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ABSTRACT

In this work, we present an alternative discrete-ordinates method to perform 3D PWR core
simulations. The numerical technique takes profit of the Cartesian modular construction
of the geometry based on Heterogeneous Cartesian Cells (HCC). HCCs are basic geo-
metrical patterns delimited by a box and having an arbitrary number of locally-extruded
heterogeneous regions. The source is spatially expanded by piece-wise linear approxi-
mation in each region. Furthermore, the faces of the box, composing the boundary of the
HCC, are discretized with a uniform Cartesian mesh. This surface sub-mesh is the support
of a piece-wise linear representation of the interface angular flux. The linear expansion of
the sources allows for a considerable reduction of the number of regions. Because of the
Cartesian nature of the geometry, the method uses the effective spatial sweeping based on
progression by front. Results on three-dimensional core simulations show accurate power
distribution while minimizing the number of degrees of freedom. As a preliminary test
for the accuracy of the method, results on the C5G7 MOX benchmark and the problem
#4 of the VERA benchmark.

In this paper, we also summarize the latest application of the domain decomposition
method (DDM) on the Integro-Differential Transport solver of APOLLO3 R©, namely
IDT. In particular, we will focus on the strong scalability test by running the solver up to
O(1000) cores of the HPC Cobalt cluster of the ”Très Grand Centre de Calcul (TGCC)”
in the ”Centre de Calcul Recherche et Technologie” (CCRT) of the CEA. Initial results
show good scalability performances: the full-core simulation of the EOLE nuclear reactor
facility can be performed with a reference P3 281-group cross section library in 45min.

KEYWORDS: Neutron Transport Equation; Discrete-ordinates; Linear Short Characteristics; Domain
Decomposition Method; APOLLO3 R©

1. Introduction

In this work, the Linear Short Characteristics (LSC), [1], [2] and [3], are extended to 3D Het-
erogeneous Cartesian Cells (HCC), [8]. The HCC allows for modeling fuel pin-cells in their exact
shape without spatial homogenization. The discretized linear equations are obtained via a Galerkin
projection of the integral transport equation. This leads to a response-matrix formalism similar to
that used in the Interface-Current Collision Probability method, but in this case, because of the
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discrete-ordinates approximation, the system solves for the angular flux using angular dependent
matrices. Furthermore, the method allows for the solution of an arbitrary anisotropy order of the
scattering kernel. The presented method preserves the typical fast solution of the LSC, allowing
for a HCC-by-HCC sweeping algorithm.

We take advantage of the regularity of the geometry to model the pin-cell in a modular basic
pattern. The HCC has an external box boundary and can contain an arbitrary number of concentric,
heterogeneous cylinders. The cylinders can be not centered in the box and can intersect the external
surface of the surrounding box. This is done to model the regular patterns as fuel pins and spacer
grid and irregular patterns as the reflector boundary of the reactor. The faces of the surrounding
box are subdivided in an arbitrary number of equally dimensioned surface meshes, this minimizes
the numerical diffusion and provides a accurate propagation of the angular flux. The source is
expanded on linear/bilinear bases on each volume of the HCC, while the boundary fluxes entering
and exiting the cell are similarly approximated along surfaces composing the boundary of the HCC.
The mathematical formalism, which is based on the projection of the integral transport equation,
allows for an explicit linear system solving the spatial moments of the angular flux simultaneously
for all regions and surfaces of the HCC.

The discretized transport equation consists of two linear systems per HCC formally similar to those
used for homogeneous cells.

The 3D HCC implementation is an upgrade of the XYZ solver, namely IDT (Integro Differential
Transport) [4], of in the code APOLLO3 R©. IDT has been already benchmarked with realistic 3D
full-core simulations, the results of which have been published in reference [13]. In this work, we
are more concerned about the mathematical framework of the HCC coefficients.

2. Linear Short Characteristics and Heterogeneous Cartesian Cells (HCC)

The IDT solver is a discrete-ordinates neutral-particle transport code based on XYZ geometry. In
the past years, IDT has been extended to Heterogeneous Cartesian Cells (HCC) to model fuel pins
of nuclear reactor in their exact geometries without need of spatial homogenization, [6]. The HCC
model has proven accurate results while saving the number of spatial meshes and, thus, compu-
tational time and memory. Furthermore, because the 3D extension is based on locally extruded
geometry, it allows for the modeling of non extruded 3D geometries, as the assembly top/bottom
nozzles, plugs and grids.

Because of the discrete ordinates, the angular integrals are approximated by quadrature formula
composed of Nd directions,

1

4π

∫
4π

dΩ f(Ω) '
∑

d=1,..,Nd

f(Ωd)wd, (1)

where wd is the angular weight, while Ωd is the direction unit vector. The distribution of particle
flux in direction d is computed using source iterations, which consists in solving for the uncollided
flux by updating the self scattering source at each iteration. For a fixed energy group, the iterative



scheme for the angular flux ψ(l+1)
d (r) = ψ(l+1)(r,Ωd) solves the equation

[Ωd·∇+ Σ(r)]ψ
(l+1)
d (r) = q

(l)
d (r) for (r,Ωd) ∈ R3 × S2

N , (2)

ψ
−,(l+1)
d (r) = (βψ+,(l))(r,Ωd) for (r,Ωd) ∈ R2

− × S2
N , (3)

where ψ(l+1)(r,Ω) and q(l)(r,Ω) are the angular flux at iteration (l + 1) and the source computed
at previous iteration (l), respectively. When homogeneous boundary conditions are present, the
current incoming boundary flux ψ−,(l+1)(r,Ω) is updated by using the outgoing boundary flux
ψ+,(l)(r,Ω) at previous iteration. If an external boundary incident flux is present, then Eq. (3) is
replaced by the identity ψ−(r,Ω) = Sin(r,Ω), where Sin(r,Ω) is the incident source.

The iteration ends with the updating of the angular moments and, thus, of the source,

φ
(l+1)
k,l (r) '

∑
d

wdAk,l(Ωd)ψ
(l+1)
d (r), (4)

q
(l+1)
d (r) =

∑
k

(2k + 1)Σk

∑
|l|6k

Ak,l(Ωd)φ
(l+1)
k,l (r) + qext,d(r), (5)

where the angular moment φ(l+1)
k,l (r) in Eq. (4) is computed thanks to the discrete ordinates ap-

proximation (1). As usual, in Eq. (4), the Ak,l are the real-valued spherical harmonics of order k
and degree l while Σk is the scattering cross section of order k.

The one-group transport operator
Ld ≡ [Ωd·∇+ Σ(r)]

is inverted within each HCC using linear short characteristics . Without any geometrical restriction,
the method can be presented in an unstructured mesh context encapsulated in a Cartesian grid. In
the case of HCC application, the Cartesian cells are the surrounding boxes of the HCC. The HCC
could contains an arbitrary number of concentric rings representing the fuel pin, air gap, clad and
the moderator. The integral form of transport equation is:

ψd(r
−
t + xΩd) =ψd(r

−
t )e−τt(x,0) +

∫ x

0

qd(r
− + yΩd)e

−τt(x,y)dy (6)

with the optical thickness τt(x, y) =
∫ x
y
dz Σ(r−t + zΩd). If we restrict our interest to a single

HCC we can specialize Eq. (6). Let us use the following indexes:

α, β, γ, ... : indexes of the regions within the HCC,

s, s′ : local boundary surface mesh indexes of the HCC,

S±(Ωd) : set of the outgoing/incoming local surface indexes with respect to the direction Ωd,

t : trajectory index,



Figure 1: (A) Spatial discretization of an HCC with volume and surface mesh for a pin cell
Z-slice. (B) Examples of models for deformed pin cells. (C) XY illustration of the HCC
front-based spatial sweeping. (D) Subdomain geometry of the C5G7 MOX benchmark.



T (Ωd) : set of indexes of all the trajectories associated to a given direction Ωd for a given HCC
geometrical pattern,

Tα(Ωd) : set of indexes of trajectories intersecting the region α of the HCC,

Ts(Ω) : set of indexes of trajectories intersecting the boundary surface s of the HCC,

i, j, k : indexes of the chords of a trajectory,

It(Ωd) : set of indexes of chord lengths of trajectory t,

It,α(Ωd) : set of indexes of chord lengths of trajectory t that intersects region α, It,α ∈ It,

r(i) : integer map such that r : i→ α, giving for a chord i the region index α,

r−t and r+
t : incoming and outgoing points, respectively, of trajectory t.

We define the total cross section of the chord i as Σi = Σr(i) and the optical paths τt,i(x, 0) and
τt,i(x, xj), for x being the coordinate along the trajectory t associated to a point in the chord i, as

τt,i(x, 0) =


Σix for i = 1,

i−1∑
j=1

τt,j + Σi(x− xt,i−1) for i > 1,

τt,i(x, xj) =


0 for i = 1 or j = i− 1,

i−1∑
k=j+1

τt,k + Σi(x− xt,i−1) for i > 1,

with x0 = 0, where the optical thickness of the chord is defined as τt,i = Σi(xt,i − xt,i−1).

Applying the HCC indexes to Eq. (6), one obtains

ψd(r
−
t + xΩd) = ψd(r

−
t )e−τt,i(x,0) + (7)∑

j<i

e−τt,i(x,xj)
∫ xj

xj−1

qd,r(j)(r
− + yΩd)e

−Σj(xj−y)dy +∫ x

xj−1

qd,r(i)(r
−
t + yΩd)e

−Σj(x−y)dy

Few comments are necessary for this formula. The second term on the RHS of the Eq. (7) takes
into account the contribution from chord j to chord i. Because of the nested geometry of the HCC,
the trajectory can exit and re-enter in the same ring. Thus, the trajectory map r(j) may assume the



same region index as r(i) for a specific chord i. This characteristic reflects the fact that Eq. (7)
exactly and explicitly inverts the transport operator inside the HCC. Note also that, because of the
integral transport equation, the interface angular flux along the inner curved surfaces of the HCC
is implicitly solved without approximation. We introduce the spatial approximation of the source
as

qd,α(r) =
∑
α

∑
c

Pα,c(r)qd,α,c =
∑
α

Pα(r) · qd,α (8)

where c is indexing 4 spatial components, i.e. one constant and three linear moments, while Pα(r)
is the linear base

Pα(r) =

[
1

r− rα

]
with rα being the center of mass of α. The spatial coordinate r is defined with respect to the center
of mass of the HCC box. Because the linear moments of Pα(r) are orthogonal to the constant
moment but not necessary orthogonal to each others, the mass matrix Mα = (Pα,Pα) is generally
of the form

Mα =

[
1 0T

0 (r− rα, r− rα)

]
and the spatial moments of the source are then defined by the relation

qd,α =
[Mα]−1

Vα

∫
Dα

dr Pα(r)qd(r) =[Mα]−1 (Pα,q) . (9)

The particular approximation characterizing short characteristics applied to HCC is the linear ap-
proximation of the boundary angular flux. As specified before, here we intend the boundary as the
external surfaces of a single HCC. As shown in Fig. 1-A, each face of the surrounding box has a
conformal Cartesian mesh. The angular flux is then expanded locally on each surface mesh. By
noting with s the surface index, the flux is represented as the linear combination

ψ±d,t = ψd(r
±
t ) =

∑
s∈S±(Ωd)

∑
b

Ps,b(r
±
t )ψ±d,s,b =

∑
s∈S±(Ω)

Ps(r
±
t ) · ψ±d,s (10)

where Ps(r
±
t ) is the linear base associated to the surface s, while b is the index of the three spatial

components, one constant plus two linear moments,

Ps(r
±
t ) =

[
1

r±t −rs

]
,

where rs is the center of mass of the surface s with respect to the local system of coordinates. The
mass matrix of the surface s, defined as Ms = 〈Ps,Ps〉± , is diagonal because of the 2D Cartesian
shape of the surface. The spatial moments of the angular flux, ψ±d,s, are defined by the projection

Msψ
±
d,s= 〈Ps, ψd〉± =

|Ωd·ns|
As

∫
As

dr±Ps(r
±)ψd(r

±), (11)

where As is the surface area. Using the spatial expansion (8) for the source, in a point r′ along the
trajectory, and the expansion (10) for the incoming angular flux, in a point r−t within a surface s′,



the integral transport equation (7) in a point x of a chord i of a trajectory t becomes

ψd,t,i(r
−
t + xΩd) = e−τt,i(x,0)Ps′(r

−
t ) · ψ−d,s′ +

∑
j<i

e−τt,i(x,xj)Fd,t,r(j),j(xj) · qd,r(j) + (12)

Fd,t,r(i),i(x) · qd,r(i)

where the 4-component exponential integral vector Fd,t,r(i),i(x) is defined, for r(i) = α, as

Fd,t,α,i(x) =

∫ x

xt,i−1

Pα(r−t + yΩd)e
−Σα(x−y)dy and (13)

Fd,t,α,i = Fd,t,α,i(xt,i) =

∫ xi

xi−1

Pα(r−t + yΩd)e
−Σα(x−y)dy. (14)

Equation (12) can be specialized for an outgoing boundary point r+
t = r−t + XtΩd, where Xt is

the total chord length of the trajectory t

ψd,t,i(r
+
t )=e−τtPs(r

−
t ) · ψ−s +

∑
i∈It(Ωd)

e−τ
>
t,iFd,t,r(i),i · qr(i), (15)

here τt is the total optical thickness of the trajectory defined as τt =
∑
i∈It

τt,i . It can also be

decomposed as
τt = τ<t,i + τt,i + τ>t,i

for each chord i. The previous relation define the up-stream optical path τ<t,i =
∑
j<i

τt,j , that is

non-zero except for i = 1, and the down-stream optical path τ>t,i =
∑
j>i

τt,j , that is non-zero except

for i = N(It) where N(It) is the number of total chord lengths associated to t.

The projection of the integral equation does not need the explicit expansion of the angular flux
within the volumes. However, the updating of the source needs the computation of the angular
moments which are approximated by discrete-ordinates integration (4). The source expansion (8)
”hides” the spatial expansion of the angular moments. The computation of the spatial moments of
φk,l(r) are obtained by applying the definition (9) to the angular moments as

φα,k,l =
[Mα]−1

Vα

∫
4π

dΩAk,l(Ω)

∫
Dα

dr Pα(r)ψ(r,Ω). (16)

Because the angular integration is approximated by discrete-ordinates quadrature formula and the
spatial integration is angular dependent (since is approximated by discrete trajectories), the spatial
moments of φ(i+1)

k,l (r) are computed as the sum

φα,k,l ' [Mα]−1
∑
d

wdAk,l(Ωd) (Pα,ψ)d , (17)

that is used for updating the source as shown in (4). The numerical integration (17) helps to define
the spatial moments of the angular flux as

ψd,α = [Mα]−1 (Pα,ψ)d . (18)



In the previous definition, the mass matrix Mα is not angular dependent and is computed once
and for all by analytical integration. Instead, the scalar product (Pα,ψ)d of Eq. (17) defines the
numerical projection of the angular flux as

(Pα,ψ)d =
1

Vα,d

∑
t∈T (Ωd)

w⊥t
∑

i∈It,α(Ωd)

∆i (Pα,ψ)d,t,i , (19)

where w⊥t is the transverse weight of the trajectory, Vα,d is the numerical volume of region α for
direction d, while the integral (·,·)d,t,i defines the projection on the chord length, as

(Pα,ψ)d,t,i =
1

∆i

∫ xi

xi−1

dx Pα(r−t + xΩd)ψ(r−t + xΩd), (20)

where ∆i = (xi − xi−1) is the length of the chord. Equation (20) includes for the contribution of
each trajectory to the spatial moments of the angular flux. Substituting the integral equation (12)
in (20), one obtains the explicit solution for the moments (Pα,ψ)d,t,i, viz.,

(Pα,ψ)d,t,i = [Gd,t,α,i ×Ps(r
−
t )]e−τ

<
t,iψ−s + (21)

Gd,t,α,i ×
i−1∑
j=1

e−τi,jFd,t,r(j),jqr(j) + Hd,t,α,iqα.

The 4-components exponential integral vectors Gd,t,α,i and Fd,t,α,i appearing in (21) are

Gd,t,α,i =

∫ xi

xi−1

Pα(r−t + xΩd)e
−Σα(x−xi−1)dx, (22)

Fd,t,α,i = Fd,t,α,i(xi), (23)

while the integral exponential matrix Hd,t,α,i is

Hd,t,α,i =

∫ xi

xi−1

Pα(r−t + xΩd)× Fd,t,α,i(x) dx. (24)

When introducing the Eq. (21) into (19) and (19) into (18), one obtains the linear system explicitly
solving the angular flux spatial moments of the region α ,

ψd,α =
∑

s∈S−(Ω)

Id,α,sψ
−
d,s +

∑
β 6=α

Cd,α,βqd,β + Cd,α,αqd,α (25)

where

Id,α,s =
[Mα]−1

Vα,d

∑
t∈Tα(Ωd)

w⊥t
∑

i∈It,α(Ωd)

[Gd,t,α,i ×Ps(r
−
t )]e−τ

<
t,i , (26)

is the incoming matrix, while

Cd,α,β =
[Mα]−1

Vα,d

∑
t∈Tα(Ωd)

w⊥t
∑

i∈It,α(Ωd)

∑
j<i

j∈It,β(Ωd)

[Gd,t,α,i × Fd,t,β,j]e
−τi,j , (27)



and

Cd,α,α =
[Mα]−1

Vα,d

∑
t∈ Tα(Ωd)

w⊥t
∑

i∈It,α(Ωd)

(
Hd,t,α,i +

∑
j<i

j∈It,α (Ωd)

[Gd,t,α,i × Fd,t,α,j]e
−τi,j

)
, (28)

are the collision matrices.

Equation (25) needs a transmission equation to compute the outgoing angular flux transmitted by
continuity to the next HCC cell. We use definition (11) to construct the equation for the spatial
moments of the boundary surface flux. The outgoing angular flux is explicitly computed with the
integral transport equation (15). Because of the numerical spatial integration, the integral in (11)
is computed as

ψ+
d,s =

[Ms]
−1

As,d

∑
t∈ Tα(Ωd)

w⊥t Ps(r
+
t )ψd(r

+
t ) (29)

since the trajectory transverse weight is equal to

w⊥t = |Ωd·ns|∆As,t = |Ωd·ns′|∆As′,t

where s and s′ are respectively the outgoing surface index and the incoming surface index inter-
sected by trajectory t and defined by the segment (r−t , r

+
t ). Using the equation for the outgoing

flux, i.e. Eq. (15), in the definition (29), one obtains the transmission equation

ψ+
d,s =

∑
s′∈S−(Ωd)

Td,s,s′ψ
−
d,s′ +

∑
α

Ed,s,αqd,α , (30)

that gives the spatial moments of the outgoing angular flux ψ+
d,s as a function of the sources and of

the incoming fluxes ψ−d,s′ . The matrices Ts,s′ and Es,α are, respectively, the transmission matrix

Td,s,s′ =
[Ms]

−1

As,d

∑
t∈ Tα(Ωd)

w⊥t [Ps(r
+
t )×Ps′(r

−
t )]e−τt , (31)

and the escape matrix,

Ed,s,α =
[Ms]

−1

As,d

∑
t∈Ts(Ωd)

w⊥t [Ps(r
+
t )×

∑
i∈It,α(Ωd)

e−τ
>
t,iFd,t,α,i]. (32)

Coefficients (26), (31) and (32) are computed only for those surfaces and regions shadowing each
other along the direction. Because of the re-entrant geometry of the rings, the collision coefficients
(27) are generally non-zero for all couple of indexes (α, β).

3. Sweeping algorithm

Because the HCCs compose a conformal XYZ grid, the spatial sweeping algorithm is based on the
standard sweeping-by-front of homogeneous XYZ grids. Each HCC transfers its outgoing fluxes
to the down-stream HCCs by using the continuity condition of the angular flux on each mesh of
the outgoing surface. Figure 1-C sketches the spatial solution algorithm. The HCC are ordered



by forming a front, as depicted in the figure. Then, the volume sources of regions covered by
the HCC are loaded together with the incoming boundary fluxes. Those fluxes can come from
boundary conditions or from up-stream HCCs. Because the HCC surface mesh is uniform on each
face, the overall surface mesh is conforming in each direction so that the flux is transmitted without
approximation. As illustrated in Fig. 1-B, HCC-based mesh can easily handle piecewise-extruded
geometry for the modeling of the assembly deformation.

By noting with n the HCC order number during the sweeping along the direction d, the continuity
of the angular spatial moments of the flux on an incoming surface s′ of the HCC #n is ensured by

ψ−n,d,s′ = ψ+
n′,d,s (33)

where n′ is the up-steam HCC order number, while s is the index of the outgoing surface of n′

(which is the same global surface defined by s′ of n). Equations (25) and (30)are then solved for
all the regions and outgoing surfaces of the HCC.

ψn,d,α =
∑

s′∈S−(Ω)

In,d,α,s′ψ
−
n,d,s′ +

∑
β∈Rn

Cn,d,α,βqd,β + Cn,d,α,αqd,α for α ∈ Rn ,

ψ+
n,d,s =

∑
s′∈S−n (Ω)

Tn,d,s,s′ψ
−
n,d,s′ +

∑
α∈Rn

En,d,s,αqd,α for s ∈ S+
n (Ω),

which we re-propose here by introducing the HCC order number n, are then solved for all the
regions and outgoing surfaces of the HCC.

4. The trajectory tracking requirements

Numerical integration is performed by a cell-based modular tracking. The HCC are classified by
their geometries, a unique HCC geometrical pattern defines a unique trajectory module. Thus,
because pin-cell patterns are repeated high number of times, the memory imprint of the 3D HCC
tracking is negligible. Numerical integrals are performed using a local coordinates system centered
in the center of mass of the surrounding box.

Furthermore, because the tracking is local to each HCC mesh, the numerical integration takes care
of geometrical discontinuities that are normally neglected by most popular MOC tracking. This
last aspect, together with the use of Gauss points, makes the HCC matrix integration accurate and
robust. The local 3D tracking is based on the factorization among two 2D ray-tracing.

The local 3D tracking is based on the factorization among two 2D ray-tracing. As depicted in
Fig. (2), the trajectory tracing starts from the projection of 2D discontinuities. In this step, also
the geometrical discontinuities induced by the surface mesh of the HCC are taken into account
(the red dots in the figure). Then, a set of equally spaced trajectory are distributed along the 2D
transverse plane, the trajectory spacing is defined by the user. At this stage, the trajectories (blue
and black lines) defines a set of 2D slices. The 2D trajectories are then generated by distributing
Gauss points along the transverse side of each slice. The Gauss quadrature is adapted to the slice
transverse thickness following a user-defined number of points. Generally, 0.05 cm trajectory
spacing in XY with three or five Gauss points and 0.07 in Z with 3 Gauss points are sufficient to
ensure very accurate integration. The same algorithm is then repeated for each 3D slice defined by



Figure 2: HCC modular tracking illustration.

the 2D trajectory and the Z axis. The same algorithm is then repeated for each 3D slice defined by
the 2D trajectory and the Z axis. Then, the spatial weight is obtained by the product of the weight
of the 2D trajectory in the XY plane and the weight of the ”real” 3D trajectory in the Z−t2D plane,
that is

w⊥t = w⊥t2Dw
⊥
z .

The storage requirement for each trajectory consists in: the transverse weight w⊥t , the outgoing
and incoming surface points r±t with respect to the local coordinate system of the HCC, the local
indexes of the surfaces, i.e. s and s′, intersected by the trajectory, the total lengthXt, the number of
chords, the chord-to-region mapping r(i), the chord lengths. These data are stored for each angle
belonging to half of the unit sphere. Because of the reciprocity property of the integral transport
equation, the computation of the matrices (26), (27), (28), (31) and (32) in the second half of the
sphere is performed by using symmetry relations among matrices of opposite directions.

MαCα,β(−Ωd) = Svv(−Ωd)[MβCβ,α(Ωd)]
T ,

Ms′Ts′,s(−Ωd) = Ss′s(−Ωd)[MsTs,s′(Ωd)]
T ,

and
MαIα,s′(−Ωd) = Svs(−Ωd)[MsEs,α(Ωd)]

T ,

where the matrices Svv(−Ωd), Svs(−Ωd) and Ss′s(−Ωd) are integer symmetric matrices giving



the sing assumed by the monomials xiyjzk of the base. In particular,

Svv(−Ωd) = sign


1 x y z
x x2 xy xz
y xy y2 yz
z xz yz z2


is for the volumes,

Ss′s(−Ωd) = [Sss′(−Ωd)]
T = sign

 1 xs ys
xs′ xs′xs xs′ys
ys′ ys′xs ys′ys


is for the surfaces and

Svs(−Ωd) = [Ssv(−Ωd)]
T = sign


1 xs ys
x xxs xys
y yxs yys
z zxs zys


for volume-to-surface or the surface-to-volume. A particular case, which is actually the default
model for a pin-cell, is presented by symmetric HCCs, having the pin centered in center of mass
of the box. In this case, because of the geometrical symmetry, the numerical integration for matrix
coefficients, i.e. Eqs. (26), (27), (28), (31) and (32), is applied only on the first quadrant, while the
rest is computed by symmetry relations.

4.1. Outer power iterations and thermal iterations

The k-effective eigenvalue problem can be formally presented as

{
(L−H)ψ(x) = 1

k
Fψ(x) for x ∈ X

ψ−(x) = 0 for x ∈ ∂X−,
(34)

where X is the phase space with its entering (+) and exiting (−) boundaries ∂X±, while L, H and
F are respectively the transport, the scattering and the fission operators. Without loss in generality,
only the vacuum boundary condition is taken into account. The phase space is then defined by

X ≡ (r ∈ D, Ω ∈ S2, E ∈ R+
G), (35)

∂X± ≡ (r ∈ Γ±(Ω), Ω ∈ S2, E ∈ R+
G),

Γ±(Ω) ≡ (r ∈ ∂D, n+(r) ·Ω ≷ 0),

where D represents the domain partitioned into N computational regions, while S2 and R+
G are

respectively the discrete-ordinate support for the angle and the multigroup discretization for the
energy.

The discrete version of Eq. (34) is solved by power iterations. The scheme starts by fixing the
initial guess for the eigenvalue and the fission source, k(0) and Fψ(0) respectively, then the equation



is solved in each group by inverting the operator (L−H),

(L−H)ψ(i+1)(x) =
1

k(i)
Fψ(i)(x) for x ∈ X, (36)

ψ−,(i+1)(x) = 0 for x ∈ ∂X−.

The inversion process entails a set of thermal iterations for converging the scattering source in each
energy group. These are the Gauss-Seidel thermal iterations

Lψ(t+1)(x) = Hdwψ
(t+1) +Hupψ

(t) + qfs,

where (t) is the iteration index, while Hup and Hdw are the uper-triangular and the lower-triangular
part of the scattering matrix, respectively. At each thermal iteration, a set of inner iterations is run
for solving the spatial-angular distribution in each energy group by Eqs. (2) to (5).

Once the new flux is available, the fission source is updated and a new eigenvalue is computed

k(n+1) = k(n) (w,Fψ(n+1))

(w,Fψ(n))
, (37)

where (·, ·) is a scalar product acting on the discrete phase space X , while w is a weight-function.
The algorithm stops when

ε k =

∣∣∣∣1− k(n+1)

k(n)

∣∣∣∣ < ε k

εF (r) =

∣∣∣∣1− (1, Fψ(n+1))(r)

(1, Fψ(n))(r)

∣∣∣∣ < εF r ∈ D,

where ε k and εF (r) are respectively the tolerance on the eigenvalue error and the tolerance on the
point-wise error of the fission source.

5. Non-overlapping Domain Decomposition

The domain decomposition consists in splitting the global domain into several overlapping or non-
overlapping spatial subdomains. [17] Several successful application of the DDM has been applied
to diffusion, [20], and to the PN transport equation, [19] [21]. IDT implements non-overlapping
subdomains to minimize the mutual exchange of data, [18]. The phase space X ≡

⋃
u=1,..,U Xu is

decomposed in subspaces as

Xu ≡ (r ∈ Du, Ω ∈ S2, E ∈ R+
G)

∂X±u ≡ (r ∈ Γ±u (Ω), Ω ∈ S2, E ∈ R+
G)

Γ±u (Ω) ≡ (r ∈ ∂Du, nu+(r) ·Ω ≷ 0)

with the subdomain index varying from u = 1, . . . , U . The whole geometry mesh is a 2-level
partition: the first level is the decomposition of the geometry in U sub-geometries, i.e. D ≡



⋃
u=1,U Du, while the second level consists in the meshing of the sub-geometries, i.e. Du ≡⋃
n∈u
⋃
α∈nDn,α. Also, the flux ψ(x), solution of Eq. (34), is decomposed as

ψ(x) =
∑
u

χu(x)ψu(x), (38)

where χu(x) is the characteristic function of subdomain u, which is equal 1 if x ∈ ∂Xu and 0
elsewhere. The continuity of the interface flux takes place as particle conservation condition at the
interface boundaries of the subdomains, as

ψ−u (x) = ψ+
v (x) x ∈ ∂X−u ∩ ∂X+

v for all v ∩ u, (39)

where the statement v∩u implies that v is neighbor of u, or more precisely, the subdomain v shares
a part of its outgoing surface Γ+

v (Ω) with the incoming surface of subdomain u.

The transport Eq. (34) is then split into U independent multigroup source problems of the type


(L−H)uψu(x) = qu(x) x ∈ Xu ,

ψ−u (x) = ψ+
v (x) x ∈ ∂X−u for all v ∩ u ,

ψu(x) = 0 x ∈ ∂X−u ∩X− ,

(40)

for u = 1, . . . , U .

The fixed source qu(x) is given by the normalized fission production

qu(x) =
Fuψu(x)

k
. (41)

Continuity condition (39) guarantees that the original solutionψ(x) is preserved by the re-composition
of the fluxes ψu(x), i.e. Eq. (38), which are solutions of U independent problems of type (40). The
problems (40) and the fission source update (41) are iteratively solved by power iterations. The
process starts with an initial guess for the eigenvalue k(0), for the interfaces incoming boundary
fluxes ψ−,(0)

u (x) and the fission distribution q(0)
u (x) = Fuψ

(0)
u (x)

k(0)
. One iteration solves U boundary-

source problems of the type
(L−H)uψ

(i+1)
u (x) = q

(i)
u (x) x ∈ Xu ,

ψ
−,(i+1)
u (x) = ψ

+,(i)
v (x) x ∈ ∂X−u for v ∩ u ,

ψ
−,(i+1)
u (x) = 0 x ∈ ∂X−u ∩X−.

(42)

The inversion of the operator (L − H)u requires local multigroup thermal iterations, which are
performed in each subdomain to converge the scattering source. This is a crucial point of the al-
gorithm: the subdomains do not transfer their boundary solutions until the end of local multigroup
thermal and inner iterations. As it will be displayed in next sections, this characterizes the coarse-
grained parallelism implemented in IDT and the consequent minimization of flux exchanges.



Once the local problems are solved, the eigenvalue, as well as the fission source are updated,

k(i+1) = k(i)

∑
u=1,U

(w,Fuψ
(i+1)
u )∑

u=1,U

(w,Fuψ
(n)
u )

, (43)

q(i+1)
u (x) =

Fuψ
(i+1)
u (x)

k(i+1)
. (44)

The algorithm stops if the following conditions are satisfied,

ε k =

∣∣∣∣1− k(i+1)

k(i)

∣∣∣∣ < ε k,

εF =

∣∣∣∣∣1−
∑

g(Fuψ
(i+1)
u )g∑

g(Fuψ
(i)
u )g

∣∣∣∣∣ < εF u = 1, U r ∈ Du,R,

εψ(x) =

∣∣∣∣∣1−
∫

2π−
dΩ |n ·Ω|ψ−,(i+1)

u (x)∫
2π−

dΩ |n ·Ω|ψ−,(i)u (x)

∣∣∣∣∣ < εψ u = 1, U x ∈ ∂Xu−.

which are respectively the conditions to be met for k-effective, the fission integral and the boundary
interface incoming currents.

It is important to notice that the DDM implementation in IDT preserves the original transport
solution through the continuity of the interface angular flux spatial moment per each energy group
g, i.e.

ψ−u,g,n,d,s′ = ψ+
v,g,n,d,s. (45)

6. The Coarse-Mesh Finite Differences

The CMFD is a nonlinear method based on the conservation of the neutron balance. [22] [23] [24]
In the present work, the finite-difference diffusion equation is applied on a coarse phase space to
speed up the convergence of DDM outer iterations. As mentioned, the original spatial XYZ grid,
that lodges the HCCs, is homogenized in space and coarsened in energy. In IDT, the spatial nodes
of the CMFD mesh may contain one or more HCCs. Indexing by c the coarse node and by h the
coarse energy group, the balance equation for the couple (c, h) is∑

k∈c

Ac,k
Vc

Jhc,k + Σh
cφ

h
c −

∑
h6=h′

Σhh′

k,c φ
h′

c =
1

λ

∑
h6=h′

(χυΣ)hh
′

f,c φ
h′

c , (46)

where φhc is the average scalar flux of the node and Jhc,k is the net current on the face k of the node,
while λ is the eigenvalue of the problem. By symbol k ∈ c we intend the faces of the node, which
have area equal toAc,k. The cross section are obtained by flux-weighted homogenization. Indexing
with (i+ 1/2) the transport flux and using the symbol n ∈ c to refer the HCCs composing node c,



the CMFD cross sections are

Σh
c =

∑
g∈h
∑

n∈c
∑

α∈n Vn,α(Σg
n,α − Σg

n,α,0)φ
g,(i+1/2)
n,α∑

g∈h
∑

n∈c
∑

α∈n Vn,αφ
g,(i+1/2)
n,α

, (47)

Σhh′

k,c =

∑
g∈h
∑

g′∈h′
∑

n∈c
∑

α∈n Vn,αΣgg′

k,n,α,0φ
g′,(i+1/2)
n,α∑

g′∈h′
∑

n∈c
∑

α∈n Vn,αφ
g′,(i+1/2)
n,α

, (48)

(χυΣ)hh
′

f,c =

∑
g∈h
∑

g′∈h′
∑

n∈c
∑

α∈n Vn,α
∑

ι∈α χ
g
ι (υΣ)g

′
ι,αφ

g′,(i+1/2)
n,α∑

g′∈h′
∑

n∈c
∑

α∈n Vn,αφ
g′,(i+1/2)
n,α

. (49)

In equations (47) to (49), the transport scalar flux φg,(i+1/2)
n,α is the zero-order spatial component

of the vector φ(i+1/2)
n,α,k=0,l=0. This is possible because the zero-order component is orthogonal to

linear components, since the coordinate system of each region is centered in its center of mass.
Furthermore, IDT uses the fission matrix defined by Eq. (49) because of the collapsing of the
fissile isotopes index, indicated in the formula by ι. This preserves the accuracy of the reference
transport cross section library that contains the υΣ cross section per each fissile isotope.

The CMFD solution is obtained by solving the balance equation (46) for the flux. The currents Jhc,k
are computed by an artificial finite-difference Fick’s law, i.e.

Jhc,k = −dhc,k(φhc,k − φhc ) + d̂hc,k(φ
h
c,k + φhc ), (50)

where the net current φhc,k is the average interface scalar flux of the face of the node. The coefficient
dhc,k is the finite-difference diffusion coefficient given by

dhc,k =
2

3∆⊥c,kΣ
h
c,tr

(51)

with Σh
c,tr as the transport cross section, Σh

c,tr = Σh
c − Σh

c,s,1, and with ∆⊥c,k as the node thickness
perpendicular to face k. The interface flux φhc,k is eliminated from equation (50) by imposing the
continuity of the current with the contiguous cells c′

Jhc,k = −Jhc′,k for all c′ ∩ c. (52)

(The sign of the current in the continuity equation changes since the current Jhc,k in the balance (46)
becomes positive/negative if it is outgoing/incoming from/into node c.) Then, using Eq. (50) into
Eq. (52), for the interface flux, and a back-substitution of (52) into (50), a classical finite-difference
form takes place expressing the current as a linear combination of two fluxes of contiguous nodes,

Jhc,k =
(dhc′,k − d̂hc′,k)(dhc,k + d̂hc,k)

(dhc,k − d̂hc,k) + (dhc′,k − d̂hc′,k)
φhc −

(dhc,k − d̂hc,k)(dhc′,k + d̂hc′,k)

(dhc,k − d̂hc,k) + (dhc′,k − d̂hc′,k)
φhc′ . (53)

Preserving the transport current is the key point for equivalence. The non-linear diffusion will
respect the particle balance if it will be capable of reproducing the transport currents. To this end,



the coefficient d̂hc,k is computed on-the-fly to iteratively adjust Eq. (50) in order to comply with the
transport balance equation. This task is achieved by the formula

d̂hc,k =

[
J
h,(i+1/2)
c,k + dc,k(φ

h,(i+1/2)
c,k − φh,(i+1/2)

c )

(φ
h,(i+1/2)
c,k + φ

h,(i+1/2)
c )

]
(54)

that forces Eq. (50) to preserve the transport current at the convergence.

6.1. Specific aspects of IDT implementation

During transport iterations, IDT computes and stores three partial angular moments of the flux on
each node interface. They are: the interface partial scalar flux,

φ
+,h,(i+1/2)
c,k =

∑
g∈h

∑
n∈c
∑

s∈k An,s
∑

d∈2π+
s
wd ψ

+,(i+1/2)
n,d,s,0∑

n∈c
∑

s∈k An,s
, (55)

the outgoing current

J
+,h,(i+1/2)
c,k =

∑
g∈h

∑
n∈c
∑

s∈k An,s
∑

d∈2π+
s
wd |Ωd·ns| ψ+,(i+1/2)

n,d,s,0∑
n∈c
∑

s∈k An,s
(56)

and the first component of the second-order angular moment, namely Θ
+,(i+1/2),h
c,k ,

Θ
+,(i+1/2),h
c,k =

∑
g∈h

∑
n∈c
∑

s∈k An,s
∑

d∈2π+
s
wd |Ωd·ns|2 ψ+,(i+1/2)

n,d,s,0∑
n∈c
∑

s∈k An,s
(57)

The net quantities are then reconstructed as

φ
h,(i+1/2)
c,k = φ

+,h,(i+1/2)
c,k + φ

+,h,(i+1/2)
c′,k′ , (58)

J
h,(i+1/2)
c,k = J

+,h,(i+1/2)
c,k − J+,h,(i+1/2)

c′,k′ , (59)

Θ
h,(i+1/2)
c,k = Θ

+,h,(i+1/2)
c,k + Θ

+,h,(i+1/2)
c′,k′ , (60)

for each c′ ∩ c, such that the area Ac′,k′ ≡ Ac,k.

The second-order angular moment Θ
h,(i+1/2)
c,k is used to enhance the CMFD effectiveness. This is

done by modifying the diffusion coefficient of Eq. (51) in the following way,

dhc,k = f (i+1/2)
Θ
h,(i+1/2)
c,k

φ
h,(i+1/2)
c,k

2

∆⊥c,kΣ
h
c,tr

, (61)

where f (i+1/2) is a stability parameter computed on-the-fly by transport quantities. A detailed de-

scription of the computational algorithm for f (i+1/2) is contained in [9]. The factor f (i+1/2) Θ
h,(i+1/2)
c,k

φ
h,(i+1/2)
c,k



is such that it goes to 1
3

in diffusive regime. Moreover, in thick diffusive problems, f (i+1/2) am-
plifies the diffusion coefficients for avoiding instabilities. The stability parameter f (i+1/2) ensures
that the CMFD is effective and stable for a wide range of transport regimes.

IDT computes and stores interface quantities by using two steps: the first is averaging the HCC
boxes, the second is averaging the necessary number of HCCs composing the CMFD node. This
two-steps homogenization allows for the automatic generation of an arbitrary CMFD mesh.

The first step is performed inside the transport sweep, where currents are averaged on each interface
of the finer grids, i.e. the HCC grid. The second is performed while constructing the CMFD
coefficients. Then, the interface quantities are averaged on the face of the node. An illustration of
the 2-step homogenization used for computing the CMFD interface angular moments is given in
Fig. (3). In the example, a single node of the CMFD homogenizes 2× 2× 2 HCCs.

Figure 3: Example of a 2-step homogenization: the interface angular moments are
accumulated over the faces of the HCCs, then they are re-homogenized on the faces of the

CMFD node.

The motivation justifying the storage of partial quantities is threefold. First, IDT uses the interme-
diate grid, i.e. the one defined by homogenized HCCs, to accelerate by the CMFD inner transport
iterations.

Second, IDT allows for the utilization of 4 types of CMFD operators, each CMFD method has a
specific current-flux closure relation. The default CMFD method is the MCHN (Moon, Cho, Noh
and Hong) that is characterized by Eq. (50) that we report hereafter,

Jhc,k = −dhc,k(φhc,k − φc) + d̂hc,k(φ
h
c,k + φhc ). (62)

The MCHN uses the net current as well as the AFC (average flux correction), that is the second
available method,

Jhc,k = −dhc,k(φhc,k − φc) + d̂hc,kφ
h
c . (63)

While the third and the fourth, which are respectively the pCMFD (partial-current CMFD) and the
AFC-pCMFD, use partial currents, that is

J+,h
c,k = −dhc,k(φhc,k − φc) + d̂hc,k(φ

h
c + φhc ), (64)



and
J+,h
c,k = −dhc,k(φhc,k − φc) + d̂hc,kφ

h
c . (65)

The third motivation is due to the domain decomposition. In fact, the synergy among transport and
CMFD operators relies on the same spatial decomposition. As explained in the next section, the
reconstruction of updated interfaces quantities requires the knowledge of partial currents among
subdomain interfaces.

6.2. DDM for the CMFD

As anticipated, the transport and the CMFD operator share the same spatial decomposition. The
CMFD mesh is automatically generated by user’s inputs. As depicted in Fig. (4), the user specifies
the number of coarse mesh in each subdomain, then the mesh generator adapts user’s instructions
to the pivot grid. The local CMFD mesh is generated by coarsening the HCC grid. The mesh
generator takes care of the conformity of the mesh among the subdomains.

With reference to Fig. (4), the net current on interfaces of the subdomain (red lines in the picture)
is computed by the difference

J
h,(i+1/2)
u,c,k = J

+,h,(i+1/2)
u,c,k − J+,h,(i+1/2)

u,c′,k′ ,

for two contiguous nodes c and c′ belonging to the same subdomain u, while the net current on
interfaces among subdomains (internal black lines in the picture) are computed by

J
h,(i+1/2)
u,c,k = J

+,h,(i+1/2)
u,c,k − J+,h,(i+1/2)

v,c′,k′ ,

for two contiguous nodes belonging to the two neighbor subdomains, u and v, respectively. For
outer boundary surfaces, the net current is computed using the local boundary conditions as in-
coming current of the node.

For each outer transport loop, a CMFD multigroup problem is established. In IDT, the user can
coarsen the energy mesh as well. The multigroup CMFD problem is then solved by global power
iterations. At each CMFD power iteration, subdomains are computed independently. Indeed, as
has been done for the transport, a local multigroup fixed-source problem is established in each
subdomain. The scattering source of the CMFD operator is converged by thermal Gauss-Seidel
iterations and by using a BiCGStab Krylov solver for the solution of the one-group problems, [26].
A detailed description of the DDM iteration scheme is presented in Algorithm 1 (see Section 5.3).

6.3. Automatic construction of the pivot grid, the CMFD mesh and the subdomain-to-process
mapping

The automatic construction of the grids relies on the Cartesian nature of the IDT mesh, which is
established on a XYZ fine grid lodging the HCCs.

The algorithm generating the fine-to-coarse map is the following.

Indicating by N the number of fine steps on a generic axis of the finer grid and by M the number
of desired coarse steps, which is user’s input such that M 6 N , the initial number of fine steps per



Figure 4: Example of a 2D coarse mesh applied to the C5-G7 MOX benchmark: the CMFD
mesh is generated by the union of the pivot grid (black lines) and the user-defined

subdomain grid (red line). The mesh generator assures the conformity of the CMFD grid
among the subdomains. In this example, the CMFD grid is composed of 2x2 CMFD nodes

per each subdomains.

coarse steps is fixed by

n = max(1,

⌊
N

M

⌋
)

then the number of fine steps per each coarse step m is computed as

Nm =

 n+ 1 for m = 1, ..., N( mod M)

n for m = N( mod M) + 1, ...,M
(66)

so that the firstN( mod M) coarse steps will receive sequentially n+1 steps, while the remaining
will contain only n. This algorithm is applied to each axis of fine XYZ grid, and, by extending the
notation to X, Y and Z, the subdomain (mx,my,mz) of the pivot grid will contain NmxNmyNmz

HCCs.

The algorithm also applies to automatically generate the coarse mesh of the CMFD in each subdo-
main. It is re-iterated on a second spatial level inside the subdomain grid. Thus, the initial number
of fine steps per CMFD step is fixed to

nm = max(1,

⌊
Nm

Cm

⌋
),

with Cm as the number of coarse steps of the CMFD (user’s datum) associated to m, while

Nm,c =

 nm + 1 for c = 1, ..., Nm( mod Cm)

nm for c = Nm( mod Cm) + 1, ..., Cm

(67)

is the effective number of fine steps for each coarse step c relative to the subdomain step m .
Thus, the number of HCCs in the CMFD node (cx, cy, cz) of the subdomain (mx,my,mz) will be
Nmx,cxNmy ,cyNmz ,cz .



The data distribution needs the mapping among subdomains and MPI processes. The number of
subdomains per process, Up, is obtained by the same algorithm. Here,

s = max(1,

⌊
U

P

⌋
)

is the initial value of the subdomain per process, with U = MxMxMx as the total number of
subdomains and P as the number of processes defined by the user, so that

Up =

 s+ 1 for c = 1, ..., U( mod P )

s for c = U( mod P ) + 1, ..., P
(68)

is the number of subdomains associated to the process p. The spatial distribution of the subdomain
is done as depicted in the Fig. (5). The subdomains are assigned by sweeping the pivot grid in a
serpentine path, as shown in the picture. This geometrical mapping guarantees that the subdomains
assigned to a process share at least one face, limiting, thus, the inter-node MPI communications.

Figure 5: Illustration of the serpentine sweeping algorithm on a 3× 3× 3 pivot grid.

As an example of the subdomain splitting algorithm, Figure (6) illustrates an application on a
3x3x3 pivot grid distributed on 4 MPI processes.

6.4. Automatic identification of repetitive geometrical patterns

Once the subdomains geometries constructed, the IDT interface automatically identifies repetitive
patterns of the geometrical decomposition. The subdomains that share the same spatial mesh and



Figure 6: Example of the automatic splitting algorithm applied to a 3× 3× 3 subdomain
grid distributed on 4 MPI processes.

the same spatial distribution of the material are grouped in Generating Calculation Units (GCU).
A GCU contains a unique mesh and material distribution and also a unique set of options, as the
angular and spatial discretization, the HCC surface mesh option, the tracking options and inner
acceleration options. As will be explained in the next section, this ensures an optimization of
the data distribution. The GCU are then assigned over the Pivot Calculation Unit (PCU) and this
allows for the reconstruction of the global geometry. The PCU lodges the pivot geometry and the
GCU mapping and also the options for constructing the CMFD operator.

An example of the automatic generation of the GCU on the geometry of the C5G7 Mox benchmark
is depicted in Fig. 1-D.

6.5. Hybrid parallelism algorithm

As anticipated, the parallelism within IDT is based on the definition of the Generating Calculation
Unit (GCU) and the Effective Calculation Unit (ECU). As shown, once the geometry is decom-
posed, the subdomains sharing the same geometry and materials define a unique GCU. The GCU
is devoted to the storage and the computation of non-mutable data as, for example, the cross sec-
tion library and the transport HCC matrices (I,C,T,E). Moreover, the GCU is used to initialize
the flux in each subdomain by running one or several multigroup iterations with infinite-lattice
boundary conditions. The definition of the GCU allows for the minimization of data for the sub-
domains that share the same MPI process. Indeed, in case of hybrid MPI-OpenMP parallelism, the
IDT solver uses a map that gives the correspondence among the GCUs and the MPI process. This
map is obtained by combining the map giving the correspondence among the subdomains and MPI
process, and the maps giving the distribution of the GCU on the pivot geometry. Setting g as the
GCU index and G as the GCU-to-pivot mapping

G : (mx,my,mz)→ g



and by
P : (mx,my,mz)→ p

the subdomain-to-process map, the map assigning the GCU to the process is obtained as

G ◦ P−1 : p→ g.

This map is used for setting the GCU data on the process and run a first initialization step. The
GCU together with the PCU are distributed and allocated on the MPI processes. In particular,
the PCU is copied in each processes. Then, each GCU generates a number of Effective Calcula-
tion Units (ECU) on the process that is equal to the number of times the GCU is assigned to the
process. In this manner a single ECU is generated per each subdomain associated to the process.
The ECUs associated to a GCU share the same non-mutable memory of the reference GCU but
allocate the mutable part of the memory, as the memory for the flux and the CMFD operator. This
means that the memory occupied by coefficients and cross sections is defined by the number of
GCUs assigned to a process, while the memory occupied by the flux is determined by the num-
ber of ECUs. A schematic example of the memory organization is presented in Fig. (7). The
communications among MPI processes engages only subdomains of the same operator: the MPI
send/receive directives are embedded in the power iterations of the two operators and are called
only by the subdomains that share one or more faces with subdomains belonging to other pro-
cesses. Instead, the data transfer among the transport and the CMFD operators is done on the same
MPI process because both operators share the same spatial decomposition.

Figure 7: Example of a domain-splitting on a 2x2 colorset composed by 2 GCUs (blue and
red in the picture). The red one is loaded in process #0 and the blue one on the process #1.

The communications among MPI processes engages only subdomains of the same operator.
Instead, because the CMFD and the transport share the same domain decomposition, the

data transfer among the transport and the CMFD operators is done on the same MPI
process.

In IDT, the hybrid parallelism is realized by partitioning the global list of subdomains, defined as



L = {u ∈ N : u = 1, ..., U}, in a set of sub-lists Lp, such that

L =
⋃

p=1,P
Lp

with P being the number of MPI processes. Each sub-list Lp has a number of subdomains equal
to Up (which is computed thanks to Eq. (68)), the subdomain are then affected to Lp following
the serpentine path depicted in Fig. (5). Each list Lp is solved on shared-memory parallelism
thanks to OpenMP directives. Algorithm 1 shows the DDM iteration algorithm seen by a generic
MPI process. This algorithm supposes that the number of processes is less then the number of
subdomains.

In the particular case of a single element per list, i.e. when the number of nodes is equal to the
number of subdomains, the solver uses shared-memory parallelism to perform the angular transport
sweeping inside the subdomain.

7. Description of the resources

The Cobalt cluster is composed of nodes interconnected by Infiniband, [28]. Each node contains
an amount of CPUs plugged on sockets. The sockets are interconnected by a QuickPath Intercon-
nect (QPI). Each CPU contains a certain amount of cores, while each core is equipped of SIMD
computational units. The Cobalt cluster is subdivided in 4 partitions. In this test suite, IDT runs
on the Broadwell partition. Main characteristics of the partition are:

• 1412 nodes,

• 2×14-cores CPU Intel Broadwell@2,4GHz (AVX2),

• 28 cores / node for a total of 39 536 cores,

• 128 GB of memory per node.

The IDT sources compiled within the hybrid MPI/OpenMP framework of Cobalt using the Gnu
4.8.5 compiler and the OpenMPI library version 1.8.8. Typical instructions for generating the
idt.exe file are

-bash -4.1 mpif90 -O3 -qopenmp -o mpi omp tes mpi omp test.for.

8. 3D benchmarks: the 3D C5G7 MOX benchmark and the CASL Problem #3 3x3 PWR
colorset

Tables 1 shows the results of the three-dimensional C5G7 MOX benchmark, [15], [16]. Simula-
tions have been obtained by modeling the geometry by 56258 regions. The radial discretization
of each pin cell is obtained by using 3-region HCC having 1 cylinder for the fuel and 1 ring in
the moderator, and a surface discretization 3-3-2, which means a 3x3 surface grid on the top and
bottom faces and 3x2 grid on the remaining lateral faces. The axial step is 3.57 cm for each HCC,



Algorithm 1 DDM eigenvalue iteration algorithm seen by process #p

1: Initialization step i = 0: ψ(0)
u , ψ−,(0)

u , k(0) for all for u ∈ Lp
2: for i=0; i = i+ 1; until the convergence of ψu, ψ−u and k do
3: MPI send/receive: update b.c. ψ−,(i+1)

u = ψ
+,(i)
u′ for u′ /∈ Lp and u′ ∩ u

4: OMP parallel loop
5: for each subdomain u ∈ Lp do
6: update b.c.: ψ−,(i)u = ψ

−,(i)
u′ for u′ ∈ Lp and u′ ∩ u

7: update fission source:

q(i)
u =

Fuψ
(i)
u

k(i)

8: solve:
(L−H)uψ

(i+1/2)
u = q(i)

u

9: homogenize cross sections
10: compute the CMFD operator for u.
11: end for
12: MPI send/receive (synchronized): update J+,(i+1/2)

u = J
−,(i+1/2)
u′ for u′ /∈ Lp and u′ ∩ u

13: Initialization step of the CMFD solver j = 0 :

λ(0) = k(i), and φCMFD,(0)
u =

∫
ψ(i+1/2)
u

14: for j=0; j ← j + 1; until convergence of φCMFD
u , and λ: do

15: MPI send/receive for exchanging the flux φCMFD
u′ for u′ /∈ Lp and u′ ∩ u

16: OMP parallel loop
17: for for each subdomain u ∈ Lp do
18: finalize the CMFD operator ACMFD

u on the boundary
19: update the fission source:

qCMFD,(j)
u =

Fuφ
CMFD,(j)
u

λ(j)

20: exchange φCMFD
u′ for all u′ ∩ u and u′ ∈ Lp

21: solve:

Auφ
CMFD,(j+1)
u = qCMFD,(j)

u

22: end for
23: update: λ(j+1) = λ(j)

∑
u(w,Fuφ

CMFD,(j+1)
u )∑

u(w,FuφuCMFD,(j))

24: end for
25: update the eigenvalue: k(i+1) = λ
26: update the flux:

ψ(i+1)
u = ψ(i+1/2)

u

φCMFD
u∫
ψ

(i+1/2)
u

and ψ±,(i+1)
u = ψ±,(i+1/2)

u

φCMFD
u∫
ψ

(i+1/2)
u

27: end for



Table 1: Reactivity and pin power error analysis of the 3D C5G7 MOX benchmark.

Unrodded Rodded A Rodded B

K-effective 1.14336 1.12827 1.07753
Reactivity error (pcm) 24 -19 -22
Max pin power error (%) 1.5 1.2 1.3
Min pin error (%) -0.9 -0.4 -0.8
RMS (%) 0.3 0.4 0.45

Bottom -0.13 -0.04 -0.18
central UOX (%) Midle -0.13 -0.24 -0.53

Top 0.06 -0.44 0.06

Bottom 0.06 0.14 0.21
flat UOX (%) Midle 0.03 0.12 0.03

Top 0.12 0.10 0.12

Bottom 0.04 -0.19 -0.73
MOX (%) Midle 0.04 0.08 0.03

Top 0.27 0.03 0.31

# of power iterations 25 25 24
# of inner iterations 665 666 652
Elapsed Time (sec.) 942 945 920

except for the top reflector interface which has three floors of 1.19 cm step. The angular quadrature
is a modified S8 Level-Symmetric quadrature formula that flattens the directions along the Carte-
sian axis. The total memory footprint is 19 GB. The calculation has been accelerated by the multi-
group CMFD using the homogenized pin-cell grid as the coarse mesh. Furthermore, calculations
have been run in parallel framework using a domain decomposition consisting in 3x3x4 subdo-
mains, see Fig. 1-D. All simulations have been run on 9 threads (3 in hyper-threading) in OpenMP
shared-memory parallelism on a standard workstation, i.e. Intel Xeon E5-2620, 2.00GHz, 64 GB
of memory, 6 cores. The error tolerance is 1 pcm on the k-effective and on the multigroup flux
distribution, while 10 pcm on the fission source and on the interface current. The method exhibits
a maximum pin-power error of 1.5% over the three configurations with respect to the reference
Monte Carlo solution. HCC model guarantees high fidelity 3D calculation while minimizing the
number of regions and angles. Indeed, the calculation uses 10 to 100 times less unknowns than the
most popular Method Of Characteristic (MOC), while the runtime is less then 16 minutes for all
configurations, as shown in the last row of Tab. 1.

The second test is the problem #4 of the VERA benchmark specification [14]. This problem has
the presence of spacer grids, PYREX rods and a central B4C control rod. The domain splitting
used in this case is of 250 subdomains distributed on a 5 × 5 × 10 pivot grid. Each subdomain is
composed on the average by 6× 6× 12 HCCs, having transverse dimension 1.26× 1.26 cm2 and
an average height of 4 cm. The surface mesh used on the HCC surface is a 3-3-2 configuration
with 9 sub surfaces for the horizontal faces and 6 sub surfaces for the vertical ones, with a total of
42 sub surfaces per HCC. The CMFD grids were obtained by coarsening the original 29×29×120



Table 2: Reactivity, pin power error and performances of the 3D VERA problem #4.

k-effective 0.99901

Reactivity error 54 pcm

Pin-power error 0.81%

RMS 0.21%

Total DoF 2.134 321

# of Threads/Node 25

# Node 10

average Memory/Node 65 GB

Elapsed time 1h.09min

# of outer DDM iterations 8

# of outer CMFD iterations 342

% Time for Tansport 42 %

% Time for CMFD 46 %

% Time for HCC coef. 12 %

lattice grid, with and explicit description of the water gap, to a 24× 24× 120 grid, where the water
gap is smeared with the neighbor cells. The groups of the original P3 cross section library are
also collapsed from 47 to 8. The reactivity errors and the relative errors for the 3D assembly-wise
power distribution are compared in Table 2 to the McCARD reference solution provided by the
Department of Nuclear Engineering, Seoul National University, thanks to the collaboration with
Professor H. G. Joo in 2017, [13]. Table 2 contains also the total number of degrees of freedom
and the execution time.

9. Strong Scalability up to 1000 cores

This section shows the results of the strong-scalability test preformed on the rodded-B configura-
tion of OCDE/NEA 3D C5-G7-MOX benchmark, [27].

As illustrated in Tab. (3), the benchmark has only 7 energy groups and P0 approximation of
the scattering kernel. However, the discretization of the spatial and angular variables has been
increased to 375 642 regions and 168 directions to achieve an error of 10 pcm on the k-effective
with respect to the MCNP reference and less than 1% of error on the reactivity. For the huge
amount of regions and directions, this test stresses particularly the IDT routines devoted to the one-
group transport sweep. Moreover, because of the local multigroup iterations performed in each



Table 3: Problem size.

Anisotropy order P0

Number of regions 375 642

Number of outer boundary surfaces 15 606

Number of groups 7

Number of HCC 10

Number of outer boundary surface meshes 216 000

Number of directions per octant 10

Total number of directions 80

Number of angular flux spatial moments 4

Number of interface angular flux spatial moments 3

Number of angular moments for the source 16

Number of materials 8

Number of surfaces per HCC 6

Number of CMFD coarse cells 241 875

Number of CMFD coarse energy groups 24

Total memory on a single node (GB) 19

subdomain, the scalability of the DDM implementation is expected to grow with the number of
groups since, the more time is spent in local iterations, the more the parallelization will be effective.
Furthermore, for reasons that will be detailed later on, the initialization step will proportionally
count more as the number of groups decreases. For those reasons, the C5-G7-MOX is a sort of
”stress-test” for the DDM implementation in IDT. In other words: if IDT proves its scalability for
7-group P0 C5G7 MOX benchmark, it will certainly scale better for higher number of groups and
for higher anisotropy orders.

Table (4) shows the subdomain grids used to decompose the domain and the resources allocated
on the Cobalt cluster. In the runs, the number of processors matches always the number of subdo-
mains. Moreover the number of MPI processes is equal to the number of nodes in each run. For
example, for the 3 × 3 × 3 configuration, three nodes are allocated for three MPI process, in this
manner each node computes 9 subdomains using 9 threads. This particular implementation guar-
anties that two neighbor cells sharing the same node exchang the interface boundary flux without
communications, i.e. without MPI send/receive directives.

In this test suite, the number of nodes is always equal to the number of MPI processes. We prevent
that certain configurations can be penalized because of the high number of nodes allocated: for



Table 4: Subdomains subdivision and resources associated for the strong scalability test.

# of Subdomains nodes allocated threads/node cores

2× 2× 2 2 4 8
3× 3× 3 3 9 27
4× 4× 4 4 16 64
5× 5× 5 5 25 125
6× 6× 6 8 27 216
8× 8× 8 32 16 512
9× 9× 9 27 27 729

10× 10× 10 40 25 1000

example the 8× 8× 8 pivot grid has been run on more nodes than the 9× 9× 9 configuration.

In the following analysis, it is considered:

- the elapsed time TE as the time elapsed between the beginning and the end of the calculation.

- the initialization time TINI as the time elapsed in the initialization step,

- the solution time TDDM as the time spent in the DDM iterations, which takes into account the
transport and the CMFD iterations.

As a consequence of the definition, the relation

TE = TINI + TDDM

holds. The time TDDM , that is also the solution time, is decomposed as

TDDM = TTRA + TCMFD,

where TTRA is the time elapsed in the DDM transport iterations while TCMFD is the time elapsed
in the global CMFD operator. The time has been measured with the time diagnostics embedded
in the IDT solver. In particular, the work of each processor is monitored using the FORTRAN
directive CPU TIME that returns the elapsed CPU time in seconds.

9.1. Nominal scalability

Configurations of Tab. (4) has been run fixing the number of inner and outer iterations. In particu-
lar, it has been considered

- 10 outer iterations, i.e. 10 DDM power iterations,

- 1 thermal iteration per subdomain and per external,



- 10 inner iterations per group and per subdomain,

- 5 power iterations in the CMFD per each DDM outer iteration,

- 5 thermal iterations per each CMFD power iteration,

- 10 Krylov iterations in the BiCGStab routine that solves the one-group CMFD equation.

This test represents the nominal scalability because the work amount is the same in all configura-
tions. Indeed, the energy groups, the space and directions are equally swept the same number of
times. The interest of this test is to analyze the impact of the communications on the speed up and
the impact of the initialization phase.

By definition, the speed up is the ratio

Sn =
TE,1
TE,n

,

where TE,1 is the time elapsed using a single processor, while TE,n is the runtime with n processors.
As usual, the parallel efficiency is defined as En = Sn

n
. Since the serial calculation on a single

processor has not been performed, the speed up is measured by the ratio

Sn =
8TE,8
TE,n

,

that takes as the reference the elapsed time of configuration 2 × 2 × 2. Figure (8) shows the
ideal speed-up line (in light blue) compared to the measured speed up (the gamboge line). The
total speed up has been decomposed in partial speed up for the DDM iterations, i.e. transport and
CMFD, and the transport alone. The simulations show an elapsed time running from 2860 seconds,
with 8 processors, down to 43 seconds with 1000 processors. The global speed-up have a maxi-
mum of 58% of the ideal speed up 1000 processors. Analyzing the partial speed-up relative to the
DDM solution algorithm, represented by the green line in Fig. (8), the IDT solver shows almost
ideal scalability. In this part, the deviation from the ideal speed-up gives the idea of how com-
munications affect the solution time. The communications comprise the flux exchanged among
transport subdomains and the flux exchanged among the CMFD subdomains. Results show a max-
imum difference of 10% from the ideal speed-up lost in flux exchanges. This result is confirmed
also by Fig. (9) that shows the amount of the total time spent in exchanging the flux among the
subdomains. As espected, the trend of Fig. (9) suggests that the time spent in flux exchange is pro-
portionally affected by the number of nodes and, thus, by the number of calls to MPI send/receive
directives.

As shown in Fig. (8), the global scalability dumps to 58% of the ideal speed up: such result is
highly affected by the low scalability performances of the initialization part. Figure (10) plots
the time spent in the initialization (blue line) and the time spent for solving (the gamboge line).
Because of the excellent scalability of the solution algorithm, the weight of the initialization part
grows dramatically: it is emblematic the run on 1000 processors, where 118 seconds have been
spent for initializing, while only 21 seconds for solving.

The poor scalability performances of the initialization phase is mainly caused by two reasons: the
growing number of HCC matrices, that grows with the number of generating subdomains (GCU),
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Figure 9: Per-cent of the solution time spent in flux exchange among subdomains. The two
lines represent the amount of transport and CMFD communications.



and the shared-memory parallelism implemented in this phase. Moreover, all these issues are
amplified by the (simple) nature of the problem. We will try to analyze the above mentioned issues
by comparing the 2 × 2 × 2 configuration to the 10 × 10 × 10 configuration. The initial point is
that only 10 HCC types are necessary to construct the global C5-G7 geometry. This correspond
to 10 HCC sets of coefficients if the problem was solved on a single processor. In the 2 × 2 × 2
subdomain grid, there are 8 GCU and 8 ECU. In this case, because of repetition, the total number of
HCC types is 50. This number grows to 613 HCCs for 1000 subdomains. In this case, 200 GCUs
are defined for generating 1000 ECUs. As en example of such overhead affecting the 10× 10× 10
configuration, the HCC representing the UOX pin cell is computed 75 times! Of course, this extra
cost is particularly important in benchmark problem, as the one analyzed, but it is irrelevant when
all spatial meshes contains different materials, as for depletion and multi-physics applications.

The second reason is merely linked to the OpenMP parallelism used in this calculation phase: the
shared-memory parallelism is applied on the discrete-ordinates for the calculation of coefficients.
Instead, the subdomains, are computed sequentially on the node. Each thread is in charge of the
computation of HCC coefficients along one direction. Because of the symmetry, the coefficients
are computed only for the directions of the first octant. In our particular test suite, there are only
10 directions per octant. This means that the 2×2×2, where 4 threads/node are allocated, uses all
the available resources while initializing. Instead, in the 10× 10× 10 configuration, only 10 of the
25 available threads are used . Of course, such an issue fades away when the number of discrete
directions is greater or equal to the number of threads.

Initialization Time DDM iterations (transport+CMFD)
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n. of cores

100

200
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Figure 10: Time elapsed in the DDM iterations (transport + CMFD) and the time elapsed in
the initialization.

9.2. Effective scalability

In this test, the configurations of Tab. (4) have been run until the convergence. The error tolerance
is 1 pcm on the eigenvalue, 10 pcm on the fission integral distribution and 100 pcm on the interface
flux exchanged among the subdomain boundaries. This test is of particular interest to mesure the



effective speed up for a given problem solution.

In Figures (11) and (12) are respectively plotted the elapsed time and the number of outer power
iterations versus the number of subdomains. As expected from the theory, the configuration of
the domain decomposition determines the rate of convergence of the iterative scheme. In fact,
for a given problem, the more the domain is subdivided, the more iterations will be needed to
convergence. Also, the synergy among transport and CMFD operators is also affected by the way
the domain is decomposed. Because the ’propagation’ of the transport solution is slowed down by
the increasing number of subdivisions, also the ’quality’ of the CMFD operator will be affected.
Moreover, because the CMFD is solved with the same spatial decomposition of the transport, also
the number of CMFD power iterations increases with the number of subdivisions.
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Figure 11: Elapsed time versus the number of subdomains (= n. of cores).

When the number of subdomains increases, the fraction of time spent in the CMFD grows substan-
tially because of the growing of the number of iterations needed to converge the CMFD problem.
For an insight of the CMFD time consumption, Fig. (13) shows the ratio of the elapsed time of the
CMFD with respect to the total runtime and with respect to the time spent in transport iterations,
while Figs. (14) and (15) respectively depict the amount of CMFD outer and inner iterations ver-
sus the number of subdomains. The CMFD time is less then 10% of the total time until the 300
subdomains threshold is reached, as illustrated in Fig. (13). Then, the cost of the CMFD solution
becomes predominant, reaching about the 60÷70% of the total time. Such increasing in time is
produced by the huge amount of inner and outer CMFD iterations necessary to converge those
configurations. Such particular behavior of the CMFD has also been observed in the reactor solver
MPACT, [?].

Figure (16) depicts the global parallel efficiency (blue line), the DDM-iteration parallel efficiency
(gamboge line) and the transport iteration parallel efficiency (green line). The overall results show
a minimum parallel efficiency of 54%. The results, although affected by the poor scalability of the
initialization step, show a great parallel efficiency for the solution step, which demonstrates that the
solver is effective. Indeed, the parallel efficiency of the solution part stands at around 80%÷90%.
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Figure 12: Number of DDM Parallel-Block Jacobi outer iterations versus the number of
subdomains = n. of cores.
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Figure 13: Fraction of the total time spent in the CMFD iterator: with respect to the total
elapsed time, with respect to the transport time.
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Figure 14: Outer power iterations of the CMFD operator done per each outer power
iteration of the DDM transport operator.
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Figure 15: Number of inner Krylov iterations of the CMFD solver per each outer power
iteration of the DDM transport operator.
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Figure 16: Parallel efficiency.

10. Whole-core simulation: the Eole reactor simulation on 6250 processors

In this test, the IDT DDM algorithm is benchmarked with the Eole reactor simulation. The
APOLLO3 data file used for generating the IDT input file and cross sections is derived from
the one used in presented in [29], in particular here, the nominal configuration with half of the
total geometry is analyzed. This calculation is actually 4 times bigger than the former APOLLO3
simulation performed in reference [29]. Except for the surrounding reflector, the geometry of the
reactor is modeled exactly. The boundary conditions are zero incoming boundary flux everywhere
except for the bottom surface which has a reflective boundary conditions simulating the bottom
half of the reactor. The surface meshing of the HCCs is a uniform 2 × 2 grid on each face of
the boxes. The angular discretization is performed using a S12 level-symmetric quadrature. The
CMFD mesh consists in 241 875 regions obtained by homogenizing each HCC.

The test has been run using 6250 processors for 6250 subdomains. The resources allocated on
the Cobalt cluster are 250 nodes with 25 cores/node. The spatial subdomain grid, that composes
the pivot geometry, comprises 25 × 25 × 10 zones. The size of the subdomains is 3 × 3 × 5
HCCs/subdomain for the first 1875 pivot zones and 3× 3× 4 HCCs/subdomain for the remaining
4375 zones. Although the reactor configuration comprises only 100 materials, the test has been
performed by duplicating the cross sections of the fuel materials in each HCC containing fuel. This
makes the number of materials grow up to 158 647. Table (5) shows the discretization options and
the overall size of the problem. The total memory occupation is 10 TB, the 56% of which is
occupied by transport coefficients. The IDT solver has 3 strategies to handle coefficients: 1/ the
coefficients are computed in the initialization step and stored in memory once and for all, 2/ they
are computed on-the-fly for each group before the angular-spatial transport sweep, 3/ they are
compressed and reconstructed on-the-fly by using a linear Taylor expansion around well-chosen
values of the total cross-sections. In this particular test, we have privileged the performances at the
expense of memory cost by choosing the first option.



The 35% of memory is used for storing the flux. This memory comprises the multigroup angular
moments, the interface boundary angular flux, and the fission integral. But the huge part of the
flux storage is occupied by the interface boundary angular flux which is exchanged among the
subdomains.

In any event, as shown in Tab. (6), the average memory/node is 40 GB against 128 GB available,
which means about only the 33% of the total available memory. The deviation to the mean value
is about 5 GB. The detailed data decomposition among the memories of the nodes is depicted in
Fig. (17). The figure shows a maximum memory occupation of 63 GB/node, which is less of the
half of the memory of the node.

Table 7 shows the performances of the run. The overall elapsed time is satisfactory: the calculation
runs in 47 minutes with only 15% of the time spent in the initialization, that involves the calulation
of the HCC’s matrices. Furthermore, considering that 1/4 of the same calculation took 5 days on a
single node with 16 processors without DDM (as it has been shown in the work of [29]), one can
roughly estimate a speed-up of 153.

The analysis of the elapsed times shows a great performance of the transport solver that uses only
7 minutes, i.e. the 11% of the total time. Instead, as predicted by the scalability test, the 71% of
the runtime is spent by the CMFD. More precisely, just the 6% is used for CMFD iterations while
the 65% of the total time is used to iteratively update the CMFD coefficients. The most expensive
step in the CMFD is the construction of the broad cross sections, in particular, the scattering matrix
where the 281-group P3 matrices are homogenized and collapsed to 24 groups in a P0 matrix in
each coarse cell.

Another positive result is also the reduced time spent in communication which is only 16 seconds,
that is negligible.

In Table 7, the total number of transport iterations could seems huge at a first glance, but if one
divides by the number of groups and by the number of outer DDM iterations, than the average
number of transport sweep in a subdomain is more reasonably 3÷ 4 iterations per group.

The Figures (18) and (19) show the time distribution per subdomain and the time distribution
per threads. The average time spent in a subdomain is 500 seconds, that is almost equal to the
average time spent by a thread, which is 471 seconds. But the deviation from the average is 500
seconds for the time per subdomain and 300 seconds for the time per thread. Such spread of the
time distribution is caused by two main reasons: the memory imprint of the subdomains is not the
same and, above all, the spectral radius of the local multigroup iterations varies from subdomain
to subdomain. This last aspect, which is deeply influenced by the material composition of the
subdomain, has a consequence on the number of iterations and, thus, on the computational cost of
the subdomain. In conclusion, subdomains having the highest spectral radius (as for example, those
in the water reflector) consume the most of the computational time. This means that the domain
decomposition layout affects the iterative properties of the calculation, as it has been shown in the
strong scalability test.

Nevertheless, as depicted in Fig. 20, the CPU time cumulated per node shows a good balance.



Table 5: Problem size of the EOLE-UH1.2 simulation with 6250 subdomains = 6250 cores.

Pivot grid 25 × 25 × 10

Number of Subdomains 6250

Anisotropy order P3

Number of regions 648 434

Number of outer boundary surface meshes 24 150

Number of interface boundary surface meshes (DDM) 1 095 000

Number of groups 281

Number of HCC types 78 344

Number of outer boundary surface meshes 216 000

Number of directions per octant 21

Total number of directions 128

Number of spatial moments of the volume flux 4

Number of spatial moment for the interface flux 3

Number of angular moments for the source 16

Number of materials 158 647

Number of CMFD coarse cells 241 875

Number of CMFD coarse energy groups 24

Memory for coefficients (GB) 5 632

Memory for cross sections (GB) 395

Memory for flux 3 548

Total Memory (GB) 9 881



Table 6: Allocated resources and memory occupation per node.

Number of Nodes 250

Number of cores / node 25

Total number of cores 6 250

Number of Subdomains 6 250

Average memory per node (GB) 40

σ(Memory per node) (GB) 5

Max. memory in a node (GB) 63

Min. memory in a node (GB) 36

Total Memory occupation HCC coeff.
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Figure 17: Memory occupation per node.



Table 7: Iterations and time analysis of the Eole reactor simulation. Errors on the
k-effective and on the fission distribution are given with respect to pin-by-pin experimental

measures.

Eigenvalue 1.00434

eigenvalue error (pcm) 66

max. fission source error (%) 2.1

RMS (%) 0.56

Total DDM outer iterations 40

Inner transport it./subdomain 36105

CMFD Outer iterations 12105

CMFD Inner it./subdomain 46316

Total Elapsed Time (seconds) 2894

Initialization step (seconds) 433

DDM construction (seconds) 2

DDM outer loop (seconds) 2458

Total in transport Subdomain loop (seconds) 341
CMFD solver (seconds) 213
CMFD Coef. (seconds) 1 889
total in fluxes exchange (seconds) 16
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Figure 18: Distribution of the CPU time per subdomain.
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Figure 19: Distribution of the CPU time per threads.
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Figure 20: Cumulative CPU time per node.

11. Conclusions and further remarks

In this paper, we presented a numerical archetype for 3D whole-core transport simulations. The
HCC provides an accurate representation of the flux gradients within the pin cell. The numerical
tests show that high-fidelity transport calculations in regular assembly geometries can be efficiently
obtained without need for homogenization. The LSC applied to HCC allows for a considerable
reduction of the number of regions without a relevant loss in accuracy. The HCC can provide a
consistent alternative to the most popular MOC-based solvers, as in [?] and [?]. The tests shown
in this paper demonstrate the capabilities to preform HPC simulations up to o(1000) processors of
a reactor core using the HCC discretization. Furthermore, the DDM multigroup iterative algorithm
has shown good scalability performances reaching 60% of global efficiency up to 6250 processors.
Furthermore, the simulation of the Eole reactor shows accurate results on a 3D full-core in a
reasonable amount of time. Indeed, those tests also display that a depletion step of a reactor can
be obtained in less than 1 hour, thus, one can foresee full-core depletion calculation in about 1 day
of calculation on a HPC machine.

Considering that this work is a first step for porting IDT on HPC machines, we can argue that IDT
has a margin for improvements:

• The CMFD options, as the number of coarse groups or the size of the coarse cells, are not
tuned. The tuning of the CMFD can sensibly affect the acceleration effectiveness and, thus, the
calculation time.

• There is an ongoing work for the improving of the CMFD non-linear acceleration: an experi-
mental version of IDT is already equipped with a non-linear acceleration library which solves
the CMFD system by the PETSc library. Early comparison among the current CMFD and the
CMFD of the library has shown very encouraging results since the latter is 40% faster than the
former.



• A refactoring of the HCC coefficient is also in the pipeline, this will guarantee a sensible reduc-
tion of the trajectories and, thus, of the computational cost of the initialization step.

• The initialization step also has to be reorganized for a more effective usage of the parallel re-
sources.

• The domain splitting, that especially influences the CMFD, can be improved by implementing
other strategies taking into account the spectral radius of the subdomain and the spatial load, i.e.
the number of regions in the HCCs.

• Finally, the build-chain used in this work is based on the gnu/4.8.5 distribution, for favoring
the error diagnostic, which is a conservative decision. We have not yet built an executable
with the recommended Intel compiler which allows for vectorization, in particular, the AVX2
directives.

This work served as a first real-scale benchmark for validating IDT and its capability of efficiently
running on HPC machines.
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