|< 1 a.e.}.
and

Φ 1 := Φ ∩ {(u, v, α, ∂α ∂t ) ∈ L ∞ (Ω) 2 × H 1 (Ω) × L 2 (Ω); u + v L ∞ (Ω) < 1 and u -v L ∞ (Ω) < 1}.
We then deduce from (2.16) the Theorem 3.3. The semigroup S(t) is dissipative in H 1 (Ω) 2 ×H 2 (Ω)×L 2 (Ω), in the sense it possesses a bounded absorbing set

β 1 ⊂ H 1 (Ω) 2 × H 2 (Ω) × L 2 (Ω) (i.e., ∀ B ⊂ Φ 1 bounded, ∃ t 0 = t 0 (B) such that t t 0 ⇒ S(t)B ⊂ β 1 ).

Further Regularity Results

In what follows, we set V = H 1 0 (Ω) and W = H 2 (Ω). We also denote by V the dual space of V and by • V its norm.

We can decompose the singular potential F as

F (x) = S(x) + θ c 2 (1 -x 2 ), with lim x→-1 S (x) = -∞, lim x→1 S (x) = +∞, S (x) θ > 0, ∀ x ∈ (-1, 1), (4.1)
and we let θ c -θ = κ > 0.

We also require that S satisfies

|S (x)| e c|S (x)|+c , ∀x ∈ (-1, 1), (4.2) 
for some positive constant c, and S is convex.

We mention below a Trudinger-Moser type inequality (see, e.g. [START_REF] Nagai | Application of the Trudinger-Moser Inequality to a Parabolic System of Chemotaxis[END_REF]) which is needed later on.

Lemma 4.1.

Let Ω be a bounded smooth domain of R 2 . Then, there exists a positive constant c such that

Ω e |u| dx ≤ ce c u 2 V , ∀ u ∈ V. (4.3)
Let us now define the free energy functional

E(u + v) = 1 2 ∇u 2 + 1 2 ∇v 2 +2 Ω F (u + v)dx + 2 Ω F (u -v)dx.
Theorem 4.1. Under the assumptions of Theorem 3.1, the solution further fulfills the estimate

E 1 (u, v, α, α t )(t) + t+1 t ∇µ(s) 2 + v t (s) 2 + ∇α t (s) 2 ds E 1 (u 0 , v 0 , α 0 , α 1 ), ∀t 0, (4.4)
where

E 1 (u, v, α, α t ) = E(u + v) + α t 2 + ∇α 2 .
Proof. There remains to prove estimate (4.4).

We rewrite equation (1.7) in the form

(-∆) -1 ∂u ∂t -∆u + f (u + v) + f (u -v) = 0. (4.5)
We start by differentiating equations (4.5) and (1.8) with respect to time to find, using (1.9),

(-∆) -1 ∂ ∂t ∂u ∂t -∆ ∂u ∂t + f (u + v)( ∂u ∂t + ∂v ∂t ) + f (u -v)( ∂u ∂t - ∂v ∂t ) = 0, (4.6) ∂ ∂t ∂v ∂t -∆ ∂v ∂t + f (u + v)( ∂u ∂t + ∂v ∂t ) -f (u -v)( ∂u ∂t - ∂v ∂t ) = - ∂v ∂t + ∆ ∂α ∂t + ∆α, (4.7 
) 

∂u ∂t = ∂v ∂t = 0 on Γ. ( 4 
2 + t ∇α 2 + ct ∇ ∂u ∂t 2 + ∇ ∂v ∂t 2 + ∇ ∂α ∂t 2 1 2 ∂u ∂t 2 -1 + 1 2 ∂v ∂t 2 + 1 2 ∂α ∂t 2 + 1 2 ∇α 2 + c t ∂u ∂t 2 -1 + ∂v ∂t 2 + ∂α ∂t 2 + ∇α 2 .
(4.9)

We deduce from (2.18)-(2.19) (which hold when N → +∞), (4.9) and Gronwall's lemma that 

∂u ∂t (t) 2 -1 + ∂v ∂t (t) 2 + ∂α ∂t (t) 2 + ∇α(t) 2 1 t Q( u 0 H 1 (Ω) , v 0 H 1 (Ω) , α 0 H 1 (Ω) , α 1 ), t ∈ (0, 1]. ( 4 
+ ∂v ∂t (t) 2 + ∂α ∂t (t) 2 + ∇α(t) 2 e ct Q( u 0 H 1 (Ω) , v 0 H 1 (Ω) , α 0 H 1 (Ω) , α 1 ), t 1, (4.12) 
where Q denotes a monotone increasing function.

Integrating now (4.11) between t and t + 1 and using (4.12), we find

t+1 t ∇ ∂u ∂t 2 + ∇ ∂v ∂t 2 + ∇ ∂α ∂t 2 ds e ct Q( u 0 H 1 (Ω) , v 0 H 1 (Ω) , α 0 H 1 (Ω) , α 1 ), (4.13) for t 1. Therefore, ( ∂u ∂t , ∂v ∂t , ∂α ∂t ) ∈ L 2 (t, t + 1; H 1 0 (Ω) 3 ).
Then, we can rewrite equations (1.7)-(1.8) as

u t = ∆µ, (4.14) 
where

µ = -∆u + F (u + v) + F (u -v),
and v t + F (u + v) -F (u -v) = ∆v + α t . ( 4.15) 
Equations (4.14) and (4.15) are equivalent to

((u t , q)) + ((∇µ, ∇q)) = 0, ∀ q ∈ H 1 0 (Ω), (4.16) 
((v t , q )) + ((F (u + v), q )) -((F (u -v), q )) + ((∇v, ∇q )) = ((α t , q )), ∀ q ∈ H 1 0 (Ω). (4.17) 
Using equations (4.16)-(4.17) and the standard chain rule in L 2 (0, T ; V ) ∩ H 1 (0, T ; V ), we get

((u t , µ)) + ((∇µ, ∇µ)) + ((v t , v t )) + ((F (u + v), v t )) -((F (u -v), v t )) + ((∇v, ∇v t )) = ((α t , v t )),
Multiplying also (1.9) by ∂α ∂t , we obtain 1 2

d dt ( ∇α 2 + α t 2 ) + ∇α t 2 = -((v t , α t )).
Noting that

((u t , µ)) = 1 2 d dt ∇u 2 +((F (u + v), u t )) + ((F (u -v), u t )),
the above estimates give the energy equality

d dt E 1 (u, v, α, α t )(t) + ∇µ 2 + v t 2 + ∇α t 2 = 0.
It finally follows from the Gronwall's lemma that

E 1 (u, v, α, α t )(t) + t+1 t ∇µ(s) 2 + v t (s) 2 + ∇α t (s) 2 ds E 1 (u 0 , v 0 , α 0 , α 1 ), ∀t 0.
In what follows, according to (4.4), the generic positive constant c may also depend on the initial energy E 1 (u 0 , v 0 , α 0 , α 1 ). In particular, we will use 

E 1 (u, v, α, α t )(t) + t+1 t ∇µ(s) 2 + v t (s) 2 + ∇α t (s)
µ L ∞ (1,t;V ) + v t L ∞ (1,t;L 2 (Ω)) + α t L ∞ (1,t;L 2 (Ω)) ≤ c, ∀ t 1, (4.19 
)

and u t + v t L ∞ (1,t;V ) + u t -v t L ∞ (1,t;V ) + u t L 2 (t,t+1;V ) + v t L 2 (t,t+1;V ) c, ∀ t 1. (4.20) 
Proof. We start by differentiating equation (4.15) with respect to time, which yields, using (1.9) 

∂ ∂t v t + ∂ ∂t [F (u + v) -F (u -v)] =
+ ((F (u + v)(u t + v t ), u t + v t )) + ((F (u -v)(u t -v t ), u t -v t )) = -((∇α t , ∇v t )) -((∇α, ∇v t )) -((v t , α t )).
We observe that

((u t , -∆u t )) + ((F (u t + v t )(u t + v t ), u t + v t )) + ((F (u t -v t )(u t -v t ), u t -v t )) ∇u t 2 -κ u t + v t 2 -κ u t -v t 2 1 2 ∇u t 2 - 1 2 ∇v t 2 -c u t + v t 2 V -c u t -v t 2 V . (4.22)
Accordingly, setting

Ψ(t) = 1 2 ∇µ(t) 2 + 1 2 v t (t) 2 + 1 2 ∇α 2 + 1 2 α t 2 ,
we end up with the differential inequality Therefore, the uniform Gronwall's lemma leads to

d dt Ψ + 1 2 ∇u t 2 +c( v t 2 H 1 (Ω) + ∇α t 2 ) c u t + v t 2 V +c u t -v t 2 V +c( ∇α 2 + α t 2 ). ( 4 
Ψ(t) c, ∀ t 1.
In particular, we have the bound

µ L ∞ (1,t;V ) + v t L ∞ (1,t;L 2 (Ω)) + α t L ∞ (1,t;L 2 (Ω)) c, ∀ t 1,
which in turn gives

u t L ∞ (1,t;V ) + v t L ∞ (1,t;V ) + α t L ∞ (1,t;V ) c, ∀ t 1.
The desired conclusion (4.20) follows from an integration in time of (4.23) on (t, t+1), t 1, combined with the previous inequality.

Remark 4.1. The proof of Theorem 4.1 is formal, but it can be justified within a Galerkin scheme as in the proof of Theorem 3.3. More precisely, all the computations can be rigorously performed within the Galerkin scheme. Given that F is controlled from below, the estimates turn out to be independent of the approximation parameter and a final passage to the limit gives the result. For any L > 0, we consider

-∆u + S (u + v) + S (u -v) = μ, (4.29) -∆v + S (u + v) -S (u -v) = μ , ( 4 
g 1 = S (u + v)e L|S (u+v)| and g 2 = S (u -v)e L|S (u-v)| .
We observe that

∇g 1 = S (u + v)[1 + L|S (u + v)|]e L|S (u+v)| ∇(u + v).
Then we consider equation (4.31) and test it with g 1 , which yields

Ω ∇(u + v)∇(u + v)S (u + v)[1 + L|S (u + v)|]e L|S (u+v)| dx + 2 Ω S (u + v) 2 e L|S (u+v)| dx = Ω μg 1 dx + Ω μ g 1 dx.
The first term on the left-hand side is nonnegative (S is convex). Therefore, the previous relation is equivalent to

2 Ω S (u + v) 2 e L|S (u+v)| dx Ω μg 1 dx + Ω μ g 1 dx.
Now, the right-hand side can be controlled by means of a generalized Young's inequality (see [START_REF] Adams | Sobolev Spaces[END_REF], Section 8.2) as follows:

Ω μS (u + v)e L|S (u+v)| dx Ω |μ||S (u + v)|e L|S (u+v)| dx ≤ 1 2 Ω S (u + v) 2 e L|S (u+v)| dx + Ω e c(L)μ dx + c.
In the same way,

Ω μ g 1 dx 1 2 Ω S (u + v) 2 e L|S (u+v)| dx + Ω e c(L) μ dx + c.
Using Lemma 4.1, we end up with

2 Ω S (u + v) 2 e L|S (u+v)| dx Ω S (u + v) 2 e L|S (u+v)| dx + 2c, whence Ω S (u + v) 2 e L|S (u+v)| dx c, ( 4.33) 
where c depends on L. On account of (4.2), we observe that, for any p 1, 

|S (x)| p e pc (c + |S (x)| 2 e pc|S (x)| ), ∀ x ∈ (-1, 1
∂ ∂t u t + ∆ 2 u t -∆ f (u + v) ∂(u + v) ∂t + f (u -v) ∂(u -v) ∂t = 0 (4.36) and ∂ ∂t v t -∆v t + f (u + v) ∂(u + v) ∂t -f (u -v) ∂(u -v) ∂t = -v t + ∆α t + ∆α ≡ h. ( 4 
= ((f (u + v)(u t + v t ), ∆(u t + v t ) )) + ((f (u -v)(u t -v t ), ∆(u t -v t ) )) + ((h, -∆v t )) (4.38)
We can note that, employing the Hölder, Ladyzhenskaya and Young inequalities, we have This implies that there exists δ > 0 such that u + v L ∞ (Ω×(t,t+1)) 1 -δ, ∀ t 2.

|((f (u + v)(u t + v t ), ∆(u t + v t ) ))| f (u + v) L 4 (Ω) u t + v t L 4 (Ω) ∆(u t + v t ) c f (u + v) L 4 (Ω) u t + v t 1 2 ∆(u t + v t ) 3 
Since u + v ∈ L ∞ (0, t; C(Ω)) for all t 0, we also infer that u + v L ∞ (Ω×(2,t)) 1 -δ, ∀ t 2.

Finally, we deduce (4.40) from the continuity in time.

In the same way, we can obtain the second inequality (4.41) using equation (4.32) instead of (4.31).

An immediate consequence of Theorem 4.3 is the following Remark 4.3. We can note that the strict separation property in two space dimensions can be obtained from the estimates of section 4 provided that we can prove that v L ∞ c and v t L ∞ c , where c and c are two constants which are independent of p (see [START_REF] Giorgini | The Cahn-Hilliard-Oono equation with singular potential[END_REF]; see also [START_REF] Miranville | The Cahn-Hilliard equation and some of its variants[END_REF][START_REF] Miranville | Robust exponential attractors for Cahn-Hilliard type equations with singular potentials[END_REF]). Such estimates seem difficult to derive, due to the coupling, and will be addressed elsewhere.

Theorem 3 . 2 .

 32 Under the assumptions of Theorem 3.1, the problem (1.7)-(1.11) admits a unique solution with the above regularity.

  .30) where μ = -(-∆) -1 ∂u ∂t + 2θ c u and μ = -∂v ∂t + ∂α ∂t + 2θ c v. Combining (4.29) and (4.30), we obtain -∆(u + v) + 2S (u + v) = μ + μ (4.31) and -∆(u -v) + 2S (u -v) = μμ . (4.32)

Corollary 4 . 1 . 3 . 4 . 2 .

 41342 Let the assumptions of Theorem 4.3 hold. Then, there exists a positive constant C such that u(t) H 4 (Ω) C, ∀ t Corollary It also follows from Theorem 4.3 that u and v are strictly separated from the pure states, i.e. there exist two positive constants γ and γ such that |u(x, t)| 1 -γ, ∀ (x, t) ∈ Ω × (2, T ), and |v(x, t)| 1 -γ , ∀ (x, t) ∈ Ω × (2, T ).

  ∆v t -v t + ∆α t + ∆α.

											(4.21)
	Testing (4.14) by µ t , (4.21) by v t and multiplying (1.9) by we obtain	∂α ∂t	, then summing the resulting equations,
	1 2	d dt	( ∇µ 2 + v t	2 + ∇α 2 +	∂α ∂t	2	) + v t	2 + ∇v t	2 + ∇α t	2 +((u

t , -∆u t ))

  .23) Using(4.18), the definition of E 1 , and (1.15) we can deduce that

		t+1		
				Ψ(s) ds c, c 0.	(4.24)
		t				
	Also, by comparison,					
		t	t+1	u t + v t	2 V ds c	(4.25)
	and	t	t+1	u t -v t	2 V ds c.	(4.26)

  Let the assumptions of Lemma 4.2 hold. Then, there exists a constant c such thatu t L ∞ (2,t;L 2 (Ω)) + u t L 2 (t,t+1,H 2 (Ω)) + v t L ∞ (2,t;H 1 (Ω))

	). S (u + v) L + v t L 2 (t,t+1;H 2 (Ω)) c, ∀ t ≥ 2. Combining (4.33) and (4.34) and taking L = pc, we deduce that Proof. Differentiating equations (4.14) and (4.15) with respect to time, we obtain	(4.34) (4.35)

p (t,t+1;L p (Ω)) c(p), ∀ t 1,

Similarly, if we consider equation (4.32) and test it with g 2 , we can easily obtain

S (u -v) L p (t,t+1;L p (Ω)) c(p), ∀ t 1.

Lemma 4.3.

  (Ω) u t + v t 2 + f (u -v) 4 L 4 (Ω) u t -v t 2 ) + h 2 .Using (4.[START_REF] Miranville | Robust exponential attractors for Cahn-Hilliard type equations with singular potentials[END_REF]),(4.20), and the uniform Gronwall lemma to (4.39), we obtain the desired result. The proof of Lemma 4.3 is carried out with the solution itself since (4.27) and (4.28) cannot be guaranteed within a Galerkin scheme. Let N = 1. Then, there exist two positive constants δ and δ and T > 0 such that We consider the elliptic equation (4.31).Due to Lemma 4.3 and to the elliptic regularity, μ and μ satisfy μ + μ L ∞ (Ω×(t,t+1)) C, ∀ t 2.|S (u + v)| p-2 S (u + v)|∇(u + v)| 2 dx + 2 S (u + v) pThe first term on the left-hand side is nonnegative, so that an application of the Hölder inequality yieldsS (u + v) L p (Ω) c μ + μ L p (Ω) . (4.42)Hence, integrating (4.42) in time from t to t + 1, we have for all t 2S (u + v) L p (Ω×(t,t+1)) μ + μ L p (Ω×(t,t+1)) C μ + μ L ∞ (Ω×(t,t+1)) C,where C is independent of p and t. Applying Theorem 2.14 in[START_REF] Adams | Sobolev Spaces[END_REF], we obtain

	2 ∆(u 3 2 ∆(u We thus have the differential inequality 1 2 1 2 d dt ( u t 2 + ∇v t 2 ) + ∆u t 2 + ∆v t 2 c ( f (u + v) 4 L 4 (4.39) (p -1) L p (Ω) Ω Remark 4.2. Theorem 4.3. Testing (4.31) by |S (u + v)| p-2 S (u + v), we get = (μ + μ )|S (u + v)| p-2 S (u + v)dx.

t + v t ) 2 +c f (u + v) 4 L 4 (Ω) u t + v t 2 and |((f (u -v)(u t -v t ), ∆(u t -v t ) ))| f (u -v) L 4 (Ω) u t -v t L 4 (Ω) ∆(u t -v t ) c f (u -v) L 4 (Ω) u t -v t 1 2 ∆(u t -v t ) t -v t ) 2 +c f (u -v) 4 L 4 (Ω) u t -v t 2 . (u + v)(t) L ∞ (Ω) 1 -δ, ∀ 2 t T (4.40) and (u -v)(t) L ∞ (Ω) 1 -δ , ∀ 2 t T. (4.41) Proof. Ω S (u + v) L ∞ (Ω×(t,t+1)) C, ∀ t 2.
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