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Abstract 

The addition of rigid fillers to an elastomeric matrix enhances its mechanical properties. 

This reinforcement effect is primarily due to a filler network structure in which polymer 

regions between aggregates play the principal role. In this study, a continuum constitutive 

equation is formulated for polymer behavior under strong confinement conditions. This 

behavior can be accounted for by a local glass transition temperature that combines the 

effects of physical interaction and stress softening in a unique viscoelastic formulation. 

The model reproduces, at a microscopic scale, the processes governing the Payne effect, 

including the temperature dependence of the viscoelastic behavior of the filled elastomer 

reinforcement. 

 

Keywords: filled elastomer, Payne effect, glassy bridge, reinforcement, confinement, 

chain mobility 

 

1 Introduction 

The reinforcement of rubbers with silica or carbon black nano-fillers (particles with 

diameters of 5–30 nm aggregated into particles with diameters of 100 nm–1 µm) is unique 

for many reasons. Research concerning the enhancement of properties has particularly 

focused on the stiffness, the strain and stress at rupture, and the wear resistance (Mark et 5 

al., 2013). The nanoscopic aggregates introduce new dependencies and non-linearities to 

the mechanical response of the matrix. 

The effects of frequency and temperature are very different for pure rubber and reinforced 

rubber (Drozdov and Dorfmann, 2002; Berriot et al., 2002; Fritzsche and Klüppel, 2011). 

The former is efficiently described by the entropic elasticity of Gaussian chains (Treloar, 10 
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2005), while filled rubber has a rather enthalpic-like evolution with temperature (Clement 

et al., 2005). Moreover, the addition of fillers results in early non-linear responses as 

compared with the unreinforced matrix. For instance, under cyclic loading of increasing 

amplitude, filled elastomers show a drop in storage modulus and a peak in loss modulus. 

This strain amplitude dependence is referred to as the Payne effect (Payne, 1962). As the 15 

concentration increases, the phenomenon becomes more evident. However, the effect can 

be observed at very low concentrations, below the percolation threshold, as observed by 

Cassagnau et al. for filler fractions less than 5% by volume (Cassagnau, 2003). Moreover, 

the influence of the reinforcement depends slightly on the mechanical properties of the 

nano-aggregates but is extremely sensitive to the morphology of the system (Montes et 20 

al, 2010), i.e., the spatial arrangement of the phases and the nature of the interactions 

between matrix and filler (Ramier et al, 2007). 

 

When this peculiar behavior was first studied, Payne (Payne, 1962) supported the idea 

that it was due to a distribution of hard and soft zones within the material. According to 25 

Payne, "the rubber at very low strains could be regarded as possessing a maximum 

content of hard zones." The temperature would influence the equilibrium between soft 

and hard zones and “with increasing strain, a yield point may be said to exist." Finally, 

"the proportion of hard and soft zones is determined by the type and concentration, the 

details of processing and the immediate preceding strain history." 30 

 

Today, it is known that the reinforcement is the expression of a structural phenomenon. 

A fractal network is developed in the system (Huber et al., 1996) and can be disrupted by 

an applied stress. Kraus (Kraus, 1984) used the concept of destruction and reorganization 

of a carbon-black network to build a model that describes the Payne effect. Further 35 

developments (Huber et al., 1996) led to the definition of a fractal network of fillers, the 

connectivity of which determines the stiffness evolution of the composite. Maier and 

Göritz (Maier and Göritz, 1996) proposed a different interpretation based on the 

adsorption–desorption of polymer chains on the filler surface. Other authors (Funt, 1988) 

considered the entanglement density in the surrounding aggregate to play a major role on 40 

the temperature and Payne dependence. The connections governing the clustering are 

polymer regions confined between the surfaces of particles, which, as a consequence of 

their confinement, have specific mechanical properties different from those of the bulk 

polymer (Klüppel, 2003). The thicknesses of these polymer bridges are a few nanometers 
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(Medalia, 1986). Because the confinement is strong in these regions, the filler surfaces 45 

affect the polymer properties, resulting in behaviors of filled elastomers that are different 

from that of the bulk rubber. 

For all of these theories, the key concepts are either the presence of a filler network within 

the matrix or an interphase or fundamental interfacial phenomena on the chain properties 

in the filler surface neighborhood. The effect of surface on the macromolecule dynamics 50 

and mechanics has been amply discussed in the literature (Vogt, 2018). In the presence 

of a free surface, thin polymer layers show a shift in glass transition temperature, which 

can reach values up to 60 K for film layers thinner than 40 nm (Wallace et al., 1995). This 

phenomenon occurs because the free surface increases the degrees of freedom of polymer 

chains, thus increasing their mobility. Similar behavior is observed when the polymer is 55 

in contact with a surface with a weak or repulsive interaction (Forrest et al., 1997), while 

in the case of a strongly attractive interaction, the behavior is just the opposite (Van 

Zanten et al., 1996). The latter condition corresponds to the situation of filled elastomers. 

Thus, within confined regions, the filler-matrix interaction introduces constraints on the 

chain dynamics and reduces polymer mobility (Nguyen et al., 2019, 2018; Cheng et al., 60 

2017; Batistakis et al., 2014; Mujtaba, 2014, Klüppel, 2008, Papakonstantopoulos et al., 

2007; Heinrich and Klüppel, 2004). 

 

In this study, it will be assumed that the slowing down of the polymer chain dynamics 

can be described by a glass transition temperature that depends on the distance from the 65 

surface of the closest particles. As a consequence, the solid particles are considered to be 

connected mechanically with glassy bridges (Montes et al., 2003), which creates a 

network, the connectivity of which depends on temperature, internal morphology, and 

external forces. 

 70 

Many approaches can be found in the literature to describe the physical processes 

involved within a constitutive continuum mechanics equation. One method is to include 

elements of this reinforcement scenario to build a phenomenological law (Martinez et al., 

2011; Lion and Kardelky, 2004; Cantournet et al., 2009). Another technique is to start 

from a thermodynamic representation of the clustering and deduce a constitutive law 75 

depending on the hard zone/soft zone equilibrium (Klüppel, 2003). A different micro-

mechanical approach computes the effective properties of a multi-phase system knowing 

the concentrations and the physical-geometrical features of the phases. This prediction is 
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obtained either by analytical approximation (Marcadon et al., 2007) or by numerical 

testing of representative volumes (Jean et al., 2011; Sodhani and Reese, 2014). These 80 

techniques are limited primarily because they require the mechanical properties of the 

polymer chains at the interface as an input. Because the small-scale length hinders their 

experimental characterization, it is difficult to find data in the literature (Wood et al., 

2015). In many cases, homogenization models use the interphase stiffness as a tunable 

parameter (Deng et al., 2012; Omnès et al, 2008). 85 

 

In this paper, we propose a continuum model to describe the mechanical behavior of the 

polymer at this inter-phase. Two main features characterize this model. First, the model 

accounts for the influence of the filler-matrix interaction: it describes explicitly the 

modification of the polymer dynamics as a variation of the glass transition temperature 90 

induced by the closest solid surfaces. In addition to a structural short range modification 

that will be neglected here (Berriot et al., 2002; Merabia et al., 2008), the confinement 

induces a gradient of properties in the system. In this work, we choose to describe this 

effect using a gradient of the glass transition temperature near the filler surface. This 

picture has already been confirmed to be efficient for describing the dynamics of polymer 95 

chains in filled elastomers (Papon et al., 2012). Second, non-linear mechanical properties 

will be included. A "pseudo"-plasticity of the glassy polymer has been reported in the 

literature (Robertson, 1966). In the present study, the "pseudo"-plasticity will be 

described as a shift in mobility under pressure and deviatoric stress. This approach results 

in the coupling of physical interactions and thermal and mechanical activation in a single 100 

parameter that defines the variation from the glass transition of the unfilled polymer and 

quantifies the polymer mobility. This dependency is included in a three-dimensional non-

linear viscoelastic law and is implemented in a finite element code. Finally, the physical 

parameters included in the model are those of the fillers and of the pure matrix. 

 105 

The paper is organized as follows. First, the local viscoelastic equation is introduced as a 

time–temperature dependent relation. Second, the reduction in mobility of polymer 

chains induced by filler-matrix interactions is described in terms of the glass transition 

temperature gradient. Next, a simple law for the non-linear mechanics of a glassy polymer 

is established. Indeed, all contributions to the mechanical response are controlled by a 110 

stress-dependent relaxation time. Then, the two dependencies are coupled together to 

integrate the effects of temperature and stress in a single formulation. The cyclic response 
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of a confined region in the polymer can be addressed. Finally, this model is extended to 

describe the behavior of real filled rubber, with a discussion of the role of disorder, which 

may be an important ingredient. The results show that the model can reproduce, at a 115 

microscopic scale, the main characteristics of filler reinforcement experienced at the 

macroscopic scale. 

2 Local viscoelastic behavior of polymer 

The mechanical response of bulk polymer chains is driven by entropic callback forces at 

temperatures much higher than the bulk glass transition temperature ������  (Treloar, 120 

2005). In the rubber state, dissipation is negligible, and the macroscopic behavior is 

reproduced by hyperelastic laws, with stiffness coefficients on the order of MPa (Boyce 

and Arruda, 2000; Cantournet et al., 2007). Furthermore, polymer chains are in the glassy 

state at temperatures lower than ������, exhibiting low dissipation and stiffness on the 

order of GPa. The transition between the two regimes is viscoelastic. Experimentally, a 125 

wide spectrum of relaxation times is observed in the glassy-to-rubbery transition, and 

more sophisticated models are able to account for these intrinsic dynamic heterogeneities 

in bulk polymers (Masurel et al., 2015). 

In filled rubbers, the degree of confinement of polymer chains between filler surfaces is 

distributed. As a result, the distribution of relaxation times in a filled rubber is wider than 130 

it is in the bulk polymer matrix. For the sake of simplicity, we will thus assume that the 

viscoelastic response of polymer chains can be described, in a first approximation, by a 

single relaxation time. In this work, we have limited ourselves to the alpha transition. We 

do not consider the secondary movements associated with the beta relaxation.  

 135 

Adding fillers modifies the local polymer properties. The stress–strain relationship in a 

filled elastomer is highly non-linear, even in the small-strain range. At small strains, filled 

systems show a decreasing complex modulus with increasing temperature (Wang, 1998; 

Berriot et al., 2002; Fritzsche and Klüppel, 2011), opposite to the increasing one of the 

pure matrix predicted by entropic elasticity (Treloar, 2005). Another peculiar feature of 140 

filled elastomers is their non-linear behavior with dynamic strain, called the Payne effect 

(Payne, 1962). For increasing strain amplitudes, the first-order storage modulus exhibits 

a decrease, even for strains smaller than 10%. At the same strain values, the loss modulus 
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reaches a maximum. For the sake of simplicity, the new constitutive model is then 

developed within the small-strain framework. 145 

 

An attractive filler-matrix interaction reduces the degrees of freedom of the chains 

surrounding the filler surfaces. Configurational constraints induce an increase in the 

energy barrier for chain motions, which can be accounted for by an increase in the glass 

transition temperature of polymer chains at the interface with respect to the bulk matrix 150 

(Wallace et al., 1995). Chains in the vicinity of the filler surface behave as glassy 

polymers, with low dissipation and stiffness close to 1 GPa. Farther away from the 

surface, the influence of this interaction on the matrix properties decreases, and a 

continuum gradient of viscoelastic behaviors has been proposed to describe the 

mechanical response of polymer chains within the material (Berriot et al., 2003).  155 

 

Thus, the matrix viscoelastic behavior can be described with a two-branch (Zener) model 

(see Fig. 1). In the time-independent branch, a rubbery elastic low-modulus term 

represents the pure matrix bulk behavior. In the time-dependent branch, a glassy elastic 

large-modulus term is coupled with a local relaxation time, ��	
, �, �
, which is function 160 

of temperature �, the distance from the surface filler 	
, and local stress tensor �. The 

rubbery component, resulting from the entropy variation of polymer chains, is 

proportional to the absolute temperature. However, its variation is much weaker than that 

of the glassy branch and will be neglected. For the sake of simplicity, the material is 

considered to be isotropic and quasi-incompressible (Poisson's ratio � = 0.49). The same 165 

relaxation time is imposed on the deviatoric and volumetric parts of the response. 

 

Figure 1: Within the glassy bridge, there is a local non-linear viscoelasticity law 

scheme. 

Therefore, the local behavior is described by the differential equation 170 
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��	
, �, �
 ��  + � =  ℂ�: � +  ��	
, �, �
�ℂ� + ℂ�
: ��  , (1) 

where ℂ�  and ℂ� are the isotropic stiffness tensors for the elastic rubbery and glassy 

responses, respectively. The elastic Young’s moduli are respectively called �� and �� . 

The �∗� 
 stands for the time derivative. Our model considers the frequency dependence of 

the viscoelastic response of the polymer chains. In Eq. (1), the second contribution of the 175 

right part of the equation depends on the strain rate ��� 
, i.e., on the frequency. 

 

In the case where the relaxation time � is constant in time, the relaxation function reduces 

to an exponential function and the stress time function can be written as 

���
 =  ℂ�: ���
 +  � ℂ��� ��� !"#$,%,�& �� ∶  �� ��(
)�(*�+   (2) 180 

In the case of non-linear viscoelasticity, the relaxation time ��	
, �, �
 is a function of 

the local stress and strain, which depend on time. Exact solutions for the differential 

equation may be formulated using reduced time (Schapery, 1969). 

If the time increments are sufficiently small, it is convenient to work with the linear 

viscoelastic formulation (Simo and Hughes, 2006) and to reset at each step of the 185 

relaxation time ��,- at time ��,-, as a function of the variable at the previous time ��. In 

other words, the relaxation time is computed at the beginning of each increment and held 

constant over the increment. This numerical approach has been chosen for the remainder 

of the article. 

 190 

The relaxation times depend on the temperature, following the classical William–Landel–

Ferry (WLF) function (Ferry, 1980) with respect to the local glass transition temperature 

log-1 23�4$,5,�
36 7 =  − 9:;5�56�4$,�
<9=, ;5�56�4$,�
<  =  >?�@ A� − ���	
, �
B,  (3) 

where the relaxation time τg at the bulk polymer glass transition is set to 1 s (Ferry, 1980) 

and C- and CD are bulk matrix parameters. The function >?�@ is introduced to lighten the 195 

following equations. Moreover, we also assume that C- and CD are constant for any value 

of ���	, �
, our ���	, �
 being defined at 1 s.  
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In this work, numerical calculations have been performed using the values C- =12.8 and CD = 34.0 K, which were chosen from a reference glass transition temperature of ������ = 200 

150 K, which corresponds to a polydimethylsiloxane (PDMS) matrix. 

 

In our model, the mechanical response of the bridge is controlled by the local relaxation 

time �	
, �, �
, which only depends on the difference A� −  ���	
, �
B defined at 1 s (see 

Eq. (3)). If we consider a bulk matrix (	
 =  ∞ ), its relaxation time, ��	
, �, �
 at rest 205 

(σ  = 0) is determined by "� −  ������&, the difference between the temperature T and the 

glass transition temperature ������ at 1 s. The local relaxation time does not depend on 

the frequency. The frequency dependence of the mechanical response of a bulk matrix is 

taken into account by the strain rate term ��  included in Eq. (1). 

 210 

The model accounts for the evolution of the properties using a local glass transition 

temperature ���	
, �
 that depends on the distance from particle surface and the local 

stress tensor. An isothermal system has been assumed, and self-heating is neglected. The 

model does not consider the effects of physical ageing. 

 215 

As the distance decreases, the glass transition temperature increases; as a result, the 

stiffness increases in the vicinity of the surface. Stress dependence is a specific way to 

reproduce "pseudo"-plastic behavior in bulk glassy polymers (Buckley and Jones, 1995). 

Mechanical energy induces variations in the polymer chain conformation, leading to 

flow-like phenomenon. Because the latter is dependent on a characteristic time, stress 220 

results in a decrease in the evolution time, as predicted by the Eyring model (Ree and 

Eyring, 1955). 

 

The following sections present in detail the mathematical expressions describing both 

dependences. 225 

2.1 Surface distance dependence of the glass transition temperature – GH�IJ
 

From the literature (Long and Lequeux, 2001; Berriot et al, 2002; Keddie et al, 1994), a 

continuous function of ���	
 has been used to reproduce the local increase in the glass 

transition temperature within the vicinity of the particle surface 



9 

 

���	
 =  ������ A1 +  L4B, (4) 230 

where δ is a characteristic length of the filler-matrix interaction in the order of a 

nanometer, z is the distance from the particle surface, and ������  is the bulk glass 

transition temperature. 

 

In the case of a polymer confined between two rigid surfaces, i.e., two aggregate surfaces, 235 

it will be assumed that the local glass transition can be approximated by the sum of two 

contributions (see Fig. 1). 

���	

 = ���	-, 	D
 =  ������ A1 +  L4: +   L4=B (5) 

Thus, Eq. (5), combined with Eq. (3), defines a relaxation time space distribution for the 

matrix confined between two neighboring particles. Consequently, the distribution of the 240 

relaxation times of polymer chains is spread over several decades. In between the two 

spherical particles, the middle point of the bridge is the saddle point of the relaxation time 

spatial distribution. The middle point of the bridge is then the softer segment of the 

symmetry axis and simultaneously the most rigid point in the symmetry plane of the 

bridge (see Fig. 2). For these reasons, the new model has been analyzed particularly at 245 

the middle point, 	- =  	D =  ℎ1 2⁄ , where ℎ1 is the gap between the two neighboring 

particles of interest (see section 3). 



10 

 

 

Figure 2: Relaxation time gradient (log10): radial section of a glassy bridge at � = ������ + 150 K, centered on the middle point of the axis connecting two particles (white) 250 

of radius Q of 5 nm and at a distance ℎ1  of 4 nm. Relaxation times were computed 

applying Eq. (3) and Eq. (5) with ������ = 150 K, C- = 12.8, CD = 34.0 K, and R = 1 nm. 

	- = S�T + ℎ1 + Q
D + UD − Q and 	D = S�T + ℎ1 + Q
D + UD + Q. 

2.2 Stress dependence of the glass transition temperature—GH��
 

Under mechanical work, as in uni-axial or shear tests, the bulk polymer shows a yielding 255 

behavior at � <  ������ . As the stress approaches the yield stress, the polymer chains 

deviate from the elastic response to undergo a flow process that originates from an 

enhancement of the mobility of the amorphous macromolecules (Loo et al., 2000; Lee 

and Ediger, 2010). Thus, we assume that the flow-like behavior results in a shift in the 

glass transition temperature. 260 

The idea of a glass transition temperature that depends on the loading state is not original. 

Experimental evidence for bulk polymer glasses can be found in the literature (Andrews 

and Kazama, 1967; Zhou et al., 1995). Moreover, the glass transition temperature is 

commonly known to vary with the pressure p (Ferry, 1980). A constant material 

parameter WX is thus defined by 265 
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Y56YX =  WX (6) 

WX can be obtained by PVT measurement1 and has typical values near 0.2 MPa-1 (Ferry, 

1980).  

To consider the volumetric and deviatoric parts of the stress, we rather propose to apply 

a Drucker–Prager criterion, as in performed by Rottler and Robbins (Rottler and Robbins, 270 

2001). The Drucker–Prager criterion is imposed directly as a shift in the glass transition.  

����
 =  �������� = Z
 − [��
 = �������� = Z
 − \]=�^_` ∶ �^_` �a X
b  , (7) 

where �cde is the deviatoric part of the stress σ and p is the pressure, related by � =
�ghi −  jI and j =  − -k �Q��
. The K parameter is directly related to the stress at yield, 

as developed in the following. The parameter W = WX/n varies typically between 0.01 275 

and 0.3, and K is on the order of 1 MPa-1 K-1. The model has been implemented in 1D 

(Python internal code) and 3D (finite element, Z-set, www.zset-software.com) 

formulations with identical results. We used ������ = 150 n, K = 1 MPa K-1, and α = 0.3 

for the following. 

 280 

If the polymer sample undergoes a constant strain rate �� , the model predicts a temperature 

and rate dependence of the stress that can be approximated to the classical Eyring relation 

below the glass transition temperature. In that case, the yield stress depends weakly on 

time ���  ≈ 0
 and its value, called rs, is nearly constant. The constitutive Eq. (1) thus 

reduces to 285 

� =  �� �
�ℂ� + ℂ�
: ��  (8) 

In the case of a positive uniaxial tensile test, ��cde  ∶  �cde
 = 2 rD/3 and j =  − r/3. 

Then, the glass transition temperature at yielding, as given by Eq. (7), is expressed by the 

stress component r = rs > 0 in the loading direction. 

���rs
 = ������ − k,akb rs , (9) 290 

with ������ = �������r = 0
 

Combining Eqs. (9) and (3) leads to the following expression: 

                                                                    
1 Pressure–Volume–Temperature 
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log-1 23�5,v
36 7 =  − 9:w5�56xyz{,]|}]~ v��
9=, w5�56xyz{,]|}]~ v��   

log-1 23�5,v
36 7 ≈ − >?�@"� − ������& −  >(?�@"� − ������& k,akb rs  (10) 

The right term of Eq. (10) is obtained by first-order expansion around a given 295 

temperature, where 

 >?�@"� − ������& =  9:;5�56xyz{<9=, ;5�56xyz{<  and  >(?�@"� − ������& =  c>�z�c5 =    9:9=;9=,"5�56xyz{&<= 

 

Introducing Eq. (10) into Eq. (8) allows us to obtain 

rs��v� =  �� ����� + ��
��2.3 >��[A�−������B
 (11) 300 

 

with  

� = 2.3 k,akb  >(?�@"� − ������&  (12) 

 

The solution to Eq. (11) can be written using the Lambert or product–log function, which 305 

we will denote by W2  

rs = �����,��
36 ��  � d�2.3 >��[��−��������
�   (13) 

For values 102 ≤ x ≤ 109, the Lambert W is approximated by a natural logarithm, ��T
 ≈� ���T
, where a varies from 0.74 to 0.86. 

                                                                    
2 The Lambert or product–logarithm function W(x) is defined by the equation T = ��T
����
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 310 

Figure 3: Yielding at different strain rates at � =  ������ − 10n with ������ =
�������r = 0
: (top) stress–strain graph at various strain rates; (bottom) yield stress as a 

function of the strain rate in logarithmic scale. Material parameters: �� =1.0 MPa, �� =1.0 GPa, ������ = 150 K, C- =12.8, CD = 34.0 K., K = 1.0 MPa K-1, and α = 0.3. 

 315 
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As a consequence, to a good approximation, the yield stress rs is directly proportional to 

the logarithm of the strain rate �����
, as shown in Fig. 3: 

rs ≈ 1.�� �����
 + 0.8 ������,��
36  d�=.] >��[��−��������
�  (14) 

The model provides a stress/strain rate response in qualitative agreement with the plastic 

deformation behavior observed for most glassy polymers at temperatures below ������. 320 

The model also predicts the response measured on real systems in their rubber state and 

in their glass transition regime. Similarly, it also provides a description of the temperature 

dependence of the yield stress of glassy polymers. Finally, the complex behavior of a 

glassy polymer material is simplified here to a unique formulation with a stress-dependent 

relaxation time. 325 

To complete the description of the polymer chains within confined regions, the stress 

dependence has been coupled with the filler-matrix interaction effect. 

2.3 Coupled local stress and surface confinement law—GH�IJ, �
 

It will be assumed that the dynamic change resulting from confinement or stress can be 

written as the addition of the two temperature shifts established above. Hence, we write, 330 

from Eq. (5) and Eq. (7): 

���	
, �
 = ���	-, 	D, �
 =  ������ A1 +  L4: +   L4=B − \]=�^_` ∶ �^_` �a X
b   (15) 

The complex local mechanical behavior of polymer chains confined by filler particles is 

simplified through a constitutive equation that accounts for both confinement and strain 

softening effects. 335 

 

The originality of the proposed approach is to model the shift in the glass transition ���	
, �
 by combining, in a linear manner, the dependence on pressure and strain, which 

to our knowledge is not common. Moreover, it can be seen that the mechanical behavior 

has only been described in terms of the polymer matrix properties and filler-matrix 340 

interaction. Indeed, the bulk material parameters ������, α, and K may be measured from 

the mechanical response of the pure polymer, which is quite unique for a constitutive 

model for filled elastomers. The last parameter δ is driven by the filler-matrix interaction. 
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It can only be measured by indirect means, such as NMR or calorimetry (Papon et al., 

2012). 345 

As a consequence, the model can be adapted for different matrix-filler interactions and 

for different aggregate structures, sizes, or concentrations.  

3 Cyclic shear response of the model 

In this section, the model is applied to simple cyclic loading histories to show the ability 

of the new model to represent both the effect of temperature in the linear regime and the 350 

Payne effect. 

For the sake of simplicity, the behavior of the central point is chosen to simulate the 

confined polymer response, and all numerical simulations have been performed as 

follows:  

 355 

—The behavior is represented by an infinitesimal volume at the central middle point 

of the glassy bridge. Eq. (15) is then reduced to the following: 

���ℎ��
, �
 ≈  ������ A1 +  4 L��*
B − \]=�^_` ∶ �^_` �a X
b  (16) 

applying 	- = 	D = ℎ��
/2, where ℎ��
 is the glassy bridge height at time t. The 

initial value of the glassy bridge height is denoted by ℎ1 = ℎ�� = 0
 360 

—The bulk material parameters of the model are as follows: 

Material parameters 

 Units 

ER 1 MPa 

EG 1000 MPa 

C1 12.8  

C2 34 K ������ 150 K 

α 0.3  

K 1 MPa K-1 

δ 1 nm 
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—Simulations are performed on a single cubic linear mesh element 

—Cyclic shear loadings were performed at zero steady state: 

—A sinusoidal displacement in the x-direction �� =  Δ¢ sin�2¦[�
 was applied 

on the face opposite the xy-plane to reproduce simple shear, where f is the 365 

frequency.  

—A vertex of the cube was fixed at the origin, and the three faces lie on the xy, 

yz, and zx-planes in the undeformed state. 

—Displacements in the y and z directions were blocked on the same face. 

—Zero displacements in all directions were imposed on the face lying on the xy-370 

plane. 

—The same deformation for the cube was imposed to the "fictitious" particles, 

inducing an increase in ℎ��
. The average strain and stress were computed on 

the cube. 

—Storage (elastic) and loss (viscous) linearized moduli were computed from the first-375 

order terms of the Fourier transform decomposition of the signal after stabilization (3rd 

cycle). In other words, only the first harmonic of the mechanical response is reported.  

3.1 Cyclic stress/strain response of one bridge 

To verify the microscopic constitutive law, we performed temperature and shear strain 

sweep simulations on several single glassy bridges with various heights. We have thus 380 

analyzed the effect of confinement and of stress softening on the mechanical response of 

a polymer bridge. 

Fig. 4 shows the local behavior of a bridge for three different scenarios at a given 

temperature T, taken 150 K above the bulk glass transition temperature (� = ������ + 150 

K), i.e., T = 300 K for PDMS chains. The figure presents predictions computed applying 385 

a strain amplitude of 0.5%, at which the distance between particles is nearly constant with 

time ℎ��
  ≈  ℎ1.  

In the absence of confinement, i.e., ℎ��
 ≈ ℎ1 ≫  R, the glass transition temperature at 

the center of the bridge is equal to the bulk one ������  according to Eq. (16). The 

temperature of the experiment T is thus significantly larger than ���ℎ��
, �
 = ������. 390 

According to Eq. 3, the relaxation time does not depend on time and is very short at the 
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temperature of the experiment �. The polymer response is thus that of the rubber bulk 

state. 

Conversely, confinement results in an increase in the local glass transition defined by ���ℎ��
, � = Z
, which becomes larger than ������. At temperature T, the dynamics of 395 

the polymer chains is thus slowed down compared with that of the bulk polymer, and 

their relaxation time ��ℎ��
, �, � = Z
, which is predicted by Eq. (3), increases as a result 

of confinement. Because the distance of the bridge ℎ��
 is nearly constant at the applied 

strain amplitude, the relaxation time is also constant with time. According to Eq. (5) and 

assuming a δ value of 1 nm, the glass transition temperature at the center of a 4-nm high 400 

bridge is shifted by a factor of two : ���ℎ1, � = Z
 = 2 ������ . In this case, Eq. (3) 

predicts an increase in the relaxation time of 10 decades at a temperature T of 300 K (see 

right inset in Fig. 4). 

In the weak deformation regime, stress decreases the ��  shift induced by pure 

confinement following Eq. (16). In the example presented in Fig. 4, the value of 405 ���ℎ��
, �
 becomes smaller than the temperature of the experiment T .Consequently, 

the value of the relaxation time becomes close to 1 �2¦ [
⁄  and the dashpot in our Zener 

model allows a viscous flow. In addition to the ��  shift induced by confinement, the 

stress–time dependency term in Eq. (16) modifies the shape of the σ/γ  cycle. As a result, 

the bridge response is both stiffer than in the absence of confinement and viscoelastic.  410 

 

Finally, the non-linearity of the mechanical response results in the stress dependency of 

the glass transition. The increase in σ with increasing strain amplitude results in a 

reduction of the relaxation time, which corresponds to a viscoelastic softening, together 

with a decrease in the elastic modulus and an increase in the viscous modulus (see Fig. 415 

4). As the value of the relaxation time decreases, the value of the tangent modulus—

defined as the ratio of the stress amplitude to the strain amplitude—reaches that of the 

rubbery modulus. Thus, the stress-dependent formulation of the relaxation times defines 

polymer "pseudo"-plasticity as a time-dependent phenomenon.  

 420 
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Figure 4: Cyclic stress–strain (top) curve and evolution of relaxation time τ (bottom) with 

respect to time for the confined polymer behavior at temperature � = ������ + 150 K = 

300 K and frequency 1 Hz in a cyclic simple shear of 0.5% strain amplitude. Three 

different cases are plotted. No confinement : ℎ��
 → ∞ .The glass transition at the center 425 

of the bridge is equal to ������  and � ≫ ������  (green squares). Confinement without 

stress softening: ℎ��
 ≈ ℎ1 = 4 nm and � = ���ℎ��
, � = Z
 (red triangle). Coupling of 

confinement and stress softening: ℎ��
 ≈ ℎ1 =  4 nm and � ≥  ���ℎ��
, �
  (brown 

circle). Material parameters: �� =1.0 MPa, �� =1.0 GPa, ������  = 150 K, C- =12.8, 

CD = 34.0 K, K = 1.0 MPa K-1, α = 0.3, and δ = 1 nm. The right inset of the figure 430 

(bottom) shows the relaxation time of the polymer chains predicted by Eq. (3) assuming 

no confinement or pure confinement. In the left inset of the figure (bottom), the time 

history of applied strain is plotted.  
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3.2 From one bridge to many bridges, effect of cyclic shear 

To investigate the collective behavior of a real sample, we determined the average 435 

response of an arbitrary uniform distribution of glassy bridge points. Twenty-five 

separated cubic elements with glassy bridge heights ℎ1 uniformly distributed between 3 

nm and 8 nm were considered. The total response was computed using either a parallel 

or a series approximation. In the first case, the elements underwent the same sinusoidal 

deformation cycle, the total stress response being the average of the set of stress outputs. 440 

In the second case, the elements underwent the same sinusoidal stress cycle, the total 

stress response being the average of the set of strain outputs. 

3.2.1 Linear regime, effect of temperature 

First, in the linear regime, the mechanical response as a function of the temperature for 

various particle-to-particle distances was computed at a small strain amplitude Δ¢ =445  0.01% at frequency [ = 1 Hz. In that case, the height of a bridge ℎ��
 is nearly constant 

with time and its value is close to ℎ1. Moreover, the value of stress felt by the bridge is 

small. Consequently, the time relaxation does not depend on stress and is constant with 

time, as shown in right inset of Fig. 4.  

Fig. 5 shows the evolution of the relaxation time with respect to the temperature for 450 

different ℎ��
, and thus for different ���ℎ��
 ≈ ℎ1
. For a given bridge height, the glass 

transition occurs when the value of the relaxation time reaches that of the time-scale 

defined by the loading (1 �2¦[
⁄ ). As a result, the transition occurs at higher (lower) 

temperature as frequency increases (decreases). The model predicts a sharp drop from a 

glassy storage modulus (~ GPa) to a rubbery one (~ MPa) and a loss modulus maximum 455 

that occurs at various temperatures, depending on the distance between particles, as 

shown in Fig. 5. The shift in the storage modulus drop (and loss modulus maximum) is 

controlled by the relaxation time, which only depends on the local glass transition 

temperature. In the linear regime, the local glass transition is driven by the state of 

confinement ℎ1 . Finally, to show the ability of the model to consider the frequency 460 

dependence, cyclic shear loading at two different frequencies, 100 Hz and 0.01 Hz, was 

applied to a 4-nm high glassy bridge. The frequency dependence is taken into account by 

the strain rate in Eq. (8). The local relaxation time does not depend on frequency. The 

responses as a function of the temperature at 100 Hz and 0.01 Hz frequencies 

(respectively in the dashed line and dotted line) are shown in Fig. 5. Even though they 465 

show similar trends, their temperature dependences are different. For instance, the 
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temperature at which the drop in the storage modulus is observed depends on the 

frequency. 

 

Figure 5: Relaxation time (top), storage modulus (middle), and loss modulus (bottom) 470 

as a function of temperature at various glassy bridge heights. Cyclic shear simulations 

are computed at small strain amplitude Δ¢ = 0.01% and at frequency [ = 1 Hz. 

Material parameters: �� =1.0 MPa, �� =1.0 GPa, ������ = 150 K, C- =12.8, CD = 34.0 

K, K = 1.0 MPa K-1, α = 0.3, and δ = 1 nm. 
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Experimentally, at � <  ������ + 50 n, a slow decrease in the storage and loss modulus 475 

with increasing temperature has been observed with filled systems (Berriot et al., 2002; 

Fritzsche and Klüppel, 2011), in contrast to the bulk polymer in the absence of fillers. To 

link the behavior of isolated bridges to real materials, it must be recalled that the 

macroscopic response of a glassy bridge percolative network is a collective response of a 

glassy bridge distribution (Montes et al., 2003), i.e., a distribution of ℎ1 . At a given 480 

temperature, there is a wide variety of behaviors within the material: from a soft rubbery 

response to a rigid glassy response going through viscoelastic behavior. By increasing the 

temperature, a sharp softening of each glassy bridge response occurs for each polymer 

bridge, as explained above. However, as the height of the bridges is distributed, a slow 

decrease in the macroscopic modulus of the filled elastomer is observed. 485 

 

Figure 6: Collective response of a set of glassy bridge, storage modulus (red), and loss 

modulus (green) as a function of temperature. Cyclic shear simulations are computed at 

small strain amplitude Δ¢ = 0.01% at frequency [ = 1 Hz assuming a parallel (solid 

circles) and series (open circles) approximation. Material parameters: �� =1.0 MPa, 490 �� =1.0 GPa, ������ = 150 K, C- =12.8, CD = 34.0 K, K = 1.0 MPa K-1, α = 0.3, and 

δ = 1 nm. 
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Parallel and series approximations are the upper and lower bounds of the expected 

collective response (see Fig. 6). Here, the order of magnitude of the moduli values did 

not correspond to experimental data because the description of macroscopic behavior 495 

requires a scaling factor that will be discussed in future papers. Nonetheless, the 

qualitative storage and loss modulus trends are reproduced (Fritzsche and Klüppel, 2011). 

3.2.2 Payne effect 

Another original feature of a filled elastomer is the strain amplitude non-linearity, called 

the Payne effect. To test this behavior on a microscopic scale, simulations of the confined 500 

cubic element under cyclic simple shear at various amplitudes and at a constant 

temperature of 300 K were performed. 

 

The evolution of the first-order moduli under shear strain sweep is shown in Fig. 7, for 

various confinement states. Bridges with large heights have small relaxation times. 505 

Consequently, their response is linear and does not depend on stress, as shown for a bridge 

of 5 nm height in Fig. 7. The value of their storage modulus is equal to that of the rubber 

modulus, i.e., 0.3 MPa in our work (see the inset of Fig. 7). Bridges at their viscoelastic 

transition regime in the linear domain (ℎ1 = 4 nm in Fig. 7) are more sensitive to an 

increase in stress. Their relaxation time is slightly larger or close to the loading frequency 510 

in the linear regime. The increase in strain amplitude results in a decrease in the relaxation 

time. Consequently, the value of the storage modulus decreases and reaches that of the 

rubber modulus (see the inset of Fig. 7). If their response in the linear domain is close to 

the elastic glassy behavior, the glassy-to-rubbery transition induced by the strain 

amplitude goes through a stress–strain cycle opening and a maximum of the loss modulus. 515 

As the relaxation time in the linear domain increases, the regime where the bridge 

response is glassy increases. Thus, the glassy-to-rubbery transition is shifted toward large 

strain amplitude with a stiffer evolution of properties. This is what is observed for the 

bridge of 3 nm height in Fig. 7. Finally, linear glassy behavior is observed for strongly 

confined bridges, for which the glassy feature predominates (ℎ1 = 2 nm in Fig. 7). 520 

At the macroscopic scale, a storage modulus drop and a loss modulus maximum have 

been observed as a strain amplitude sweep is applied to a filled elastomer (Wang, 1998). 

The picture we suggest is similar to the one proposed for temperature sweeps: the disorder 

in the glassy bridges thickness plays a major role. At a given temperature and for small 

deformations, the global stiffness is determined by a distribution of bridges, mixing 525 
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glassy rigid, viscoelastic, and rubbery soft elements. As the strain amplitude increases, 

the macroscopic response is controlled by the stress softening of a subset of bridges that 

is in their glassy–rubber viscoelastic transition at the temperature and strain amplitude of 

the experiment. 

 530 

Figure 7: Glassy bridge storage (top) and loss (bottom) moduli as a function of strain 

amplitude with ℎ1values between 3 nm and 8 nm. Cyclic shear simulations are computed 

at temperature � = 300 K and frequency [ = 1 Hz. Material parameters: �� =1.0 MPa, �� =1.0 GPa, ������ = 150 K, C- =12.8, CD = 34.0 K, K = 1.0 MPa K-1, α = 0.3, and δ = 

1 nm. 535 
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The response of a collection of glassy bridges under a strain sweep with a distribution of 

25 cubic elements, similar to the one used in the temperature-dependent case, is shown in 

Fig. 8. The resulting response in a parallel approximation exhibits Payne non-linearity. 

Fig. 9 presents the corresponding stress–strain responses computed at various strain 

amplitudes compared with the first harmonic contribution of the mechanical response.  540 

At intermediate strain amplitude Δ¢ ≤ 2% , the stress response is "linear-like" 

viscoelastic, observed while the storage modulus decreases and the loss modulus 

increases (see Fig. 8). Indeed, the stress–strain response cycle decreases in slope and 

increases in hysteresis with a perfectly elliptical shape (see Fig. 9). At larger strain 

amplitudes close to the characteristic loss modulus maximum, the higher harmonic terms 545 

of stress response increase in intensity (see Fig. 9). The behavior becomes doubly non-

linear: slope and cycle opening evolve with strain amplitude as well as cycle shape and 

ellipticity. This peculiar non-linearity is captured by the stress dependence of the 

relaxation time. Experimentally, these nonlinearities have been observed with filled 

systems and are referred to as the "harmonic paradox" (Chazeau et al., 2000).  550 

 

Figure 8: Collective response of a set of glassy bridge, storage moduli (red), and loss 

modulus (green) as a function of strain amplitude. Cyclic shear simulations are computed 

assuming parallel (solid circles) and series (open circles) approximation at temperature � = 300 K and frequency [ = 1 Hz. Material parameters: �� =1.0 MPa, �� =1.0 GPa, 555 ������ = 150 K, C- =12.8, CD = 34.0 K, K = 1.0 MPa K-1, α = 0.3, and δ = 1 nm. 
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However, the series approximation fails to describe the Payne effect. This is due to the 

contrast in mechanical properties between the elements, which can exceed three decades. 

We thus foresee considerable difficulties for scaling up the bridge mechanics to the 

macroscopic scale. The effect of steady loading has not been evaluated in this work. 560 

However, the model can be extended to describe situations in which a constant strain is 

applied in addition to a cyclic strain of large amplitude. In this case, the variables ℎ��
 

and σ  would be modified by the static strain imposed. 

 

Figure 9: Payne harmonic paradox: Lissajous curves predicted by the model at various 565 

strain amplitudes for a set of glassy bridges with heights ranging between 3 nm and 8 nm 

are plotted with solid lines. The corresponding first-order approximated response (first 

harmonic) is plotted with dashed lines. At intermediate strains (top) (Δ¢ ≤ 2%), the stress 

response is "linear-like" viscoelastic. At higher strains (bottom) (Δ¢ ≥ 2%), the modulus 

decrease is accompanied by higher harmonics terms in the stress response. Cyclic shear 570 

simulations are computed at temperature � = 300 K and frequency [ = 1 Hz. Material 

parameters: �� =1.0 MPa, �� =1.0 GPa, ������ = 150 K, C- = 12.8, CD = 34.0 K, K = 

1.0 MPa K-1, α = 0.3, and δ = 1 nm. 
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4 Conclusion 

The addition of a filler in an elastomeric matrix has a major effect that extends beyond 575 

simple reinforcement, introducing unusual dependencies and non-linearities. This is 

explained by the influence of the filler-matrix interaction on the dynamic properties of 

the chains surrounding the inorganic surface. The reduction in mobility results in polymer 

chains that locally behave as glassy rigid and "pseudo"-plastic material. 

In this study, a new constitutive law has been developed to describe the mechanical 580 

response of elastomers near filler surfaces, particularly in regions of strong confinement 

between aggregates. The model presents a two-branch viscoelastic behavior. The first is 

a simple spring that accounts for rubber elasticity, and the second is a Maxwell element, 

with a glassy polymer modulus and a characteristic time depending on temperature, 

distance from the surface, and local stress tensor. The relaxation time is expressed in 585 

terms of a local glass transition temperature function.  

 

A single non-linear viscoelasticity parameter replicates the state of confinement and the 

coupling between temperature dependence and stress softening. A specific application of 

the law has been studied for the central point of a region connecting two filler particles. 590 

On the microscopic scale, the preliminary results, which are based on an understanding 

of the physics of filled elastomers, qualitatively reproduce the temperature and stress 

dependencies of the non-linear viscoelasticity. It has been shown, however, that the up-

scaling of this model is delicate because of the huge effect of disorder on the mechanical 

macroscopic behavior. This point will be discussed in detail in a future publication. 595 
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