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Abstract 
 
Hepatocellular carcinoma (HCC) arises from hepatocytes through the sequential 
accumulation of multiple genomic and epigenomic alterations resulting from a 
Darwinian selection. Genes from various signaling pathways such as telomere 
maintenance, Wnt/ß-catenin, P53/cell cycle regulation, oxidative stress, 
epigenetic modifiers, AKT/mTOR and MAP kinase are frequently mutated in 
HCC. Several subclasses of HCC have been identified based on transcriptomic 
dysregulation and genetic alterations that are closely related to the risk factors, 
pathological features and prognosis. Undoubtedly, integration of data obtained 
from both preclinical models and human studies can be helpful in accelerating 
the identification of robust predictive biomarkers of response to targeted 
biotherapy and immunotherapy. The aim of this review was to describe the main 
advances in HCC in term of molecular biology and how this knowledge could 
be used in clinical practice in the future. 
 
 
Key points: 

1) Single nucleotide polymorphisms of PNPLA3 (rs738409), TM6SF2 
(rs58542926) and HSD17B13 (rs72613567) modulate the risk of chronic liver 
disease and HCC development, mainly in patients with alcoholic and non-
alcoholic fatty liver disease 
2) Telomerase reactivation is one of the key events in malignant transformation 
of cirrhotic hepatocytes. The main mechanisms of telomerase reactivation were: 
hot spot mutations in the promoter of TERT, TERT amplification, TERT 
translocation and, in HBV related HCC, viral insertion in the promoter of TERT 

3) Each HCC is a unique combination of somatic genetic alterations. The 
median rate of protein altering mutations per tumor was 50 to 70 including 
mutations in 2 to 6 driver genes. 
4) Several types of tumor heterogeneity have been described in HCC developed 
on cirrhosis: intra-tumor heterogeneity and inter-tumor heterogeneity due to 
multifocal independent carcinogenesis and/or intra-hepatic metastasis  
5) Genetic features of HCC are strongly linked with risk factors, histological and 
clinical features. Several genomic alterations are candidate predictive 
biomarkers of response to targeted therapy and immunotherapy. 
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Introduction  
 
Despite several advances in the management of hepatocellular carcinoma (HCC), the prognosis 
of patients with HCC remains poor mainly due to the high rate of diagnosis at advanced 
stages[1]. Several tyrosine kinase inhibitors (sorafenib, lenvatinib, cabozantinib and 
regorafenib) or monoclonal antibody directed against VEGFR2 (ramucirumab) have shown to 
improve survival when used as first line (sorafenib and lenvatinib) or second line (regorafenib, 
cabozantinib and ramucirumab) in patients with advanced HCC[2–6]. However, these 
treatments are associated with adverse events and have a limited efficacy with frequent primary 
or secondary resistance. More data on pathogenesis of HCC are required in order to develop 
new efficient therapies to increase survival of HCC patients[7].  
Our knowledge of liver carcinogenesis has increased thanks to the dissection of the mechanisms 
of development of cirrhosis and the understanding of natural history of risk factors such as 
chronic viral infection[7]. Moreover, the development of mouse model of HCC has helped to 
recapitulate the molecular pathway of the liver carcinogenesis and the relation with 
microenvironment and immunity[8]. Major advancements in our knowledge of molecular 
profiling and genetic defects have been made possible with the advent of next generation 
sequencing [9–13] which has thrown insight into the frequent somatic/genetic alterations in 
driver genes and the main signaling pathways dysregulated in HCC [14].  
In this review, we aim to describe the major recent advances in genomic studies in the field of 
HCC and how these studies could be utilized in clinical practice in the future.. 
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1. Genetic predisposition and mutational processes involved in HCC 
development  
 

• Genetic predisposition 

Single nucleotide polymorphisms (SNPs) are genetic variants present in the general population 
that could influence the occurrence, severity and the clinical behavior of human diseases. 
Compared to germline mutations that are rare, constitutional genetic alterations associated with 
a high odds ratio of diseases development, SNPs are observed usually in more than 5% of the 
population and, taken alone, only modestly predispose to disease development (Odds ratio most 
of the time below 5)[15]. Several approaches have been developed to identify SNP associated 
with disease development. The first one is a candidate-based approach that test target SNP 
based on biological hypothesis and analysis of the literature. Several SNPs in genes belonging 
to inflammatory pathways (TNF alpha, IL1 Beta, IL10, TGF Beta, etc…), iron metabolism 
(HFE1), oxidative stress pathways (GSTM1, SOD2, MPO, etc…), DNA repair mechanisms 
(MTHFR, TP53, MDM2, etc…) were found associated with HCC occurrence in the 
literature[15–19]. However, most of these studies used a case/control approach and only few of 
SNPs have been validated externally using a prospective approach in cirrhotic patients screened 
by ultrasonography every 6 months in order to bypass the usual bias of a case/control study[15].  
Another way to identify genetic variants is based on an agnostic approach using genome wide 
association study (GWAS) that tests the association between thousands of SNPs in the genome 
and the occurrence of a disease (Figure 1). GWAS has identified PNPLA3 rs738409 and 
TM6SF2 rs58542926 SNPs linked with the development of Alcoholic Liver Disease (ALD) and 
Non-Alcoholic Fatty Liver Disease (NAFLD) and their progression to cirrhosis[20,21]. 
PNPLA3 rs738409 is a coding variant (I148M) involved in lipid metabolism and TM6SF2 
rs58542926 in fatty acid accumulation in hepatocytes[22–24]. Subsequent studies have showed 
that PNPLA3 rs738409 and TM6SF2 rs58542926 are associated with a higher risk of HCC 
development according to the etiologies of the underlying liver diseases[23,25]. If the 
association with HCC development on ALD or NAFLD seems consistent among studies, the 
association with HCC risk in hepatitis C is still debatable[26,27]. Recently, a loss of function 
variant (rs72613567) of HSD17B13, coding for a hepatic retinol deshydrogenase and protective 
against the development of ALD and NAFLD, was identified by GWAS [28,29]. We recently 
showed that this variant was also protective in the development of HCC on ALD. However, 
more data is needed to understand the mechanisms by which HSD17B13 (rs72613567) protects 
from chronic liver diseases and carcinogenesis[30]. Currently, there is no data that suggest a 
potential implementation of SNPs in clinical practice. Overall, the odds ratio of the current 
SNPs seems to be too low to stratify patients according to the risk of HCC development for 
intensive screening and the incremental effect of SNPs compared to clinical predictive features 
is weak[15]. However, combination of several SNPs (polygenic approach) with clinical features 
should be adopted in the future in order to refine prediction of risk factors, screening methods 
and chemopreventive treatment modalities. Currently, liver ultrasonography every 6 months is 
the standard method for HCC screening in the cirrhotic patients. However, usefulness of HCC 
screening for low-HCC risk population such as hepatitis B patients or patients with NASH 
without cirrhosis remains debatable. Recently, in HBV patients, clinical scoring system such as 
PAGE B has been proposed to identify patients at risk of developing HCC.[31]. Polygenic 
approach in conjunction with the clinical features could be tested to refine HCC risk score 
already developed in non-cirrhotic HBV patients or to identify the non-cirrhotic patients with 
NASH at risk of HCC development. 

 

• Mutational signatures and HCC development 
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Another way to understand the mechanisms that shape tumor development is to study the 
mechanisms of accumulation of mutations in DNA during the lifetime of malignant 
hepatocytes[32]. Each tumor genome bears the molecular fingerprints of the exogeneous 
(mainly exposition to carcinogens such as tobacco, ultraviolet etc…) and endogenous processes 
(such as defect in DNA repair mechanism, age etc…) in DNA[33]. It helps to understand the 
combination of processes that induces the malignant transformation of hepatocytes (Figure 1). 
The type of substitution in the trinucleotide context as well as the small insertion & deletion 
and chromosomal rearrangement recapitulates the main mutational signatures in 
carcinogenesis[34,35]. Major mutational processes were observed in more than 50% of HCC 
and were related to aging (deamination of methylated cytosines for signature 1 and unknown 
mechanism for signature 5), liver specific signature (signature 16-only observed in primary 
liver tumors) and exposure to polycyclic aromatic hydrocarbons including but not restricted to 
tobacco (signature 4 observed in other solid tumors related to tobacco)[10,11,13,36]. In a small 
percentage of tumors, sporadic mutational signatures have been identified such as signature 24 
that is pathognomonic of exposure to aflatoxin B1 a mycotoxin that contaminates culture in 
Africa[36]. There is also rare type of HCC that harbored mutational signature of mismatch 
repair deficiency (1%, signature 6)[10]. Interestingly, a subgroup of HCC, mainly from Asia, 
harbored A:T to T:A transversions preferentially in a CTG trinucleotide context (signature 22) 
that is a hallmark of exposure to aristolochic acid. Aristolochic acid is present in plants from 
the aristolochia species that are widely used in traditional Asian medicine[37–39]. Interestingly, 
analysis of mutational signature has helped to identify new risk factors of HCC development 
such as aristolochic acid in Asia or have provided a biological proof to the epidemiological 
evidences that suggested tobacco as a risk factor of HCC development. However, the 
mechanism underlying the development of some sporadic mutational signature (signature 17 
and 23) are still unknown and need further research.  
All these mutational signatures have been described initially in liver tumor. Recent studies have 
shown the presence of sub-clonal somatic mutations in the non-tumor liver highlighting the 
occurrence of mutations in known cancer driver genes in non-malignant hepatocytes due to 
aging, exposure to carcinogens and chronic liver damage[40,41]. However, the potential 
usefulness of the detection of these sub-clonal mutations in the cirrhotic liver to predict HCC 
occurrence is currently unknown. 
  
Apart from being informative on etiology, mutational signatures can be used for precision 
oncology as biomarkers to guide treatment. This was particularly well documented for cancers 
with DNA repair deficiency that harbored particular mutational signatures depending on the 
affected DNA repair pathway. These HCC can benefit from different therapies based on their 
particular defects using either DNA damaging agents such as PARP inhibitors that induces 
synthetic lethality) or immunotherapies[42]. 
In HCC, repair-deficient tumors are exceptional, however, a small subgroup of HCC (7%) 
harboring aberrant activation of cyclin A2 or E1 was recently associated with a unique signature 
of structural rearrangements involving hundreds of tandem duplications and templated 
insertions[43]. While this subgroup of HCC does not harbor a DNA repair defect, it shares a 
common signature of genomic instability with BRCA1-altered tumors and thus may be a good 
candidate for PARP inhibitor based therapies that have demonstrated clinical benefit in BRCA1-
deficient tumors[44].  
 

 
2. Mechanisms of malignant transformation  
 

• On cirrhosis 
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In the setting of chronic liver disease, persistent liver injury due to chronic inflammation and 
exposure to carcinogens induces repeated cycles of cell necrosis followed by proliferation. This 
results in telomere shortening due to absence of telomerase activity in the adult liver[45]. Thus, 
cirrhosis is composed of nodules of senescent hepatocytes with short telomeres. Therefore, 
mice models with short telomeres are prone to develop cirrhosis when exposed to chemical or 
genetic liver injury[46]. However, telomerase reactivation in these mice, promoted malignant 
transformation of hepatocytes by evading telomere shortening and replicative senescence [47]. 
Similar results were observed in human HCC where 95% of the tumors harbored a re-
expression of the telomerase reverse transcriptase (TERT), the limiting factor of the telomerase 
complex[48,49]. The different mechanisms of telomerase reactivation were: hot spot mutations 
in the promoter of TERT (40 to 60% of HCC), TERT amplification (5%), TERT translocation 
(2 to 3%) and, in HBV related HCC, viral insertion in the promoter of TERT 
(10%)[11,43,50,51]. The multistep process of cirrhosis could be described as follows: 
development of premalignant lesions such as low-grade dysplastic nodules and high-grade 
dysplastic nodules followed by malignant transformation into early HCC. Therefore, 
telomerase reactivation is required in the early step of carcinogenesis in cirrhosis and TERT 
promoter mutations are the only recurrent mutations in the driver genes observed in both low 
grade and high-grade dysplastic nodules (between 5 to 20% of mutations) and up to 60% of 
early HCC’s [52,53]. These results indicate that TERT is a gatekeeper gene which is mutated 
very early in liver carcinogenesis to allow reactivation of telomerase in order to bypass 
senescence of hepatocytes in cirrhosis. Moreover, transcriptomic analysis of premalignant 
nodules in cirrhosis and early HCC’s have highlighted that activation of MYC, early in the 
course, could be involved in the process of malignant transformation[54] whereas activation of 
other signaling pathways such as TGFß, WNT or NOTCH occurred later during 
hepatocarcinogenesis[55]. 
Even an expert pathologist could face difficulties in differentiating premalignant lesions from 
early HCC on cirrhosis[56]. In this setting, further research is needed to study the potential role 
of TERT promoter mutations as predictive biomarkers of malignant transformation of 
premalignant nodules and to better dissect the molecular profile of premalignant lesions and 
early HCC in order to propose a new nosology of early lesions based on genotype/phenotype 
correlation.  

 

• On non-cirrhotic liver 

HCC development in normal liver is a rare event (less than 10% of the cases) but is a pure 
model that allows the identification of direct mechanisms of liver carcinogenesis outside the 
background noise of cirrhosis. The first road of carcinogenesis in normal liver is related to viral 
infections. Hepatitis B virus (HBV) is a DNA virus that could stay into the nucleus of 
hepatocytes in a circular covalently closed form but could also integrate into human DNA[57]. 
The occurrence of HBV related HCC in normal liver (without fibrosis) is due to the action of 
viral oncoprotein such as HbX and to a mechanism called insertional mutagenesis[57]. Viral 
insertion near a cancer gene could modify the expression or function of the gene and promote 
malignant transformation in the absence of cirrhosis. The main genes recurrently targeted by 
HBV insertions are TERT, MLL4, CCNA2 and CCNE1[51,58,59]. However, it should be noted 
that viral insertional mutagenesis is not restricted to HBV related HCC developed in normal 
liver but it could also be seen in HBV related HCC developed on cirrhotic liver. 
 We recently described HCC developing in normal liver due to recurrent viral insertions of 
adeno-associated virus type 2 (AAV2)[60]. AAV2 is a monostrand defective DNA virus which 
gets inserted in the human DNA. It was previously considered as a non-pathogenic infection 
observed in more than the half of the population. Recurrent clonal viral insertions of AAV2 in 



 8

driver genes such as TERT, MLL4, CCNE1, CCNA2 and TNFSF10 were observed in a subset 
of HCC developed on normal liver without other etiologies[60]. These results suggest that 
AAV2 could lead to HCC development in normal liver in rare cases. 
Interestingly, a subset of HCC developed on normal liver was characterized by activation of 
cyclin gene (CCNE1, CCNA2) either due to AAV2 or HBV insertion or due to chromosomal 
rearrangements that induced accumulation of duplications and templated insertions in the 
genome responsible for the overexpression of TERT[43]. 
Finally, the last road known to lead to HCC development in normal liver was the malignant 
transformation of hepatocellular adenomas (HCA)[61]. HCA developed mostly in normal liver 
in young women taking oral contraception and could rarely be complicated by transformation 
into HCC (5% of surgical series). Several genetic subgroups of HCA have been described and 
were linked with patho-radiological features and the risk of complications: HCA with 
inactivating mutations of HNF1A, HCA with mutations of CTNNB1 in exon 3 or in exon 7 or 
8, inflammatory HCA and sonic hedgehog HCA[62]. 10 to 15% of HCA harbored an activating 
mutation of CTNNB1 (coding for B-catenin) in exon 3 and has a high risk of malignant 
transformation[63]. Interestingly, reactivation of telomerase due to mutations of the TERT 
promoter is required in a second step to foster a full malignant transformation of HCA[64]. 

 
 
 
 

3. Molecular classification of Hepatocellular carcinoma  
 

• Mutational, transcriptomic and epigenetic landscape 

HCC is a complex disease arising from hepatocytes through the sequential accumulation of 
multiple genomic and epigenomic alterations that have undergone Darwinian selection. Next 
generation sequencing has allowed to draw the precise genetic landscape of HCC and identified 
a median rate of approximately 50 to 70 protein altering mutations per tumor[10,13,65], with 
similar mutational burden across the different stages from BCLC 0/A to advanced HCCs 
(BCLC B/C)[30]. The vast majority of these mutations are passengers, they accumulate 
randomly and are not involved in carcinogenesis while only a few of them, about 2 to 6, are 
considered as functional "driver" mutations and alter key signaling pathways leading to 
selective advantage. Advanced computational methods for distinguishing between driver and 
passenger mutations[66] have allowed to identify the main mutated genes causally implicated 
in HCCs that can be classified in six major biological pathways including telomere 
maintenance, Wnt/ß-catenin, P53/cell cycle regulation, AKT/mTOR, MAP kinase, epigenetic 
modifiers and oxidative stress (Figure 1)[9–13,50,65,67]. The most prevalently mutated genes 
are TERT (promoter), TP53, CTNNB1, AXIN1, ARID1A and ARID2 while the others are 
mutated in less than 10% of the cases (Figure 1). The interplay between mutated driver genes, 
also defined as epistatic interactions, is a major determinant of the carcinogenesis process. 
Indeed, in cancer, some mutations tend to co-occur suggesting that they cooperate together in 
tumor development while mutual exclusivity is usually explained either by the functional 
redundancy of these mutations or by their deleterious effect when arising simultaneously. In 
HCC, three main clusters of positive epistatic interactions have been described, the first one 
between CTNNB1 mutations and TERT promoter, ARID2 and NFE2L2 mutations, the second 
one between AXIN1 mutations and RPS6KA3 and ARID1A mutations and the third one between 
TP53 mutations and KEAP1, TSC2 mutations and CCND1/FGF19 amplification[10] (Figure 
2). By contrast, a negative interaction was identified between CTNNB1 mutations and AXIN1 

and TP53 mutations[10] (Figure 2). 
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Epigenetic dysregulation also plays a crucial role in hepatocarcinogenesis by altering gene 
expression through various mechanisms including modifications in DNA methylation, histones, 
chromatin remodeling and changes in levels of small (microRNAs) and long (lncRNAs) non-
coding RNAs. This is further highlighted by the frequent genetic alterations occurring in 
epigenetic modifiers accounting for around 20-50% of HCC cases[9–13,65]. DNA methylation 
and microRNA expression are so far, the most well investigated epigenetic alterations in HCC. 
Methylome profiling has reported aberrant promoter methylation in multiple genes some of 
which have been directly involved in liver tumorigenesis such as, among others, CDKN2A that 
is preferentially inactivated by promoter hypermethylation in 50% of the cases or IGF2 that is 
activated through hypomethylation of its fetal promoter[13,68,69]. Some risk factors such as 
HBV and HCV can directly modulate DNA methylation in tumor cells and participate in 
carcinogenesis[7]. There are also interactions between genetic and epigenetic alterations, for 
example, an extensive CpG hypermethylation of multiple gene promoters was associated with 
CTNNB1 mutations[13,70], likewise, CDKN2A promoter methylation was linked to TERT 
promoter mutations[13] and genome-wide hypomethylation was correlated with genomic 
instability[71]. Aberrant expression of microRNAs has been also largely implicated in the 
development and progression of HCC through deregulation of key cellular processes such as 
proliferation, apoptosis, angiogenesis, invasion, metastasis and autophagy[72]. Both genetic 
and epigenetic alterations participate in reprogramming gene expression in tumor cells. In HCC, 
multiple genome-wide gene-expression studies have allowed to identify the main regulatory 
networks transcriptionally altered. Pathways that are commonly aberrantly activated include 
the canonical Wnt/ß-catenin, TGFß, cell cycle, interferon, MYC, PI3K/AKT and 
MET[13,67,73–76]. Transcriptomic profiling also revealed different differentiation patterns 
among HCCs, some of them are well differentiated and retain a hepatocyte-like phenotype 
while others are less differentiated and are characterized by expression of progenitor markers 
such as IGF2, EPCAM, AFP or KRT19[74,75,77]. More recently, deconvolution methods 
applied to transcriptomic data have enabled to identify an “immune class” of HCC representing 
30% of the cases and characterized by an immune gene expression signature including two 
clusters of HCCs with either active or exhausted immune responses[78]. 
Integrated transcriptional and genomic analysis has also allowed deciphering the similarities 
and differences between HCC, intra-hepatic cholangiocarcinoma (ICC) and the 
combined/mixed form of HCC-ICC, which were considered as clinically different entities. In 
particular, Chaisaingmongkol et al. have identified common molecular subtypes between HCC 
and ICC with similar prognosis that are specifically found in Asian patients[79]. Another recent 
study showed that mixed HCC-ICC are more similar to HCC while combined HCC-ICC share 
more common molecular features with ICC. Interestingly, nestin expression was shown as a 
reliable biomarker for identifying these two subtypes of tumors and may represent a potential 
new therapeutic target for both combined and mixed HCC-ICC[80]. 

 

• Integrative analysis and correlation with clinical and pathological 

features 

Over the past decade, worldwide efforts in HCC molecular subtyping combined with analysis 
of the associated clinical, etiological and histopathological features have significantly refined 
the nosological classification of HCC leading to the definition of several subgroups. HCC are 
first classified in two major classes: a “proliferation class” and a “non-proliferation class”, each 
of which integrated several subclasses previously defined across multiple studies[13,67,73–75] 
(Figure 3). The “proliferation class” is associated with HBV-related etiology and includes 
clinically aggressive tumors, poorly differentiated with frequent vascular invasion and is 
characterized by an enrichment in TP53 inactivating mutations, amplification of FGF19 and 
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CCND1, as well as frequent activation of pro-survival signaling pathways including cell cycle, 
mTOR (hyperphosphorylation of RPS6), RAS-MAPK and MET[67,73,74,81]. This class is 
also characterized by a chromosomal instability and a global DNA hypomethylation 
profile[71,82]. The proliferation class is further subdivided in two subclasses: a “Wnt-TGFß 
subclass” characterized by an activation of both TGFß and Wnt pathways and an exhausted 
immune response, and a “progenitor subclass” defined by the transcriptional and protein 
overexpression of hepatic progenitor markers, inactivating mutations in RPS6KA3 and AXIN1 

and hyperphosphorylation of ERK[74,75,77,78]. The main signaling pathways specifically 
activated in the progenitor subclass are IGF1R and AKT[67,74].  The “Wnt-TGFß subclass” 
also includes a more aggressive subgroup of HCC “G3” distinguished by a specific histological 
phenotype designed as “macrotrabecular massive”[77,83], the occurrence of TSC1 and TSC2 

mutations, a more pronounced enrichment in FGF19/CCND1 amplification as well as 
overexpression of genes related to the cell cycle and nucleus pore[74,77]. 
The “non-proliferation class” of HCC is more heterogeneous and includes less aggressive 
tumors, chromosomally stable, related to HCV or alcohol. They are more differentiated and 
tend to retain hepatocyte-like features[13,73,75,81]. This class contains at least two subclasses 
with, as the best defined, a subset of HCC harboring CTNNB1 mutations leading to an activation 
of the Wnt/ß-catenin pathway that is higher in the “G6” subclass compared to “G5” [67,74]. 
TERT promoter mutations are also more frequent in this subclass as well as hypermethylation 
of CDKN2A and CDH1 promoters[13,74]. In addition, CTNNB1-mutated HCC are 
immunologically cold and are characterized by cholestasis, nuclear accumulation of ß-catenin 
and positive immunohistochemical staining of glutamine-synthetase (GS)[77,78]. The second 
subclass belonging to the non-proliferation class named “G4” is less well defined and a 
subgroup of HCC inside the G4 class harbored a frequent steatohepatitic phenotype and an 
activation of the IL6/JAK-STAT pathway defined by a positive immunohistochemical 
expression of the C-reactive-protein (CRP)[74,77]. The G4 subclass encompasses two others 
subclasses named “Polysomy 7” (Poly7) and “Interferon” (IFN) that include respectively a 
small group of HCC with polysomy of chromosome 7 and a group of HCC overexpressing 
interferon-stimulated genes with an active immune response[67,78]. 

 
4. Tumor progression and tumor heterogeneity  

 

• Tumor aggressiveness and mechanisms of progression 

Several molecular features have been linked with tumor aggressiveness and the risk of 
relapse[7]. First, several transcriptomic molecular signatures have been identified as predictive 
of tumor recurrence: hepatoblast like signature, stem cell signature, proliferative subclass, G3 
subclasses, 5 gene score, etc…[73,74,84–86] Molecular signatures derived from the non-tumor 
liver also have been developed to predict late relapse related to de novo carcinogenesis on 
cirrhosis[87]. However, these molecular signatures have not been validated in prospective 
studies and are currently not used in clinical practice. Other markers of poor prognosis in 
patients treated by liver resection have been also identified such as mutations of TP53, RB1, 
CDKN2A or amplification of FGF19[10,65,88].  
Data available on genomic of advanced HCC is sparse mainly due to mainly due to the absence 
of tumor biopsy performed in advanced stages in clinical practice. A recent study has showed 
an enrichment in TP53, RB1 and SF3B1 mutations in advanced HCC suggesting a role of these 
genes in tumor progression[30]. More data are needed with longitudinal samples in order to 
assess the mechanisms of tumor progression across the different stages of the disease.  

 

• Tumor heterogeneity in HCC 
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Another issue in the field of molecular biology of HCC is related to tumor heterogeneity. 
Several studies have shown the presence of intratumor heterogeneity with trunk mutations 
present in all the cells of the tumor and private mutations present in only one part of the tumor 
(Figure 4)[89,90]. Preliminary data in HCC have suggested that the main driver genes such as 
CTNNB1, TP53 and TERT are clonal trunk mutations and are consequently ideal therapeutic 
target[53,90–92]. However, more data are required to clarify this using ultradeep sequencing 
and combination with methylation and transcriptomic analysis in order to capture the 
complexity of intratumor heterogeneity in large cohorts of HCC. Another type of genomic 
heterogeneity observed in HCC is inter tumor heterogeneity that could be related to de novo 
independent carcinogenesis on cirrhosis and/or intrahepatic metastasis (Figure 4). According to 
the study and the method used to assess tumor clonality, intra hepatic metastasis are observed 
in 20 to 40% of the patients whereas the rest of the tumors are related to de novo carcinogenesis 
on cirrhosis[65,93–95]. However, we have to underline that most of these studies have been 
performed on surgical samples of resection or transplantation and the results may be different 
in more advanced stages. Obviously, a better understanding of intra tumor and inter tumor 
heterogeneity are mandatory to understand their role in primary and secondary resistance to 
systemic treatments. 

 
5. Precision oncology in HCC  

 

• Biomarkers of response to tyrosine kinase inhibitors 

Targeted therapies including Tyrosine kinase inhibitors (TKIs such as sorafenib, lenvatinib, 
cabozantinib and regorafenib) and anti VEGFR2 antibody (ramucirumab) have substantially 
improved the systemic treatment of advanced HCC. Since the approval of sorafenib as the 
frontline standard of care[2], four additional targeted therapy have recently demonstrated 
clinical benefits in phase 3 trials including lenvatinib in first-line and regorafenib, cabozantinib 
and ramucirumab in second-line[3–6]. However, all these drugs confer only a modest extension 
in median survival (2-3 months) and low response rates, which underscores the need of 
predictive biomarkers to improve clinical management. Several potential markers have been 
associated with sorafenib response, such as FGF3/FGF4 and VEGFA genomic amplification, 
overexpression of active VEGF receptors or elevated Mapk14-Atf2[96–99] and more recently, 
a clinical study has linked sorafenib primary resistance to the occurrence of activating mutations 
in the PI3K/AKT/mTOR pathway in HCC[100]. However, currently, there are still no validated 
predictive factors of sorafenib response that can be used in routine patient care. 
Similarly, an exploratory retrospective analysis of the RESORCE trial has reported that 
candidate plasma biomarkers including 5 proteins and 9 miRNAs are able to predict regorafenib 
response, while these findings also need further confirmation[101]. Interestingly, the phase 3 
REACH-2 study confirmed the predictive value of elevated serum alpha-fetoprotein (>=400 
ng/ml) for ramucirumab sensitivity which represents so far, the first drug in HCC with a 
consistent predictive biomarker applicability in daily clinical practice[6]. Other biomarkers of 
TKI response have also been proposed in HCC such as high levels of MET detected by 
immunohistochemistry as a predictor of tivantinib sensitivity[102] but this finding could not be 
subsequently validated in phase 3 trial[103]. This failure may be explained firstly by an 
inappropriate selection criterion as MET overexpression may not be a surrogate marker of 
oncogenic addiction and secondly by an inadequate treatment since tivantinib does not act as a 
MET inhibitor, as reported by multiple studies[104–106]. Alternatively, true MET inhibitors 
may be effective in the small subset of patients with MET amplified tumors as we have recently 
reported in liver cancer cell lines and in one patient who achieved a complete tumor response 
after treatment by teponinib, a specific Met inhibitor[30,106,107]. 



 12

 

• Biomarkers of response to immunotherapy 

In recent years, immunotherapy and especially, immune checkpoint inhibitors have 
revolutionized the management of broad spectrum of malignancies. HCC is a typical 
inflammation-associated cancer and is known to arise in a context of immunosuppression 
making immunotherapy a potential attractive therapeutic option. In this line, two phase 2 studies 
have reported objective responses to nivolumab and pembrolizumab, two immune checkpoint 
inhibitors targeting PD-1, in 20% and 17% of advanced HCCs, respectively[108,109]. These 
results have led to an accelerated approval of these two checkpoint inhibitors by the FDA for 
the treatment of advanced HCC in second-line. However, recent press release reported that the 
phase 3 randomized controlled trial comparing nivolumab versus sorafenib in first line as well 
as the phase 3 randomized controlled trial comparing pembrolizumab versus placebo in first 
line did not reach their prespecified endpoints. It suggests that additional data are required to 
identify patients who will benefit from immunotherapy. In both the phase 2 studies, PD-L1 
expression status on tumor cells was not predictive of the response rates, thus, alternative 
predictive biomarkers remain to be identified. Apart from PD-L1 expression, in other cancer 
types, several biomarkers have been proposed such as high levels of tumor-infiltrating 
lymphocytes, especially effector cells, an increased secretion of IFN-γ and other cytokines, as 
well as, a high somatic mutational burden and neoantigen load[110]. Interestingly, the newly 
identified “immune class” of HCC harbors features that closely resemble those of cancers 
vulnerable to checkpoint inhibitors including high infiltration of immune cells, active interferon 
gamma signaling and expression of PD-1 and PD-L1, making it a promising candidate for 
immunotherapy [78]. However, future clinical investigations will be required to confirm this 
hypothesis. By contrast, CTNNB1 mutated HCCs are characterized by an immune exclusion, 
accordingly, a recent clinical study has shown that this subgroup was refractory to immune 

checkpoint blockers[100]. A recent study confirmed in a mouse model that β-catenin activation 
blocked T cell activity, promoted immune escape and were responsible of resistance to 
immunotherapy[111]. In light of these recent findings it would be interesting to reanalyze the 
negative phase 3 nivolumab and pembrolizumab trials by excluding CTNNB1 mutated HCC. 
 
Hence, development of efficient immune checkpoint-inhibitor-based therapy in HCC is still 
challenged by the identification of accurate predictors of response. An additional way to 
increase the efficacy of anti PD1/PDL1 antibodies is their combinations with either tyrosine 
kinase inhibitor such as lenvatinib, an anti VEGF antibody such as bevacizumab or an anti 
CTLA4 antibody such as tremelimumab. The first results of phase 2 released at the ASCO and 
ESMO meetings seem encouraging in term of tumor response and phase 3 clinical trials are 
currently on-going. 

 

• How to modelize response to target therapy? 

Despite the significant success of targeted therapies in the management of many cancers, HCC 
is one of the malignancies that have so far benefited the least from these advances. This lack of 
progress relies in part on the scarcity of HCC tissues, especially for advanced stages, which 
represents a major barrier to understand the relationship between tumor biology and the 
therapeutic response. In this context, the development of relevant preclinical models is 
particularly needed. In cancer, the most commonly used models include tumor-derived cell 
lines and patient-derived tumor xenografts (PDTXs), as they have been shown to retain most 
of the common molecular features found in primary tumors[112–117]. Over the past decade, 
several pan-cancer large-scale pharmacogenomics screenings have been conducted on 
monolayer-cultured cancer cells[112,113,116]. These studies on large set of cell lines are 
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representative of tumor diversity and combined with deep molecular characterizations have 
proven to be powerful tools for molecular prediction of drug response and biomarker 
discovery[112,113,116]. In HCC, until now the vast majority of the in vitro pharmacological 
studies have been scattered in the literature and restricted to an insufficient number of cell lines 
to capture HCC diversity. To fill this gap, we recently performed an extensive multi-omic 
characterization of the most widely used liver cancer cell lines (LCCL) including 34 models, 
combined with a pharmacological screen of 31 anti-cancer agents[107]. This study showed that 
the current available LCCL faithfully recapitulate protein, mutational and transcriptional 
signatures of the proliferation class of HCC and may serve as platform to identify molecular 
contexts associated with drug vulnerabilities that may help to guide clinical trials[107]. This 
dataset is publicly available through an online portal with data visualization 
(http://lccl.zucmanlab.com) and provides a rich resource that may help to accelerate research 
in liver cancer (Figure 5). However, cell line models for the non-proliferation class are still 
lacking, probably due to the poor success rate of establishment[118,119]. Large-scale 
functional screenings using shRNA or CRISPR/CAS9 have also emerged as promising methods 
to draw a comprehensive mapping of cancer genes and identify potential new therapeutic 
targets, but for now, very few or no HCC cell lines were included in these studies[120,121]. 
Although tumor-derived cell lines have the advantage of being easy to grow, inexpensive and 
suitable for high throughput studies, two-dimensional culture condition does not fully 
recapitulate the native 3D environment of tumor cells and may influence drug response. PDTXs 
mimic primary tumors more closely than 2D culture, to date, a total of 116 PDTX generated 
from HCC have been reported in the literature and all the available clinical annotations, 
molecular and drug response data have been regrouped in the PDXliver database 
(http://www.picb.ac.cn/PDXliver/)[122]. However, this resource is limited by the small number 
of models with drug response data (only 26) and by an incomplete molecular characterization 
(Figure 5)[122]. Moreover, the relatively low engraftment efficiency and long engraftment 
periods (several months) of HCC is still limiting for large-scale drug screenings[123–125]. 
Alternatively, liver cancer organoid cultures generated from fresh tumor tissues also emerge as 
valuable models that mimic more closely parental tumors than 2D culture and can be used in 
large drug screenings (Figure 5)[126,127]. The major drawback of both organoids and 2D 
culture cell lines is that they lack immune system and stromal components, consequently, they 
are not suitable for evaluating therapies targeted against tumor microenvironment such as anti-
angiogenic, the most effective agents to date in the systemic treatment of HCC, or 
immunotherapies which cannot be explored either in PTDX models (Figure 5B). Dozens of 
HCC models in immunocompetent mice have also been developed including spontaneous, 
chemically-induced and genetically engineered models (Mouse Tumor Biology database 
http://tumor.informatics.jax.org) (Figure 5)[128–130]. While they are useful for studying basic 
tumor biology, their use as relevant preclinical platform to evaluate the therapeutic response in 
HCC is still limited by the lack of systematic cross-species comparative molecular 
analyses[131–133]. 

 

• New biomarkers 

While, tumor tissue is still the gold standard source for identifying cancer specific biomarkers, 
liquid biopsy has become a promising alternative non-invasive procedure allowing the isolation 
and detection of cancer-derived subcellular components that are released in biological fluids 
such as blood[134].  Thus, it enables to overcome the difficulty in obtaining tissue biopsies, as 
in HCC. Several circulating biomarkers can be detected in liquid biopsies such as DNA, tumor 
cells, microRNAs and exosomes that are secretory vesicles containing nucleic acids and 
proteins[134]. Hence, liquid biopsy has become an appealing source of biomarkers for several 
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applications in cancer such as diagnosis, prognosis and for prediction of response to 
treatment[134]. Liquid biopsy also has the advantage of allowing longitudinal monitoring of 
tumors and may capture the spatial and temporal intra-tumor heterogeneity that is not feasible 
with traditional tissue biopsy. However, although liquid biopsy is likely to revolutionize the 
clinical management of cancers, this technology is still a research field, which is currently 
facing multiple technical issues that need to be solved, in particular to improve its sensitivity 
and specificity before future clinical applications.  

 
 
Conclusion  
 
Although substantial progress has been made in the treatment of HCC, the implementation of 
an effective precision medicine is still hampered by several obstacles. Firstly, there is still a 
lack of reliable biomarkers to predict response to current therapies and newer more effective 
treatments are needed. Since no clear oncogenic addiction loops have been reported in HCC, a 
better understanding of the epistatic interactions between mutated driver genes may help to 
develop more potent combination-based therapies. Also, a more detailed characterization of 
intra and inter-tumoral heterogeneity using longitudinal samples and single cell approaches may 
provide new insights into the resistance to treatment. Moreover, much more efforts have to be 
undertaken in developing newer relevant preclinical models, in particular, taking into account 
the tumor microenvironment, especially the immune contexture that may be feasible by 
establishing organoid co-culture systems or PTDX in mice with humanized immune system. 
Finally, systematic tumor biopsy and blood sampling should be done for patients with HCC and 
more biomarkers based clinical trials should be implemented in the future. Integration of the 
data collected in both preclinical models and in humans should enable to accelerate the 
identification of robust predictive biomarkers and ultimately improve the clinical management 
of HCC (Figure 5A). 
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Figure 1: Genetic predisposition and mutational process in HCC 

We figured the multistep process of carcinogenesis on cirrhosis as well as the risk factors of 
HCC development on normal liver. We also underlined the main SNP in genes promoting 
cirrhosis and HCC development (in red, PNPLA3 and TM6SF2) and protecting from cirrhosis 
and HCC development (in blue, HSD17B13) as well as genes with SNP potentially involved in 
HCC development but that deserve further validation (in grey). We also represented the 
mutational process operative in malignant hepatocytes as well as the main somatic genetic 
alterations in signaling pathways involved in liver carcinogenesis. 
 
Figure 2: Major epistatic interactions between mutated driver genes identified in HCC 

Positive interaction indicates a co-occurrence between the mutated genes, while negative 
interaction indicates mutual exclusivity between the mutated genes. 
 
Figure 3: Integrative molecular and pathological classification of HCC  

The main molecular subclasses of HCC shown are derived from transcriptomic based 
classifications previously reported in five studies (Lee, Boyault, Chiang, Hoshida and TCGA) 
“Unannot”: unannotated group of HCC from Chiang’s classification without specific features. 
For each subclass, major associations with pathological, immunohistochemical (IHC), genetic, 
epigenetic, immunological and clinical features are shown.  
 
Figure 4: Tumor heterogeneity in HCC 

We represented intra-tumor heterogeneity in the upper panel. As an example of spatial and 
temporal intratumor heterogeneity, we described a transformation of HCA in HCC with the 
HCC part who relapse 2 years after. In the lower panel, we figured description of inter tumor 
heterogeneity on cirrhosis including intrahepatic metastasis and multifocal independent de novo 
carcinogenesis. Intrahepatic metastasis and multifocal independent carcinogenesis could 
coexist in the same liver. 

 
Figure 5: Modeling of the therapeutic response in HCC 

A) Strategy to improve precision medicine in HCC based on integration of preclinical models 
and analyses from HCC patients. B) Main features of HCC preclinical models.  
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Patient-derived 

xenografts (PDTX) 
[122]

Cancer cell line-

derived xenografts 

(CDX)

Genetically-

engineered

Chemically-

induced
Spontaneous

Cost Low Moderate High Moderate High Moderate Low

Time required Low Moderate High Moderate to high High High High

Establishment success rate 14-29% [118,119] 18-26% [126,127] 26-35% [124,125] NA / / /

Ease of propagation High High Moderate to difficult Moderate to difficult / / /

Suitable for high-throughput screening Yes Yes No No No No No

Functional immune system No No No No Yes Yes Yes

Cancer-stromal interactions No No Yes Yes Yes Yes Yes

Multi-omic characterization Yes Yes Incomplete [122] NA Few models [131,132] Incomplete [131-133] Incomplete [133]

Human relevance ++ +++ +++ ++
Variable, model 

dependant [131]

Poor (DEN 

model) [131,133]

Not well 
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