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Existence of solutions to principal-agent

problems with adverse selection under minimal

assumptions

Guillaume Carlier∗ Kelvin Shuangjian Zhang †

March 5, 2020

Abstract

We prove an existence result for the principal-agent problem with
adverse selection under general assumptions on preferences and allo-
cation spaces. Instead of assuming that the allocation space is finite-
dimensional or compact, we consider a more general coercivity condi-
tion which takes into account the principal’s cost and the agents’ pref-
erences. Our existence proof is simple and flexible enough to adapt to
partial participation models as well as to the case of type-dependent
budget constraints.

Keywords: principal-agent problems with adverse selection, coercivity, 
partial participation, budget constraint.

1 Introduction

The principal-agent problem with adverse selection plays a distinguished role 
in modern microeconomic theory and has attracted a considerable amount of 
attention due to its numerous economic applications such as nonlinear pricing 
(Mussa and Rosen [17], Armstrong [1], Rochet and Choné [19]), taxation 
theory (Mirrlees [15]), regulation (Laffont and Tirole [12]), to name just a
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few. In these problems, the principal cannot observe agents’ types; hence
her profit maximization program is constrained by incentive compatibility.
This leads to variational problems subject to global constraints which are
difficult to solve in general. The goal of the present paper is to present a
rather elementary approach to the existence of optimal contracts in adverse
selection problems under minimal assumptions.

To fix ideas, let us consider a standard monopoly optimal nonlinear pric-
ing problem. Denoting by Q ⊂ R

m
+ the set of products that are technically

feasible for the monopolist and by I a certain range of prices, agents’ prefer-
ences are given by the utility U(x, q, p) which depends on their (unobservable)
type x ∈ X , the product q ∈ Q and the price p ∈ I. The monopolist knows
the distribution of types µ and has a cost function denoted by q 7→ c(q). Her
problem then consists of maximizing her total profit

π :=

∫

X

(p(x)− c(q(x))dµ(x) (1.1)

among contracts x 7→ (q(x), p(x)) ∈ Q × I, which are incentive compatible,
i.e.,

U(x, q(x), p(x)) ≥ U(x, q(x′), p(x′)), ∀(x, x′) ∈ X2,

and individually rational, i.e., satisfying the participation constraint

U(x, q(x), p(x)) ≥ U(x, q0, p0), ∀x ∈ X

where (q0, p0) is a certain outside option contract available to the agents. The
multidimensional case m > 1 is considerably harder than the unidimensional
case. Indeed, when m = 1, the standard single-crossing condition enables
one to use specific arguments based either on optimal control (as in Laffont
and Guesnerie [8]) or monotonicity (as in Mussa and Rosen [17] or Jullien
[10]).

In higher dimensions, if Q and I are compact, the existence of an optimal
contract is well-known under general assumptions on the preferences and
the cost. It follows for instance from the general results of Monteiro and
Page [16] (also see Carlier [4] for the quasilinear case) or Ghisi and Gobbino
[7] who developed an elegant and original Gamma-convergence approach.
More recently, Nöldeke and Samuelson [18], McCann and Zhang [14], and
Zhang [20] have established general existence results emphasizing the role of
duality and generalized convexity. Nöldeke and Samuelson provide a general
existence result assuming that the type and product spaces are compact, by a
duality argument based on Galois connections. McCann and Zhang not only
show a general existence result assuming a single-crossing type condition and
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boundedness of the agent-type and product-type spaces, but also generalize
uniqueness and convexity results of Figalli, Kim and McCann [6] to the
non-quasilinear case. In the vein of Carlier [4], Zhang [20] proves a general
existence result using generalized convex analysis, under weaker assumptions
on the product domain and without assuming the generalized single-crossing
condition from [13].

Why should we bother with yet another existence result, then? Firstly,
compactness of Q and/or I is a severe restriction which rules out many
important examples. In particular, upper bounds on prices should come
as a result of the model rather than as an assumption. Secondly, for an
optimization problem to have solutions, compactness of the admissible set
can be replaced by a weaker assumption, which takes advantage of properties
of both the objective and the constraints. For instance, in (1.1), π cannot
be too negative and U cannot be too small because of the participation
constraint. This gives extra restrictions on contracts; our assumption is that
these restrictions are enough to force approximate optimizers to remain in a
compact set.

Consider the monopoly pricing problem above in the extreme case where
X = {x} is a singleton (so that the adverse selection problem disappears)
and U(x, q, p) = b(x) · q − p. Then the optimal contract simply corresponds
to setting p = p0 + b(x) · (q − q0) and finding q by maximizing b(x) · q −
c(q). The existence of such an optimal q is obvious if Q is compact and c
is lower semicontinuous. However, compactness of Q can be replaced by an
assumption, called coercivity, which requires compactness of the smaller set
{q ∈ Q : c(q) ≤ c(q0)+b(x) · (q−q0)} (which is automatically bounded if c is
superlinear for instance). This elementary example also shows that coercivity
is indeed a minimal assumption1. This also strongly suggests that the natural
condition for the existence of optimal contracts is the relative compactness
of the set of (q, p) for which p− c(q) ≥ p0− c(q0) and U(x, q, p) ≥ U(x, p0, q0)
for at least one type x, rather than the compactness of Q and I. This
is precisely the coercivity condition that we will consider (see (2.7)-(2.8))
and under which we will prove existence of an optimal contract. Another
(more technical at first glance) advantage of our approach is that, contrary
to the references listed above, the contracts we consider belong to a general
Polish space, which can be infinite-dimensional (functions of time or random
variables for instance).

Our proof involves two steps. The first step consists of showing that any
feasible contract can be improved by another one which yields a larger benefit

1For instance, if Q = R
m
+ , c(q) =

√
|q| and b(x) ∈ R

m
++ the principal’s profit is un-

bounded from above.
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than the outside option to the principal for every type of agents. This key
observation is not new, it appears in Monteiro and Page [16] and Carlier [4],
but these authors did not take advantage of it to get rid of their compactness
assumptions. Thanks to our coercivity assumption, the improved contracts
remain in a compact set and the existence proof can be carried out along
the same lines as, for instance, Monteiro and Page [16]. We then extend
our existence result in two directions. The first extension considers the case
where the outside option is not necessarily feasible for the principle which
leads to partial participation models as in Jullien [10]. Our second extension
concerns agents facing a type-dependent budget constraint as in the works
of Monteiro and Page [16] and Che and Gale [5]. Type-dependent budget
constraints introduce possible discontinuities in preferences. While Monteiro
and Page showed that the resulting difficulties may be overcome by a certain
nonessentiality assumption, we will follow a slightly different route showing
that a non-atomicity condition can be used instead.

The paper is organized as follows. Section 2 presents the basic model
and main assumptions. In section 3, we establish an existence result for the
basic model. Section 4 shows how to extend the existence proof to models
with partial participation, as in Jullien [10]. In section 5, we generalize the
analysis to the case of type-dependent budget constraints for the agents, as
in Monteiro and Page [16] and Che and Gale [5]. Finally, we have gathered
in the appendix several simple measurable selection results used throughout
the paper.

2 Problem statement and assumptions

The agents’ type space is a general probability space (X,F , µ). The alloca-
tion space is denoted by Z and assumed to be a Polish space (i.e., a separable
and completely metrizable topological space). The agents’ preferences are
given by a function U : X × Z → R for which we assume that

∀x ∈ X,U(x, .) is continuous on Z, (2.1)

and
∀z ∈ Z, U(., z) is F -measurable on X . (2.2)

Agents have access to an outside option z0 ∈ Z. A contract is a mea-
surable map z : X → Z, and it is called feasible if it is both individually
rational, i.e.,

U(x, z(x)) ≥ U(x, z0), ∀x ∈ X, (2.3)
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and incentive compatible, i.e.,

U(x, z(x)) ≥ U(x, z(x′)), ∀(x, x′) ∈ X ×X. (2.4)

Finally a cost function C : Z → R ∪ {+∞} is given for the principal which
we assume to satisfy

C is lower semicontinuous and C(z0) < +∞. (2.5)

The principal’s problem is to find a cost minimizing feasible contract2:

inf
{∫

X

C(z(x))dµ(x) : z : X → Z feasible
}
. (2.6)

We will prove in the next section that (2.6) admits a solution under an
additional coercivity assumption. Defining

K := {z ∈ Z : C(z) ≤ C(z0), and ∃x ∈ X : U(x, z) ≥ U(x, z0)}, (2.7)

our coercivity assumption is that

K is compact. (2.8)

Our coercivity condition (2.8) requires allocations which are (i) less costly
than the outside option for the principal and (ii) preferred to it by at least
one type of agents, to form a relatively compact set. It is not only weaker
than the compactness of Z but also more natural in the sense that it takes
into account both the cost and the agents’ preferences. As explained in the
introduction, it is not difficult to see (even when X is a singleton) that this
assumption cannot be weakened if one wants (2.6) to admit solutions.

3 Existence of an optimal contract

3.1 An a priori estimate

The main argument for the existence of a solution is based on the following
result: the principal can always improve her payoff using contracts with
values in K. This argument is not new: a similar observation was made in
[16] and [4] but it was not exploited to derive existence results when Z is not
compact.

2From now on, we adopt the convention that the principal is a cost minimizer instead
of a profit maximizer, hoping this will not create any confusion for the reader.
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Proposition 3.1. Assume (2.1)-(2.2)-(2.5) and (2.8). Let z be a feasible
contract. Then there exists another feasible contract z̃ such that z̃(X) ⊂ K
and ∫

X

C(z̃(x))dµ(x) ≤

∫

X

C(z(x))dµ(x).

Proof. We may of course assume that

{x ∈ X : C(z(x)) ≤ C(z0)} 6= ∅ (3.1)

since otherwise the constant contract z̃ ≡ z0 satisfies the desired claim.

Let us assume (3.1) and define for every x ∈ X ,

u(x) := U(x, z(x)).

By individual rationality and incentive compatibility, one can write

u(x) = max
z′∈A

U(x, z′) where A := {z0} ∪ {z(x′), x′ ∈ X}.

Let us note that A ∩K 6= ∅ and define

ũ(x) := max
z′∈A∩K

U(x, z′).

We thus have U(x, z0) ≤ ũ(x) ≤ u(x) and ũ(x) = U(x, z(x)) = u(x) whenever
C(z(x)) ≤ C(z0). Since A ∩K is compact, the set

Γ(x) := {z ∈ A ∩K : ũ(x) = U(x, z)}

is nonempty and closed, for every x ∈ X , thanks to assumption (2.1).
Moreover, thanks to (2.2), the set valued map Γ has an F -measurable se-
lection (see the Appendix for details) which we denote by z̃. Note that
if C(z(x)) ≤ C(z0) then z(x) ∈ Γ(x). We may therefore also assume
that z(x) = z̃(x) for every x ∈ X for which C(z(x)) ≤ C(z0). By con-
struction, z̃ is individually rational. For every (x, x′) ∈ X × X , since
z̃(x′) ∈ A ∩ K, we have ũ(x) = U(x, z̃(x)) ≥ U(x, z̃(x′)) so that z̃ is also
incentive compatible. Finally, C(z̃(x)) = C(z(x)) when C(z(x)) ≤ C(z0),
and C(z̃(x)) ≤ C(z0) ≤ C(z(x)) otherwise which shows that the feasible
contract z̃ has lower cost than the original one z and it takes by construction
its values in K.
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Remark 3.2. The economic intuition behind the proof of Proposition 3.1
is quite clear: the principal is better off by removing bad contracts (i.e.
contracts which are more costly than the oustide option). This argument
seemingly relies on the fact that the cost function does not depend on agents’
types. However, it may be natural to allow for a cost c(x, z) which is also
type-dependent (e.g. in common value problems). For instance, if c(x, z) =
F (x, C(z)) with F increasing in its second argument, the proof above still
works. Indeed, the contract z̃ constructed above actually satisfies C(z̃(x)) ≤
C(z(x)) for every x: it is therefore again an improvement for the principal.
More general type-dependent costs might be considered as well. Assume that
c(x, .) is lower semicontinuous, that c(x, z0) < +∞ for every x and that c has
the property that whenever c(x, z) ≤ c(x, z0) for some (x, z) ∈ X × Z then
c(x′, z) ≤ c(x′, z0) for every x′ ∈ X . Modifying the set K defined in (2.7) as

K := {z ∈ Z : ∃x ∈ X s.t. c(x, z) ≤ c(x, z0) and U(x, z) ≥ U(x, z0)},

then Proposition 3.1 still holds while replacing the integrals of C in the
statement by those of c (and the set defined in (3.1) by {x ∈ X : c(x, z(x)) ≤
c(x, z0)}). For such costs, it is not difficult to extend the existence analysis
of paragraph 3.2.

3.2 An existence result

Proposition 3.1 enables us to reduce the principal’s problem to the compact
allocation space K (given by (2.7)) instead of Z. From this reduction, classi-
cal arguments along the lines of [16], [4], [20] give the existence of an optimal
contract:

Theorem 3.3. Under assumptions (2.1)-(2.2)-(2.5) and (2.8), the princi-
pal’s problem (2.6) admits at least one solution.

Proof. Let (zn)n be a minimizing sequence for (2.6), i.e., a sequence of feasible
contracts such that

lim
n

∫

X

C(zn(x))dµ(x) = inf(2.6). (3.2)

Using Proposition 3.1, we may further assume that zn(X) ⊂ K for each n.
Then define

un(x) := U(x, zn(x)) = max
z∈An

U(x, z) where An := {z0} ∪ {zn(x), x ∈ X}.
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Since the nonempty compact set An is included in K for every n, we may as-
sume, taking a subsequence if necessary, thatAn converges to some nonempty
compact subset A∗ of K in the Hausdorff distance3, i.e.,

lim
n

dH(An,A
∗) = 0. (3.3)

Then define
u∗(x) := sup

z∈A∗

U(x, z). (3.4)

Define also the set-valued map x ∈ X 7→ Γ∗(x) by

Γ∗(x) := {z ∈ K : ∃nj → ∞ s.t. znj
(x) → z, C(znj

(x)) → lim inf
n

C(zn(x))}.

(3.5)
Γ∗(x) is a nonempty compact set for every x and our assumptions guarantee
that Γ∗ has an F -measurable selection which we denote by z∗ (see Lemma
5.4 in the Appendix for details). Let x ∈ X and z be a cluster point of zn(x)
such that lim supn un(x) = lim supn U(x, zn(x)) = U(x, z). It follows from
(3.3) that z ∈ A∗, hence,

lim sup
n

un(x) ≤ u∗(x). (3.6)

Now let z ∈ A∗. Again by (3.3), there exists a sequence (z′n)n converging
to z such that z′n ∈ An for each n. By incentive compatibility, we have
un(x) = U(x, zn(x)) ≥ U(x, z′n) for each n so that lim infn un(x) ≥ U(x, z).
Taking the supremum in z ∈ A∗, we get

lim inf
n

un(x) ≥ u∗(x). (3.7)

From (3.6)-(3.7), we deduce that un(x) = U(x, zn(x)) converges to u∗(x)
for each x ∈ X . Choosing a subsequence of zn(x) that converges to z∗(x)
therefore gives u∗(x) = U(x, z∗(x)). Then, for any (x′, x) ∈ X × X , since
z∗(x′) ∈ A∗, we have u∗(x) = U(x, z∗(x)) ≥ U(x, z∗(x′)) which shows that z∗

is incentive compatible. Since z0 ∈ A∗, we have U(x, z∗(x)) ≥ U(x, z0) for
each x ∈ X so that z∗ is individually rational. Finally, Fatou’s lemma (note
that C(zn) is bounded from below by the minimum of C on the compact set
K) and the fact that z∗(x) ∈ Γ∗(x), where Γ∗(x) is given by (3.5), give

inf(2.6) ≥

∫

X

lim inf
n

C(zn(x))dµ(x) ≥

∫

X

C(z∗(x))dµ(x),

so that z∗ solves (2.6).

3Denoting by d a distance that completely metrizes the topology of the separable space
Z, and by dist(A, z) := infz′∈A d(z′, z) the distance from z to the set A, the Hausdorff dis-
tance between the sets A and B is dH(A,B) := max(supb∈B dist(A, b), supa∈A dist(B, a)).
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3.3 Examples

Finite-dimensional allocations: quasilinear preferences

Consider the simple example in which z = (p, q) ∈ R × R
d where p ∈ R

represents the price of the contract and q ∈ R
d is a list of product attributes.

Assume that preferences are quasi linear, i.e.,

U(x, z) = b(x, q)− p,

where b(., q) is measurable and b(x, .) is Lipschitz with the same Lipschitz
constant Lipb for every x ∈ X . Let us also assume separability of the cost:

C(z) = c(q)− p,

with c : R
d → R ∪ {+∞} lower semicontinuous and superlinear, i.e., such

that

lim
‖q‖→∞

c(q)

‖q‖
= +∞.

Denoting by (p0, q0) the outside option, assume that c(q0) < +∞. If
c(q) − p ≤ c(q0) − p0 and b(x, q) − p ≥ b(x, q0) − p0 for some x ∈ X , since
b(x, .) is Lipb Lipschitz, we get

c(q) ≤ c(q0) + p− p0 ≤ c(q0) + Lipb‖q − q0‖

and the fact that c is superlinear gives a bound on q. The bound on p then
directly follows. This shows that the closed set K defined by (2.7) is bounded
hence compact.

Finite-dimensional allocations: fully nonlinear preferences

Following McCann and Zhang [14], consider now a general nonlinear utility
function of the form

U(x, z) = G(x, q, p),

where z = (p, q) ∈ R× R
d represents a contract and x a type. Assume that

G is strictly decreasing in the price p, which means that the same product
with a higher price provides less utility to agents.

Each contract z has a cost for the principal, which is

C(z) = c(q)− p.
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Assume c is superlinear in q, G satisfies ∂pG(x, q, p) ≤ −λ < 0 for all
(x, z) ∈ X × Z and G(x, ·, p0) is Lipschitz, uniformly in x, with Lipschitz
constant LipG. To show that K is bounded, it is useful to define K1 =
K ∩ {(q, p) ∈ R

d × R : p ≤ p0} and K2 = K \K1.
By definition, we know that for any (q, p) ∈ K1,

c(q)− p0 ≤ c(q)− p ≤ c(q0)− p0.

Since c is superlinear, this implies that q is bounded. Since c(q)−c(q0)+p0 ≤
p ≤ p0, p is also bounded. Thus, K1 is bounded.

Now, if (p, q) ∈ K2 there exists x ∈ X such that G(x, q, p) ≥ G(x, q0, p0),
but since p > p0 and ∂pG ≤ −λ, using the Lipschitz assumption onG(x, ., p0),
we have

G(x, q0, p0) ≤ G(x, q, p) ≤ G(x, q, p0)− λ(p− p0)

≤ G(x, q0, p0)− λ(p− p0) + LipG‖q − q0‖;

hence

0 ≤ p− p0 ≤
LipG

λ
‖q − q0‖, c(q) ≤ c(q0) +

LipG

λ
‖q − q0‖.

Since c is superlinear, this implies q is bounded, so is p as well, and
therefore K2 is bounded. This shows that K is compact.

Infinite-dimensional allocations

We now consider the possibility that the allocation z is infinite-dimensional
(see [2] for contracts taking values in a space of random variables), one can
think for instance of a time-dependent function. We consider contracts of
the form z = (p, q) with p ∈ R and q ∈ Z := L2((0, T ),Rd), a utility of the
form

U(x, z) :=

∫ T

0

v(t, x, q(t))dt− p,

a cost

C(z) =

∫ T

0

(c(t, q(t)) + |q̇(t)|2)dt− p,

(with C = +∞ whenever q̇ is not L2) and an outside option (z0, q0) with
q̇0 ∈ L2. Then if c(t, .) is superlinear uniformly in t and v(t, x, .) is Lipschitz
uniformly in (t, x), the set K consists of (p, q) ∈ R × L2 such that both∫ T

0
(|q| + |q̇|2)dt and p are uniformly bounded; it is therefore compact in

R× L2 by the Rellich-Kondrachov Theorem (see [3]).
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4 Partial participation

In the model of section 2, we assumed that the outside option z0 belongs to
the set of feasible contracts for the principal and has a finite cost. We also
imposed the participation constraint for all agents, excluding the possibility
of partial participation. If C(z0) ≤ 0, there is no real loss of generality in im-
posing full participation but if C(z0) > 0, the principal may have an interest
in excluding some agents. This more delicate situation was analyzed by Jul-
lien [10] (in an otherwise standard quasilinear unidimensional framework).
Our aim is to show that our approach to existence of an optimal contract
can be extended to the partial participation case.

4.1 Model and assumptions

We assume that the agents’ preferences are as in section 2, i.e., they satisfy
(2.1)-(2.2). We are also given a type dependent reservation utility u0: X → R

which is assumed to be F -measurable. The principal’s cost function C :
Z → R ∪ {+∞} is lower semicontinuous. Given an incentive compatible
contract x ∈ X 7→ z(x), we denote by pz the participation set:

pz := {x ∈ X : U(x, z(x)) ≥ u0(x)}

and we denote by 1pz its characteristic function:

1pz(x) =

{
1 if U(x, z(x)) ≥ u0(x)

0 otherwise.

The main departure from the full participation model of section 2 is that
instead of imposing the participation constraint, the principal’s total cost
will be integrated only on the participation set. We will assume that the
principal can make nonnegative profit; that is,

∃z ∈ Z : C(z) ≤ 0 and {x ∈ X : U(x, z) ≥ u0(x)} 6= ∅ (4.1)

and that the set

F0 := {z ∈ Z : C(z) ≤ 0 and ∃x ∈ X : U(x, z) ≥ u0(x)},

which is nonempty thanks to (4.1), satisfies

F0 is compact. (4.2)

The principal’s problem then reads

inf
{∫

X

1pz(x)C(z(x))dµ(x) : z : X → Z incentive compatible
}
. (4.3)
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4.2 Existence of an optimal contract

Proposition 4.1. Assume that C : Z → R∪{+∞} is lower semicontinuous,
(2.1)-(2.2)-(4.1) and (4.2). Let z be an incentive compatible contract. Then
there exists another incentive compatible contract z̃ such that z̃(X) ⊂ F0 and

1pz̃(x)C(z̃(x)) ≤ 1pz(x)C(z(x)), ∀x ∈ X. (4.4)

Proof. If z(X) ⊂ Z \ F0 then 1pz(x)C(z(x)) ≥ 0 for every x ∈ X ; hence,
thanks to (4.1), the constant contract z̃ ≡ z has the desired properties. We
thus now assume that z(X) ∩ F0 6= ∅ and argue in a similar way as in the
proof of Proposition 3.1. Define

u(x) := U(x, z(x)) = max{U(x, z′) : z′ ∈ z(X)}

and
ũ(x) := max{U(x, z′) : z′ ∈ z(X) ∩ F0}

and let x 7→ z̃(x) be a measurable map such that z̃(x) ∈ z(X) ∩ F0 and
ũ(x) = U(x, z̃(x)) for every x ∈ X . Note that if x ∈ pz and C(z(x)) ≤ 0
then z(x) ∈ F0. We can therefore also impose z̃(x) = z(x) and u(x) = ũ(x)
whenever x ∈ pz and C(z(x)) ≤ 0. By construction, z̃ is incentive compatible
and takes values in F0; in particular C(z̃(x)) ≤ 0 for every x ∈ X . If x /∈ pz,
or, if x ∈ pz and C(z(x)) > 0, then (4.4) is obvious. Finally, if x ∈ pz and
C(z(x)) ≤ 0, then z(x) = z̃(x) and u(x) = U(x, z(x)) = ũ(x) = U(x, z̃(x)),
so that x ∈ pz̃ and (4.4) is an equality.

Theorem 4.2. Assume that C : Z → R ∪ {+∞} is lower semicontinuous,
(2.1)-(2.2)-(4.1) and (4.2). Then the principal’s problem (4.3) admits at
least one solution.

Proof. Thanks to Proposition 4.1, we can find a minimizing sequence (zn)n
for (4.3) which satisfies An := zn(X) ⊂ F0. We now proceed as in the
proof of Theorem 3.3, by finding a subsequence of An which converges in
the Hausdorff distance to some compact subset of F0 denoted A∗. We then
define u∗(x) := maxz′∈A∗ U(x, z′) for every x ∈ X . Thanks to Lemma 5.4,
there exists a measurable map x ∈ X 7→ z∗(x) such that for every x ∈ X ,
one has z∗(x) ∈ Γ∗(x), where

Γ∗(x) := {z ∈ F0 : ∃nj → ∞ s.t. znj
(x) → z, C(znj

(x)) → lim inf
n

C(zn(x))}.

(4.5)
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Arguing as in the proof of Theorem 3.3, we find that un := U(., zn(.)) con-
verges pointwise to u∗, that u∗ = U(., z∗(.)), and that z∗ is incentive compat-
ible. To conclude that z∗ solves (4.3), thanks to Fatou’s Lemma it is enough
to show that

1pz∗ (x)C(z∗(x)) ≤ lim inf
n

1pzn
(x)C(zn(x)), ∀x ∈ X. (4.6)

By construction and lower semicontinuity of C, we have C(z∗) ≤ 0 and
C(z∗) ≤ lim infn C(zn). Let x ∈ X , and nj be a subsequence such that
both 1pznj

(x) and C(znj
(x)) converge. If 1pznj

(x) converges to 1 then by

convergence of un to u∗ we have 1pz∗(x) = 1 so that (4.6) holds. If, on the
contrary, 1pznj

(x) converges to 0, (4.6) also holds since 1pz∗ (x)C(z∗(x)) ≤

0.

5 The budget-constrained case

We now extend the model of section 2 and our existence result to the case
where agents have a (type-dependent) budget constraint. This case is rel-
evant in applications; it was considered by Che and Gale [5] and analyzed
from the existence perspective by Monteiro and Page [16]. The authors of
[16] were able to deal with the discontinuity resulting from the budget con-
straint thanks to a specific assumption called nonessentiality which we will
not use here. Instead, we will use a non-atomicity assumption on the type
distribution.

5.1 Model and assumptions

We consider the following setting for the budget-constrained principal-agent
problem. The type of the agents will consist of a preference parameter x
and a budget y. The set of preference parameters is denoted by X which
is equipped with a σ-algebra F . The set of budgets is a closed interval Y
with a finite lower bound y and it is equipped with its Borel algebra which
we denote by B. Contracts consist of pairs (p, q) where p ∈ R denotes the
price of the contract and q denotes an allocation, while the set of allocations
is denoted by Q which is assumed to be a Polish space. The outside option
(p0, q0) ∈ R×Q is assumed to satisfy

p0 ≤ y (5.1)
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which makes it affordable even to agents with the lowest budget. Preferences
are given by a function V : X × R×Q → R and we assume that

∀x ∈ X, V (x, ., .) is continuous on R×Q, (5.2)

and
∀(p, q) ∈ R×Q, V (., p, q) is F -measurable on X . (5.3)

The joint distribution of types (x, y) is given by a probability measure θ on
X×Y (equipped with the product σ-algebra F⊗B). Finally the cost for the
principal is given by a function C : R × Q → R ∪ {+∞} which we assume
to satisfy

C is lower semicontinuous and C(p0, q0) < +∞. (5.4)

Definition 5.1. A budget-constrained-feasible contract is an F⊗B-measurable
map (x, y) ∈ X × Y 7→ (p(x, y), q(x, y)) ∈ R×Q that satisfies:

• the budget constraint: p(x, y) ≤ y, for every (x, y) ∈ X × Y ;

• individual rationality, V (x, p(x, y), q(x, y)) ≥ V (x, p0, q0), for every
(x, y) ∈ X × Y ;

• budget-constrained incentive compatibility, i.e., for every (x, y, x′, y′) ∈
(X × Y )2 if p(x′, y′) ≤ y then

V (x, p(x, y), q(x, y)) ≥ V (x, p(x′, y′), q(x′, y′)). (5.5)

The budget-constrained principal’s problem then reads

inf
{∫

X×Y

C(p(x, y), q(x, y))dθ(x, y) : (p, q) budget-constrained-feasible
}
.

(5.6)
To prove that (5.6) admits solutions, we shall need two more technical

assumptions. The first one is a coercivity assumption similar to (2.8). Define
Γ as the closure of the set of (p, q) ∈ R × Q such that C(p, q) ≤ C(p0, q0),
and there exists (x, y) ∈ X×Y such that p ≤ y and V (x, p, q) ≥ V (x, p0, q0).
Our coercivity assumption is then that

Γ is compact. (5.7)
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Our last assumption is a non-atomicity condition that will enable us to deal
with the possible discontinuities caused by the budget constraint on the in-
direct utility function. Our non-atomicity condition is that for every mea-
surable subset S of X × Y , one has4

θ(S) = 0 whenever Sx is at most countable for every x ∈ Q. (5.8)

Here, given x ∈ X , Sx denotes the slice Sx := {y ∈ Y : (x, y) ∈ S}.

5.2 Existence

Our first step in the existence proof is the following variant of Proposition
3.1:

Lemma 5.2. Assume (5.1)-(5.2)-(5.3)-(5.4) and (5.7). Let (p, q) be a budget-
constrained-feasible contract. Then there exists another budget-constrained-
feasible contract (p̃, q̃) such that (p̃, q̃)(X × Y ) ⊂ Γ and

∫

X×Y

C(p̃(x, y), q̃(x, y))dθ(x, y) ≤

∫

X×Y

C(p(x, y), q(x, y))dθ(x, y).

Proof. As in the proof of Proposition 3.1, there is no loss of generality in
assuming that

{(x, y) ∈ X × Y : C(p(x, y), q(x, y)) ≤ C(p0, q0)} 6= ∅. (5.9)

Let us define

v(x, y) := V (x, p(x, y), q(x, y)), ∀(x, y) ∈ X × Y

and observe that by individual rationality and budget-constrained incentive
compatibility, v can be expressed as

v(x, y) := max
(p,q)∈A, p≤y

V (x, p, q),

where

A := {(p0, q0)} ∪ {(p(x′, y′), q(x′, y′)), (x′, y′) ∈ X × Y }.

4When X is a Polish space, by the disintegration Theorem, θ can be disintegrated with
respect to its first marginal α as θ(dx, dy) = θ(dy|x)α(dx); in this case, condition (5.8)
amounts to saying that for α-a.e. x, the conditional probability θ(.|x) is atomless.
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Since A∩ {(p, q) ∈ R×Q : p ≤ y} ∩ Γ is non-empty and compact, thanks to
(5.2), we can define the following function (that is everywhere finite):

ṽ(x, y) := max
(p,q)∈A∩Γ, p≤y

V (x, p, q).

Moreover, thanks to Lemma 5.6, we can choose a maximizer (p̃(x, y), q̃(x, y))
in the program above which depends in a measurable way on (x, y) and we
can also assume that

(p̃(x, y), q̃(x, y)) = (p(x, y), q(x, y)) whenever C(p(x, y), q(x, y)) ≤ C(p0, q0).

Arguing as in the proof of Proposition 3.1, we deduce that (p̃, q̃) is a budget-
constrained-feasible contract and C(p̃(x, y), q̃(x, y)) ≤ C(p(x, y), q(x, y)) for
every (x, y) ∈ X × Y .

We then have the existence result:

Theorem 5.3. Assume (5.1)-(5.2)-(5.3)-(5.4)-(5.7) and (5.8). Then (5.6)
admits at least one solution.

Proof. Let (pn, qn) be a minimizing sequence for (5.6); thanks to Lemma 5.2
there is no loss of generality in assuming that (pn, qn)(X × Y ) ⊂ Γ where Γ
is the compact set defined above assumption (5.7). Defining

vn(x, y) := V (x, pn(x, y), qn(x, y)), ∀(x, y) ∈ X × Y,

budget-constrained feasibility then gives the representation

vn(x, y) = max
(p,q)∈An, p≤y

V (x, p, q),

where

An := {(p0, q0)} ∪ {(pn(x′, y′), qn(x′, y′)), (x′, y′) ∈ X × Y }.

Since each compact set An is included in the compact set Γ, we may also
assume, passing to a subsequence if necessary, that there is a compact subset
A∗ of Γ, containing (p0, q0) such that

lim
n

dH(An,A
∗) = 0. (5.10)

Then define
v∗(x, y) = max

(p,q)∈A∗, p≤y
V (x, p, q).
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Thanks to Lemma 5.4, there exists a measurable selection (p∗, q∗) of the
set-valued map defined for every (x, y) ∈ X × Y by

Γ∗(x, y) := {(p, q) ∈ Γ : ∃nj → ∞ s.t. (pnj
(x, y), qnj

(x, y)) → (p, q),

C(pnj
(x, y), qnj

(x, y)) → lim inf
n

C(pn(x, y), qn(x, y))}.

Note that by Fatou’s Lemma,
∫

X×Y

C(p∗(x, y), q∗(x, y))dθ(x, y) ≤ inf (5.6). (5.11)

If (p∗, q∗) was budget-constrained-feasible, the proof would be complete, but
it is not necessarily the case that (p∗, q∗) is budget-constrained incentive
compatible (and this is where assumption (5.8) comes into play). Note that
by construction, using budget-constrained-feasibility of (pn, qn), we obviously
have that for every (x, y) ∈ X × Y , p∗(x, y) ≤ y, V (x, p∗(x, y), q∗(x, y)) ≥
V (x, p0, q0); note also that (p∗(x, y), q∗(x, y)) ∈ A∗ because of (5.10). In
particular, since p∗(x, y) ≤ y, this gives

v∗(x, y) ≥ V (x, p∗(x, y), q∗(x, y)), ∀(x, y) ∈ X × Y. (5.12)

From (5.2) and (5.10), it is easy to deduce that

v∗ ≥ lim sup
n

vn. (5.13)

Now observe that v∗ is nondecreasing and upper semi-continuous with respect
to its second argument. Hence, defining

v∗−(x, y) := lim
ε→0+

v∗(x, y − ε), ∀x ∈ X, ∀y ∈ Y \ {y}, v∗−(x, y) := v∗(x, y),

the (measurable) singular set

S := {(x, y) ∈ X × Y : v∗(x, y) > v∗−(x, y)}

has at most countable slices Sx for every x ∈ X . Assumption (5.8) thus
implies that θ(S) = 0. Note also that, again by (5.8), θ(X × {y}) = 0.
Therefore the regular set R := (X × (Y \ {y})) \ S is of full measure for
θ. Now, let (x, y) ∈ R and ε > 0 be such that y − ε ∈ Y ; by compactness
of A∗ and definition of v∗ there is a (p, q) ∈ A∗ such that p ≤ y − ε and
v∗(x, y − ε) = V (x, p, q). Thanks to (5.10), there is a sequence (pn, qn)
converging to (p, q) with (pn, qn) ∈ An for every n and pn ≤ y for large
enough n so that

lim inf
n

vn(x, y) ≥ lim inf
n

V (x, pn, qn) = v∗(x, y − ε).
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Letting ε → 0+ thus gives

lim inf
n

vn(x, y) ≥ v∗−(x, y). (5.14)

Recalling (5.13) and using the fact that v∗ = v∗− on R, we deduce that

vn → v∗ on R. (5.15)

In particular, if (x, y) ∈ R, since vn(x, y) = V (x, pn(x, y), qn(x, y)) con-
verges to v∗(x, y), choosing a subsequence of (pn(x, y), qn(x, y)) converging
to (p∗(x, y), q∗(x, y)) gives

v∗(x, y) = V (x, p∗(x, y), q∗(x, y)).

This enables us to conclude that for every (x, y) ∈ R and any (x′, y′) ∈
X × Y such that p∗(x′, y′) ≤ y, one has v∗(x, y) = V (x, p∗(x, y), q∗(x, y)) ≥
V (x, p∗(x′, y′), q∗(x′, y′)). The last step is to modify the contract (p∗, q∗) on
a negligible set to make it budget-constrained feasible. To do this, first set

Ã := {(p0, q0)} ∪ {(p∗(x′, y′), q∗(x′, y′)), (x′, y′) ∈ R}

and
ṽ(x, y) := max

(p,q)∈Ã, p≤y

V (x, p, q),

and let (p̃, q̃) be a measurable selection of the set-valued map (x, y) 7→

{(p, q) ∈ Ã : p ≤ y, ṽ(x, y) = V (x, p, q)}. Since ṽ(x, y) = v∗(x, y) =
V (x, p∗(x, y), q∗(x, y)) when (x, y) ∈ R, we may further impose that (p̃, q̃)
and (p∗, q∗) coincide on R, hence θ-almost everywhere. Then, it is straight-
forward to check that (p̃, q̃) is budget-constrained feasible, and the fact that
it solves (5.6) directly follows from (5.11) and the fact that (p̃, q̃) = (p∗, q∗)
θ-almost everywhere.

Appendix: On measurable selections

We have invoked the existence of measurable selections of certain set-valued
maps several times; here, we gather some detailed justifications for the exis-
tence of such maps. Given a measurable space (X,F), a Polish space Z and
a set valued map Γ : X → 2Z with nonempty values, a measurable selection
of Γ is by definition an F -measurable (single-valued) map z: X → Z such
that z(x) ∈ Γ(x) for all x ∈ X . A general existence result for measurable
selections is given by the Kuratowski and Ryll-Nardzewski Theorem (see [11]
and also the survey by Himmelberg [9]) which ensures that whenever
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• Γ(x) is closed and nonempty for every x ∈ X , and

• Γ is weakly measurable in the sense that for every open subset U of Z,
the set Γ−1(U) := {x ∈ X : Γ(x) ∩ U 6= ∅} belongs to F

then Γ admits a measurable selection.

In fact we do not use the full generality of the Kuratowski and Ryll-
Nardzewski Theorem. The set-valued maps we have encountered through the
paper satisfy a stronger measurability property than the one above; namely
they satisfy that for every closed subset F of Z, Γ−1(F ) belongs to F (to
see that it implies weak measurability it is enough to write the open set U
as a countable union of closed sets). The first measurable selection result we
have used is the following:

Lemma 5.4. Let K be a nonempty compact subset of Z, zn a sequence of
measurable maps, zn: X → K, and C: K → R ∪ {+∞} be lower semicon-
tinuous and not identically +∞ on K. For all x ∈ X, let

Γ(x) := {z ∈ K : ∃nj → ∞ : znj
(x) → z, C(znj

(x)) → lim inf
n

C(zn(x))}.

Then Γ admits a measurable selection.

Proof. It is easy to check that Γ(x) is a nonempty and closed subset of Z for
every x ∈ X . As explained above, a sufficient condition for the existence of
a measurable selection is that Γ−1(F ) is measurable whenever F is closed,
but it is easy to check that

Γ−1(F ) = {x ∈ X : lim inf
n

(dist(zn(x), F ) + C(zn(x))) = lim inf
n

C(zn(x))},

which, written in this way, is obviously measurable.

In the proof of Theorem 3.3, we have used:

Lemma 5.5. Let U satisfy (2.1)-(2.2), A be a nonempty compact subset of
Z and set for every x ∈ X,

vA(x) := max
z∈A

U(x, z).

Then vA is measurable. Moreover, if we define for every x ∈ X,

ΓA(x) := {z ∈ A : U(x, z) = vA(x)},

ΓA admits a measurable selection.
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Proof. The fact that vA is measurable follows by taking {an}n a countable
and dense subset of A and writing vA(x) = limn maxk≤n U(x, ak). Obviously,
ΓA(x) is nonempty and closed for every x ∈ X . Now, if F is a closed subset of
A, we claim that Γ−1

A (F ) is measurable. As Γ−1
A (F ) is empty when A∩F = ∅,

we may assume that the (compact) set A ∩ F is nonempty; Γ−1
A (F ) then is

the set where vA and vA∩F coincide. It is therefore measurable.

The following variant of Lemma 5.5 was used for the budget-constrained
model:

Lemma 5.6. Let V satisfy (5.2)-(5.3), A be a nonempty compact subset of
R×Q and set for every (x, y) ∈ X × Y

vA(x, y) := max
(p,q)∈A,p≤y

V (x, p, q),

(with the convention that vA(x, y) = −∞ whenever A ∩ (−∞, y] × Q = ∅).
Then vA is measurable. Moreover, defining for every (x, y) ∈ X × Y ,

ΣA(x, y) := {(p, q) ∈ A : p ≤ y, V (x, p, q) = vA(x, y)},

ΣA admits an F ⊗ B-measurable selection.

Proof. For λ > 0 set

vλA(x, y) := max
(p,q)∈A

{V (x, p, q)− λ(p− y)+)}.

Thanks to Lemma 5.5, vλA is measurable and it is easy to check that vλA
converges in a nonincreasing way to vA as λ → +∞, which shows that vA
is measurable. The fact that ΣA admits a measurable selection can then be
shown as in the proof of Lemma 5.5.
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