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AIRCRAFT ROUTING AND CREW PAIRING:
UPDATED ALGORITHMS AT AIR FRANCE

AXEL PARMENTIER AND FRÉDÉRIC MEUNIER

Abstract. Aircraft routing and crew pairing problems aim at building the sequences of
flight legs operated respectively by airplanes and by crews of an airline. Given their impact
on airlines operating costs, both have been extensively studied for decades. Our goal is
to provide reliable and easy to maintain frameworks for both problems at Air France. We
propose simple approaches to deal with Air France current setting. For routing, we introduce
an exact compact IP formulation that can be solved to optimality by current MIP solvers
in at most a few minutes even on Air France largest instances. Regarding crew pairing, we
provide a methodology to model the column generation pricing subproblem within a new
resource constrained shortest path framework recently introduced by the first author. This
new framework, which can be used as a black-box, leverages on bounds to discard partial
solutions and speed-up the resolution. The resulting approach enables to solve to optimality
Air France largest instances. Recent literature has focused on integrating aircraft routing
and crew pairing problems. As a side result, we are able to solve to near optimality large
industrial instances of the integrated problem by combining the aforementioned algorithms
within a simple cut generating method.

1. Introduction

1.1. Context. Interactions between Operations Research and Air Transport Industry have
been successful for at least five decades [5, 18]. These interactions have taken various forms:
yield management, airplane timetabling, ground operations scheduling, air traffic manage-
ment, etc. Key applications are notably the construction of sequences of flight legs operated
by airplanes and crews. As airplane sequences of legs are routes and crew sequences pairings,
this construction is called aircraft routing for airplanes, and crew pairing for crews.

The present paper focuses on these two applications and is the fruit of a research partner-
ship with Air France, the main French airline. We aim at providing a reliable and easy to
maintain framework that can cope with the specific and challenging industrial context of the
company. Air France working rules are more complex than the IATA standards: collective
agreements reach hundreds of pages, and two of the most cited references on crew pairing
[12, 29] develop ad-hoc approaches to build pairings satisfying the company’s rules. While
the aircraft routing remains easy, this turns the exact resolution of Air France crew pairing
into a challenge.

As crews need time to cross airports if they change airplane, the two problems are linked
and the sequential resolution currently in use in the industry is suboptimal. Solving the
integrated problem has been identified by academics as a difficult problem. Air France also
requested an easy to maintain solution scheme for the integrated problem.
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1.2. Literature review. All the versions of the problems considered in this paper are NP-
hard. We focus here on mathematical programming approaches.

Aircraft routing is considered at Air France as a pure feasibility problem, which contrasts
with the recent literature which considers optimization versions. Authors either maximize
profit when the fleet is heterogeneous [4, 13], or minimize delay propagation along sequences
of flights [28]. A recent paper introduces tools to deal with richer maintenance constraints
[37]. State-of-the-art solution approaches rely on column generation [4, 13, 20, 28], where
columns are sequences of flight legs between airports where maintenance checks can be
performed. They can solve to optimality large instances of the optimization versions in
a few hours. (The solution proposed in [28] is actually for the so-called tail assignment
problem, where the airplanes are distinguishable, but it can be adapted to aircraft routing.)
Alternative approaches include heuristics [19] and Lagrangian relaxations [9].

Clarke et al. [9] propose a MIP with few variables. However, their MIP has two exponential-
size families of constraints: the first one is formed by classical subtour elimination constraints;
the second one is formed by “minimal violation path” constraints that enforce the mainte-
nance requirements. While the first family can be discarded for the aircraft routing problem
we consider, the second one must be kept, and thus cut generation cannot be avoided to
solve their MIP. Practically efficient compact integer programming formulations, that is, for-
mulations which require neither column generation, nor cut generation, have recently been
proposed by Cacchiani and Salazar-González [7] and Khaled et al. [25]. Compact formu-
lations have the advantage to be more handy and can often be directly implemented in
standard MIP solvers. Cacchiani and Salazar-González [7] consider the integrated problem,
and propose a compact integer programming formulation for aircraft routing. Since they
assume that the airplanes spend alternatively one night in a base and one night outside,
their approach does not generalize to the Air France case, where one maintenance must be
performed at least every four days, while the maintenance day is not fixed. By the way,
due to the different maintenance requirements, the aircraft routing problem considered by
Cacchiani and Salazar-González [7] has a polynomial status [22], while Air France problem is
NP-hard [41]. Khaled et al. [25] have also recently proposed a compact MIP approach to tail
assignment, which can be adapted to aircraft routing. They are able to solve to optimality
instances with up to 1,178 legs and 30 airplanes in 3 hours. Their approach could in principle
be used to address the version of the aircraft routing problem met at Air France. We discuss
later in the paper the advantage of the approach we propose for aircraft routing with respect
to theirs.

Crew variable wages and hotel rooms are among airlines first sources of variable costs.
As both depend on the sequences of flight legs crews operate, crew pairing is an intensively
studied optimization problem; see Gopalakrishnan and Johnson [21] for an extensive review.
Regulatory agencies and collective bargaining agreements list numerous working rules that
make the crew pairing problem highly non-linear and hence difficult. There is a long tradition
of MIP approaches to crew pairing [2, 21] Since the seminal work of Minoux [33], state-of-the-
art approaches solve the crew pairing by column generation [1, 3, 8, 12, 23, 26, 27, 29, 40, 44].
They consider set partitioning formulations where columns are possible pairings. These
methods hide the non-linearity in the pricing subproblem, which can be efficiently solved
using resource constrained shortest path approaches [24]. As a large part of the working
rules apply to duties, i.e., subsequences of a pairing formed by the flight legs operated on a
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same day, the subproblem is often split into two parts [12, 44]. The first one builds the set
of all non-dominated duties. The second one builds the pairings by solving a path problem
in the graph whose vertices are the non-dominated duties, and whose arcs are the pair of
duties that can be chained. However, as the number of non-dominated duties is huge, solving
the pricing subproblem becomes costly on large instances. When working rules are simple,
one can also use compact integer programming approaches [6] where variables indicate if a
given connection is used, and set partitioning formulations, where columns are the duties
[42]. However, this is generally not the case, and such models are generally turned into
initialization heuristics [3].

During the last decade, much attention has been devoted to the integration of aircraft
routing and crew pairing. Moving from a sequential to an integrated approach enables to
reduce the cost by 5% on average according to Cordeau et al. [11], and 1.6% according
to Papadakos [35]. Solution methods are column generation based heuristics [7, 10, 31,
32, 35, 38, 39, 43]. The heuristics of Cacchiani and Salazar-González [7], Salazar-González
[38], Weide et al. [43] share many similarities with the ones we propose in this paper. Dunbar
et al. consider robust [16] and stochastic [17] versions of the problem. To the best of our
knowledge, the largest instances considered in the literature have 750 legs [43].

1.3. Contribution and methods. The present paper is the result of a project initiated
by Air France to design efficient and easy to maintain solution schemes for aircraft routing,
crew pairing, and the integrated problem.

The first author has recently proposed an abstract framework [36] for computing resource
constrained shortest paths. The main contribution of the present paper is the proof that
this framework can be used on a concrete problem and considerably improves the size of the
instances that can be solved at optimality. Indeed, we apply this framework to the pricing
subproblem of a standard column generation approach for the crew pairing problem and
solve to optimality from a few minutes to a few hours instances with up to 1, 000 flight
legs, which outperforms previous performances on that problem. One key element in the
performances of this framework is the use of sets of bounds to discard paths, instead of single
bounds: this is useful in a context where any two resources are not necessarily comparable
(in Section 4, further details will be given). Even if this idea of sets of bounds is present
in the aforementioned paper of the first author, the present paper is the first proof that
such a technique is very efficient in practice. We finally emphasize that the framework for
shortest path computation does not explain how to model concrete problems like the one
met for crew pairing. The modeling we propose is thus also a contribution on its own: more
than 70 rules have to be satisfied, and most of them are non-linear. Finally, Desrosiers
and Lübbecke [14, p. 16] underline that, in a column generation context, “accelerating the
pricing algorithm itself usually leads most significant speeds-up”. As all the approaches to
the integrated problem use a column generation approach for the crew pairing, we believe
that these approaches can be significantly accelerated by using our improved crew pairing
pricing subproblem algorithm.

Our second contribution is a simple and compact integer formulation for aircraft routing.
Such formulations are desirable in an industrial context since, as mentioned in the literature
review, they do not require tricky development and can often be directly implemented in
off-the-shelf solvers. In addition, our formulation is very efficient: it enables to solve all
Air France industrial instances in at most a few minutes. As mentioned in the literature
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review, other compact formulations have recently been proposed [7, 25]. Even though the
formulation of Khaled et al. [25] could in theory be adapted to Air France specific problem,
such an adaptation is not straightforward due to the fact that routes are cyclic in Air France
aircraft routing problem. Furthermore, on Air France problem, our formulation admits a
stronger linear relaxation than theirs (we discuss it in Appendix B), which gives a clear
competitive advantage to our approach. We do not claim that our formulation outperforms
their one on other versions of the problem such as the one they consider.

Finally, we design a simple cut generating method for solving the integrated problem,
which relies on our contributions for aircraft routing and crew pairing. Like the one of
Weide et al. [43], our method consists in solving alternatively crew pairing and aircraft
routing problems. However, they do not consider the same problem: their version includes a
notion of robustness with respect to delay. Experiments show that the method is able to solve
to near optimality instances with up to 1, 766 flight legs, which again outperforms previous
results on that problem. Due to the specificity of Air France problem, with no aircraft routing
costs, our method cannot handle all the problems considered in the literature. However, it
is the only one that proves optimality gaps smaller than 0.01% on instances with more than
600 legs.

We emphasize that for the three problems, our solution is easy to use and to maintain by
the company. The algorithm for computing the shortest paths is already implemented and
can be used as a black-box. The only non-trivial task is the modeling of the rules in the
framework, but once a few techniques have been understood (like the ones we use later in
the paper, in Section 4.2), even this step is straightforward.

1.4. Organization of the paper. Each of the three problems considered in the paper is
addressed in a separate section: the aircraft routing problem is studied in Section 2, the
crew pairing problem in Section 3, and the integrated problem in Section 5. Each of these
sections gets exactly the same structure. It starts with a subsection describing the problem.
A second subsection is then devoted to a modeling of the problem (e.g., the compact integer
formulation for the aircraft routing problem). It ends with a subsection explaining the
proposed method to solve the problem (e.g., column generation for the crew pairing problem
and cut generation for the integrated problem).

Experiments showing the efficiency of the methods proposed in each of these three sections
are provided and discussed in Section 6.

Section 4 is a section making a focus on an algorithmic subroutine required by our method
for the crew pairing problem. This section is much more technical than the others and can
be safely skipped at first reading (and the same holds for Section 6.7 that deals with specific
experiments regarding this subroutine). This subroutine is the algorithm solving the pricing
subproblem of the column generation. It relies on the shortest path framework of the first
author and on bound sets, both described in that section.

The paper ends with a short conclusion (Section 7). All proofs are postponed to Appen-
dix A.

2. Compact integer program for aircraft routing

2.1. Problem formulation. Building the sequences of flight legs required for aircraft rout-
ing corresponds to solving the following problem.
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Figure 1. Two routes. A two-week route in plain line. A single-week route
in dashed line

The input is formed by a set of airports, a collection L of flight legs, and a number na of
airplanes. Some airports are bases in which maintenance checks can be performed. A flight
leg is characterized by departure and arrival airports, as well as departure and arrival times
(it is of course assumed that departure time is smaller than arrival time for any flight leg).
We consider the flight legs on a weekly horizon: the departure and arrival times are given
for a typical week.

The purpose of aircraft routing is to determine routes for airplanes so that each flight leg
is operated by an airplane each week without using more than na airplanes. In addition,
there are maintenance operations that have to be regularly performed: each airplane has to
spend a night in a base at least every ∆maint days, where ∆maint is a given parameter, which
is equal to 4 at Air France.

Formally, an airplane connection is a pair (`, `′) of flight legs which satisfies

• the arrival airport of ` is the departure airport of `′

• the duration between the departure time of `′ and the arrival time of ` is bounded
from below by a fixed quantity (which can depend on the airport, the time, and the
fleet).

We underline that there are connections (`, `′) with ` at the end of the week and `′ at the
beginning of the (next) week. A route is a cyclic sequence of distinct flight legs `1, . . . , `k
such that any two consecutive flight legs (`, `′) = (`i−1, `i) or (`k, `1) is an airplane connec-
tion. Routes can last several weeks, but each week, the sequences of flight legs operated by
airplanes are the same. In other words, when we consider all airplanes as indiscernible, the
solution must have a week periodicity. Figure 1 illustrates two routes, which last respectively
one and two weeks. As each flight leg has to be operated each week, routes lasting p weeks
require p airplanes. A route satisfies the maintenance requirement if an airplane following
this route in a cyclic way (repeating the solution when it reaches the end of the cycle) spends
a night in a base at least every ∆maint days

The task consists in partitioning L into routes satisfying the maintenance requirement
such that the number of airplanes needed to operate these routes is less than or equal to na.
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Figure 2. Illustration of the digraph D of Section 2.2 for ∆maint = 4. Only
a few arcs of D (plain arcs) are displayed. The dashed cycle provides a route
satisfying the maintenance requirement. The dotted path cannot be completed
to a cycle since there is no outgoing arc from (`k, 4): it implies that there is
no route of the form `b, `c, `e, `g, `i, `k, . . . that satisfies the maintenance re-
quirement.

2.2. Modeling as an integer program. We first explain how the problem can be modeled
as a disjoint cycle problem in a directed graph. This will make the description of the integer
program a straightforward task.

Define the directed graph D = (V,A) as follows. Its vertex set is L × [∆maint]. In other
words, each flight leg is duplicated ∆maint times. Each vertex (`, δ) corresponds to a flight
leg ` ∈ L with the number of days δ ∈ [∆maint] since the last night spent in a base. An
ordered pair ((`, δ), (`′, δ′)) is in A if (`, `′) is an airplane connection and we are in one of the
three following situations:

• ` and `′ are performed during a same day and δ = δ′, as illustrated between legs `f
and `h on Figure 2,
• ` and `′ are not performed on the same day, the airport is a base, and δ′ = 1, as

illustrated between legs `j and `l,
• ` and `′ are not performed on the same day, the airport is not a base, and δ′− δ ≥ 0

is the number of days between the arrival of ` and the departure of `′, as illustrated
between `m and `o.

In other words, an arc corresponds to two flight legs that can be consecutive in a route,
with the suitable restrictions on the number of days since the last night spent in a base. A
cyclic sequence of legs `1, . . . , `k satisfies the maintenance requirement if and only if there
exists δi for i in {1, . . . , k} such that (`1, δ1), . . . , (`k, δk) is a cycle in D. Indeed, suppose
that a route `1, . . . , `k satisfies the maintenance requirement, and denote by δi the number
of days since the last night spent in a base before `i. Then the definition of D ensures that
(`1, δ1), . . . , (`k, δk) is a cycle in D. Conversely, suppose that a route does not satisfies the
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A0

Figure 3. A two-week route crosses A0 twice

maintenance requirement. It contains a sequence of legs `1, . . . , `k spending at least ∆maint

successive days out of a base. Let `j be the leg in that sequence before the ∆maintth night.
Then any path (`1, δ1), . . . , (`j, δj) in D necessarily ends in vertex (`j,∆maint), which has no
outgoing arc, and there is no cycle in D corresponding to the route.

Figure 2 illustrates such a directed graph D. The route `a, `c, `e, `h, `i, `k, `n, `o, `q sat-
isfies the maintenance requirement and corresponds to the dashed cycle in D. The route
`b, `c, `e, `g, `i, `k, `n, `o, `q does not satisfy the maintenance requirement. The dotted path is
an attempt to make it a cycle in D, but since there is no arc outgoing from (`k,∆maint), it is
not possible.

We choose arbitrarily one instant in the week and we denote by A0 the set of arcs
((`, δ), (`′, δ′)) “crossing this instant”, i.e., such that the time interval between the departure
of ` (included) and the departure of `′ (excluded) contains the instant. Define moreover V`
to be the set

{
(`, δ) ∈ V : δ ∈ [∆maint]

}
.

Proposition 1. Feasible solutions of the aircraft routing problem are in one-to-one corre-
spondence with collections C of vertex disjoint cycles in D such that we have simultaneously

(i) for each `, exactly one cycle in C has a nonempty intersection with V`, and this
intersection consists of a single arc.

(ii) C has at most na arcs in A0.

Therefore, the aircraft routing problem is equivalent to deciding whether the following
integer program has a feasible solution:

∑
a∈δ−(v)

xa =
∑

a∈δ+(v)

xa ∀v ∈ V(AR.1)

∑
a∈δ−(V`)

xa = 1 ∀` ∈ L(AR.2)

∑
a∈A0

xa ≤ na(AR.3)

xa ∈ {0, 1} ∀a ∈ A.(AR.4)

Equation (AR.1) is the flow equation. Together with (AR.2), it ensures that the solution
is composed of vertex disjoint cycles. Equation (AR.2) ensures that (i) is satisfied and
Equation (AR.3) ensures that (ii) is satisfied.
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2.3. Solution method. The solution we propose is to implement directly the integer pro-
gram (AR) in any standard MIP solver. Its number of constraints is |L|×∆maint + |L|+1 and
its number of variables is the number of airplane connections times ∆maint. Program (AR)
is therefore of tractable size, and current off-the-shelf solvers can solve industrial instances
in a few minutes. See our experiments in Section 6.

3. Column generation approach to crew pairing

3.1. Problem formulation. Roughly speaking, the crew pairing problem is similar to the
aircraft routing problem: instead of building sequences of flight legs for the airplanes (the
routes), crew pairing requires to build pairings, which are sequence of flight legs operated
by the crews. While routes are cyclic sequences, pairings are noncyclic sequences (and they
are often quite short). The set of flight legs have to be partitioned into pairings, but the
constraints are much more complicated. Before stating formally the crew pairing problem,
we introduce some terminology.

A pair of flight legs (`, `′) is a connection if it satisfies:

• the arrival airport of ` is the departure airport of `′

• the departure time of `′ minus the arrival time of ` is bounded from below by a fixed
quantity (which can depend on the airport, the time, and the fleet). This quantity
is in general different from the similar one for aircraft routing.

If the arrival of ` and the departure of `′ are on the same day, then it is a day connection.
Otherwise, it is a night connection. If the duration of a night connection is smaller than a
threshold, then it is a reduced rest. (This term is due to the rest taken by crews performing
a night connection.)

A pairing is a sequence of distinct flight legs such that any two consecutive flight legs form
a connection. The subsequence of a pairing formed by all flight legs operated during a same
day is a duty.

To be feasible, a pairing `1, . . . , `k has to satisfy the following rules:

(a) the period between the departure of `1 and the arrival of `k spans at most 4 days,
(b) `1 starts and `k ends in one of the Paris airports,
(c) each duty contains at most 4 flight legs. If a duty starts with a leg `′, and the night

connection (`, `′) that leads to `′ is a reduced rest, then the number of legs of the
duty is at most 3,

(d) the total flying duration in a duty does not exceed F (t), where F is a given function
and t is the time at which the first leg of the duty departs,

as well as more than 70 other rules which encode the IR-OPS regulation of the European
Aviation Safety Agency and Air France working rules. A pairing is long if it spans 4 days.
A duty is long if it contains more than 3 flight legs, and short otherwise. We denote by P
the set of feasible pairings

Operating a pairing p in P has a cost cp that corresponds to crew wages and hotel nights.
Given a set L of flight legs, solving the crew pairing problem consists in selecting a collection
of feasible pairings of minimum total cost so that each leg ` in L belongs to exactly one
of them, and so that the following global constraints are satisfied: the proportion of long
pairings in the solution is less than or equal to a quantity α, and the proportion of long
duties is at most a quantity β.
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Our purpose here is to introduce the main modeling ideas and not to get into details of the
intricacies of the IR-OPS and Air France regulations. In the rest of the paper, we therefore
present these ideas on a simplified problem with only the four illustrating rules (a), (b), (c),
and (d). All the other rules are also taken into account in the numerical results.

3.2. Modeling as an integer program. As pairings must satisfy many non-linear rules
such as rule (c), it is difficult to model crew pairing using a compact integer program that
has both a good linear relaxation and a tractable size. The literature therefore generally
uses a column generation approach where rules complexity are hidden in the set of variables
(and dealt with using ad-hoc algorithms in the pricing subproblem). We also use a column
generation approach.

The binary variable yp indicates if a pairing p in P belongs to the solution.

(CP)

min
∑
p∈P

cpyp

s.t.
∑
p3`

yp = 1 ∀` ∈ L∑
p∈P l

yp ≤ α
∑
p∈P

yp∑
p∈P

(
(1− β)∆l(p)− β∆s(p)

)
yp ≤ 0

yp ∈ {0, 1} ∀p ∈ P ,

where p 3 ` means that the flight leg ` is present in p, where P l is the set of long pairings, and
where ∆s(p) (resp. ∆l(p)) is the number of short (resp. long) duties in a pairing p. The first
constraint ensures that each leg is covered, the second that the proportion of long pairings
is less than or equal to α, and the third that the proportion of long duties is less than or
equal to β.

3.3. Column generation approach. We propose an exact method for solving the pro-
gram (CP). It is based on column generation. We describe the method without assuming
special knowledge in column generation. We will in particular be sketchy on the theoretical
rationale; more details on that topic can be found for instance in a survey by Lübbecke [30].

Algorithm 1 describes our column generation approach, which maintains a subset of pair-
ings P ′ ⊆ P . The idea of column generation is to solve the master problem, which is the
linear relaxation of (CP) on such a subset P ′, and to check if by chance the optimal solution
found on this restricted version is also an optimal solution of the master problem with the
full set P . This checking is done exactly as in the classical simplex algorithm: it is the
optimal solution for the full problem if all reduced costs are nonnegative. Since the number
of elements in P is huge, it is not possible to compute and check all these reduced costs one
by one. However, given an element p in P , it is always possible to compute its reduced cost
from the value of the dual variables by standard linear programming theory. To find the
element p with the smallest reduced cost, an auxiliary optimization problem instantiated by
the values of the dual variables is solved: the pricing subproblem. In Algorithm 1, this is
done in Step 5. The exact method to solve the pricing subproblem is described in Section 4.
Right before Step 10, the linear relaxation of (CP) is fully solved.
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Algorithm 1 Column generation algorithm

1: initialize P ′ in such a way that (CP) restricted to P ′ is feasible (e.g., taking all possible
pairings of two flight legs makes the job);

2: repeat
3: solve the linear relaxation of (CP) restricted to P ′ with any standard solver;
4: denote by clow its optimal value;
5: find a pairing p of minimum reduced cost c̃p; (pricing subproblem)
6: if (c̃p < 0) then
7: add p to P ′;
8: end if
9: until (c̃p ≥ 0 for all p ∈ P)

10: solve (CP) restricted to P ′ with any standard solver;
11: denote by cupp its optimal value;
12: add to P ′ all pairings with reduced cost (from the last linear program of Step 3) non-

larger than cupp − clow;
13: solve (CP) restricted to P ′ with any standard solver;
14: return its optimal solution y∗;

Since the total number of possible pairings is finite, Step 3 – which consists in solving
the master problem – is repeated only finitely many times, and thus the overall method
terminates in finite time. After having performed Step 3 for the last time, clow is a lower
bound on the optimal value of (CP). Step 10 provides a first feasible solution of (CP). The
value cupp (Step 11) is thus an upper bound on the optimal value of (CP). At that time, we
have thus a lower bound on the optimal value, and a feasible solution.

The purpose of the remaining steps is to “close the gap”. The idea consists in generating
all pairings p that might be in an optimal solution. These pairings are precisely those whose
reduced cost is smaller than or equal to cupp−clow. This is completely formalized by Lemma 2
below. Finding all these pairings in Step 12 is a variant of the pricing subproblem, briefly
discussed in Remark 2 of Section 4. At the end, the solution y∗ is an optimal solution of
(CP).

Lemma 2 (Nemhauser and Wolsey [34, Proposition 2.1, p. 389]). Consider an integer pro-
gram in standard form with variables (zi) for which the linear relaxation admits a finite
optimal value v̄. Suppose given an upper bound UB on the optimal value of the integer pro-
gram. Then for every i such that c̃i > UB−v̄, the variable zi is equal to 0 in all optimal
solutions of the integer program, where c̃i denotes the reduced cost of the variable zi when
the linear relaxation has been solved to optimality.

Remark 1. The last steps of Algorithm 1 works only if the gap cupp − clow is small, as
otherwise a huge number of pairings might be added at Step 12. We found out numerically
that it is the case for all Air France instances, and we thus use this technique. Lemma 2 has
been recently used by Cacchiani and Salazar-González [7] on the integrated problem. They
underline that when cupp − clow is large, a branch and bound approach is required.
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4. Pricing subproblem

We now introduce a solution scheme for the pricing subproblem

(2) min
p∈P

c̃p.

As pairings can be considered as paths satisfying constraints in the graph whose vertices are
the legs and arcs the connections, the pricing subproblem is generally solved as a resource
constrained shortest path problem, and we do not depart from this approach. We model it
within the Monoid Resource Constrained Shortest Path Problem framework [36],
which we now briefly describe. This framework is rather abstract, but practically, it only
requires to implement a few operators on the resource set. This work is the first application
of the Monoid Resource Constrained Shortest Path Problem framework to an
industrial problem.

4.1. Framework and algorithm. A binary operation ⊕ on a set M is associative if q ⊕
(q′ ⊕ q′′) = (q ⊕ q′)⊕ q′′ for q, q′, and q′′ in M . An element 0 is neutral if 0⊕ q = q ⊕ 0 = q
for any q in M . A set (M,⊕) is a monoid if ⊕ is associative and admits a neutral element.
A partial order � is compatible with ⊕ if the mappings q 7→ q ⊕ q′ and q 7→ q′ ⊕ q are
non-decreasing according to this order for all q′ in M . A partially ordered set (M,�) is a
lattice if any pair (q, q′) of elements of M admits a greatest lower bound or meet denoted by
q∧ q′, and a least upper bound or join denoted by q∨ q′. A set (M,⊕,�) is a lattice ordered
monoid if (M,⊕) is a monoid, (M,�) is a lattice, and � is compatible with ⊕.

Given a digraph D = (V,A), a lattice ordered monoid (M,⊕,�), elements qa ∈M for each
a ∈ A, origin and destination vertices o and d, and two non-decreasing mappings c : M → R
and ρ : M → {0, 1}, the Monoid Resource Constrained Shortest Path Problem
seeks

an o-d path P of minimum c

(⊕
a∈P

qa

)
among those satisfying ρ

(⊕
a∈P

qa

)
= 0,

where
⊕

a∈P is always performed in the order of the arcs on the path P (the operation ⊕ is
not necessarily commutative). We call such a qa the resource of the arc a. The sum

⊕
a∈P qa

is the resource of a path P , and we denote it by qP . The real number c (qP ) is its cost, and
the path P is feasible if ρ (qP ) is equal to 0. We therefore call c and ρ the cost and the
infeasibility functions.

We now describe an enumeration algorithm for the Monoid Resource Constrained
Shortest Path Problem. It follows the standard labeling scheme [24] for resource con-
strained shortest paths. The specificity of our algorithm is that it uses, for each v in V a set
Bv of bounds such that,

(3) for each v-d path Q, there is a b ∈ Bv with b � qQ.

The lattice ordered monoid framework enables to design procedures to build these sets of
bounds; see Section 4.3 for more details. Having defined these bounds, we define key(P ) as

(4) key(P ) = min{c(qP ⊕ b) : b ∈ Bv, ρ(qP ⊕ b) = 0} where v is the last vertex of P .

The empty path at a vertex v is the path with no arcs starting and ending at vertex v. By
definition of paths resources, its resource is the neutral element of the monoid. A path P
dominates a path Q if qP � qQ. During the algorithm, a list L of partial paths, an upper
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bound cUBod on the cost of an optimal solution, and lists (Lnd
v )v∈V of non-dominated o-v paths

are maintained. Algorithm 2 states our algorithm. We denote by P + a the path composed
of a path P followed by an arc a.

Algorithm 2 Enumeration algorithm for the Monoid Resource Constrained Short-
est Path Problem

1: input: sets (Bv)v∈V satisfying (3); (see Section 4.3)
2: initialization: cUBod ← +∞, L← ∅, and Lnd

v ← ∅ for each v ∈ V ;
3: add the empty path at the origin o to L and Lnd

o ;
4: while L is not empty do
5: P ← a path of minimum key(P ) in L;
6: L← L\{P};
7: v ← last vertex of P ;
8: if v = d, ρ(qP ) = 0, and c(qP ) < cUBod then
9: cUBod ← c(qP );

10: else (extension of P )
11: for all a ∈ δ+(v) do
12: Q← P + a;
13: w ← last vertex of Q;
14: if ∃b ∈ Bw such that ρ(qQ ⊕ b) = 0 and c(qQ ⊕ b) < cUBod then
15: if Q is not dominated by any path in Lnd

w then
16: Lnd

w ← Lnd
w ∪ {Q} and remove from Lnd

w and L every path dominated by Q;
17: L← L ∪ {Q};
18: end if
19: end if
20: end for
21: end if
22: end while
23: return cUBod ;

Proposition 3. Suppose that D is acyclic. Then Algorithm 2 converges after a finite number
of iterations, and, at the end of the algorithm, cUBod is equal to the cost of an optimal solution
of the Monoid Resource Constrained Shortest Path Problem if such a solution
exists, and to +∞ otherwise.

The specificity of our approach lies in the use of the bounds of Equation (3) in the algo-
rithm. While it is well known that the use of lower bounds is a key element in the performance
of the enumeration algorithms [15], our approach is the first to allow the use of bounds with
non-linear constraints such as (c) and (d). Not only these bounds are used to discard more
paths, but they are also used to improve the order in which the paths are considered by
the algorithm. The two main resource constrained shortest path algorithms in the literature
[24] differ by the order in which one they consider paths. The label correcting algorithm is
obtained from our one by using c(qP ) as key(P ) and removing the test of Step 14. It is for
instance described by Dunbar et al. [16, 17] in the context of crew pairing. The label setting
algorithm considers vertices v in a topological order, and then apply Steps 8 to 21 for each
path P in Lnd

v . Again, the test of Step 14 is removed.
12



Finally, as is has already been noted, we go further by using sets of bounds rather than
singletons (we give additional explanations in Section 4.3).

Remark 2. Step 12 of Algorithm 1 requires to solve the following variant of the Monoid
Resource Constrained Shortest Path Problem:

generate all the o-d paths P satisfying ρ(qP ) = 0 and c(qP ) ≤ cupp − clow.

Algorithm 2 can be easily adapted to this variant. It suffices to maintain a set S of
solutions (initially empty), to replace cUBod by cupp− clow in Steps 8 and 14, to replace Step 9
by S← S∪ {P}, and to return S. The set S returned contains all the o-d paths P satisfying
ρ(qP ) = 0 and c(qP ) ≤ cupp − clow.

Remark 3. The terminology “label setting” and “label correcting” varies in the literature.
We stick here to Irnich and Desaulniers [24]. What Dunbar et al. [16, 17] call a “label
setting” algorithm is a label correcting algorithm according to Irnich and Desaulniers [24].

4.2. Modeling the pricing subproblem. We now explain how to model our pricing sub-
problem (2) in the Monoid Resource Constrained Shortest Path Problem frame-
work. As already mentioned, we only consider rules (a) to (d) (Section 3.1) to focus on
ideas rather than on the full intricacies of the regulation. In other words, the set of feasible
pairings is the set of pairings satisfying rules (a) to (d). For simplicity, we also omit in the
master problem the long pairings and long duties constraints, and we assume that the cost cp
is of the form

∑
(`,`′)∈p c(`,`′). We emphasize that all IROPS and Air France rules, as well as

the real costs and the long pairings and long duties constraints, are taken into account in the
numerical experiments. The reduced cost is then of the form c̃p =

∑
(`,`′)∈p c(`,`′) +

∑
`∈p z`,

where z` is the dual variable associated to the partitioning constraint.
We now model this toy subproblem as a Monoid Resource Constrained Shortest

Path Problem. According to Section 4.1, we have to describe the digraph with its origin
and destination vertices, the lattice ordered monoid, the resources on the arcs, and the cost
and infeasibility functions. We actually solve a shortest path problem for each sequence of
four consecutive days in a week, in order to satisfy rules (a) and (b) (Section 3.1). We thus
solve seven Monoid Resource Constrained Shortest Path Problem instances per
iterations of the pricing subproblem.

4.2.1. The digraph with its origin and destination vertices. Let D = (V,A) be the acyclic
digraph defined as follows. The vertex set is V = L∪{o, d}, where L is the set of legs of four
consecutive days, o is a dummy origin vertex, and d is a dummy destination vertex. The
arc set A contains an arc (o, `) for all legs ` starting in Paris on the first day of the period,
an arc (`, d) for all legs ` ending in Paris, and an arc (`, `′) for each connection (`, `′). With
these definitions, pairings starting on the first day of the period and satisfying rules (a) and
(b) are in one-to-one correspondence with o-d paths in D.

4.2.2. The lattice ordered monoid. The monoid M we use for the resources is of the form
Mρ × R, where Mρ = (Z+ × R+) ∪ (Z+ × R+)2 ∪ {∞}.

An element (n, f) ∈ Z+ × R+ models the resource used over a single day by a pairing: n
flight legs and a total flying duration f . An element (nb, f b, ne, f e) ∈ (Z+×R+)2 models the
resource used over the first and last days of a pairing lasting more than one day. Quantities nb

and f b are the number of flight legs and flying duration on the first day of a pairing, and ne
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and f e are the number of flight legs and flying duration on the last day of a pairing. The
element ∞ is used to capture infeasibility of certain pairings.

Let Fm = max
t
F (t). We define the operator ⊕ on Mρ as follows.

r ⊕∞ =∞⊕ r =∞ for all r ∈Mρ

(n, f)⊕ (ñ, f̃) = (n+ ñ, f + f̃)

(n, f)⊕ (ñb, f̃ b, ñe, f̃ e) = (n+ ñb, f + f̃ b, ñe, f̃ e)

(nb, f b, ne, f e)⊕ (ñ, f̃) = (nb, f b, ne + ñ, f e + f̃)

(nb, f b, ne, f e)⊕ (ñb, f̃ b, ñe, f̃ e) =

{
∞ if ne + ñb > 4 or f e + f̃ b > Fm,

(nb, f b, ñe, f̃ e) otherwise.

We define � on Mρ by

(0, 0) � q and q � ∞ for all r ∈Mρ

(n, f) � (ñ, f̃) if n ≤ ñ and f ≤ f̃

(nb, f b, ne, f e) � (ñb, f̃ b, ñe, f̃ e) if nb ≤ ñb, f b ≤ f̃ b, ne ≤ ñe, and f e ≤ f̃ e,

and a pair (n, f) 6= (0, 0) is not comparable with (nb, f b, ne, f e).

Lemma 4. (Mρ,⊕,�) is a lattice ordered monoid.

As (R,+,≤) is a lattice ordered monoid, the monoid M = Mρ × R is a lattice ordered
monoid when endowed with the componentwise sum and order.

4.2.3. Resources on the arcs. Consider an arc (`, `′) of D. If it is a day connection, then
we define its resource to be

(
(1, f(`′)), c(`,`′) + z`′

)
, where f(`′) is the flying duration of

leg `′, and z`′ is the dual variable of the cover constraint associated to `′ in (CP). If it is a
night connection, then we define its resource to be

(
(0, 0, ne, f e), c(`,`′) + z`′

)
, where ne = 2

if (`, `′) is a reduced rest, and 1 otherwise, and f e = f(`′) + Fm − F (t), where t is the
departure time of `′. Similarly, each arc (o, `′) has resource

(
(0, 0, 1, f e), z`′

)
, and each arc

(`, d) resource
(
(0, 0, 0, 0), 0

)
.

4.2.4. Cost and infeasibility functions. Given q = (r, z) ∈M , we define

ρ ((r, z)) = ρMρ(r) and c((r, z)) = z

where ρMρ is defined on Mρ by

ρMρ

(
(n, f)

)
= max

(
1(4,∞)(n),1(Fm,∞)(f)

)
,

ρMρ

(
(nb, f b, ne, f e)

)
= max

(
1(4,∞)(n

b),1(Fm,∞)(f
b),1(4,∞)(n

e),1(Fm,∞)(f
e)
)
,

ρMρ(∞) = 1,

where 1I denotes the indicator function of a set I. With this definition, the feasibility
function ρ encodes the satisfaction of rules (c) and (d).
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Figure 4. a. A digraph, and b. the corresponding bounds on resources.

4.2.5. Conclusion. The following proposition concludes the reduction of the pricing subprob-
lem to a Monoid Resource Constrained Shortest Path Problem.

Proposition 5. The sequence of flight legs p corresponding to an o-d path P is in P (i.e.,
is a feasible pairing) if and only if ρ(qP ) = 0. In that case, c(qP ) = c̃p.

Appendix C details how this reduction works on a small pricing subproblem instance and
shows a few typical iterations of Algorithm 2.

4.3. Bounds on resources. We give now a simple illustration of why sets of bounds enable
to discard more paths than single bounds. Consider the example on Figure 4.a, where we
have an o-w path Q, and three w-d paths R, R′, and R′′. Resources, which belong to R2

endowed with the componentwise sum and order, are indicated on Figure 4.a. The resources
of w-d paths are indicated by crosses on Figure 4.b. Consider a situation where ρ

(
(q1, q2)

)
is equal to 1 if and only if max(q1, q2) > 2. There is no feasible o-d path starting by Q.

Suppose first that we are using single bounds as in the usual approach, i.e., Bw contains
a unique element bw. Recall that bw is then such that bw � qS for every w-d path S. In
such a case, bw � qR ∧ qR′ ∧ qR′′ = (1, 1). Hence, ρ(qQ ⊕ bw) = 0 and the path P is
not discarded at Step 14 of Algorithm 2. Suppose instead that we use the two bounds
b1 = qR ∧ qR′ and b2 = qR′′ , which are indicated by circles on Figure 4.b. We have then
ρ(qQ ⊕ b1) = ρ(qQ ⊕ b2) = 1, and the path Q is discarded at Step 14. This example is very
simple, but it is the same mechanism that is in work in the general case.

The first author [36] introduced a procedure which, given a size κ in input, builds lower
bounds sets Bw of size κ. Larger sets of bounds Bw enable to get larger lower bounds, and
hence to discard more paths. However, larger sets of bounds also mean a longer preprocessing
is required to compute the bounds. Hence, the parameter κ is chosen to obtain a tradeoff
between the quality of the bounds and the time needed to compute them. Regarding the
practical choice of κ for the crew pairing pricing subproblem, the following rule of thumbs
ensures good results in practice: use κ = 1 if there are fewer than 100 vertices, κ = 50 is
there are fewer than 300 vertices, κ = 150 if there are fewer than 1, 500 vertices, and κ = 250
if there are more.

When solving (CP), the preprocessing, which actually consists in building an “extended
graph”, is done once and for all: the same extended graph is used each time we solve
the pricing subproblem. We can thus work with larger sets of bounds than independent
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resolutions of the Monoid Resource Constrained Shortest Path Problem would
have allowed.

5. Integrated problem

5.1. Problem formulation. If a crew changes airplane during a connection between two
flight legs ` and `′, its members need time to cross the airport between the arrival of `
and the departure of `′. This is not possible if the time between the arrival of ` and the
departure of `′ is too short. A short connection is an ordered pair (`, `′) of flight legs that
can be operated by a crew only if ` and `′ are operated by the same airplane. Due to short
connections, aircraft routing and crew pairing are linked. Given the collection of all short
connections, the integrated problem consists in finding a solution of the aircraft routing
problem of Section 2 and a solution of the crew pairing problem of Section 3 such that
whenever a short connection is used in a pairing, it is also used in a route of an airplane.

5.2. Modeling as an integer program. The solutions x of (AR) and y of (CP) provide
a solution of the integrated problem if an only if

(5)
∑
p∈Pα

yp ≤
∑
a∈Aα

xa

for every short connection α = (`, `′), where we denote by Aα (resp. Pα) the sets of arcs
(resp. pairings) using the short connection α. For any feasible solution of the aircraft routing
problem, there is a solution of the crew pairing problem compatible with it since there is
no constraint on the number of crews, but solving the two problems simultaneously allows
to spare these additional crews and to reduce the costs, as explained in Section 1.2. The
integrated problem aims at performing this task and is thus modeled by the following integer
program

(Int)

min
∑
p∈P

cpyp

s.t. x satisfies constraints of (AR)
y satisfies constraints of (CP)
x and y satisfy constraints (5) for all short connections α.

5.3. A cut generating approach. As we will see in the numerical results, the aircraft
routing and crew pairing solution schemes introduced solve most of our industrial instances
to optimality in a few hours. It is therefore natural to test the ability of a simple combination
of these approaches to tackle with the integrated problem. Instead of solving directly Pro-
gram (Int), we adopt a cut generating approach using the methods proposed in the previous
sections in a rather independent way.

Let S(y) denote the set of short connections used in a solution y of (CP). Given a
feasible solution y of (CP), if there is no feasible solution x of (AR) satisfying (5), then any
solution y′ such that S(y) ⊆ S(y′) leads to a more constrained (AR), and hence to a similar
infeasibility. To avoid such solutions in (CP), we set S = S(y) and add the constraint

(6)
∑
p∈P

|p ∩ S|yp ≤ |S| − 1,
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where |p ∩ S| denotes the cardinality of {α ∈ S : p ∈ Pα}. It prevents a solution to use all
short connections in S but does not restrict otherwise the set of solutions.

We can now describe the algorithm for the integrated problem. The algorithm maintains
a set S of short connection cuts. Initially, S is empty. The following steps are repeated.

(i) Solve (CP) with additional constraints (6) for S ∈ S. Let y∗ be the optimal solution.
(ii) Solve (AR) with the additional constraints (5).

• If it is feasible, then stop (we have found the optimal solution of (Int)).
• Otherwise, add S(y∗) to S and go back to (i).

Because of the cuts added along the algorithm, a solution y∗ is considered at most once. The
number of solutions to the crew pairing problem being finite, the cut generation algorithm
terminates after a finite number of iterations. The solutions of the last call to (i) and (ii)
form an optimal solution to (Int): at each iteration, the only solutions to (CP) that are
forbidden by the additional constraints (6) are not feasible for (Int) and at the last iteration,
y∗ is the optimal solution of a relaxation of (Int).

In practice, the algorithm does not converge after thousands of iterations on industrial
instances. We therefore replace |S| − 1 by γ|S| with γ < 1 in the constraints (6), losing
the optimality of the solution returned. During the first iteration, there is no additional
constraint (6): the crew pairing problem (CP) is therefore not constrained by the aircraft
routing. It is therefore a relaxation of the integrated problem, and its optimal solution
provides a lower bound on the optimal solution of the integrated problem. We use this lower
bound to evaluate the quality of the solution of the integrated problem returned by the
algorithm. Numerical experiments in Section 6 show that γ = 0.9 is a good compromise: we
obtain near optimal solutions after a few dozens of iterations.

6. Experimental results

6.1. Instances. Table 1 describes six industrial instances of Air France. Each instance
contains the legs of a fleet on a weekly horizon. The two first columns provide the name of the
instance and the number of legs it contains. Columns “Airplane connect.” and “Airplanes”
respectively give the number of connections that can be done by airplanes, i.e., the number of
ordered pair of legs (`, `′) that can be operated consecutively in a route, and the number na

of airplanes available. Columns “Crew connect”. and “Crew pairings” respectively provide
the number of connections that can be taken by crews, and the order of magnitude of the
number of pairings in a good solution. Finally, column “Short connect”. gives the number
of short connections available. These instances are large: for instance, the largest instance
considered by Mercier et al. [32] has 707 legs, and the largest instance for the integrated
problem in the literature [43] have 750 legs.

The instance A318-9 (resp. A320-fam) contains the legs of the A318 and A319 (resp. A318,
A319, A320, and A321) instances, as well as a few extra “fictitious” legs. As Air France crews
can operate legs on planes of different subfleets on the same pairing, there is a common crew
pairing problem for each of the instance A318-9 and A320-fam. On the contrary, the subfleet
of an airplane is fixed: an A318 does not become an A319. Hence, solving aircraft routing
for multiple subfleets together consists in solving one separate problem for each subfleet.
This is what we do when we solve aircraft routing instances within the integrated problem
solution scheme for instances A318-9 and A320-fam.
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Instance Legs Airplane Airplanes Crew Crew Short
connect. connect. pairings (') connect.

A318 669 39,564 18 3,742 130 1,230
A319 957 45,901 41 3,738 240 996
A320 918 49,647 45 3,813 280 1,103
A321 778 29,841 25 3,918 165 1,006
A318-9 1,766 – (59) 8,070 350 2,226
A320-fam 3,398 – (129) 21,563 690 4,398

Table 1. Air France industrial instances

(AR) alone (AR) within (Int)
Instance Uncons. CPU

time (mm:ss)
Optim. CPU
time (mm:ss)

Infeas. CPU
time (mm:ss)

Feas. CPU
time (mm:ss)

A318 00:17 00:58 00:14 01:35
A319 00:16 01:05 00:22 00:19
A320 01:02 03:55 00:35 13:28
A321 00:16 01:03 00:23 00:19

Table 2. Aircraft routing results

6.2. Experimental setting. All the numerical experiments are performed on a server with
128 Gb of RAM and 12 cores at 2.4 GHz. CPLEX 12.1.0 is used to solve all linear and
integer programs. The algorithms are not parallelized.

6.3. Aircraft Routing. Table 2 provides the results for aircraft routing. The first column
gives the name of the instance. The next two ones give results for the aircraft routing
problem on its own. Column “Uncons. CPU time (mm:ss)” the time needed to solve (AR).
Column “Optim. CPU time (mm:ss)” gives the time needed to find an optimal solution of
the optimization problem that consists in finding the minimum number of airplanes needed
to operate the instance: we use the left-hand side of (AR.3) as objective. Note that this
problem has not been mentioned previously in the paper. The solution scheme for the
integrated problem in Section 5 solves (AR) with additional constraints (5). The two last
columns provide numerical results for this constrained version. On all but the last iterations
of the integrated problem scheme, aircraft routing is infeasible. Column “Infeas. CPU time”
provides the time needed to solve the penultimate iteration, which is infeasible, and column
“Feas. CPU time ” the last iteration, which is feasible. The typical computing time is a few
dozens of seconds on industrial instances. The longest constrained feasible version requires
a few minutes. The optimization version in the second column is typically one order of
magnitude faster than the one obtained by Khaled et al. [25, Tables 10 and 11] on instances
with similar number of legs. However, this last statement must be taken with care as the
structure of the instances (number of airplanes, number of days of planning, etc.) is very
different. This improved performance is likely due to the fact that our relaxation has a
better relaxation than their one, as we prove in Proposition 7 in Appendix A and that our
formulation has less symmetry.
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Instance κ Col. Gen.
Iter

Pricing
time

LP
time

MIP
time

Total time
(hh:mm:ss)

A318 150 394 86.60% 13.34% 0.05% 01:21:22
A319 150 264 60.66% 39.14% 0.15% 00:10:47
A320 150 226 74.54% 25.20% 0.20% 00:08:35
A321 150 382 65.82% 32.60% 1.25% 00:33:51
A318-9 150 867 69.71% 30.21% 0.07% 05:43:00
A320fam 250 2,166 43.28% 56.62% 0.10% 104:05:59

Table 3. Crew pairing results – Instances are solved to optimality

6.4. Crew Pairing. Table 3 provides the results for crew pairing. All instances are solved
to optimality. The first column of Table 3 gives the name of the instance. The next column
provides the value of κ determined using the rule of thumb of Section 4.3 and needed by the
algorithm building the sets Bv. Column “Col. Gen. Iter” provides the number of iterations
in the column generation, and column “Pricing time” the percentage of time spent in the
pricing subproblem. This pricing time includes the time needed by the computation of the
sets Bv and by the enumeration algorithm (Algorithm 2). Columns “LP time” and “MIP
time” indicate the percentage of the total CPU time spent in Algorithm 1 solving Step 3,
and solving Steps 10 and 13. The last column gives the total time needed by the algorithm.
On all these instances, the integrality gap does not exceed 0.01%. This explains the fast
resolution of Step 13.

Remark 4. One may be tempted to stop the column generation before convergence to ex-
change quality for speed. Unfortunately, and this is a limit of our method, if we stop the
column generation before convergence, the solution found by the MIP solver at Step 10 is
poor, and Step 12 is not tractable in practice.

6.5. Integrated problem. Table 4 provides the results for the integrated problem. The
constraint strength parameter γ of the end of Section 5 is equal to 0.9, and the bounds sets
size κ is equal to 150. The first column provides the instance solved. Columns “Integ. steps”
provides the number of steps of the integrated problem algorithm of Section 5 before con-
vergence. Column “CG it. total” provides the total number of column generation iterations
realized on the successive integrated problem algorithms steps. Column “(CP) CG time”
provides the proportion of the total CPU time spent in the column generation, i.e., solving
the pricing subproblem and the linear relaxation of the master problem, and column “(CP)
MIP time” the proportion spent solving the integer version of the crew pairing master prob-
lem. The column “(AR) time” provides the proportion spent solving aircraft routing integer
program (AR). The column “Sho. Con.” gives the number of short connections in the fi-
nal solution. The linear relaxation of the crew pairing master problem (CP) with no short
connection constraint is used as the lower bound on the cost of an optimal solution. The
gap provided is between the cost of the solution returned and this lower bound. Finally, the
last column provides the total CPU time needed by the algorithm. Only instance A320-fam
could not be solved, as the algorithm had not converged after one week of computing time.

We emphasize the fact that the solution returned by the approximate algorithm is almost
optimal. Practically speaking, the gap obtained is less than or equal to 0.01%. The compu-
tation time needed to obtain a near optimal solution of the integrated problem is of the same
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Instance Integ.
steps

CG it.
total

(CP) CG
time

(CP) MIP
time

(AR)
time

Sho.
Con.

Gap Total time
(hh:mm:ss)

A318 6 460 95.53% 2.56% 1.91% 323 0.0002% 01:53:47
A319 4 343 76.99% 13.27% 9.74% 448 0.0013% 00:20:18
A320 2 240 24.24% 39.38% 36.38% 436 0.0017% 00:38:36
A321 2 380 96.60% 2.53% 0.88% 413 0.0074% 00:29:18
A318-9 2 915 97.66% 1.71% 0.63% 790 0.0008% 06:34:31
A320-fam Stopped after one week

Table 4. Numerical results on integrated problem

Instance 318 319 320 321 318-9
Cost reduction 0.08% 0.16% 0.33% 0.31% 0.31%
CPU time ratio 10.6× 3.0× 5.6× 2.0× 5.1×

Table 5. Sequential versus integrated resolution of aircraft routing and crew pairing

order of magnitude than the time needed to obtain a solution of the crew pairing problem
in Table 3. Solving aircraft routing and crew pairing sequentially strongly constrains the
solution: indeed, when solved in an integrated fashion, around half of the connections in the
solution are short connections.

Finally, Table 5 compares the sequential approach, where aircraft routing is solved first,
and then crew pairing, to the integrated approach of Section 5. Line “Cost reduction”
provides the percentage by which the cost is reduced when using the integrated approach,
and line “CPU time ratio” the increase in computing time. On average, using the integrated
approach enables to reduce the costs by 0.25%, and computing time is 5.1 times longer. This
reduction of cost on our instances is smaller than what is mentioned in the literature: 5% on
average according to Cordeau et al. [11], and 1.6% according to Papadakos [35]. We believe
that this comes from the fact that our instances are larger: adding new connections have
a stronger impact when few connections are available. The increase in computing time is
mainly due to the fact that the crew pairing is longer to solve in the integrated approach
due to the addition of short connections.

6.6. Industrial relevance. To be usable in an industrial context, the computing time of
the solvers must not exceed eight hours, which represent one night of computing time. Our
algorithms enables to solve to near optimality instances of the integrated problem with up
to 1, 766 legs within this time constraint. Our solution scheme therefore enables to deal
practically with instances larger than those in the literature – the largest instances in the
literature [43] have 750 legs. These performances have been made possible by our pricing
subproblem algorithm. Further improvements to deal with larger instances cannot be done
by only working on the pricing subproblem. Indeed, we can see in Table 3 that most of the
CPU time on instance A320-fam is spent in the simplex algorithm.

6.7. Focus on the pricing subproblem. The key element in the performance of our
approach is the performance of Algorithm 2. We compare it in this section to the algorithms
previously used. As our industrial instances are too large to be solved using these algorithm
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Instance Legs Connections Pairings (')
CP50 290 1,006 50
CP70 408 1,705 70
CP90 516 2,490 90

Table 6. Medium size artificial crew pairing instances

we introduce in Table 6 smaller instances, which we have built by considering only a subset
of the legs of the instance A318. Columns “Legs” and “Connections” respectively provide
the number of legs and connections in the instances, and column “Pairings” the approximate
number of pairings in a solution. Table 7 provides results on the performance of the pricing
subproblem scheme on these instances. Its first column gives the instance solved. The
next one provides the algorithm used. Parameter κ, introduced in Section 4.3, gives the
size of the lower bounds set for algorithms using bounds. The three next columns provide
statistics on the resource constrained shortest path (RCSP) algorithms. As mentioned in
Section 4.2, seven RCSP instances are solved for each pricing subproblem, one for each period
of four consecutive days. The statistics are averaged on all the instances solved along the
column generation. Column “RCSP iter av. nb” provides the average number of iterations
of the RCSP algorithm, “Cut Dom.” provides the proportion of paths cut at Step 15, the
remaining being cut at Step 14. Column “RCSP time” provides the average time needed
to solve one RCSP instance. Column “Pricing subproblem” provides the proportion of the
total computing time spent solving the pricing subproblem, and the last column gives the
total computing time of the crew pairing solution scheme.

We can see that the use of bounds enables a huge speed-up with respect to the usual
algorithms. This speed-up is required to deal with instances with more than 500 legs. Two
elements explain this speed-up. First, the condition at Step 14 enables to discard many
paths: in Algorithm 2, more than 90% of the paths discarded are discarded at Step 14 and
not at Step 15. Second, running Algorithm 2 with c(qP ) instead of the min{c(qP ⊕ b) : b ∈
Bv, ρ(qP ⊕ b) = 0} makes it much slower. Hence, min{c(qP ⊕ b) : b ∈ Bv, ρ(qP ⊕ b) = 0}
seems numerically to be a better evaluation of how P is promising than c(qP ), and enables
Algorithm 2 to find good solutions faster than the label correcting algorithm, and also faster
than the label setting algorithm that does not use keys at all for choosing the next path to
consider.

7. Conclusion

We have proposed a compact integer program for aircraft routing. Its main strength is
its ease of implementation. Numerical results show that it can deal with large industrial
instances in at most a few minutes, even when optimization versions are considered. We
have used a resource constrained shortest path algorithm recently introduced by the first
author for the crew pairing column generation pricing subproblem. This algorithm leverages
on the lattice ordered monoid structure of the resource set to build efficient lower bounds.
Practically, this enables to solve to optimality very large industrial crew pairing instances.
As a side result, we have combined these aircraft routing and crew pairing solution schemes
in a cutting plane approach to the integrated problem. The resulting algorithm solves to
near optimality large industrial instances of the integrated problem.
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Instance Algorithm κ RCSP iter
av. nb.

Cut
Dom.

RCSP time
av (mm:ss.ff)

Pricing
time

Total time
(hh:mm:ss)

CP50 Label setting – 1.020e+04 – 00:00.56 97.55% 00:04:38
CP50 Label correcting – 1.308e+04 – 00:01.28 97.38% 00:11:37
CP50 Algorithm 2 1 2.326e+03 6.89% 00:00.03 75.28% 00:00:23
CP50 Algorithm 2 10 4.914e+02 4.01% 00:00.02 59.87% 00:00:17
CP50 Algorithm 2 100 2.033e+02 5.03% 00:00.04 77.06% 00:00:33
CP70 Label setting – 5.644e+04 – 00:11.49 99.52% 05:07:05
CP70 Label correcting – 7.730e+04 – 00:17.16 99.56% 07:28:22
CP70 Algorithm 2 1 9.208e+03 7.69% 00:00.24 90.61% 00:04:41
CP70 Algorithm 2 10 1.994e+03 4.28% 00:00.04 58.48% 00:01:12
CP70 Algorithm 2 100 8.007e+02 5.77% 00:00.07 77.43% 00:01:43
CP90 Label setting – 9.779e+04 – 00:40.71 Stopped after 48h
CP90 Label correcting – 2.007e+05 – 01:42.87 Stopped after 48h
CP90 Algorithm 2 1 5.000e+04 9.81% 00:05.98 98.86% 02:56:33
CP90 Algorithm 2 10 9.966e+03 5.88% 00:00.34 81.86% 00:12:36
CP90 Algorithm 2 100 4.377e+03 5.60% 00:00.25 77.98% 00:10:28
A318 Label setting – 1.319e+05 – 00:53.01 Stopped after 48h
A318 Label correcting – 3.802e+05 – 01:36.04 Stopped after 48h
A318 Algorithm 2 1 7.161e+04 8.99% 00:08.61 97.87% 05:35:42
A318 Algorithm 2 10 5.472e+04 6.62% 00:05.97 96.02% 05:06:47
A318 Algorithm 2 100 2.549e+04 3.72% 00:01.65 86.97% 01:32:50

Table 7. Relative performance of pricing subproblems algorithms
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integrated airline scheduling problem. Transportation Science, 51(1):250–268, 2016. 2,
3, 4, 10

[8] Hai Chu, Eric Gelman, and Ellis Johnson. Solving large scale crew scheduling problems.
European Journal of Operational Research, 97(2):260–268, 1997. 2

[9] Lloyd Clarke, Ellis Johnson, George Nemhauser, and Zhongxi Zhu. The aircraft rotation
problem. Annals of Operations Research, 69:33–46, 1997. 2

[10] Amy Mainville Cohn and Cynthia Barnhart. Improving crew scheduling by incorpo-
rating key maintenance routing decisions. Operations Research, 51(3):387–396, 2003.
3
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Appendix A. Proofs

Proof of Proposition 1. The fact that a feasible solution of the aircraft routing problem in-
duces a collection C as in the statement is obvious. Let us prove the other direction, which
is almost as easy.

Consider a collection C as in the statement. Each cycle provides a route, possibly of several
weeks. We show now that the solution consisting of these routes is feasible. By construction
of the graph, the maintenance requirement is satisfied. Moreover, the number of times a
cycle intersects A0 is an upper bound on the number of airplanes required to operate the
corresponding route: the number of times it intersects A0 is equal to the number of weeks this
cycle lasts, as illustrated on Figure 3. Thus the number of arcs selected in A0 by the whole
collection is an upper bound on the number of airplanes required to operate the solution.
Since this number is at most na, the solution is feasible. �

Proof of Lemma 2. Consider the following integer program in the standard form:

(7)
min cTz
s.t. Az = b

z ∈ Z+.

By the theory of the simplex algorithm, the program (7) can be written in the form

min v̄ +
∑
i∈N

c̃izi

s.t. Az = b
z ∈ Z+,

where the c̃i – the reduced costs – are all nonnegative, and where N is the complement of the
considered basis (all indices i such that c̃i > 0 are in N). Consider now an optimal solution
z∗ of the program (7). We have

v̄ +
∑
i∈N

c̃iz
∗
i = c · z∗ ≤ UB .
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The nonnegativity of the c̃i’s and the z∗i ’s implies the following inequality for every i ∈ N :

z∗i ≤
UB−v̄
c̃i

.

In particular, if c̃i > UB−v̄, we necessarily have z∗i < 1, i.e., z∗i = 0. �

Proof of Proposition 3. We first prove that the algorithm terminates after a finite number of
iterations. By induction on the iterations, we see that there is never two distinct elements in
L such that one is a subpath of the other: there is no such two elements when the algorithm
starts, and if there is no such two elements at a given iteration, there cannot be such two
elements at the next iteration either. In particular, when a path P leaves L at some iteration,
it prevents the presence of a subpath of it in L at the current iteration. Thus, because of
the update rule, P cannot be added again to L in a subsequent iteration. It implies that a
given path P is considered at most once by the algorithm and, as there is a finite number of
paths in an acyclic digraph, we get the sought conclusion regarding the termination of the
algorithm.

We prove now the part of the statement regarding the cost of cUBod at the end of the
algorithm. At any step of the algorithm, cUBod is either equal to +∞ or to the cost of an o-d
path P such that ρ(qP ) = 0. Therefore, if there is no feasible solution, then cUBod is never
updated, and equal to +∞ at the end of the algorithm. Suppose now that there is a feasible
solution, and let P be a feasible o-d path of minimum cost. By definition of P and due to the
update rule, we have c(qP ) ≤ cUBod at the end of the algorithm. Suppose for a contradiction
that this inequality is strict. Given the update rule of cUBod , this means that neither P nor a
feasible o-d path Q dominating P has been considered present in L. Let P ′ be the longest
subpath of P , with origin o, such that P ′, or a path dominating P ′ with the same origin and
destination as P ′, has been present in L. Denote by v the destination of P . Among all o-v
paths present in L at some time during the algorithm and that dominates P ′, pick a path Q′

that is non-dominated by the others.
The test of Step 15 is necessarily satisfied by Q′ because, by definition of Q′, there is no

o-v path in Lnd
v dominating Q′ when Q′ is considered by the algorithm. We now prove that

the test of Step 14 is also necessarily satisfied. Indeed, let P ′′ be the v-d subpath such that
P = P ′+P ′′, and b a bound in Bv such that b � qP ′′ . (Here, P ′+P ′′ means that we append
P ′′ to P ′.) We have qQ′ ⊕ b � qP ′ ⊕ b � qP ′ ⊕ qP ′′ = qP . We therefore have, when Q′ is
considered, ρ(qQ′ ⊕ b) ≤ ρ(qP ) = 0, and c(qQ′ ⊕ b) ≤ c(qP ) < cUBod , where the last inequality
relies on the fact that cUBod is non-increasing along the algorithm. Hence, the test of Step 14
is satisfied. Therefore, Q′ satisfies the tests of Steps 14 and 15, and is added to L whatever
the combination of these two tests the algorithm uses. Since Q′ is non-dominated by other
o-v paths considered by the algorithm, it is extended in a subsequent iteration. Denote by a
the arc in P that follows P ′ and denote by w the head of a. Since qQ′ ⊕ qa � q′P ⊕ qa, either
Q′ + a, or another o-w path that dominates P ′ + a is present once in L, which contradicts
the length maximality of P ′. �

Proof of Lemma 4. Considering the different cases in the definitions enables to prove that
(0, 0) is the neutral element of ⊕, that ⊕ is associative, that � is compatible with ⊕, and
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that (Mρ,�) is a lattice with meet operator

q ∧∞ = q

(n, f) ∧ (ñ, f̃) =
(

min(n, ñ),min(f, f̃)
)

(nb, f b, ne, f e) ∧ (ñb, f̃ b, ñe, f̃ e) =
(

min(nb, ñb) min(f b, f̃ b) min(ne, ñe) min(f b, f̃ b)
)

and q ∧ q̃ = (0, 0) for any other combinations. �

Proof of Proposition 5. Let p be a sequence of flight legs. The definition of D ensures that
there is an o-d path P whose vertices correspond to the legs in p if and only if P is a pairing
that satisfies rules (a) and (b). In that case, this path P is unique. Let p be such a pairing
and P be the corresponding path. Let qP =

(
qρP , cP

)
be the resource of P .

By definition of the arc resources, cP is the sum of c(`,`′) + z`′ for (`, `′) in P and hence in
p, and we therefore have cP = c̃p. Hence c(qP ) = c̃p.

Let nb, f b, ne, and f e be respectively the number of legs and the flying time of the first
duty of p, and the number of legs and the flying time of the last duty of p. Let AP be the
set of duties of P except the first and the last. We claim that qρP is equal to ∞ if and only
if there is a duty in AP that does not satisfy both rules (c) and (d), and to (nb, f b, ne, f e)
otherwise. This result is proved by induction on the number of arcs in P . Denoting a the
last arc of P , and P ′ the subpath of P obtained by removing a, the induction hypothesis
can be applied to P ′, and the result for P follows by considering the different possible cases
for the components in Mρ of qP and qa. The definition of Mρ then ensures that ρ(qP ) = 0
if and only if rules (c) and (d) are satisfied. Hence, ρ(qP ) = 0 if and only if p is a feasible
pairing. �

Appendix B. Aircraft routing MIP

Khaled et al. [25] propose a compact MIP for the tail assignment problem. Aircraft routing
and tail assignment both consist in building the sequences of legs operated by the airplanes
of an airline. The main difference between them is that in aircraft routing, airplanes are
identical and routes do not need to be assigned to airplanes, while in tail assignment airplane
specific costs are taken into account and routes are assigned to airplanes. Aircraft routing
and tail assignment problems being fairly similar, MIP formulations for one problem can
generally be applied to the other one.

However, the first reason why we do not use Khaled et al.’s formulation on Air France
problem is that their formulation does not naturally adapt to this problem. Indeed, an
important difference between Khaled et al.’s tail assignment and Air France aircraft routing
is that, in Khaled et al.’s problem, routes are not cyclic, while in Air France problem, they
are. By cyclic routes, we mean that sequences of legs are built for a typical week, and that
airplanes operate the same sequences of legs week after week in a cyclic way. And as we have
seen in Section 2.1, one cycle can potentially last several weeks. If Khaled et al.’s compact
MIP for tail assignment can easily be adapted to solve a “non-cyclic” version of the aircraft
routing problem, this is not the case for the “cyclic” aircraft routing problem considered at
Air France that we introduce in Section 2. Indeed, adapting it would require to introduce
many new binary variables to encode how the end of a week cycles with the beginning of the
next one.
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The second reason is computational. As cyclic routes are difficult to take into account
in their formulation, we compare the formulations on Air France tail assignment problem.
Both Khaled et al.’s formulation and an adapted version of our formulation (AR) have
been implemented at Air France, and the adapted version of our formulation is now used
in practice by Air France to solve its tail assignment. Our formulation is able to solve Air
France medium haul instances (the tail assignment version of instances A318, A319, A320,
and A321 of Table 1) to optimality in at most 3 minutes, while the version of Khaled et al.
is unable to solve these instances in two hours. On long-haul instances of Air France, which
are easier, their formulation had been previously used and was able to find optimal solutions,
but each instance took at least 16 minutes, while our formulation solves each instance in at
most 20 seconds.

Actually, the better performances of our formulation are easily explained by theoretical
considerations on the linear relaxations. Solvers of MIP are based on branch-and-bound,
which crucially relies on the quality of the linear relaxation to discard partial solutions. On
Air France tail assignment problem, the linear relaxation of our MIP provides bounds that
are non smaller than those provided by the Khaled et al.’s MIP and can be strictly larger,
even on very simple and natural examples. In the remaining of the appendix, we introduce
Air France tail assignment problem, adapt Khaled et al.’s formulation and (AR) to that
problem, and prove the result mentioned on linear relaxations.

We now introduce Air France tail assignment problem. The input is formed of a given
week, a set of airports, a collection L of flight legs operated between these airports that
week, and a set of na available airplanes. Some airports are bases where maintenance can be
performed, and each airplane must still spend a night in a maintenance base at least every
∆maint days. Airplanes are indexed by j. For each airplane j in [na], let kj0 be the airport
where airplane j is at the beginning of the week, and δj0 be the number of days since the
last maintenance night of j at the beginning of the week. For each airplane j and leg `, we
have a cost of operating a leg ` with airplane j. The aim of the tail assignment problem is
to build the (non-cyclic) sequence of legs operated by each airplane at minimum cost.

A tail assignment connection is therefore a pair (`, `′) of flight legs such that `′ departs
from the arrival airport of `, and such that the departure time of `′ minus the departure time
of ` is bounded from below by a given quantity. We underline that, if there were airplane
connections between a leg ` at the end of the week and a leg `′ at the beginning of the week in
the aircraft routing problem, there is no such tail assignment connection. A tail assignment
route r for airplane j is a (non-cyclic) sequence of legs `1, . . . , `k such that `i departs from ki0
and any pair of two consecutive legs (`i, `i+1) is a tail assignment connection. It satisfies the
maintenance requirement if, first, supposing that airplane j follows this route, it spends its
first night in a maintenance base after at most ∆maint − δj0 days and then spends a night in
a maintenance base at least every ∆maint days, and second, if `k arrives in an airport that is
not a base, then the last night of the week spent in a base is at most ∆maint − 1 days before
the end of the week. The cost of r is the sum of the costs of operating the legs ` in r with
airplane j.

The task consists in building, for each airplane j, a route satisfying the maintenance
requirement in such a way that each leg of ` is operated by one airplane j, and the sum of
the costs of the routes is minimum.
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We now generalize our MIP to Air France tail assignment. Let D′ = (V,A′) be the digraph
with vertex set V = L ×∆maint, and arc set A′ composed of pairs

(
(`, δ), (`′, δ′)

)
such that

(`, `′) is a tail assignment connection and `, δ, `′, and δ′ satisfy one of the three conditions
defining the arcs of digraph D in Section 2.2. Digraph D′ is the analogue of digraph D of
Section 2.2 where airplane connections are replaced by tail assignment connections. Contrary
to digraph D, digraph D′ is acyclic as there is no connection between the end of the week
and the beginning of the week. For each airplane j, let V j and Ãj be copies of V and A′.
We build a digraph Dj as follows. Its vertex set is V j ∪ {sj, tj}, where sj is a source vertex,
and tj a sink vertex. Its arc set is denoted by Aj and contains Ãj as well as arcs

•
(
sj, (`, δ)

)
such that leg ` starts from airport kj0 on day δ − δj0 if kj0 is not a base,

•
(
sj, (`, 1)

)
such that leg ` starts from airport kj0 if kj0 is a base,

•
(
(`, δ), tj

)
such that leg ` ends on day d` in an airport that is not a base, and

δ < ∆maint + d` − 8,
•
(
(`, δ), tj

)
such that leg ` ends in a base.

The number 8 in the third condition is just the number of days in a week plus 1. The digraph
Dj is acyclic. For each leg ` and airplane j, we denote by V j

` the vertices of V j of the form
(`, δ). Given an arc a in Aj, we define the cost ca to be equal to 0 if the tail of a is sj and
to the cost of operating the leg of the tail vertex of a with airplane j otherwise. Given the
definition of the digraph Dj, the following proposition is immediate.

Proposition 6. A sequence of legs `1, . . . , `k is a tail assignment route r for airplane j if
and only if there exists δ1, . . . , δk such that sj, (`1, δ1), . . . , (`k, δk), t

j is an sj-tj path P in Dj.
In that case, the cost of operating r with j is

∑
a∈P ca.

The following integer program therefore enables to model Air France tail assignment.

min
∑
j∈[na]

∑
a∈Aj

caxa(TA.1)

s.t.
∑

a∈δ+(sj)

xa = 1 ∀j ∈ [na](TA.2)

∑
a∈δ−(v)

xa =
∑

a∈δ+(v)

xa ∀v ∈ V j,∀j ∈ [na](TA.3)

∑
j∈[na]

∑
a∈δ−(V j` )

xa = 1 ∀` ∈ L(TA.4)

xa ∈ {0, 1} ∀a ∈ Aj,∀j ∈ [na].(TA.5)

The MIP proposed by Khaled et al. for tail assignment with maintenance constraints is
given by Equations (3-15) of their paper. They use binary variables x,y, z. (We denote their
variables with an overline to distinguish them from our variables.) The binary variables xij
indicate if the leg i is operated by the airplane j. The binary variables yjd indicate if a
maintenance of airplane j takes place on day d. The binary variables zijd indicate if a night
maintenance of airplane j takes place in the arrival airport of the leg i on day d. Air France
tail assignment version is slightly different from the one considered by Khaled et al. For
instance, they have a constraint limiting the cumulated flight time of an airplane between two
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maintenances (modeled by Equation (13) of their MIP). The following formulation adapts
the MIP of Khaled et al. to Air France tail assignment problem.

min
(x,y,z)

∑
i∈F

∑
j∈P

cijxij(KTA.1)

s.t. Equations (3)-(6), (8), (9), (11), (12), (14), and (15) of [25](KTA.2) ∑
d̃∈{1,...,∆maint−δj0}

yjd̃ ≥ 1 for all j in [na](KTA.3)

where F and P are the notations of [25] for the sets of flights legs and available airplanes
respectively, and constraint (KTA.3) ensures that airplane j spends its first night in a base
after at most ∆maint − δj0 days.

The next proposition shows that the linear relaxation of Program (TA) provides bounds
that will discard more partial solutions than that of (KTA) in a branch-and-bound.

Proposition 7. The optimal value of the linear relaxation of (TA) is not smaller than the
one of the linear relaxation of (KTA) and there are instances for which it is strictly larger.

Proof. We first prove that any feasible solution of the linear relaxation of Program (TA)
can be turned into a feasible solution of the linear relaxation of (KTA). Consider a feasible
solution x = (x1, . . . ,xn

a
) of the linear relaxation of Program (TA), where xj is the vector

of variables xa with a in Aj. As Equation (TA.3) defines the sj-tj flow polyhedron of the
acyclic digraph Dj, xj can be written as a conic combination

∑
P λPχ

P of indicator vectors
of sj-tj paths in Dj, where the sum is taken over all sj-tj paths and the λP are non-negative.
Equation (TA.2) gives

∑
P λP = 1.

Let Rj be the set of tail assignment routes r for airplane j. Given r in Rj, we define
λr as the coefficient λP of the sj-tj path P corresponding to r according to Proposition 6.
Denoting cr the cost of operating route r with airplane j, Proposition 6 also implies that

(10)
∑
a∈Aj

caxa =
∑
r∈Rj

λrc
r.

Besides, as x satisfies Equation (TA.4), we have

(11)
∑
j

∑
r∈Rj,`

λr = 1,

where Rj,` denotes the subset of Rj of routes containing leg `.
For each airplane j, route r in Rj, leg i, and day d, we set xrij = 1 if leg i is in route

r and 0 otherwise, yrjd = 1 if airplane j operating route r undergoes a maintenance on the
night after day d and 0 otherwise, and zrijd = 1 if i is in route r and airplane j operating
r undergoes a maintenance on the night after day d and 0 otherwise. As r satisfies the
maintenance requirement, (xrij, y

r
jd, z

r
ijd)id satisfies the equations of the linear relaxation of

(KTA) (restricted to airplane j) except cover constraint (3) of [25]. Furthermore, as xij is
the cost of operating leg i with j, we have

∑
i∈F cijx

r
ij = cr, where cr is the cost of operating

route r with airplane j.
Let (x,y, z) be defined as follows. For each airplane j, leg i, and day d, let xij =∑
r∈Rj λrx

r
ij, let yjd =

∑
r∈Rj λry

r
jd, and let zijd =

∑
r∈Rj λrz

r
ijd. As λr ≥ 0 and

∑
r∈Rj λr =
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`1
a `1

b

`1
c

`2
a `2

b

`2
c `2

f `7
f

Airport A (base)

Airport B (not-base)

Airport C (not-base)
Day 1 Day 2 Day 7

Initial Costs

Airplane airport kj0 maint. δj0 `a, `b `c, `f
1 A 1 2 6
2 A 1 3 9
3 A 1 5 15

Figure 5. Example used in the proof of Proposition 7.

1, the components indexed by j of (x,y, z) is a convex combination of the (xrij, y
r
jd, z

r
ijd)id.

Hence, (x,y, z) satisfies the equations of the linear relaxation of (KTA) (restricted to air-
plane j) except cover constraint (3) of [25]. Equation (11) ensures that (x,y, z) also satisfies
cover constraint (3) of [25], and is therefore a solution of the linear relaxation of (KTA).
Finally, Equation (10) ensures that

∑
i∈F
∑

j∈P cijxij =
∑

j

∑
a∈Aj caxa, which concludes the

proof that the optimal value of the linear relaxation of (TA) is not smaller than the one of
the linear relaxation of (KTA).

Consider now the example with na = 3 and ∆maint = 4 on Figure 5. Dashed horizontal
lines correspond to airports and arrows to legs between airports. The weekly schedule is
composed of six round trips between airport A and airport B, and six round trips between
airport A and airport C. There is an outward leg `da from A to B and an outward leg from `dc
from A to C every day d in {1,. . . ,6}, a return leg `db from B to A every day d in {1,. . . ,6},
and a return leg `df from C to A every day d in {2,. . . ,7}. The table provides, for each

airplane j, the airport kj0 where the airplane starts, and the number of days δj0 since the last
maintenance on day 1, and the costs of operating the different legs with the airplanes. In
the remaining of the proof, we show that the optimal value of the linear relaxation of (TA)
on this instance is equal to 160, and exhibit a solution of the linear relaxation of (KTA) with
value 157.5.

Let x = (xj)j be a solution of (TA) on that instance. Let V j
≤d be the set vertices of Dj

composed of sj and vertices (`d̃· , δ) with d̃ ≤ d. As the flow on the cut δ+(V j
≤d) has value 1,

we have
∑3

j=1

∑
a∈δ+(V j≤d) xa = 3. Besides, (TA.3) and (TA.4) give that

3∑
j=1

∑
a∈δ+(V j

`d
b

∪V j
`dc
∪V j

`d
f

)

xa = 3 and
3∑
j=1

∑
a∈δ−(V j

`d+1
a
∪V j

`d+1
c
∪V j

`d+1
f

)

xa = 3.
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Hence, any arc a = (v, v′) with xa > 0 in δ+(V j
≤d) is such that v is in V j

`db
∪ V j

`dc
∪ V j

`df
and v′

belongs to V j

`d+1
a
∪ V j

`d+1
c
∪ V j

`d+1
f

. Any arc a with xa > 0 is therefore of the form
(
(`, δ)(`′, δ′)

)
with (`, `′) in {

(`da, `
d
b), (`

d
c , `

d+1
f ), (`db , `

d+1
a ), (`db , `

d+1
c ), (`df , `

d+1
a ), (`df , `

d+1
c )

}
.

Furthermore, as we discussed in the first part of the proof, xj can be written as the
conic combination

∑
r∈Rj λrχ

P (r), where χP (r) is the indicator vector the sj-tj path P (r)
corresponding to route r, and coefficients λr are non-negative. Remark that there is no
connection (`df , `

d+1
c ) in a route that satisfies the maintenance requirement, as such a route

would spend ∆maint +1 days out of a base. Constraint (TA.4) applied to leg `d+1
c then ensures

the only arcs a such that xa > 0 are of the form
(
(`, δ)(`′, δ′)

)
with (`, `′) in{

(`da, `
d
b), (`

d
b , `

d+1
c ), (`dc , `

d+1
f ), (`df , `

d+1
a )

}
.

Hence, for each airplane j the only routes r in Rj that can satisfy λr > 0 are r1 =
`1
a, `

1
b , `

2
c , `

3
f , `

4
a, `

4
b , `

5
c , `

6
f , r2 = `1

c , `
2
f , `

3
a, `

3
b , `

4
c , `

5
f , `

6
a, `

6
b , and r3 = `2

a, `
2
b , `

3
c , `

4
f , `

5
a, `

5
b , `

6
c , `

7
f . Op-

erating any of these three routes has cost 32 with airplane 1, 48 with airplane 2, and 80
with airplane 3. Hence, x has cost 160. Remark that this is the cost of the optimal integer
solution obtained by assigning rj to airplane j.

On the contrary setting

x`da1 = x`da2 = x`db1 = x`db2 = z`db1d = z`db2d = z`6b1,7 = z`6b2,7 =
1

4
for all d ∈ {1, . . . , 6},

x`dc1 = x`dc2 =
3

8
for all d ∈ {1, . . . , 6}, x`df1 = x`df2 =

3

8
for all d ∈ {2, . . . , 7},

x`da3 = x`db3 = z`db3d = z`6b3,7 =
1

2
for all d ∈ {1, . . . , 6},

x`dc1 =
1

4
for all d ∈ {1, . . . , 6}, x`df3 =

1

4
for all d ∈ {2, . . . , 7},

y1d = y2d =
1

4
for all d ∈ {1, . . . , 7}, and y3d =

1

2
for d in {1, . . . , 7},

and zijd = 0 for any i, j, d such that zijd has still not been defined, provides a feasible solution
of the linear relaxation of (KTA) with cost 157.5, which concludes the proof. �

Appendix C. Example of the Monoid resource constrained shortest path
problem

This appendix details the execution of Algorithm 2 on a simple example. Figure 6 provides
an example of instance of the crew pairing pricing subproblem and its Monoid Resource
Constrained Shortest Path Problem modeling. Only a subpart of the instance is
represented. On Figure 6.a, legs are represented as arrows between airports. On this instance,
there are three airports A1, A2, and A3, and legs only between A1 and A2, and A2 and A3.
The flying durations between A1 and A2 and A2 and A3 are respectively 6 and 2 hours.
There are two reduced rests: (`1, `3) and (`5, `8). The maximum duty flying duration F (t)
in a duty is taken equal to Fm = 9 hours for all t.
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a.

Day i− 1 Day i Day i+ 1

time

Airport A1

Airport A2

Airport A3

6h flight

2h flight

`1

`2 `3 `4

`5

`6 `7

`8

b.

`1

`2 `3 `4

`5

`6 `7

`8

(
(0, 0, 2, 2),−6.2

)
(
(0, 0, 1, 6), 6.2

)
(
(0, 0, 1, 2), 2.1

)

(
(0, 0, 1, 2), 4.9

)

(
(0, 0, 1, 6), 6.2

)

(
(0, 0, 1, 2), 5.4

)
(
(1, 2),−2.1

)
(
(1, 6), 1.3

)
(
(1, 2), 2.1

) (
(1, 2), 1.5

)

(
(0, 0, 2, 6), 1.2

)

Figure 6. Example of instance of the monoid shortest path problem

v Bv

`1

{(
(0,0,0,0),-5.8

)}
`3

{(
(2,6,0,0),0.4

)}
`4

{(
(1,4,0,0),2.5

)}
`5

{(
(0,0,0,0),1.2

)}
`6

{(
(1,2,0,0),1.5

)}
Table 8. Sets of bounds Bv used (here, singletons)

Figure 6.b provides the corresponding digraph D, as well as the resource of each arc.
Note that the component in Mρ of the resources of day connections are in Z+ × R+ and
the resources of night connections are in (Z+ × R+)2. Furthermore, reduced rests are the
only night connections whose resources have a component in Mρ of the form (0, 0, 2, ·), the
other night connections having a component of the form (0, 0, 1, ·). The reduced costs have
been chosen arbitrarily. For simplicity, we assume that

(
(0, 0, 0, 0), 0

)
is a lower bound on

the resource of `7-d paths and on the resource of `8-d paths.

Algorithm 2 execution. We now provide an example of Algorithm 2 when the bounds in
Table 8 are used. We remind the reader that these bounds are computed before the execution
of Algorithm 2 in a preprocessing and taken by this latter in input. See Section 4.3 for more
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P key(P ) qP a qa qQ w
b

Bw = {b} qQ ⊕ b
Q added

to L
P1 −4.8 (0, 0, 1, 6) (`1, `3) (0, 0, 2, 2) (0, 0, 2, 2) `3 (2, 6, 0, 0) (0, 0, 0, 0) yes

(`1, `5) (0, 0, 1, 6) (0, 0, 1, 6) `5 (0, 0, 0, 0) (0, 0, 0, 0) yes
(`1, `6) (0, 0, 1, 2) (0, 0, 1, 2) `6 (1, 2, 0, 0) (0, 0, 0, 0) yes

P1, `3 −4.8 (0, 0, 2, 2) (`3, `4) (1, 2) (0, 0, 3, 4) `4 (1, 4, 0, 0) (0, 0, 0, 0) yes
P1, `3, `4 −4.8 (0, 0, 3, 4) (`4, `5) (1, 6) (0, 0, 4, 10) `5 (0, 0, 0, 0) ∞ no

(`4, `6) (1, 2) (0, 0, 4, 6) `6 (1, 2, 0, 0) ∞ no
P1, `6 4.6 (0, 0, 1, 2) (`6, `7) (1, 2) (0, 0, 2, 4) `7 etc.
P1, `5 8.4 (0, 0, 1, 6) (`5, `8) (0, 0, 2, 6) (0, 0, 2, 6) `8

Table 9. Algorithm execution with single bounds: iterations considering
paths P starting by an o-`1 path P1

details on bounds. At the very end of the appendix, we illustrate the way bounds are
computed by justifying the set of bounds B`3 in this table.

Let P1 be an o-`1 path with resource
(
(0, 0, 1, 6), 1.0

)
. Table 9 describes the iterations

of Algorithm 2 where P1 and the paths starting by P1 are dealt with. Each iteration is
separated by an horizontal line. Column P provides the path P considered at Step 5 of
Algorithm 2. We assume that Lnd

`3
, Lnd

`5
, and Lnd

`6
are empty when P1 is considered as path

P , and Lnd
`4

is empty when P1, `3 is considered. We also assume that cUBod = +∞ and hence

c(qP ⊕ b) ≤ cUBod during all the iterations detailed. Column key(P ) provides its key defined in
Equation (4). As the treatment of reduced costs is standard, to enhance readability, we omit
reduced cost in all resources in Table 9 and in the remaining of the discussion. Column qP
gives the resource of P , column a provides the arc of Step 11, column qa gives its resource.
Path Q of Step 12 is path P followed by a. Then next column gives the resource qQ = qP ⊕qa
of Q, and column w provides the destination of Q computed at Step 13. Column b provides
the single bound in Bw, and the next column provides qQ ⊕ b computed at Step 14. Finally,
the last column indicates if Q is added to L at Step 17.

The key of P1 is equal to −4.8 because, with P = P1 and B`1 = {b}, we have qP ⊕ b =(
(0, 0, 1, 6), 1.0

)
⊕
(
(0, 0, 0, 0),−5.8

)
) =

(
(0, 0, 0, 0),−4.8

)
, and c

(
(0, 0, 0, 0),−4.8

)
= −4.8.

The sums (0, 0, 2, 2) ⊕ (2, 6, 0, 0) and (0, 0, 3, 4) ⊕ (1, 4, 0, 0) are equal to (0, 0, 0, 0) because
(2, 2) + (2, 6) = (3, 4) + (1, 4) = (4, 8) ≤ (4, Fm), where Fm = 9. Since ρ((0, 0, 0, 0)) = 0,
the path Q cannot be discarded at the iterations where P = P1 and a = (`1, `3), and where
P = P1, `3 and a = (`3, `4), and it is added to L. On the contrary (0, 0, 4, 10)⊕(0, 0, 0, 0) =∞
because (4, 10) � (4, Fm). Since ρ(∞) = 1, the path Q is not kept after Step 14 when
a = (`4, `5), and it is not added to L. We have a similar outcome when a = (`4, `6): in this
case, (0, 0, 4, 6)⊕ (1, 2, 0, 0) =∞ because (5, 8) � (4, Fm). The treatment of Q = P1, `3, `4, `6

shows the interest of the bounds: although path Q itself satisfies rule (c), the algorithm
identifies that any path starting by Q violates rule (c).

Table 10 provides the same informations as Table 9 when we use a set of bounds B`3 ={(
(2, 8, 0, 0), 0.4

)
,
(
(3, 6, 0, 0), 1.5

)}
instead of the singleton given in Table 8. Fewer iterations

are then needed: the “if” condition at Step 14 is not satisfied when P1, `3 is considered as
path Q, and path P1, `3 is never added to L. Even though P1, `3 itself satisfies rules (c)
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P key(P ) qP a qa qQ w b qQ ⊕ b
Q added

to L

P1 −4.8 (0, 0, 1, 6) (`1, `3) (0, 0, 2, 2) (0, 0, 2, 2) `3

{
(2, 8, 0, 0)
(3, 6, 0, 0)

∞
∞

}
no

(`1, `5) (0, 0, 1, 6) (0, 0, 1, 6) `5 (0, 0, 0, 0) (0, 0, 0, 0) yes
(`1, `6) (0, 0, 1, 2) (0, 0, 1, 2) `6 (1, 2, 0, 0) (0, 0, 0, 0) yes

P1, `6 4.6 (0, 0, 1, 2) (`6, `7) (1, 2) (0, 0, 2, 4) `7 etc.
P1, `5 8.4 (0, 0, 1, 6) (`5, `8) (0, 0, 2, 6) (0, 0, 2, 6) `8

Table 10. Algorithm execution with B`3 =
{(

(2, 8, 0, 0), 0.4
)
,
(
(3, 6, 0, 0), 1.5

)}
and (d), the algorithm identifies that any o-d path starting by P1, `3 does not satisfy at least
one of these rules.

Rationale of B`3. We explain why B`3 is a correct bound set, both in the singleton and
non-singleton cases. This explanation can be seen as a rough illustration of the procedure
mentioned in Section 4.3 for the bound computation.

Any `3-d path must either start with `3, `4, `5, `8, or with `3, `4, `6, `7. Recall that we have
assumed that

(
(0, 0, 0, 0), 0

)
is a lower bound on the resource of `7-d paths and on the re-

source of `8-d paths. Given that q(`3,`4) ⊕ q(`4,`5) ⊕ q(`4,`8) ⊕
(
(0, 0, 0, 0), 0

)
=
(
(2, 8, 0, 0), 0.4

)
and q(`3,`4) ⊕ q(`4,`6) ⊕ q(`6,`7) ⊕

(
(0, 0, 0, 0), 0

)
=
(
(3, 6, 0, 0), 1.5

)
, any path `3-d path start-

ing by `3, `4, `5 has a resource lower bounded by
(
(2, 8, 0, 0), 0.4

)
, and any path `3-d path

starting by `3, `4, `6, `7 has a resource lower bounded by
(
(3, 6, 0, 0), 1.5

)
. This explains why{(

(2, 8, 0, 0), 0.4
)
,
(
(3, 6, 0, 0), 1.5

)}
can be used as set of boundsB`3 , and why

(
(2, 8, 0, 0), 0.4

)
∧(

(3, 6, 0, 0), 1.5
)

=
(
(2, 6, 0, 0), 0.4

)
is a lower bound on the resource of any `3-d path.
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