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Abstract 15 

The extraordinary potential of semiconductor quantum dots (QDs) has resulted in their 16 

widespread application in various fields, from engineering technology and development of 17 

laboratory techniques to biomedical imaging and therapeutic strategies. However, the toxicity 18 

of QDs remains a concern and has limited their applications in human health. Better 19 

understanding the behavior of QDs as it relates to their composition will enable exploring their 20 

limitations and developing a strategy to control their toxicity for potential therapeutic 21 

applications. Here, approaches to minimize their toxicities according to the specific cell type, 22 

organ, or animal species are described. This review summarizes recent promising works at the 23 

levels of cells, organs, and whole organisms. 24 

 25 

  26 
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Potential of QDs in the biological fields 27 

The multitude of researchers exploring the remarkable potential of quantum dots (QDs) (see 28 

Glossary, Box 1 and 2) in biomedical research, from tools in medical imaging to the 29 

development of sophisticated theranostic agents, indicate the great potential of QDs in this field. 30 

Among the variety of nanoprobes (upconversion nanoparticles, fluorescent proteins, and 31 

graphene-based nanomaterials), semiconductor QDs have distinguished themselves in the field 32 

of imaging due to their size and their optical properties (stable fluorescence, brightness) and 33 

cost-effectiveness relative to conventional fluorescent dyes. Their extremely small size (order 34 

of magnitude of biological molecules, 1 -10 nm) makes these QDs ideal candidates for 35 

identification and tracking of biomolecules and organelles inside the cell and especially in the 36 

nucleus, unlike upconversion nanoparticles that have a larger size (20-50 nm) and cannot reach 37 

the nucleus[1]. Moreover, unlike carbon dots, red fluorescence emission for QDs 38 

semiconductors, which is the preferred color in biological applications due to cells 39 

autofluorescence phenomena in the 400 to 600 nm range (yellow, green, blue), is possible with 40 

semiconductor QDs. As a result, despite the toxicity conferred by semiconductor QDs (although 41 

recently controversial for so-called "biocompatible" nanoparticles), better understanding the 42 

occurrence of their toxicity and strategies to minimize their toxicity would enable their better 43 

use. In targeted imaging, QDs targeting tumors or biomarkers play a crucial role in the 44 

detection, treatment, monitoring, and prognostic evaluation of certain diseases. However, for 45 

purely diagnostic applications, in which cell damage must be avoided, the potential toxicity 46 

caused by the release of metal ions remains a major limitation to the use of QDs, thereby 47 

hindering their translation from preclinical studies to clinical studies in biomedical imaging. A 48 

number of reviews have been published to address various questions, including the recent 49 

progress made on QD surface modification, describing their structure-activity relationships 50 

(Figure 1), mechanisms of uptake in cells, and biomedical applications. However, few reviews 51 
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have specifically presented a body of knowledge that enables a detailed overview on the 52 

behavior of QDs including or not means to minimize toxicity according to the specific cell type, 53 

tissue/organ, or animal species. This review aims to collate information on recent advances in 54 

the use of QDs in biological fields, with the objective of describing the various effects of QDs 55 

reported thus far, and to elucidate their behavior in living organisms, notably for future 56 

applications in humans. 57 

 58 

Application of QDs at the cellular level  59 

Stem cells (see Glossary) are able to multiply indefinitely in vitro in an undifferentiated state, 60 

and can differentiate in the presence of adequate factors. QDs have proved to be of great value 61 

in cell imaging, particularly in the monitoring of cell differentiation, and in functional studies. 62 

However, the biological effect may differ depending on the type of stem cell or differentiated 63 

cell (Table 1).  64 

 65 

Stem cells  66 

The hemocompatibility of QDs was assessed in hematopoietic stem cells by combining Tat 67 

Peptide with CdSe/ZnS-QDs, which made it possible to monitor transplantation successfully 68 

[2]. However, in differentiated hematopoietic cells (human blood neutrophil granulocytes, 69 

monocytes, lymphocytes, and platelets), harmful effects were observed that were specific to 70 

both their morphology (maximum accumulation of QDs with monocytes and minimum with 71 

lymphocytes) and function (despite the presence of the shell, neutrophils underwent cell death 72 

after phagocytosis of CdSe/ZnS-QDs, and CdTe-QD-induced platelet aggregation in the 73 

absence of plasma) [3,4].  74 

Concerning epithelial stem cells, depending on QD composition, the effects may be either 75 

deleterious or beneficial. Several studies have provided explanations for the cytotoxic effects 76 
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of QDs, which occur notably via interaction of CdTe-QDs with aromatic rings and amine 77 

groups from trans-membrane proteins and the cytoskeleton[5], and the predomination of the 78 

overall cellular response, which is mediated by the minor non-endocytic uptake of CdSe/ZnS-79 

QDs in BEAS-2B human bronchial epithelial cells [6]. Despite the use of multi-shell CdSe-80 

CdS/ZnS-QDs in the Calu-3 human lung cell monolayer, mechanical stress and activation of 81 

Ca2+ influx were induced, affecting the lung barrier [7]. However, a different study showed that 82 

these QDs did not elicit noticeable changes in the long-term TEER (see Glossary) after a  83 

70 day-exposure, suggesting their potential use for drug delivery at the surface of the lung 84 

epithelium for short periods [8]. Glass incorporation in CdSe-QDs in place of coating by greater 85 

polymer-enabled reduction of the cytotoxicity on HaCaT keratinocytes. The higher rigidity and 86 

density of glass relative to polymer enabled more efficient blocking of Cd and Se ions, making 87 

these QDs safer for biological applications [9].  88 

Nerve stem cells (NSCs) appear to be more resistant than other stem cells. After uptake, mainly 89 

via microfilaments and microtubules, CdSe/ZnS-polymer-QDs and graphene-QDs had little 90 

effect on the growth and proliferation of primary NSCs within a week[10,11]. CdSe/ZnS-QDs 91 

did not affect either differentiation potential of NSCs or the protein expression of neuron- and 92 

astrocyte-derived primary nerve stem cells [11]. In the GT1-7 differentiated neuronal cell line, 93 

CdSe/ZnS-QDs were incorporated into only a limited fraction of the whole lysosomal 94 

compartment, inducing a slight but significant reduction in cell survival and proliferation [12].  95 

Mesenchymal stem cells are important for synthesizing and repairing the musculoskeletal 96 

system (such as cartilage cells, bone cells, fat cells, synovial cells, or myoblasts). QDs have 97 

been mainly used for the characterization of these cell types, with a majority of the QDs having 98 

no negative impact on cell viability and differentiation [13,14]. The use of ZnS/CdSe-99 

streptavidin-QDs conjugated with a Fab fragment of an anti-myc antibody enabled the tracking 100 

of GLUT4 movement in 3T3L1 adipocytes after stimulation by insulin or in an insulin-resistant 101 



                                                      

6 

 

state [15]. The composition of CdSe/ZnS-polymer-QDs conjugated with a unique antibody 102 

against a heat shock chaperone (mortalin) allowed the successful tracking of mesenchymal stem 103 

cells labeled during tissue repair, following 26 weeks of allogeneic transplantation in a rabbit 104 

model of osteochondral defects [16]. The construction of a siRNA-coupled CdSe/ZnS-PEG-105 

QDs has been successfully achieved, and has both demonstrated the involvement of SOX9 in 106 

chondrogenesis and enabled the real-time monitoring of transfection [17]. CdTe-QDs have 107 

allowed the simultaneous characterization of two types of cadmium-induced cell death 108 

(apoptosis and autophagy) [18].  109 

QD toxicity in male and female germ cells and during embryonic development has also been 110 

evaluated. At concentrations between 1 and 125 nM of CdSe-QDs, no toxicity was detected in 111 

germ cells (i.e., in terms of viability and motility of spermatozoa) and embryos. At 500 nM, 112 

toxic effects on both pre-and post-implantation embryo development and female germ cells 113 

(with decreased maturation and fertilization rates) were reported, which were reduced with the 114 

incorporation of a ZnS shell. The transfer across the placental barrier resulted in Cd 115 

accumulation in pups, which was reduced after coating with PEG or SiO2 [19]. 116 

 117 

Differentiated cells 118 

Overall, Cd2+-based QDs had deleterious effects in hepatic cells, including CdSe/ZnS-QDs-119 

induced L02 hepatocyte pyroptosis, liver inflammation, and dysfunction[20], as well as CdTe-120 

QD-induced mitochondrial damage in human hepatocellular carcinoma cells (HepG2), which 121 

were not solely attributable to cadmium released from QDs, as the observed effects were similar 122 

or greater to those of cadmium chloride[21]. However, graphene-QDs did not induce 123 

cytotoxicity in mouse primary hepatocytes [22]. 124 

An extensive investigation of the signaling mechanism involved in the induction of cytotoxicity 125 

of shell-less QDs has been performed in endothelial cells; notably, the pathways implicated in 126 
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CdTe-QDs-mediated mitochondrial-dependent apoptosis in human umbilical vein endothelial 127 

cells have been studied in detail [23]. Nevertheless, the use of shells or an amorphous form [24] 128 

seems sufficient to reduce their toxicity. Furthermore, additional applications may emerge 129 

following the discovery of stronger accumulation of CdSe/ZnS-QDs in slow-flowing, small 130 

caliber venous vessels than in fast-flowing, high caliber arterial vessels [25]and the large-scale 131 

internalization of CdSe/ZnS-QDs conjugated to monoclonal antibodies targeting the murine 132 

transferrin receptor (Ri7) by brain capillary endothelial cells [26]. 133 

The effects of unshelled QDs in nephrocytes have been discussed in detail. L-cysteine-capped 134 

CdTe-QDs decreased cell viability and modified the structure and activity of copper–zinc 135 

superoxide dismutase in mouse primary nephrocytes and hepatocytes. Notably, this effect was 136 

abrogated by the addition of ascorbic acid [27]. The study of pig renal cells revealed the 137 

involvement of the Wnt pathway in CdTe-QDs-induced damage [27]. The evaluation of the 138 

nephrotoxicity in HK-2 human epithelial tubular cells using various metallic QDs with 139 

differential solubility (TiO2, ZnO, and CdS) revealed that soluble CdS- and ZnO-QDs elicited 140 

cell death in a dose-dependent manner, and this effect was attributed to the release of metallic 141 

cations. However, insoluble TiO2-QDs had no cytotoxic effect [28]. Targeting bladder 142 

urothelial cancer cells was performed successfully using CdSe/ZnS-QDs conjugated with the 143 

prostate stem cell antigen [29]. 144 

Recently, promising applications in both diagnostics and therapy of microbial infections have 145 

been reported. QD-specific antibodies designed for use as biosensors via the association of 146 

rabbit anti-p38 antibody and CdSe/ZnS-QDs, were shown to successfully infiltrate porous 147 

silicon whose pores contained immobilized Egp38 antigen. These QDs were used to detect 148 

Echinococcus granulosus for early diagnosis of hydatid disease [30]. Photoexcited QDs have 149 

been used to kill a wide range of multidrug-resistant bacterial clinical isolates, including 150 

methicillin-resistant Staphylococcus aureus, carbapenem-resistant Escherichia coli, extended-151 
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spectrum β-lactamase-producing Klebsiella pneumoniae, and Salmonella typhimurium, while 152 

leaving mammalian cells intact. Their proposed application in clinical phototherapy is 153 

suggested for the treatment of infections [31]. 154 

 155 

Application of QDs in organs 156 

Ex vivo investigation would enable elucidation of QD-induced effects on a collection of 157 

specific cells in their environment. The different applications of QDs were grouped by organ 158 

system in this review (Table 2). 159 

 160 

Integumentary system 161 

Several studies have investigated QD penetration through the skin. In one of these studies, 162 

CdSe/ZnS- mPEG-5000-QDs were injected subcutaneously into CDF1 mice or deposited onto 163 

human skin. The results showed that QD diffusion in the dermis is limited by the basement 164 

membrane and dense connective tissue fibers; this resulted in negligible QD penetration into 165 

the epidermis, hair follicles, sebaceous and sweat glands, nerves, and blood vessels. The total 166 

penetration of QDs could only be achieved via a 10-minute massage of damaged or stripped 167 

stratum corneum. An increase in pH (8.3) of QD formulations enabled some degree of QD 168 

penetration of intact skin [32–34]. Furthermore, simultaneous use of cell therapy and graphene 169 

QDs accelerated the repair of skin lesions [35]. 170 

 171 

Brain system 172 

Owing to their nanoscale size, which enables them to cross the blood–brain barrier, QDs 173 

represent a revolutionary theranostic tool for the brain system. CdSe/ZnS-streptavidin-QDs 174 

injected by stereotaxis into the mouse brain were able to specifically label the microglia in 175 

primary cortical cultures via macrophage scavenger receptors and mannose receptors present 176 
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on their surface, and did not induce toxicity (i.e. induction of inflammation) in the short term 177 

[36]. Recently, graphene-QDs were shown to successfully reduce symptoms in mice primed to 178 

develop Parkinson’s disease by inhibiting fibrillization of α-syn and interacting directly with 179 

mature fibrils, thus triggering their disaggregation. These QDs were also to inhibit the 180 

aggregation of Aβ peptides which leads to Alzheimer’s disease. These promising results 181 

constitute a considerable advance in the treatment of complex pathologies for which no 182 

effective therapies are available[37,38]. 183 

 184 

Digestive system 185 

The digestive system is essential for the assimilation of nutrients, immune and endocrine 186 

defenses, and the metabolism of endogenous or exogenous molecules (e.g., drugs). A study 187 

using CdTe/CdS-QDs administrated by intravenous injection showed that QDs were retained 188 

in the sinusoids and selectively taken up by sinusoidal cells (Kupffer cells and liver sinusoidal 189 

endothelial cells) within 3 h, but not by hepatocytes[39]. However, the absorption of QDs at 190 

the intestinal level has been poorly studied. Previous studies focusing on nanoparticle 191 

absorption in general describe the requirement for well-defined characteristics to cross the 192 

mucus barrier and the intestinal epithelium lining the intestinal lumen. In nematodes 193 

(representative of intestine models), CdTe-QDs influenced lipid metabolism via alteration of 194 

the molecular basis of both synthesis and degradation of fatty acid, but not degradation of 195 

phospholipids, and increased in fat storage in intestine [40]. The spleens of rats were also 196 

exposed by CdSe/CdS-PEG-QDs coupled or not by folic acid with different doses(0–300 nM), 197 

and both were revealed to be non-toxic. Moreover, the addition of folic acid significantly 198 

improved the uptake of QDs in a dose-dependent manner, highlighting the importance of 199 

surface coating properties [41]. VEGFR2-CdSe/ZnS-QDs were used to successfully distinguish 200 

between diseased and non-diseased tissue in the colons of carcinogen-treated mice with high 201 
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sensitivity and specificity. However, the complete removal of the contrast agent by flushing is 202 

difficult to achieve [42,43]. 203 

 204 

Pulmonary system 205 

The respiratory system is the preferred site for exchange of gas and airborne particles between 206 

the body and the external environment. The evaluation of the efficacy or toxicology of QDs in 207 

the pulmonary system is therefore essential. A short-term exposure to 240 μg CdO-QDs/m3 for 208 

seven days (3 h/day) caused pulmonary injury and tissue remodeling in mice, and altered 209 

immune function [44]. Intratracheal instillation of CdSe/ZnS-QDs or CdSe/ZnS-PEG-QDs 210 

persistently induced acute neutrophil infiltration, followed by interstitial lymphocyte 211 

infiltration, transiently reduced pulmonary function, and a granulomatous reaction on day 17. 212 

Although the granulomatous reaction disappeared for CdSe/ZnS-PEG-QDs at day 90, 213 

PEGylation was not sufficient to reduce the risk of side effects associated with QDs [45]. Upon 214 

further exploration, genetic predisposition factors and atopy (in this case dust mite allergy) were 215 

found to induce impaired pulmonary mechanics by exposure to QDs [46,47].  216 

 217 

Urinary system 218 

The urinary system is essential for the excretion of endogenous and exogenous substances that 219 

are either catabolized or intact. Studies of the kidneys of mice have shown that CdTe-QDs 220 

deplete glutathione levels, which reduce the ability of the liver and kidneys to eliminate 221 

hydroxyl and superoxide anion radicals, thus inducing oxidative damage to tissues. However, 222 

a partial recovery was observed after 28 days [48,49]. Free CdSe/ZnS-QDs and anti-CD47-223 

CdSe/ZnS-QDs were intravesically instilled in mice. Examination of the in vivo biodistribution 224 

of anti-CD47-CdSe/ZnS-QDs revealed the absence of significant accumulation of QDs outside 225 
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of the bladder, and no acute toxicity up to 7 days post-administration. Mice showed extravesical 226 

biodistribution of QDs under some conditions; however, this was rare [50]. 227 

 228 

Cardiovascular system 229 

The cardiovascular system transports blood from the heart to the peripheral regions of the body 230 

and vice versa, and carries a wide variety of substances. The ideal geometry and 231 

functionalization capabilities of QDs make them an excellent tool for visualizing the 232 

cardiovascular system. Accordingly, CdSe/ZnS-QDs have proved their utility in the study of 233 

sarcomere dynamics during excitation-contraction coupling in healthy and diseased cardiac 234 

muscle and in the whole heart [51]. By combining in vivo cryotechniques and the injection of 235 

glutathione-coated QDs into kidneys, QD distribution in the vascular system was achieved, 236 

primarily in glomerular blood capillaries for a few seconds and extending to peritubular blood 237 

capillaries by five seconds [52]. With regard to therapy, the amorphous form of SeQDs has 238 

proved to be effective in prevention of endothelial dysfunction and atherosclerosis [24]. 239 

 240 

Musculoskeletal system 241 

The musculoskeletal system gives form, stability, and movement to the human body. The 242 

application of QDs on this system thus far has been confined to imaging. The use of CdSe/ZnS-243 

streptavidin-QDs bound to biotin-phalloidin, which labels skeletal actin filaments, has enabled 244 

rapid, quantitative, and inexpensive imaging of sarcomeric movements, notably step-size 245 

measurement for low-duty cycle muscle myosin [51,53]. A recent study reported that QDs were 246 

mainly found in the synovial membrane, but significantly less on cartilage, one week after being 247 

intra-articularly injected into the joints of healthy or osteoarthritis horses [14]. Among the 248 

selected articles, no studies were conducted to evaluate the spread of QDs in the bone system, 249 

and QD accumulation in bone remains to be defined. 250 
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 251 

Applications of QDs in animals 252 

Invertebrates 253 

In order to evaluate the integrity of water ecosystems, two aquatic species, polyp Hydra vulgaris 254 

and coral Stylophora pistillata, representative of freshwater and sea habitats, respectively, were 255 

exposed to CdSe/ZnS-polymer-QDs and CdTe-QDs at concentrations exceeding the Cd2+ 256 

content in seawater. Despite the presence of a shell and polymer, CdSe/ZnS-polymer-QDs 257 

induced dramatic changes, including morphological and global transcriptional changes, albeit 258 

less than those induce by CdTe-QDs [54–57]. In order to track the visualization of cyclin E 259 

within cells of developing Xenopus laevis embryos in real time, CdSe/ZnS-QDs have been 260 

coupled to cell-cycle regulatory proteins (recombinant (His6)-cyclin E protein), and their 261 

accumulation in the nucleus at midblastula transition (6 h post-fertilization) has been confirmed 262 

[58].  263 

Drosophila, which has high genetic homology with the human genome and has innate immunity 264 

signaling pathways that are similar to those of mammals, is an excellent model for 265 

genotoxicology and immunotoxicology. QDs were administered via the ingestion of QD-266 

supplemented food (CdSe/ZnS- or InP/ZnS-QDs, 100 and 500 pM) and stress response (hsp70, 267 

hsp83), genotoxic stress (p53), and apoptotic cell death (Dredd) genes were observed following 268 

the administration of CdSe/ZnS-QDs. However, no significant response was observed 269 

following the administration of InP/ZnS-QDs [59]. 270 

 271 

Small vertebrates 272 

Although alternatives to animal studies should be favored, the advantages provided by studies 273 

in small animals are not negligible (i.e., transposition of whole biological systems). Various 274 

QDs (CdSe/ZnS-QDs, PbS/CdS/ZnS-QDs, CdTe/ZnS-QDs, CdTe-QDs, and QD innovative 275 
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structures) and modes of administration (intravenous, intraperitoneal, intratracheal, plantar, and 276 

oral) were evaluated in mice and rats (Table 3). CdTe-QDs affected steroid hormone and lysine 277 

biosyntheses and taurine metabolism [60]. CdSe/ZnS-QDs injected intravenously in mice at a 278 

concentration up to 10 mg/kg body weight (BW) did not induce significant toxic effects during 279 

four weeks of administration; however, a dose of 20 mg/kg BW caused death in two-thirds of 280 

mice shortly after the start of experiment [61]. Biodistribution kinetics of intravenously injected 281 

PbS/CdS/ZnS-QDs at 0.04 mg/mL revealed the presence of QDs in the lungs after short time 282 

periods (first 0-30 s) followed by accumulation in the liver (60 – 120 s) with complete 283 

disappearance of fluorescence at the injection site. After 25 days, elimination by the urinary 284 

system lead to the total elimination of the QDs [62,63]. Similarly, biodistribution studies of a 285 

single intravenous dose  286 

(0.2 μmol/kg) of CdTe/ZnS-QDs defined an elimination half-life of 12 - 14 h [64]. After 287 

intraperitoneal injection of CdSe/CdS-QDs every 3 days for a period of 15 days, an increase in 288 

the levels of LDH, NADPH, and IL-6 pro-inflammatory cytokines was specifically detected in 289 

the plasma, liver, and spleen [65]. Globally, QD accumulation in the liver, kidney, and spleen 290 

was observed in the four previously cited studies, regardless of route of administration. The 291 

injection dose, particle size, and surface charge have been identified as factors affecting mean 292 

residence time, apparent volume of distribution, and clearance, particularly in the case of Ag2S 293 

QDs [66]. The assessment of pulmonary toxicity following intratracheal injection of CdSe/ZnS-294 

QDs revealed lung injury and inflammation in a dose-dependent manner, which peaked at days 295 

7 and 14 post-exposure, with a holding time of QD fluorescence of 1 week. The built-up of 296 

Cd2+ occurred only in lung-associated lymph nodes and kidneys for 28 days [67]. An overdose 297 

(50 mg/kg) of phospholipid micelle-encapsulated CdSe-CdS/ZnS-PEG-QDs over 112 days (16 298 

weeks) did not induce toxicity, despite the accumulation of QDs in the liver and spleen in 299 

Kunming mice [68]. The evaluation of orally administered 0.2 mg/kg and 0.4 mg/kg BW/day 300 
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of CdTe-QDs/quercetin complex for 3 weeks highlighted the utility of QDs as nano-carriers by 301 

reducing inflammation significantly and promoting cartilage regeneration [69]. Intraperitoneal 302 

injection (10 mg/kg) of graphene QDs effectively ameliorated autoimmune encephalomyelitis 303 

[70]. The evaluation of CdSe/ZnS-QDs (10, 20, and 40 mg/kg BW injection) on the male 304 

reproductive system at different stages of development was performed in 32 male mice (adult 305 

group) and 24 pregnant mice (embryo group) on day 8 of gestation, and no significant effect on 306 

fetal testis development and on adult groups at up 20 mg/kg BW was observed. However, at 40 307 

mg/kg BW, a decrease in lamina propria, destruction in interstitial tissue, deformation of 308 

seminiferous tubules, and a reduction in number of spermatogonia, spermatocytes, and 309 

spermatids was observed [71–73]. Embryotoxicity following the injection CdTe-QDs on the 310 

13th day of gestation in pregnant rats was assessed in 121 fetuses and via histological analysis 311 

of placentas. This study revealed dose-dependent survival rates of fetuses (Table 3) due to 312 

placental damage rather than QD penetration and accumulation in the fetuses [74], and an 313 

impairment on the first two generations of placenta growth [75]. 314 

 315 

Large vertebrates 316 

Biomedical research in large animal models is rare, especially in non-human primates, which 317 

are unfortunately irreplaceable as models of certain diseases owing to their close similarity to 318 

humans.  319 

In the cellular therapy field, assessment of cell migration and adhesion is of paramount 320 

importance. CdSe/ZnS-polymer-QDs were used to successfully label and assess the adhesion 321 

of goat adipose tissue-derived stem cells (g-ADSCs) after 30, 60, and 90 days of cell infusion 322 

in the goat mammary glands. The labeling did not affect cellularity and morphology, and was 323 

maintained long-term, even after freezing of liquid NO2. The health status of goats following 324 

QD administration has not been specified. [76]. 325 
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Both phospholipid micelle-encapsulated CdSe/CdS/ZnS-QDs (ph-QDs) [77] and F-127-326 

encapsulated-silicon-QDs [78] were administrated to monkeys (25 and 200 mg/kg BW, 327 

respectively) via short intravenous transfusion (30 min). For both QDs, no signs of toxicity 328 

were clearly detected in terms of general conditions (body mass, physical, mental, and 329 

nutritional behavior), biological parameters (biochemical, no signs of infection or allergic or 330 

toxic reactions, liver, and renal). The histological analyses have been unchanged despite QD 331 

accumulation in kidney, liver, and spleen, indicating that the breakdown and QDs clearance is 332 

quite slow, unlike in mice in which there were signs of delayed and time-dependent increased 333 

liver damage (inflammation, proliferation of Kupffer cells, multifocal cholestasis, and spotty 334 

necrosis of hepatic cells). The fate of the two types of QDs could not be determined [77,78]. The 335 

injection of ph-QDs in pregnant monkeys at a gestational age of 100 days resulted in a 336 

miscarriage rate of 60% after having crossed the placenta from the mother to fetus and induced 337 

acute hepatocellular injury in the mother after a week of administration [79]. 338 

 339 

Concluding Remarks and Future Perspectives 340 

The rapid expansion of the popularity of QDs has resulted in the publication of a large number 341 

of studies on the subject, with high variability in the structure and composition of the QDs 342 

studied, thus making synthesis and comparisons difficult (see Outstanding Questions). 343 

Nevertheless, 50% of the studies are based on CdSe/ZnS-polymer-QDs produced by the same 344 

supplier, which presents both an advantage (comparability of articles) and a limitation (fewer 345 

studies on the structure of other semiconductor QDs). 346 

At the cellular level, overall toxic effects appear at a certain threshold concentration that differs 347 

according to the sensitivity of each cell type [109]. Stem cells appear to be more resistant under 348 

certain conditions than differentiated cells, and the presence of QDs does not seem to affect 349 

stem cell differentiation. Depending on the intended application (in vitro imaging, diagnostic, 350 
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or theranostic), it is essential to define the optimal concentration range to obtain desired effects 351 

and toxicity thresholds for each study, and not conclude, without due investigation, that QDs 352 

show global cytotoxicity. Interestingly, the results with innovative QD structures incorporating 353 

new materials are encouraging for safer use in medical imaging. 354 

With regard to organs, the lungs, kidneys, and the liver are the most affected by toxicity at high 355 

concentrations due to QD accumulation. The involvement of these organs is globally observed 356 

for all nanoparticles, probably inherent to their size, rather than specifically for QDs [80]. As 357 

observed for a number of anticancer and antiretroviral drugs, accumulation in organs might be 358 

associated with potential toxicities, but preliminary precautions can be taken (improvement of 359 

hydration for nephrotoxic risk, addition of adjuvant protective organ) and does not necessarily 360 

constitute an obstacle to their use. Additional studies are needed to adjust QD concentrations 361 

according to their use. Surprisingly, the brain seems to be more resistant to the toxic effects of 362 

QDs; the same observations have been made at the cellular level, and revolutionary applications 363 

in neurodegenerative diseases are being explored. 364 

Based on the observed negative effects on the ecosystem, QDs should be used with the same 365 

caution as chemotherapy treatments. The studies carried out on small and large animals are 366 

encouraging, taking into account the benefit/risk balance; however, animal studies on concrete 367 

cases of pathologies have yet to be conducted. 368 

Regarding strategies for minimizing toxicity, in the case of stem cells, the addition of a shell 369 

reduces toxicity, especially by means of polymerization. Biocompatibility has been achieved 370 

by incorporating QDs in glass. For differentiated cells, the addition of a shell associated with 371 

polymerization is in some cases not sufficient; the use of QDs in amorphous form or the addition 372 

of adjuvant alleviates the effects. Other winning strategies such as functionalization or 373 

infiltration into silicone have minimized toxicity. Except for the pulmonary system, where the 374 

toxicity can be exacerbated due to factors such as genetic predisposition, the addition of shells 375 
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associated with polymerization is sufficient to limit the toxicity in the organs. In invertebrates, 376 

all cadmium-based QDs, even when combined with a shell, polymerization and 377 

functionalization, show toxicity. Only a change to another chemical element in another group 378 

reduces the toxicity. For small animals, the preferred means of toxicity minimization is the 379 

addition of a multishell. For large vertebrates, all minimization strategies have been 380 

successfully applied at once, and these QDs have been proven to be non-toxic, except in the 381 

case of pregnancy. Despite their toxicity, semiconductor QDs have been noted for their ability 382 

to respond to a wide range of applications. The toxicity of QDs can be exploited favorably to 383 

destroy cells that have lost their capacity to die (i.e., tumors) via a controlled toxicology 384 

strategy. A strategy of diffusion limitation can also be considered by playing on a galenic 385 

formulation without modifying the structure of the QD. 386 

Before their potential is fully exploited in biological application, in-depth studies of 387 

pharmacokinetics, taking into account all routes of administration, are necessary and must be 388 

supplemented by regimens with repeated administrations. The fate of QDs in the body must be 389 

further clarified; particularly, the mechanism of elimination must be elucidated. 390 

To reach clinical and industrial translation by establishing a pharmaceutical product for human 391 

clinical trials, close cooperation between different disciplines (chemist, physicists, biologists, 392 

pharmacists, pharmacologists, clinicians) and legal instances is paramount in order to take into 393 

account biological and environmental considerations and reglementary requirements (Figure 394 

2). For this purpose, it is necessary to agree on a standardized and large-scale QDs preparation 395 

method with good and reproducible performance and to define a set of standard quality control 396 

for the characterization of QDs. However, between batches, there may always be a lack of 397 

reproducibility that should be overcome by additional controls and may be validated by 398 

functional tests. Another challenge is to ensure regulations to qualify the raw material in 399 

pharmaceutical grade; it is necessary to ensure the absence of heavy metals. However, heavy 400 
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metals are constituents of semiconductor QDs. Without demonstrating the effectiveness of the 401 

toxicity minimization strategies or an argument in favor of controlled toxicology weighing the 402 

benefits/risks for certain cases, accompanied by progress in legal regulation, the development 403 

of a pharmaceutical preparation that is employable in the clinical setting cannot be envisaged. 404 

 405 
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Box 1. Structure-activity relationship of QDs 411 

A QD is a nanocrystal made of semiconductor materials consisting of a few million atoms (but 412 

only a small number of free electrons, ≤ 100) that is small enough to exhibit quantum 413 

mechanical properties [81]. QDs can be composed of metallic atoms (e.g. Ni, Co, Pt, Au) or 414 

mostly of semiconductor materials, such as elements of periodic group II – VI (CdTe, CdSe, 415 

CdS, ZnSe, ZnS, PbS, PbSe, SnTe) [82] or from III – V group such as In and Ga [83]. In addition, 416 

QDs can surround by shell often to reduce ion release and therefore, its toxicity [84]. QDs can 417 

also be functionalized by adding a terminal function such as - NH2 or - COOH allowing their 418 

hydrophilization [85], polymers to reduce their toxicity or improve their absorption [86], 419 

peptides [87] or antibodies [88] to specifically target a biological element (Figure 1).  420 

 421 

Box 2. Characterization of quantum dots 422 

Initially, their optical properties are evaluated by UV-visible [89] and photoluminescence 423 

spectroscopy [90,91], which is a fast and nondestructive technique allowing for the excitation, 424 

absorption, and emission spectra used for calculation of quantum yield to be determined [92]. 425 

The band gap studies were determined by optical diffuse reflectance spectra measurement 426 

[93,94]. The size and morphology of QDs can be estimated by scanning or transmission electron 427 

microscopy [95], dynamic light scattering (DLS) [96,97], or mathematic approaches from 428 

absorption edges using Henglein empirical curve [98]. To define the functionalization, Fourier 429 

transformed infrared (FTIR) spectroscopic measurements can be used [99]. The analysis of 430 

structure and elemental composition can be performed by X-ray diffraction [83,100] and energy 431 

dispersive X-ray analysis [101,102], respectively. Non-destructive techniques such as Raman 432 

spectroscopy explore the confined electronic structure of QDs [103–105]. QDs dosage 433 

suspension can be achieved by high pressure liquid chromatography via size exclusion 434 

chromatography with a fluorimetric detector [106]. The metal ion content in final QDs was also 435 
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assayed by inductively coupled plasma atomic emission spectrometry [107], and QD behavior 436 

was studied by electrochemical methods [108]. 437 

 438 

  439 
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Glossary 440 

Long-term transepithelial electrical resistance TEER: commonly used in vitro for 441 

the assessment of the integrity of the epithelial cell layers. 442 

 443 

Quantum dots: The term quantum comes from these mechanical properties at the 444 

atomic and subatomic scale with zero-dimensional as a fixed point.  445 

 446 

Stem cells: consist of three forms: (i) adult stem cells (ASC) also called stem cells 447 

specific to the tissues contained in the body (e.g., hematopoietic, epithelial, neuronal, 448 

mesenchymal), (ii) embryonic stem cells or (iii) embryonic germ cells. 449 

  450 
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Figure legends  722 

 723 

Figure 1: Schematic illustration of the structure-activity relationship of QDs. Since the 724 

inorganic core is biologically inactive, a hydrophilization step is necessary for its use in 725 

biological applications. In order to minimize core-induced toxicity, surface modification 726 

strategies may be envisaged (i.e., a capping, a polymerization and a functionalization). 727 

 728 

Figure 2: Impact of QDs toxicity including biological and environmental considerations and 729 

reglementary requirements for QD use in human. 730 

 731 

 732 
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Table 1: Biological effects depending on the structure of QDs and the type of stem cells or differentiated cells. 733 

Core material Shell material Functionalization/Encapsulation Type of cell Outcome Reference 

Stem cells 

CdTe-QDs - - Epithelial Toxicity  [6] 

- - Synoviocytes Monitoring, toxicity [18] 

CdSe-QDs - - Embryonic Concentration dependent toxicity [19] 

ZnS - Epithelial Toxicity  [6] 

- Embryonic � toxicity  [19] 

- Neuronal Slight toxicity [11] 

Anti-myc antibody Adipocytes  Monitoring  [15] 

Anti-mortalin antibody Chondrocytes Monitoring  [16] 

Tat Peptide Hematopoietic Monitoring  [2] 

CdS/ZnS - Epithelial ± toxicity  [7,8] 

ZnS - polymer - Embryonic � toxicity  [19] 

- Neuronal No toxicity under threshold detection [10,11] 

SiSOX9 Chondrocytes Monitoring  [17] 

-incorporated glass - Epithelial No toxicity under threshold detection [9] 

Graphene-QDs - - Neuronal No toxicity under threshold detection  [10] 

Differentiated cells 

CdTe-QDs - - Endothelial Toxicity  [21] 

- - Platelets Toxicity [4] 

- - Renal Toxicity [28] 

- L-cysteine Renal Toxicity [27] 

CdSe-QDs ZnS - Monocytes, neutrophils, granulocytes Toxicity [3] 

- Lymphocytes No toxicity under threshold detection [3] 

- Hepatocytes Toxicity  [20] 

- Urothelial  No toxicity under threshold detection [29] 

Photoexcited Multidrug-resistant bacteria Bactericidal  [31] 

Anti-Ri7 antibody Endothelial Built-up [25] 

Anti-p38 antibody infiltrated in porous 

silicon pores immobilized Egp38 

antigen  

Parasites  Detection [30] 

ZnS - PEG - Endothelial Built-up [24] 

Graphene-QDs - - Hepatocytes No toxicity under threshold detection [22] 



                                                      

33 

 

Table 2: Biological effects depending on the structure of QDs and the organs. 734 

Core material Shell material Functionalization Type of organ Outcome Reference 

CdTe-QDs - - kidney Toxicity [48,49] 

- - Intestine  Toxicity [40] 

CdS - Liver Monitoring [39] 

CdO-QDs - - Lung Toxicity  [44] 

CdSe-QDs ZnS - Brain No toxicity under threshold detection, visualization [36] 

- Heart Monitoring  [51] 

- Bladder No toxicity under threshold detection, no diffusion [46] 

- Lung Toxicity [45] 

- Joint No toxicity under threshold detection [14] 

GSH Vascular Monitoring  [52] 

VEGFR2 Tumor Detection [42,43] 

Biotinylated phalloidin Muscle Monitoring [51,53] 

Anti-CD47 antibody Bladder No toxicity under threshold detection, no diffusion [50] 

ZnS - polymer - Skin  No penetration [32-34] 

- Lung Toxicity [41] 

- Spleen No toxicity under threshold detection [41] 

Folic acid Spleen Built-up [41] 

Graphene-QDs - - Skin Therapy [35] 

- - Brain Therapy [37-38] 
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Table 3: Biological effects depending on the structure of QDs and the animal species. 737 

Core material Shell material Functionalization /Encapsulation Animal species Outcome Reference 

CdTe-QDs - - Mice Toxicity [60] 

- - Pregnant rat Dose-dependent embryotoxicity [74-75] 

- Quercetin complex Rat  Therapy [69] 

 ZnS - Mice Half-life = 12 – 14h [64] 

CdSe-QDs ZnS or CdS - Drosophila Toxicity  [59] 

- Mice Dose-dependent toxicity [61] 

- Rat Toxicity [65] 

- Male reproductive system in mice Dose-dependent toxicity [71-73] 

(His6)-Cyclin E protein Aquatic species Monitoring [58] 

ZnS - polymer - Aquatic species Toxicity  [54-57] 

- Goat Monitoring [76] 

Phospholipid micelle-encapsulated Mice No toxicity under threshold detection [68] 

 PbS/ZnS - Mice No toxicity under threshold detection [62;63] 

  Phospholipid micelle-encapsulated Primate No toxicity under threshold detection [77] 

  Pregnant primate Toxicity  [79] 

InP-QDs ZnS - Drosophila No toxicity under threshold detection [59] 

Graphene-QDs - - Rat Therapy [70] 

Silicon-QDs - polymer - Primate No toxicity under threshold detection [78] 

 738 
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