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Abstract 7 

Targeting the apical junctional complex during acute bacterial infections can be detrimental for the 8 

host in several aspects. First, the rupture of the epithelium or endothelium integrity is toxic in itself. 9 

In addition, extracellular bacterial pathogens or bacterial toxins can cross the body’s physical barriers 10 

using the paracellular route and induce infection or intoxication of distant organs. No single strategy 11 

has been developed to disrupt junctional structures, rather each bacterium has its own method, 12 

which can be classed in one of the following three categories: (i) proteolysis/perturbation of adhesive 13 

proteins involved in tight or adherens junctions by bacterial or toxin-activated eukaryotic proteases, 14 

(ii) manipulation of host regulatory pathways leading to weakened intercellular adhesion, or (iii) 15 

delocalization of the junctional complex to open the gateway toward the subepithelial compartment. 16 

In this review, examples of each of these mechanisms are provided to illustrate how creative bacteria 17 

can be when seeking to disrupt cell-cell junctions. 18 

Keywords: Adherens junctions, tight junctions, bacterial toxins, epithelial barriers, endothelium, 19 

bacterial transmigration, bacterial intoxication. 20 

1. Introduction 21 

During acute infections, bacterial pathogens can notably alter the body’s physical barriers, which 22 

were designed to be impregnable to such assaults. Increased paracellular permeability may lead to 23 

diarrhea or pulmonary edema for example, or facilitate the uptake of a toxin so that it can affect sites 24 

beyond the colonized organ.  25 

In some examples, bacteria can take advantage of the open junction to disseminate throughout the 26 

body. Intracellular pathogens can either use a transcellular route to cross epithelial barriers, or adopt 27 

a Trojan horse tactic, i.e., by allowing themselves to be internalized into professional transmigrators 28 

like macrophages, and thus to shuttle across epithelia. In contrast, extracellular bacterial pathogens 29 

can cross these barriers following specific targeting of cell-cell junctions.  30 

 Interestingly, no common theme for weakening cell-cell junctions has emerged, rather, pathogens 31 

exploit a multitude of strategies and often deploy a combination of virulence factors which act in 32 

concert on several host targets. Exceptions to this rule are lipopolysaccharides (LPS) - released by a 33 

majority of Gram-negative bacteria, and ultimately resulting in increased barrier permeability (see 34 

5.1.). Among the specific intoxication mechanisms identified so far, many bacterial pathogens have 35 

been shown to hijack host regulatory pathways by various means to weaken cell-to-cell adhesion. 36 

Epithelial and endothelial barrier integrity is ensured by two main junctional structures: adherens 37 

junctions (AJ) and tight junctions (TJ). These two types of junction form cords at the cells' 38 

circumference (1-4). AJs are composed of cadherins, which are transmembrane proteins displaying 39 

homophilic adhesive activity toward cadherins located on adjacent cells. Several cadherin types have 40 

been identified, including E-cadherin, the main epithelial cadherin, and VE-cadherin, the endothelial 41 

cadherin. The intracellular cadherin domain is linked to catenins and is associated with a number of 42 

signaling proteins regulating adhesive protein properties or sensing cell-to-cell interactions. Catenins 43 

in turn are tethered to the actin cytoskeleton, providing tissues with specific mechanical properties 44 

(5, 6). 45 

The transmembrane and adhesive part of TJs is formed by several types of proteins, including claudin 46 

family members, junction adhesion molecule (JAM) family members, and occludin (7, 8). Each of 47 

these proteins has distinct properties, mainly in terms of permeability control, and their distribution 48 

is variable among the different types of epithelia and endothelia. Protein complexes are also 49 



 3 

associated with the intracellular domains of TJ proteins, and include ZO-1 protein – playing the role 50 

of a molecular platform promoting the association of adhesive and regulatory proteins as well as 51 

actin fibers. TJs are also associated with a polarity complex, serving as gatekeeper to maintain the 52 

identity of the apical domain on one side and the basolateral domain on the other (9). 53 

AJ and TJ organization and functional properties have been extensively reviewed elsewhere (1, 3, 4, 54 

7, 8, 10) and will not be further discussed here. 55 

Rather, this review presents examples of bacterial factors directly or indirectly affecting adhesive 56 

proteins making up TJs and AJs. The list of bacterial factors described as involved in this process 57 

(Table I and Fig. 1) is not intended to be exhaustive, but the actions discussed are examples of the 58 

many strategies employed by bacteria to achieve junction breach. Some bacteria, like Helicobacter 59 

pylori or Pseudomonas aeruginosa, have developed a multi-target approach, whereas others, like 60 

Vibrio cholerae or Vibrio parahemolyticus, rely, as far as we know, on a single toxin and mechanism 61 

to affect cell-cell junctions. 62 

Finally, junctional adhesive proteins can also serve as receptors for bacterial toxins, either to allow 63 

pore formation or for bacterial attachment and internalization. 64 

Altogether, the effect of bacterial toxins and virulence factors on cellular junctions illustrates the 65 

intimate links between bacteria and their hosts, and the degree to which bacteria have evolved to 66 

exploit host functions. 67 

2. The most obvious action: altering adhesive proteins 68 

Some bacteria secrete virulence factors to specifically inhibit target junction proteins, either by 69 

proteolysis or by inactivating their adhesive properties. 70 

2.1. Bacterial proteases targeting junctional proteins 71 

H. pylori colonizes the gastric epithelium of the human stomach and causes chronic infections, 72 

leading to the formation of ulcers and eventually carcinogenesis. It secretes HtrA, a serine protease 73 

which is highly conserved among H. pylori strains worldwide. This protease recognizes and cleaves 74 

the [VITA][VITA]-x-x-D-[DN] motif located between E-cadherin extracellular (EC) repeats (11, 12) and 75 

is required for bacterial survival and toxicity (13). Experiments using small molecule inhibitors or 76 

substrate-derived peptides to inhibit HtrA activity blocked bacterial transmigration across epithelia 77 

(11, 12). Thus, HtrA, along with several other H. pylori weapons targeting either AJs or TJs (see 78 

below), plays a crucial role in junction opening during infection (14-16). HtrA homologs have been 79 

identified in other pathogens, including enteropathogenic Escherichia coli, Shigella flexneri and 80 

Campylobacter jejuni (17), which display similar activity toward E-cadherin, albeit with lower 81 

efficiency. In contrast, Neisseria gonorrhoeae HtrA does not cleave E-cadherin because of a mutation 82 

in its catalytic center (17). 83 

Cadherin proteolysis is also operated by LasB, a metalloprotease secreted into the extracellular 84 

milieu by P. aeruginosa. LasB specifically cleaves VE-cadherin’s extracellular domain, but leaves E-85 

cadherin intact (18, 19), indicating that it may be used by bacteria to gain access to the vascular 86 

system or for bacterial extravasation in bacteremic patients. Most pathogenic Gram-negative 87 

bacteria possess a type 3 secretion system (T3SS), a syringe-like apparatus injecting toxins directly 88 

into the cytoplasm of host cells. In P. aeruginosa, this system has a dramatic effect on the actin 89 

cytoskeleton (see below), but P. aeruginosas’s T3SS can only inject through basolateral membrane 90 

domains, leaving apical domains unharmed. It is hypothesized that P. aeruginosa uses LasB to open 91 
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the route toward the basolateral membrane domain, where T3SS is effective and will eventually 92 

promote endothelial cell retraction allowing the bacterium to transit across the endothelium (19). 93 

TJ proteins can also be direct targets of bacterial proteases. For example, Vibrio cholerae secretes a 94 

metalloprotease called HA/P, which degrades the occludin extracellular domain (20). This partial 95 

proteolysis also perturbs ZO-1, causing it to delocalize from TJs. Thus, alteration of one TJ protein 96 

may have knock-on consequences on the entire TJ complex. 97 

2.2. Preventing cadherin dimerization 98 

Non-protease toxins can also alter junctional adhesiveness, as is the case with some strains of 99 

Clostridium botulinum. This bacterium secretes a large protein complex composed of botulinum 100 

neurotoxin serotype A, three hemagglutinins (HAs), and a non-hemagglutinin protein. The complex, 101 

specifically through the HAs, binds to E-cadherin EC1-EC2 domains, stabilizing this protein in its 102 

monomeric form and preventing its trans-dimerization (21). The ability of HA to interact with E-103 

cadherin and to disrupt cell-cell junctions plays a pivotal role in the oral toxicity of C. botulinum in 104 

vivo, because it increases intestinal absorption of the toxin so it can reach the neuromuscular 105 

junction. 106 

3. The most popular method: hijacking host signaling pathways 107 

Probably because junctional proteins are not readily accessible, or owing to the efficacy of 108 

approaches targeting pathways regulating junctional adhesion, many bacteria subvert eukaryotic 109 

signaling pathways when seeking to alter cell-cell junctions. Signaling subversion can be achieved by 110 

toxins that are injected or gain access to the cytoplasm by another means, or through their 111 

interaction with membrane-bound signaling receptors. 112 

One of the most common examples of this process are toxins activating eukaryotic proteases which 113 

naturally act on host adhesive proteins. These proteases fall into two categories: (i) ADAM10, a 114 

transmembrane metalloprotease, which cleaves several receptors including the cadherins, and (ii) 115 

matrix metalloproteases (MMPs), which degrade some adhesive proteins in addition to their activity 116 

on matrix proteins. MMPs can be either secreted or membrane-associated. 117 

3.1. Activation of ADAM10 118 

The catalytic domain of ADAM10 is located in its extracellular domain. It cleaves the cadherin 119 

ectodomain close to the membrane, thus inducing shedding of the entire ectodomain (22-24). 120 

ADAM10-dependent cadherin cleavage is followed by a secondary proteolytic event performed by γ-121 

secretase, a multi-subunit protease complex located within the plasma membrane. The resulting E-122 

cadherin intracellular fragment is then targeted to the proteasome for degradation. Because of the 123 

potentially dramatic effects of its action on cadherins and other receptors, ADAM10 activity is tightly 124 

regulated in the cell. In physiological settings, most ADAM10 molecules are present in the cytoplasm 125 

in an inactive pro-ADAM10 form, associated with calmodulin, a high-affinity calcium-binding protein. 126 

The formation of pores in the plasma membrane by pore-forming toxins, such as Staphylococcus 127 

aureus hemolysin (HlA), Streptococcus pneumoniae pneumolysin (PLY), P. aeruginosa exolysin (ExlA) 128 

or Serratia marcescens hemolysin (ShlA), induces a massive influx of calcium ions into the cytoplasm 129 

(25-28). It has been hypothesized that calmodulin binding to calcium, as a result of pore formation, 130 

alters its conformation and causes it to dissociate from pro-ADAM10. The free pro-ADAM10 pool is 131 

then available for activation by furin and for export to the plasma membrane, where it can cleave E- 132 

or VE-cadherin (29-31). Cadherin cleavage and junction disruption are the earliest pathological 133 

events to have been described so far in cells following exposure to these pore-forming toxins. 134 
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Interestingly, ADAM10 also serves as the receptor for S. aureus HlA at the cell surface, but this 135 

interaction is not sufficient to trigger E-cadherin cleavage, which strictly depends on calcium influx 136 

(25). As most pore-forming toxins induce calcium influx, a similar toxicity mechanism could be 137 

induced by pore-forming toxins produced by other pathogens. 138 

Interestingly, the Bacteroides fragilis toxin (BFT) is a metalloprotease that exhibits an intermediate 139 

mechanism of action. BFT directly activates γ-secretase, causing cleavage of E-cadherin 140 

transmembrane domain, and subsequent junction opening (32). 141 

3.2. Activation of matrix metalloproteases 142 

Matrix metalloprotease (MMP) activation has also been documented in the context of bacterial 143 

infection. For example, Neisseria meningitidis induces MMP-8 activation in brain microvascular 144 

endothelial cells, triggering occludin cleavage (33). In the pathogenesis of meningitis, disruption of 145 

the blood brain barrier (BBB) is a critical step, and MMP-8-dependent occludin cleavage contributes 146 

to the opening of the very sophisticated junctions in the BBB, while also delocalizing AJ components 147 

to the apical surface (see section 6). 148 

Similarly, H. pylori induces the release of a number of MMPs targeting matrix proteins and cytokines 149 

(34). One of them, MMP-7, also cleaves E-cadherin. The cag pathogenicity island (cagPAI) identified 150 

in highly virulent H. pylori strains encodes a T4SS, which injects virulence factors (including CagA) into 151 

host cells. Expression of mmp-7 is normally repressed by the transcription factor Kaiso. However, 152 

CagPAI-positive bacteria induce the translocation of p120-catenin to the nucleus, which alleviates 153 

Kaiso-mediated transcriptional repression of mmp-7 (35). p120 translocation is controlled by its 154 

phosphorylation status, and p120 tyrosine phosphorylation was found to be increased in infected 155 

cells, suggesting that an effector of cagPAI-T4SS can induce this post-translational modification. 156 

3.3. Inhibiting cadherin-catenin interaction 157 

In addition to its effects on MMP-7 and p120, cagPAI-T4SS, and more specifically the T4SS effector 158 

CagA can bind directly to E-cadherin's intracellular domain, competing with β-catenin for its 159 

interaction with E-cadherin (36). Consequently, β-catenin is released into the cytoplasm, where it can 160 

be phosphorylated by the GSK-3/CK1/APC/axin complex, and as a result will be degraded by the 161 

proteasome. Decreased junctional β-catenin levels have indeed been observed in samples from H. 162 

pylori-infected patients (37). In contrast, suppression of β-catenin phosphorylation and degradation 163 

has also been observed in the context of H. pylori infection, in a CagA-independent manner (38, 39). 164 

Cytoplasmic β-catenin molecules that are not rapidly phosphorylated and degraded by the 165 

proteasome can translocate to the nucleus where they interact with TCF/LEF-1 transcription factors, 166 

thereby increasing the expression of genes involved in cell division. This suggests that the pool of 167 

cytoplasmic β-catenin, which becomes available due to the competition with CagA or another 168 

unknown mechanism, may translocate to the nucleus where it can exert a transcriptional activity and 169 

induce cell proliferation. 170 

4. Targeting junctions by disrupting the cytoskeleton 171 

The actin cytoskeleton is linked to both AJs and TJs, and these interactions contribute significantly to 172 

junctional adhesiveness (5, 6). Cell-to-cell adhesion is dramatically weakened by disruption of the 173 

actin cytoskeleton following exposure to pharmacological drugs, or as a result of mutations in 174 

junctional proteins affecting their interaction with actin. Oppositely, excessive contraction of actin 175 

fibers can disrupt intercellular junctions as a result of the mechanical tensions exerted by the 176 

cytoskeleton on AJs and TJs. 177 
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4.1. Activation or inhibition of Rho GTPases 178 

A number of bacterial toxins affect members of the Rho-GTPase family, including RhoA, Rac1 and 179 

CDC42. Although the downstream signaling pathways from these three GTPases intersect, each has 180 

some specificities: Rho regulates actin stress fibers; Rac1 is responsible for organization of the actin 181 

network in lamellipodia; and CDC42 controls the actin filaments in filopodia (40, 41). The GTPases 182 

oscillate between an inactive GDP-linked form and an active GTP-linked form, and their GTPase 183 

activity is controlled by both positive and negative upstream regulators: guanine nucleotide 184 

exchange factors (GEFs) and GTPase-activating proteins (GAPs), respectively. 185 

Bacteria have adopted two independent strategies to dismantle the cytoskeleton or to increase its 186 

tension. Bacterial toxins either mimic GAP or GEF eukaryotic proteins, or modify key residues in Rho 187 

proteins or actin. 188 

Several bacterial T3SS effectors have been shown to exert a GAP activity on Rho GTPases. For 189 

example, the toxin YopE – injected by Yersinia pestis, Yersinia enterocolitica and Yersinia 190 

pseudotuberculosis – acts as a GAP with RhoA, Rac1 and CDC42 (42, 43). Similarly, two T3SS effectors 191 

produced by P. aeruginosa, ExoS and ExoT, inhibit all three GTPases as a result of their GAP activities 192 

(44, 45). In addition, (and even more efficiently than through its GAP activity) ExoS can inhibit Rho 193 

GTPases with differential kinetics as a result of ADP-ribosylation on Arg41 (46, 47). C3 toxin from C. 194 

botulinum and the related toxin, Edin, from S. aureus also ADP-ribosylate Rho on Arg41 (48-50). 195 

Additional direct modifications of Rho GTPases include (i) their glucosylation on Thr35/37 by 196 

Clostridium difficile's toxins TcdA and TcdB (51), (ii) their proteolysis by the YopT cysteine protease 197 

from Yersinia ssp (52), and (iii) RhoA adenylylation (AMPylation) on His348 by Vibrio parahemolyticus 198 

VopS (53). Rho-GTPase inactivation leads to the collapse of the actin cytoskeleton as a result of 199 

ADF/cofilin activation, which has actin depolymerization and severing activities (54). 200 

Alternatively, some bacterial toxins activate the Rho GTPases. SopE and SopE2 are two T3SS effectors 201 

secreted by some strains of Salmonella typhimurium. They are potent GEFs for Rac1 and CDC42 202 

(SopE) or for CDC42 only (SopE2) (55). Deamidation of Gln61 or 63 in Rho proteins, turning it into Glu 203 

inhibits their GTPase activity and maintains them in an active state. Several toxins use this strategy to 204 

alter intercellular junctions, such as E. coli toxins CNF1 and CNF2 which deamidate RhoA, Rac1 and 205 

CDC42, and Y. pseudotuberculosis CNFy which only targets RhoA (56-59). The same glutamine 206 

residues in Rho proteins can be altered in different ways, for example CNF1 and the Bordetella 207 

bronchiseptica toxin DNT transfer polyamines, such as putrescine, spermidine and spermine onto 208 

these residues, resulting in similar inhibition of their GTPase activity (60, 61). Photorhabdus 209 

luminescens toxin TccC5 targets the same glutamine residues, catalyzing their ADP-ribosylation, and 210 

also leads to permanent activation (62). 211 

4.2. Preventing actin polymerization 212 

Actin filaments are constantly polymerizing at their barbed ends and depolymerizing at their pointed 213 

ends. This dynamic state makes actin an ideal target for several binary bacterial AB toxins, including 214 

C. botulinum C2 toxin, Clostridium perfringens iota toxin, Clostridium spiroforme CST toxin, and C. 215 

difficile CDT toxin (63-66). These toxins ADP-ribosylate the residue required for actin polymerization 216 

on globular G-actin (Arg177), but not filamentous F-actin. Thus, in the presence of these toxins, F-217 

actin depolymerizes at the pointed end, but monomers are immediately ADP-ribosylated, and cannot 218 

be incorporated at the barbed end. Consequently, the actin cytoskeleton is rapidly broken down, 219 

leading to junction disruption and cell rounding. Other non-binary toxins have been identified that 220 

ADP-ribosylate G-actin at Arg177, including Salmonella SpvB, Aeromonas salmonicida AexT, and P. 221 

luminescens Photox (67-69). 222 



 7 

P. luminescens TccC3 ADP-ribosylates Thr148 on both G- and F-actin, to prevent their association 223 

with thymosin-β4, which inhibits actin polymerization (62). Thus, in contrast to the other actin ADP-224 

ribosylating toxins, this modification results in increased actin polymerization. This effect is 225 

consistent with the action of P. luminescens TccC5, which is co-injected with TccC3 (see 4.1.). 226 

5. Toxin binding to signaling receptors to promote junctional leakage 227 

5.1. LPS effect on junctions 228 

A limited number of toxins or bacterial factors bind to and activate cell surface receptors, thereby 229 

inducing increased paracellular permeability. The most ubiquitous member of this class of factors is 230 

LPS, which binds and activates Toll-like Receptor 4 (TLR4). TLR4 signaling triggers the expression of 231 

pro-inflammatory cytokines that eventually increase paracellular permeability in both epithelia and 232 

endothelia (70). In addition, LPS binding to TLR4 at the surface of epithelia and endothelia increases 233 

cytosolic calcium levels, resulting in myosin light chain kinase (MLCK) activation. The subsequent 234 

phosphorylation of MLC induces actin fiber contraction and disrupts junctions (71, 72). 235 

5.2. E. coli toxins signal to junctions 236 

In addition to their well-known role in activation of chloride channels, two toxins secreted by 237 

enterotoxigenic E. coli, STa and STb, have been shown to induce a loss of TJ integrity (73). STa binds 238 

to its protein receptor GC-C, and STb binds to sulfatide, a glycophospholipid found at the surface of 239 

intestinal epithelial cells. STb binding has been shown to trigger disruption of the actin cytoskeleton 240 

and delocalization of claudin-1, ZO-1 and occludin (74, 75). However, further work is needed to 241 

characterize the mechanisms by which these two toxins alter actin and TJ proteins. 242 

6. Opening the paracellular route by displacing junctional adhesive proteins 243 

A typical example of bacteria-induced adhesive protein delocalization is provided by Neisseria 244 

meningitidis, which interacts closely with the apical surface of brain endothelial cells through its 245 

type 4 pili. Recruitment and activation of the Par3/Par6/aPKC polarity complex to the site of 246 

bacterium-host interaction is sufficient to create an ectopic junction-like structure within the apical 247 

membrane domain. Both AJ (VE-cadherin, β-catenin and p120) and TJ proteins (ZO-1, ZO-2 and 248 

claudin-5) are re-routed to the site of bacterial adhesion, thereby inducing the formation of gaps at 249 

intercellular junctions through which bacterial transmigration can occur (76). 250 

H. pylori also promotes junction delocalization to the apical membrane domain. CagA, once 251 

internalized, interacts with two TJ proteins, ZO-1 and JAM-1, inducing their ectopic assembly at the 252 

site of bacterium-host interaction (77). In addition, CagA binds to Par1, preventing its 253 

phosphorylation by aPKC; as a result, Par1 dissociates from the membrane (78-80). Collective 254 

delocalization of ZO-1, JAM-1 and Par1 from TJ creates junctional defects and increased permeability. 255 

Moreover, TJ protein re-routing induces a cellular reprogramming comparable to a process of 256 

epithelial mesenchymal transition (EMT), an event that has been suggested as an initiating factor in 257 

H. pylori-induced carcinogenesis. 258 

7. Junctional proteins as surface receptors for bacteria and bacterial toxins 259 

Host cell surface receptors are frequently used for bacterial tethering or toxin interaction. This is 260 

particularly the case for pore-forming toxins, which must bind to a specific receptor to allow their 261 

oligomerization prior to pore formation (81). Some of these bacterial or toxin receptors are adhesive 262 

intercellular proteins (Table 2). 263 

7.1. E-cadherin as entry site for bacteria 264 
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The only known example of bacterial recognition of an intercellular protein has been described for 265 

Listeria monocytogenes. This bacterium can enter nonphagocytic cells and cross epithelial barriers in 266 

the host. Listeria expresses a surface protein, InlA, that interacts directly with E-cadherin (82). Like 267 

homotypic E-cadherin interaction, InlA binding triggers the formation of an AJ complex. Furthermore, 268 

InlA-E-cadherin binding activates the protein kinase Src that phosphorylates E-cadherin, and 269 

consequently triggers E-cadherin ubiquitylation by the ubiquitin-ligase Hakai (83). This ubiquitylation 270 

promotes clathrin recruitment to the bacterium-host interaction site, initiating the process by which 271 

the bacterium will be internalized into the cells. Bacterial internalization also requires the 272 

recruitment of cortactin and Arp2/3 for actin nucleation (84). As E-cadherin is normally located 273 

below TJs in epithelia, its accessibility to bacteria has been studied, and two possible means of 274 

interaction have been proposed. During the renewing of epithelia, senescent cells are expelled from 275 

the cell monolayer, and E-cadherin is transiently exposed at the luminal surface by surrounding cells 276 

it can then be used by Listeria to gain entry into cells (85). Alternatively, Listeria may penetrate into 277 

goblet cells located in the intestinal barrier, where E-cadherin is accessible (86). 278 

7.2. Claudins are pore-forming receptors 279 

The claudins are receptors for Clostridium perfringens enterotoxin (CPE) toxin (87), although not all 280 

claudins interact with CPE, claudins-3, -4, -6, -8 and -14 are proven receptors for epithelia, and 281 

claudin-5 for endothelia (88-92). In addition, affinities for CPE vary between claudins, with claudin-4 282 

displaying the highest affinity (93). Both extracellular loops of claudins (ECL-1 and -2 domains) are 283 

required for interaction, but the ECL-2 domain provides the binding specificity (88, 93, 94). Clustering 284 

of claudin-CPE complexes allows CPE hexamerization, creating a pre-pore on the plasma membrane’s 285 

surface, which rapidly inserts into the membrane where it forms a pore (95, 96). Pore formation then 286 

triggers a number of deleterious effects as a consequence of a massive calcium influx into the 287 

permeabilized cell (97). 288 

8. Concluding remarks 289 

Looking at the many strategies developed by bacteria to alter intercellular adhesion, it can be 290 

concluded that disruption of cell-cell interaction represents a valuable goal, but also a serious 291 

challenge, for pathogenic bacteria during the infection process. The examples given here are the 292 

most representative, but may just be the tip of the iceberg, as many bacteria are known to trigger an 293 

increase in paracellular permeability through as yet unknown mechanisms. During characterization of 294 

the mechanisms of action of bacterial toxins, several host cellular pathways were revealed, providing 295 

tools for biologists to study how eukaryotic cells function. In the future, and because of their 296 

powerful action, bacterial toxins may be exploited for therapeutic interventions, following the 297 

example of botulinum toxin, which is now used as part of treatment for flaccid paralysis. 298 
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Table I: Bacterial toxins affecting intercellular adhesive proteins or junctions 535 

 

Bacterial toxinsa 

 

Effecta 

 

Refs 

 

Modifications to adhesive proteins from outside 

  

 

Proteolysis 

  

H. pylori, S. flexneri, C. jejuni HtrA 

P. aeruginosa LasB 

V. cholerae HA/P 

E-cadherin cleavage 

VE-cadherin cleavage 

Occludin cleavage 

(12, 17) 

(19) 

(20) 

 

Perturbed adhesiveness 

  

C. botulinum BoNT/A complex Prevents E-cadherin adhesion (21) 

 

Modifications to adhesive proteins from inside 

  

 

Host protease activation, acting on AJ/TJ proteins 

  

S. aureus HlA; S. pneumoniae PLY; P. aeruginosa 

ExlA; S. marcescens ShlA 

B. fragilis BFT 

N. meningitidis unknown toxin 

H. pylori CagPAI 

 

ADAM10 activation 

γ-secretase activation 

MMP8 activation 

MMP7 activation 

 

(25-28) 

(32) 

(33) 

(35) 

 

Direct interaction between toxins and the AJ 

complex 

  

H. pylori CagA Binding to E-cadherin IC (36) 

 

Effect on actin: Rho-GTPase inactivation 

  

P. aeruginosa ExoS, ExoT; Y. pestis, 

pseudotuberculosis, enterocolitica YopE  

P. aeruginosa ExoS; C. botulinum C3; S. aureus Edin 

 

C. difficile TcdA, TcdB 

Y. ssp YopT 

V. parahemolyticus VopS 

 

GAP 

ADP-ribosylation 

 

Glucosylation 

Proteolysis 

Adenylylation 

 

(42-46) 

(46, 48-

50) 

(51) 

(52) 

(53) 

 

Effect on actin: Rho-GTPase activation 

  

S. typhimurium SopE, SopE2 

E. coli/Y. pseudotuberculosis CNF1,2/CNFy 

Y. pseudotuberculosis CNF1, B. bronchiseptica DNT 

P. luminescens TccC5 

GEF 

Deamidation 

Polyamination 

ADP-ribosylation 

(55) 

(56-59) 

(60, 61) 

(62) 

 

Direct modification of actin 

  

Clostridium binary toxins C2, iota, CST, CDT, 

Salmonella SpvB, A. salmonicida AexT, P. 

luminescens Photox and TccC3 

 

 

ADP-ribosylation 

 

 

(63-69) 

 

 

Membrane receptor activation leading to altered 

junctions 
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Gram-negative bacteria LPS 

E. coli STa 

E. coli STb 

MLCK activation via TLR4 

Interaction with GC-C 

Interaction with sulfatide 

(71, 72) 

(73) 

(74) 

 

Delocalization of junctional proteins 

  

N. meningitidis Type IV pili 

 

H. pylori CagA 

Re-routing of endothelial AJ 

and TJ to the apical membrane 

Re-routing of epithelial TJ to 

the apical membrane 

 

(76) 

 

(77) 
aRefer to the text for complete bacterial names and a full description of toxin action 536 

537 
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Table 2: Junctional proteins used as receptors for bacteria or bacterial toxins 538 

 

Junctional proteins 

 

Bacteria or toxina 

 

Refs 

Receptor for bacteria   

E-cadherin L. monocytogenes (82) 

 

Receptors for toxins 

  

Claudins-1,2,3,4,6,7,8,9,14,19 C. perfringens CPE 

 

(87-90, 

92, 93) 
aRefer to the text for complete bacterial names and a full description of toxin or bacterial action 539 

  540 
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Figure legend 541 

Fig. 1: Multiple actions of bacterial toxins on intercellular junctions and the cytoskeleton 542 

A. Effects on TJs. Occludin is cleaved by HA/P toxin and also by MMP-8 following activation by N. 543 

meningitidis. This bacterium also binds to endothelial cells, thanks to its type 4 pili (T4P), causing the 544 

formation of a polarity complex at the binding site which triggers delocalization of TJ and AJ proteins. STb 545 

toxin negatively regulates actin, ZO-1 and occludin. B. Effects on AJs. BoNT/A complex prevents E-cadherin 546 

dimerization. HtrA toxin cleaves E-cadherin. Products of H. pylori’s cagPAI locus induce p120 translocation 547 

to the nucleus, where it activates mmp-7 gene expression. MMP-7 can then cleave E-cadherin. Calcium 548 

entry promoted by pore-forming toxins (PFTs) displaces calmodulin (Cmd) from ADAM10, leading to its 549 

activation and export to the plasma membrane, where it cleaves cadherins. BFT toxin activates γ-550 

secretase, which in turn cleaves E-cadherin. CagA interacts with E-cadherin, impeding β-catenin (β-cat) 551 

binding. β-catenin is either degraded by the proteasome or translocates to the nucleus, where it can 552 

activate genes involved in cellular proliferation. C. Effects on actin cytoskeleton. SopE and SopE2 mimic 553 

eukaryotic GEF for Rho GTPases, and ExoS, ExoT and YopE mimic GAP for Rho GTPases. ExoS, C3, Edin, 554 

TcdA, TcdB, YpT, and Vops toxins inactivate Rho GTPases by post-translational modifications, whereas 555 

CNF1, CNF2, CNFy, DNT, and TccC5 toxins activate the Rho GTPases by alternative post-translational 556 

modifications. C2, iota, CST, CDT, SpvB, AexT, Photox, and TccC3 toxins inhibit G-actin incorporation into 557 

F-actin. LPS binds to TLR4, triggering acto-myosin contraction following MLCK activation. Detailed 558 

information on toxin action can be found in the text. 559 

 560 
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