

Evaluation of the Idylla system to detect the EGFRT790M mutation using extracted DNA

Claire Bocciarelli, Justine Cohen, Romain Pelletier, Jeanne Tran van Nhieu, Jonathan Derman, Loetitia Favre, Anaïs Bourgogne, Isabelle Monnet, Christos Chouaid, Anaïs Pujals

▶ To cite this version:

Claire Bocciarelli, Justine Cohen, Romain Pelletier, Jeanne Tran van Nhieu, Jonathan Derman, et al.. Evaluation of the Idylla system to detect the EGFRT790M mutation using extracted DNA. Pathology - Research and Practice, 2020, 216 (1), pp.152773. 10.1016/j.prp.2019.152773. hal-03489789

HAL Id: hal-03489789 https://hal.science/hal-03489789v1

Submitted on 21 Jul 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Evaluation of the Idylla system to detect the EGFR^{T790M} mutation using extracted DNA

Claire Bocciarelli^{a,*}, Justine Cohen^{a,*}, Romain Pelletier^{a,b}, Jeanne Tran Van Nhieu^a, Jonathan Derman^a, Loetitia Favre^{a,b,c}, Anaïs Bourgogne^d, Isabelle Monnet^e, Christos Chouaid^e, Anaïs Pujals^{a,b,c,†}

* These authors contributed equally to this work.

^a Assistance Publique–Hôpitaux de Paris, Department of Pathology, Centre Hospitalier Universitaire Henri-Mondor, 94010 Créteil, France

^b Université Paris-Est Créteil, Faculté de Médecine, Créteil, France

^c Inserm U955, Institut Mondor de Recherche Biomédicale, Créteil, France

^d Centre Hospitalier Intercommunal de Créteil, Department of Pathology, Créteil, France

^e Centre Hospitalier Intercommunal de Créteil, Department of Pneumology, Créteil, France

†Corresponding author at: Département de Pathologie, CHU Henri-Mondor, 51, avenue du

Maréchal-de-Lattre-de-Tassigny, 94010 Créteil, France. Tel: 33 (0)1 49 81 27 47; Fax: +33

(0)1 49 81 27 33; E-mail: anais.pujals@aphp.fr

Disclosure of Potential Conflict of Interest: The authors declare no conflict of interest.

Abstract count number: 261

Manuscript word count number: 2633

Reference number: 12

Figure number: 2

Table number: 3

Supplementary files: 0

ABSTRACT

Introduction: During the last few years, detection of epidermal growth-factor-receptor (*EGFR*)-activating mutations has become a routine part of clinical practice because of their importance in choosing the optimal treatment strategy for non-small-cell lung cancers (NSCLCs). The emergence of third-generation EGFR-tyrosine-kinase inhibitors required the implementation of sensitive methods to detect the subclonal *EGFR*^{*T790M*} mutation. Clinical implications make it essential to rapidly search for the *T790M* mutation, which is a real challenge for laboratories. The aim of this study was to compare performances of next-generation sequencing (NGS), one of the most frequently used molecular biology methods, and Idylla *EGFR*-Mutation Assay (henceforth Idylla), a fully automated real-time polymerase chain reaction (PCR) that is increasingly used in pathology laboratories, to detect the *EGFR*^{*T790M*} mutation using DNA.

Methods: This retrospective study used 47 DNA samples extracted from NSCLC biopsies that previous NGS identified as: 29 harboring *EGFR* and *T790M* resistance mutations, 11 *EGFR*-activating mutation without T790M and 7 wild-type *EGFR*. *EGFR*^{T790M} limit-of-detection (LOD) experiments used a commercial DNA known to harbor that mutation.

Results: Idylla detected primary *EGFR*-activating mutations and the *T790M* mutation in 97.5% and 65.5% of the cases, respectively. The results of this retrospective analysis and LOD experiments showed that the Idylla should only be used to detect *EGFR* mutations in samples with > 25 ng of DNA and > 10% tumor cells.

Conclusions: Idylla was able to rapidly detect *EGFR*-activating mutations but detecting subclone mutations, like *T790M*, with < 25 ng of good-quality DNA or < 10% tumor cells (variant allele frequency below the assay's validated LOD) was not always reliable.

Keywords:

Idylla

Next-generation sequencing

EGFR^{T790M}

Lung cancer

Extracted DNA

1 Introduction

2

Lung cancer is the leading cause of death from cancer worldwide, responsible for ~1.8 million deaths in 2018. Non-small–cell lung cancer (NSCLC) is the predominant form of lung cancer [1]. Patients often have advanced disease at diagnosis, which carries a poor prognosis and 5-year overall survival of only 18% [2].

The recent development of personalized therapies has considerably improved NSCLC 7 outcomes. In addition to the driver-gene alterations found in NSCLCs, epidermal growth-8 factor-receptor (EGFR) mutations, mostly exon 19 deletions (Del19) and exon 21 L858R 9 10 mutation, are the most useful because of their associated sensitivity to EGFR-tyrosine-kinase inhibitors (EGFR-TKIs) [3]. Therefore, the search for EGFR-activating mutations in 11 advanced NSCLCs is now essential to choose the optimal therapeutic strategy. Even though 12 patients with EGFR mutations initially respond to EGFR-TKIs, a large majority of their 13 tumors ultimately acquire TKI resistance [4]. Several resistance mechanisms to first- or 14 second-generation EGFR-TKIs have been described, especially the EGFR^{T790M} point mutation 15 16 in exon 20, which is the most frequently observed. Hence, third-generation EGFR-TKIs have been designed to inhibit the gene harboring the EGFR-activating mutation and the T790M 17 18 resistance mutation; they have marked clinical benefit for patients whose tumors carry these 19 molecular alterations [5].

Detecting *EGFR* mutations in NSCLCs has become a routine part of clinical practice but the implementation of these analyses, especially *T790M* detection, can be challenging for several reasons. First, formalin-fixed paraffin embedded (FFPE) tissue samples are usually small, due to the thinness of tumor biopsies, which limits the amount of DNA available to detect mutated *EGFR*. Second, the *T790M* mutation is usually found in a subclone, with low variant allele frequency (VAF), requiring a highly sensitive method to be detected. Third, the analysis turnaround time must be short, especially for patients with rapid clinical progression.

Therefore, the approach used to detect the $EGFR^{T790M}$ mutation must be highly sensitive. 27 fast and economically acceptable. Today, next-generation sequencing (NGS) is a frequently 28 used molecular biology method. Although NGS is very sensitive, it requires technical 29 expertise and bioinformatics skills, has long turnaround times and is profitable only for testing 30 large case volumes. Recently, other techniques have been developed to detect EGFR 31 mutations, like the IdyllaTM EGFR-Mutation Assay (henceforth, Idylla) (Biocartis NV, 32 Mechelen, Belgium), that is a fully automated real-time polymerase chain reaction (PCR; 33 instrument plus software), able to provide rapid EGFR-genotyping. It can analyze FFPE tissue 34 sections or extracted DNA. Little molecular biology expertise is required, results can be 35 obtained within 150 minutes and hands-on time is minimal. For these reasons, this system is 36 increasingly used in pathology laboratories to determine EGFR status quickly. 37

Recent studies showed Idylla system efficiency at detecting *EGFR* mutations, compared to either NGS or pyrosequencing [6,7], but none of those studies focused on $EGFR^{T790M}$ detection, which represents a real challenge as stated above.

The aims of this study were to compare the NGS and Idylla abilities to detect the $EGFR^{T790M}$ mutation using DNA, to determine the Idylla limit of detection (LOD) for the *T790M* mutation, and evaluate the impacts of the quality and quantity of DNA on the system's performance.

45

46 Materials and Methods

47

This retrospective study was designed to assess the relative performances of NGS and
Idylla to detect the *EGFR^{T790M}* mutation. To do so, 47 NSCLC biopsies were selected. They

⁴⁸ Sample selection

had previously undergone NGS in our Department of Pathology between 2015 and 2018 for 51 52 molecular diagnosis, in compliance with French regulations; 29 harbored an EGFR-activating mutation and the T790M resistance mutation, 11 harbored an EGFR-activating mutation 53 without T790M and 7 were wild-type. The prerequisite for sample selection was the 54 availability of at least 10 μ L of residual archival extracted DNA. Each sample had previously 55 undergone routine PCR high-resolution melting (HRM) analysis, targeting exon 2 of the 56 57 KRAS (Kirsten rat-sarcoma viral oncogene) to determine DNA quality, and was accorded a grade of A–D, with A being the best, based on the crossing threshold (Ct) observed during 58 that PCR. 59

For LOD assessment, 100 ng of commercial DNA harboring the $EGFR^{T790M}$ mutation with VAF = 50% was used (*EGFR T790M* Reference Standard, Horizon, Horizon Discovery, Cambridge, U.K.). That DNA was serially diluted in control wild-type DNA to obtain a 6point VAF scale: 50%, 25%, 12.5%, 6.2%, 3.1% and 1.5%.

64

65 DNA extraction and quantification with a quantitative PCR

All DNA samples had been extracted, after macrodissection when necessary, from FFPE
tissue sections (usually 7 sections, 5-μm thick) using the Maxwell 16 FFPE Plus LEV DNA
Purification Kit IVD (Promega, Charbonnières-les-Bains, France), according to the
manufacturer's instructions. The DNA was quantified using a Qubit fluorimeter in
combination with the Qubit dsDNA HS Array Kit (ThermoFisher Scientific, Waltham, MA,
U.S.A.).

72

For NGS, 10 ng of DNA (as measured by fluorimetry) was amplified using the Ion
 AmpliSeq[™] Colon and Lung Cancer Panel (ThermoFisher Scientific), which is a multiplex

⁷³ *NGS*

PCR-based library-preparation method by which many regions (70-150 bp) that encompass 76 many mutational hotspots including $EGFR^{T790M}$ are amplified. Amplicons were then digested, 77 barcoded and amplified by using the Ion Oncomine[™] Solid Tumor DNA Kit and Ion Select 78 79 Barcode Adapter Kit (ThermoFisher Scientific), according to the manufacturer's instructions. After DNA quantification, 25 pM of each library was multiplexed and clonally amplified on 80 ion-sphere particles (ISP) by emulsion PCR performed on Ion Chef (ThermoFisher 81 Scientific), according to the manufacturer's instructions. The ISP templates were loaded onto 82 an Ion-520 chip and sequenced on a S5 sequencer with the Ion 510[™] & Ion 520[™] & Ion 83 530TM Kit–Chef, according to the manufacturer's instructions. Run performance was assessed 84 85 and for data analyzed with the Torrent Suite Software v.5.10.0 (ThermoFisher Scientific). Single-nucleotide variants and small indels were detected using the Variant Caller plug-in 86 version 5.10.0.18 with low stringency settings (threshold: 2%). The Integrative Genomics 87 88 Viewer (IGV v 5.01; Broad Institute, Cambridge, MA, U.S.A.) was used for visual inspection of the aligned reads. 89

90

91 *Idylla* EGFR-mutation test

Each sample was retested using Idylla: 10 µL of the original sample-DNA preparation was 92 directly deposited into the Idylla cartridge. DNA was transported via microfluidic channels in 93 the cartridge into 5 separate PCR chambers, which contained lyophilized PCR reagents (i.e., 94 primers, probes, enzymes) designed for the qualitative detection of 18 genetic-change types 95 and for which 51 different mutations have been validated. After a 150-minute run, final 96 97 reports were directly available on the Idylla console and the results presented on screen as either "no mutation detected" or "EGFR mutation detected". An internal Ct value for each 98 sample is provided and indicates the quantity and quality of each DNA sample tested. Results 99 were compared to those previously obtained with NGS. 100

101

102 **Results**

103

104 *Evaluation of Idylla's ability to detect T790M*

105 Idylla is CE-IVD validated by the manufacturer for FFPE tissue sections but the results of 106 several studies showed that it can be used with extracted DNA directly deposited into the 107 cartridge [6,8]. Pertinently, lung biopsies are rapidly exhausted and it is important to store the 108 material to search for all biomarkers assuring better therapeutic management of the patient. 109 When the patient's tumor does not harbor an *EGFR* mutation, Idylla using extracted DNA 110 allows that DNA to be recovered and reused to run all other the analyses necessary to manage 111 NSCLC patients.

In our series, 29 samples carried the exon-20 T790M mutation, associated with primary 112 113 EGFR-activating mutation(s), such as: Del19 for 17 (58.6%), exon-21 L858R mutation for 11 (37.9%) or exon-18 G719A mutation for 1 (3.4%) (Table 1). Eleven samples harbored an 114 115 EGFR-activating mutation without T790M: 2 (18%) L858R mutations, 2 (18%) L861Q 116 mutations, 4 Del19 (36%) and 3 (27%) G719A mutations, one of which was associated with an S768I mutation. Seven samples expressed wild-type EGFR. An average of 210 ng of DNA 117 118 were deposited in the cartridge and those samples contained an average of 37.8% tumor cells. NGS results yielded average VAFs of 35% for primary EGFR-activating mutation and 16.5% 119 120 for the T790M mutation.

121 Idylla sensitivity to detect *EGFR*-activating mutations was 97.5% (39/40) but fell to 65.5%

122 (19/29) for the detection of *T790M*. Its respective specificities for both mutations were 100%.

For samples 3, 10, 23 and 29, Idylla's failure to detect the *T790M* mutation can be explained by the poor quality and/or insufficient quantity of the DNA used for the test. For those samples, the internal Ct values provided by the Idylla always exceeded 25, indicating

the higher number of PCR cycles needed to reach detectable DNA, which can be expected 126 127 with low DNA input or poor-quality DNA. For samples 1, 8 and 14, Idylla failure was probably attributable to the low T790M-mutation VAF, because NGS analysis yielded a VAF 128 < 5%. For the remaining samples 5, 22 and 24, neither the amount of DNA used for the test 129 nor the T790M-mutation VAF can explain the failure to detect the T790M mutation. 130 Nevertheless, the quality-control internal Ct value obtained for total EGFR for samples 22 and 131 24, which exceeded 25, reflect the poorer quality of those DNA samples used for the test, 132 which could affect assay performance. Sample 5's Ct value was 24.2 and no explanation was 133 found to explain Idylla's failure to detect the T790M mutation. 134

To try to understand this failure, we examined the Idylla Explorer curves for case 5 and observed that a *T790M*-mutation amplification curve was there but it did not pass the system's filter threshold; (Fig. 1). Thus, using Idylla Explorer could help detect the *T790M* mutation and avoid false-negative results.

These results highlighted the need for a procedure to avoid false-negative assessment of the *T790M* mutation, especially in samples with low amounts of DNA or DNA samples extracted from tissues containing < 10% tumor cells. Thus, we decided to determine the Idylla LOD for *T790M* and the minimal DNA amount that had to be deposited into the cartridge to avoid false-negative results.

144

145 Determination of the Idylla LOD for T790M using extracted DNA

In light of the results obtained in retrospective series, our second study objective was to evaluate the Idylla LOD for the *T790M* mutation using a commercial mutated DNA known to harbor the that mutation with VAF = 50%. LOD was measured using 100 ng of the commercial DNA, serially diluted in control wild-type DNA to obtain a 6-point VAF scale: 50%, 25%, 12.5%, 6.2%, 3.1% and 1.5%. The *T790M* mutation was detected in samples with

151 VAF > 3.1%. For samples with VAFS = 3.1% and 1.5%, Idylla did not detect the mutation 152 and they were reported to be wild-type (not *EGFR*-mutated) (Table 2). Thus, the *T790M*-153 assay LOD was estimated to be between 3% and 6% using 100 ng of this commercial DNA 154 lot.

155

156 Determination of minimum DNA quantity required to detect low-VAF T790M

The third study objective was to assess the impact of the quantity of DNA used in Idylla to detect the *T790M* mutation. We used the same commercial DNA at 3 different VAFs (20%, 10% and 5%) serially diluted to obtain a 4-point concentration scale (10,5, 2.5 and 1.25 ng/µL). Idylla did not detect the *T790M* mutation in a sample with VAF = 5% and 1.25 ng/µL of DNA, corresponding to deposition of 12.5 ng of DNA into the cartridge (Table 3).

162

163 **Discussion**

164

This study was undertaken to evaluate Idylla's ability to detect the *EGFR*^{T790M} mutation using extracted DNA. The study included a total of 47 NSCLC biopsy samples previously subjected to NGS: 29 harboring an *EGFR*-activating mutation and the *T790M* mutation and 11 harboring an *EGFR*-activating mutation without the resistance mutation, and 7 wild type for *EGFR*. In addition, LOD experiments aimed to determine this method's sensitivity for extracted DNA.

Idylla results confirmed almost all known *EGFR*-activating mutations (39/40) but failed to detect the *T790M* resistance mutation in about one-third of the samples (10/29). Our LOD findings could explain those failures. First, our experiments showed that the amount of DNA loaded into the cartridge was decisive. Herein, the failure to detect the *T790M* mutation in 4 samples could be explained by their low DNA concentrations (< 2 ng/µL). We also demonstrated that LOD ranged from 3% to 6% for the *T790M* mutation using a commercial DNA sample. We also assessed the LOD for the *EGFR*-activating mutation *L858R* and *Del19*, and found them to be, respectively, between 3% and 6% and 1% and 3% (data not shown). In our series, Idylla failed to detect 3 *T790M* mutations because of very low VAFs (1.3–4%) that were well below the manufacturer's recommended assay LOD. That failure was also reported recently by Evrard et al., who described Idylla's inability to detect *T790M* mutations in samples with VAFs < 5% [9].

Finally, we found the internal Ct value to be a very good marker to check the reliability of 183 the result. Indeed, in our opinion, because of the risk of a false-negative finding, the analysis 184 185 must be considered non-interpretable for a negative result obtained with a sample having a Ct > 25. Therefore, we propose a decision-tree algorithm to avoid the risk of an Idylla false-186 negative *T790M*-mutation result (Fig. 2). First, all cases with < 25 ng of DNA or < 10% tumor 187 188 cells should not be analyzed with Idylla. Second, our experience showed that all the negative findings for samples with Ct > 25 should be retested with another method. In addition, our 189 results showed that using Idylla Explorer, which provides the PCR-amplification curves, 190 191 could detect mutations that do not pass the filter threshold set by the manufacturer. For the 10 discordant samples of our series, only samples 2 and 5 had T790M-amplification curves. 192 Thus, despite using this tool, the risk of false-negatives persists. 193

Idylla performance to detect *EGFR* mutations has been evaluated in other studies. De Luca et al. tested 3 *T790M*-mutation–harboring samples identified by NGS and Idylla found all 3 [6]. However, they did not clearly state the amounts of DNA they used in the test but their VAFs were $\geq 5\%$. Lambros et al. also retested 4 *T790M*-harboring samples identified by NGS. Idylla detected the *T790M* mutation in one surgical sample but failed to do so in the 3 biopsies [10]. Unfortunately, neither the VAFs of the *T790M* mutations not detected by Idylla system nor the amounts of DNA used were given because the assay was run using FFPE slides inserted directly into the cartridge. Nevertheless, their results are in accordance with ours and highlight the need to have a strong algorithm to avoid false-negative *T790M*mutation findings.

Our study results and those previously reported showed that it is preferable to analyze samples with < 10% tumor cells or insufficient DNA quality with other, more sensitive techniques, like NGS, or digital or allele-specific PCR. Their LODs for the search for *EGFR* mutations are comprised between 1% and 5% [11,12]. Nonetheless, it is important to keep in mind that those methods, especially NGS analysis, require much longer times and greater expertise in molecular biology than Idylla.

210 To conclude, our results showed that the Idylla is a rapid and valid option to detect EGFRactivating mutations. They, like those reported by Evrard et al. [9] and Gilson et al. [8], 211 demonstrated that Idylla provides adequate findings when run on extracted DNA, which 212 213 allows specimen storage. The real advantage of this technology is its rapidity because the EGFR analysis must have a short turnaround time because of its critical clinical implications. 214 215 This test should not be used with insufficient (< 25 ng) DNA or < 10% tumor cells, which is 216 often the case for thin lung biopsies. That cautionary approach is particularly true for the detection of subclone mutations, like T790M. Applying the algorithm proposed herein could 217 218 help limit false-negative results.

219

220 Acknowledgments

221

We thank the molecular biology technicians of the Department of Pathology for their technical participation: Déborah Siroli-Sarda, Céline Bourdaudhui, Caroline Taou and Soraya Mehdaoui. We thank the Biocartis employees who helped conduct this study, especially Cyriel Naud and David Favy.

2	2	6
~	~	~

227 Funding

- 229 This research did not receive any specific support from funding agencies in the public,
- 230 commercial or not-for-profit sector.

231 **References**

- 232 [1] https://www.who.int/news-room/fact-sheets/detail/cancer
- 233 [2] W. Street, Cancer Facts & Figures 2018, (1930) 76.
- 234 https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-
- statistics/annual-cancer-facts-and-figures/2018/cancer-facts-and-figures-2018.pdf
- [3] T.S. Mok, et al., Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma, N.
 Engl. J. Med. 361 (2009) 947–957.
- [4] L.V. Sequist, et al., Genotypic and histological evolution of lung cancers acquiring
 resistance to *EGFR* inhibitors, Sci. Transl. Med. Mar 23;3(75) (2011)75ra26.
- 240 [5] D.A.E. Cross, et al., AZD9291, an irreversible EGFR TKI, overcomes T790M-
- 241 mediated resistance to *EGFR* inhibitors in lung cancer, Cancer Discov. sep 4 (9)

242 (2014) 1046–1061.

- C. De Luca, et al., Idylla assay and next generation sequencing: an integrated *EGFR*mutational testing algorithm, J. Clin. Pathol. Sep;71 (9) (2018) 757–762.
- [7] M. Ilie, et al., Optimization of *EGFR* mutation detection by the fully-automated
- 246 qPCR-based Idylla system on tumor tissue from patients with non-small cell lung
- 247 cancer, Oncotarget Oct 4; 8 (61) (2017) 103055–103062.
- 248 [8] P. Gilson, et al., Evaluation of *KRAS*, *NRAS* and *BRAF* hotspot mutations detection for
- 249 patients with metastatic colorectal cancer using direct DNA pipetting in a fully-
- automated platform and next-generation sequencing for laboratory workflow
- 251 optimization, PLoS One Jul 2; 14 (7) (2019) e0219204.
- 252 [9] S.M. Evrard, et al., Multicenter evaluation of the fully automated PCR-based Idylla
- 253 *EGFR* mutation assay on formalin-fixed, paraffin-embedded tissue of human lung
- 254 cancer, J. Mol. Diagn. vol (n°) (2019) Aug 22. pii: S1525–S1578(19)30355-1.
- [10] L. Lambros, et al., Evaluation of a fast and fully automated platform to diagnose

- *EGFR* and *KRAS* mutations in formalin-fixed and paraffin-embedded non-small cell
 lung cancer samples in less than one day, J. Clin. Pathol. Jun;70 (année) 544–549.
- 258 [11] Yue Li, et al., Comprehensive analysis of *EGFR T790M* detection by ddPCR and
- ARMS-PCR and the effect of mutant abundance on the efficacy of osimertinib in
 NSCLC patients, J. Thorac. Dis. 11 (2019) 3004–3014.
- [12] Y.W. Cheng, et al., Real-time PCR and targeted next-generation sequencing in the
 detection of low level *EGFR* mutations: instructive case analyses, Respir. Med. Case
 Rep. Jul 10; vol (28) (2019) 100901.

265 Table 1

266	haracteristics of the 47 case samples assessed in the Idylla-performance study to detect EGFR and its resistance mutations T790M vs NGS.
-----	--

	Macro-	% Tumor		DNA		NGS	EGFR-activating	T790M	ldylla		NGS-Idylla
Case	dissection	Cells*	ng/µL	Quality**	Input	(Ion Torrent S5)	mutation VAF	VAF	Result	Ct	concordance
1	No	20	6	Α	60	L858R + T790M	21%	4%	L858R	25.1	No, T790M not detected
2	No	70	133	А	1330	Del19 + T790M	37%	9%	Del19 + T790M	10	Yes
3	No	20	0.1	NE	1	Del19 + T790M	25%	6%	Del19	27.9	No, T790M not detected
4	Yes	70	12	А	120	T790M + T790M	49%	39%	L858R + T790M	22.7	Yes
5	Yes	40	6	А	60	Del19 + T790M	59%	10%	Del19	24.2	No, T790M not detected
6	Yes	55	3	NE	30	L858R + T790M	95%	10%	L858R + T790M	26.2	Yes
7	Yes	25	4	NE	40	L858R + T790M	36%	36%	L858R + T790M	26.1	Yes
8	No	15	5	В	50	L858R + T790M	2%	1.30%	L858R	27.2	No, T790M not detected
9	No	30	5	В	50	Del19 + T790M	32%	8%	Del19 + T790M	27.2	Yes
10	No	25	2	NE	20	Del19 + T790M	19%	7%	Del19	25.4	No, T790M not detected
11	Yes	40	7	А	70	Del19 + T790M	36%	11%	Del19 + T790M	23.8	Yes
12	Yes	25	12	А	120	Del19 + T790M	40%	19%	Del19 + T790M	23.8	Yes
13	Yes	30	3	NE	30	Del19 + T790M	37%	4%	Del19 + T790M	22.2	Yes
14	Yes	55	4	А	40	L858R + T790M	14%	2%	L858R	24.1	No, T790M not detected
15	Yes	15	2.6	NE	26	Del19 + T790M	42%	21%	Del19 + T790M	25.2	Yes

16	No	40	3	NE	30	L858R + T790M	60%	21%	L858R + T790M	25.9	Yes
17	No	60	111	В	1110	Del19 + T790M	54%	19%	Del19 + T790M	20.1	Yes
18	No	60	75	В	750	Del19 + T790M	18%	10%	Del19 + T790M	21.8	Yes
19	Yes	60	9	В	90	L858R + T790M	25%	34%	L858R + T790M	26.7	Yes
20	Yes	60	12	В	120	Del19 + T790M	21%	13%	Del19 + T790M	26.7	Yes
21	No	60	33	В	330	Del19 + T790M	55%	22%	Del19 + T790M	21.7	Yes
22	Yes	40	28	С	280	L858R + T790M	12%	10%	L858R	27.7	No, T790M not detected
23	Yes	30	1	NE	10	L858R + T790M	13%	3%	Wild type	29.4	No, <i>L858R</i> & <i>T790M</i> not
											detected
24	Yes	20	8	А	80	Del19 + T790M	17%	6%	Del19	25.4	No, T790M not detected
25	No	10	30	А	300	Del19 + T790M	9%	3%	Del19 + T790M	21.6	Yes
26	No	40	4	NE	40	G719A + T790M	69%	67%	G719A + T790M	24.5	Yes
27	No	35	10	А	100	Del19 + T790M	83%	15%	Del19 + T790M	20.9	Yes
28	No	50	15	А	150	Del19 + T790M	92%	47%	Del19 + T790M	18.8	Yes
29	No	20	1.5	NE	15	L858R + T790M	28%	21%	L858R	26.7	No, T790M not detected
30	Yes	10	16	А	160	L858R	5%	NA	L858R	22	Yes
31	Yes	25	35	А	350	L858R	29%	NA	L858R	20.7	Yes
32	Yes	30	13	В	130	Wild type	NA	NA	Wild type	24.8	Yes
33	No	60	9	А	90	Wild type	NA	NA	Wild type	24.5	Yes

34	Yes	10	16	А	160	Wild type	NA	NA	Wild type	24.8	Yes
35	No	45	11	А	110	L861Q	77%	NA	L861Q	21.7	Yes
36	V	25	42	А	420	Del19	24%	NA	Del19	20.1	Yes
37	No	55	34	В	340	G719A	37%	NA	G719A	22.4	Yes
38	Yes	30	11	А	110	G719A	13%	NA	G719A	23.6	Yes
39	No	20	8	В	80	Del19	NA	NA	Del19	25.4	Yes
40	No	60	4	NE	40	Wild type	NA	NA	Wild type	25.9	Yes
41	No	40	13	В	130	Wild type	NA	NA	Wild type	23	Yes
42	Yes	30	17	В	170	G719A + S768I	22%	NA	G719A + S768I	23.1	Yes
43	No	60	85	А	850	L861Q	20%	NA	L861Q	19.1	Yes
44	No	65	13	В	130	Wild type	NA	NA	Wild type	24.5	Yes
45	Yes	40	32.3	В	323	Del19	22%	NA	Del19	22	Yes
46	No	50	60	А	600	Del19	20%	NA	Del19	19.2	Yes
47	No	5	26	А	260	Wild type	NA	NA	Wild type	20.7	Yes

267 EGFR, epidermal growth-factor-receptor; NGS, next-generation sequencing; VAF, variant allele frequency; Ct, crossing threshold; Del19, exon 19 deletion; NA, not applicable

268 * the percent tumor cells indicated corresponds to that obtained after macrodissection **Quality graded from A to D, with A being the best; NE, not evaluated.

269 Table 2

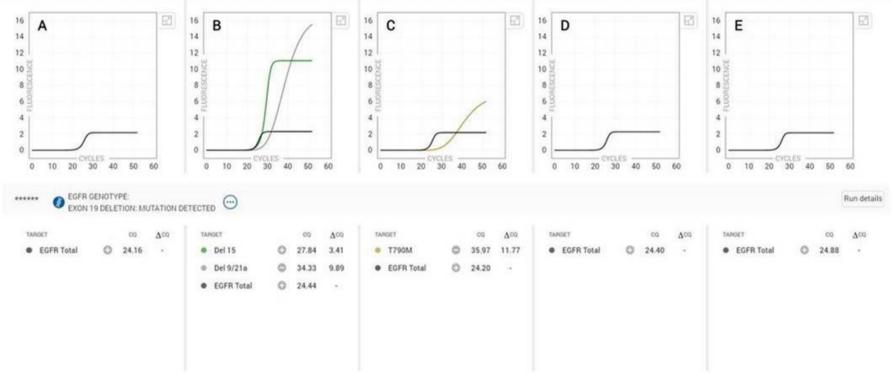
270 Idylla limits of detection obtained with a commercial DNA harboring the EGFR ^{T790M} mutatic	270	Idylla limits of detection	obtained with a co	mmercial DNA harbo	pring the EGFR ^{T790M} mutation
---	-----	----------------------------	--------------------	--------------------	--

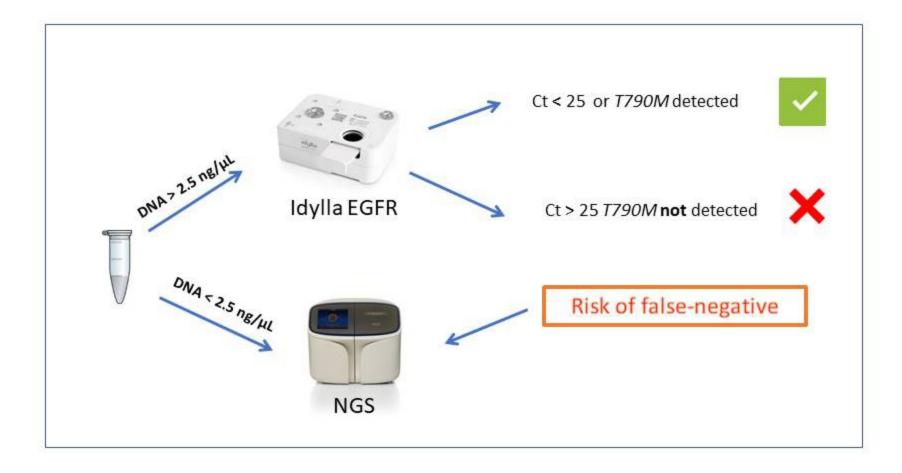
T790M	DNA loaded	3	EGFR	ldylla
VAF, %	Volume, µL	Quantity, ng	Ct control	result
50	10	100	23.4	Mutated
25	10	100	23.2	Mutated
12.5	10	100	23.1	Mutated
6.3	10	100	23.3	Mutated
3.1	10	100	23.1	Wild type
1.6	10	100	22.7	Wild type

294 Table 3

Т790М		DNA loaded		EGFR	ldylla
VAF, %	ng	Volume, µL	Quantity, ng	Ct control	result
20	10	10	100	22.1	Mutated
20	5	10	50	23.2	Mutated
20	2.5	10	25	24.2	Mutated
20	1.25	10	12.5	24.8	Mutated
10	10	10	100	22.0	Mutated
10	5	10	50	23.6	Mutated
10	2.5	10	25	24.3	Mutated
10	1.25	10	12.5	26.3	Mutated
5	10	10	100	22.2	Mutated
5	5	10	50	23.3	Mutated
5	2.5	10	25	24.3	Mutated
5	1.25	10	12.5	25.8	Wild type

295 Determination of the minimal amount of DNA required in the *EGFR* ldylla assay.


EGFR, epidermal growth-factor–receptor; VAF, variant allele frequency; Ct, crossing threshold.


299 FIGURE Legends

300

- **Fig. 1.** Idylla Explorer printout of real-time PCR curves the showing the method's failure to detect the
- 302 epidermal growth-factor-receptor (*EGFR*) *T790M* mutation in sample 5, despite having loaded
- 303 sufficient DNA into the cartridge, an adequate percentage of tumor cells and good internal crossing
- 304 threshold (CQ on the printout). Total *EGFR*-control DNA was successfully amplified (black curves,
- A-E, with A being the best) with CQ = 24.1. B. An exon 19 deletion (*Del19*) mutation is detected
- 306 (green curve) with CQ = 27.8 (Δ CQ = 3.4) and a *T790M*-mutation amplification curve (yellow curve),
- 307 with CQ = 35.9, which failed to pass the system's filter threshold (Δ CQ = 11.7).
- **Fig. 2.** Algorithm proposed to avoid epidermal growth-factor-receptor (*EGFR*) false-negative *T790M*-
- 309 mutation detection when using Idylla. All samples containing < 25 ng of DNA or < 10% tumor cells
- should **not** be analyzed with the Idylla. All Idylla-determined *T790M*-negative samples with a crossing
- 311 threshold (Ct) > 25 should be retested with another method, like next-generation sequencing (NGS).

312

