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ABSTRACT 

Due to both wave and wind fluctuations, the steel foundations of offshore wind turbines are highly 

submitted to fatigue. To date, current methods of fatigue design proposed in the regulations are not 

devoted to structural optimization and to the consideration of time-variant hazards. We propose hence 

an incremental two-scale model of damage in order to follow the time evolution of the damage. This 

temporal evolution allows the updating of model parameters using records from Structural Health 

Monitoring. In this paper, we focus on Bayesian updating of damage parameters and sensitivity analysis 

of damage assessment to material parameters. 
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1. INTRODUCTION 

Design of foundations of offshore wind turbines (OWT) is quite different from that encountered for 

offshore Oil and Gas platforms. The great number of foundations in a wind farm requires adapted 

methods for design and maintenance; this contrasts with the prototype character of offshore platforms 

in Oil and Gas industry. Offshore steel trussed-shaped structures, called Jacket structures are the most 

popular bottom fixed one for supporting oil and gaz platforms and offshore wind substation. This paper 

focusses on them. They are built by welding cylindrical beams that form a lattice-like structure. The 

economic context of profitability of electric energy in the context of competition between sources (sun, 

coal, nuclear…) requires manufacturers to optimize their foundations: the objective is to reduce 

production costs to reduce the Levelized Cost Of Energy. This requires a low number of structural 

elements for building the frame, which implies less redundancy leading to a lower safety margin in the 

design. That is consistent with risk analysis because human and ecological consequences are lower 

than in Oil and Gas industry. Three limit states are checked: ultimate, fatigue and accidental situations. 

Fatigue Limit State (FLS) is one the most complex due to the uncertainties both in loading and 

resistance and relies on simplistic assumptions. 

Due to its large scatter, marine environment is modelled as a stochastic input for the design. Some 

statistics about wind speed and direction, wave height, period and direction, etc. are available. Other 

uncertainties occur: structural uncertainties caused by manufacturing of welded joints (Pasqualini et 

al., 2013, Schoefs et al., 2016) and uncertainties in resistance (fatigue curves). Due to these 

uncertainties, many design approaches exist. Some of them used partial security factors but they often 

produce a conservative design of structure. Reliability design based on uncertainties propagation 

through a structural model offers more flexibility for accounting for uncertainties and optimize the 

design, thus reducing the design costs. This paper focuses on the structural (geometry of welded joints) 

and material (material properties of welded area) uncertainties. 

After briefly summarizing fatigue methods, we propose an incremental damage computation 

approach before crack initiation. This choice can limit the risk of large open cracks that cause a 

decrease of stiffness (Schoefs et al., 2008) and even the loss of structural elements in a preventive 

approach of the maintenance in link with continuous real-time Structural Health Monitoring. There is no 

tool at this time for assessing directly and accurately the damage. That is the reason why our objective 

is to combine the measurement of the stain with usual strain-sensors (electrical gauges or Fiber Optical 

Sensors) and to compute the damage from these measurements; it can be seen as a virtual damage 

sensor (VDS). This VDS is a hybrid sensor that couples a strain sensor and a damage computation. 



 

 

  

This approach contrasts with current design rules where times of crack initiation and failure are 

combined (DNV.GL, 2014). It differs also from some recent approaches of fatigue reliability which focus 

on crack propagation (Dong et al. 2012). A key idea is that the time of crack propagation in structures 

with low redundancy as defined by EN-19931-1 (2005) can be neglected in comparison with the 

initiation time. 

Some of the uncertainties presented above can be continuously monitored on site: wave and wind 

parameters from dedicated measurement masts or equipment of structures (with a specific care on 

corrosion and local stress). For some of them, measurement is still a challenge: marine growth, or 

crack. If continuous monitoring is not available, expensive discrete inspections should be carried out. 

In that case, real-time preventive optimization is not affordable 

This paper is a first step of a larger study about preventive maintenance based on structural health 

monitoring. The challenge is the ability to implement this method in a reliability design process of a 

complex structure. A second challenge is the implementation in an industrial context with acceptable 

computation time. Two locks need to be solved. The first one relates to the calibration of the model in 

a stochastic context from experimental tests. The second one is the reduction of time computation 

which is a disadvantage of the temporal method chosen. This last point is not discussed in this article 

and is addressed since 2017 in the project MUSCAS (MUlti SCAle Stochastic computation for MRE) of 

Université de Nantes, supported by WEAMEC (Region Pays de la Loire). Here, we focus on the first 

lock in a study of a steel structure called jacket consisting of welded tubes assemblies (Figure 2). 

Section 2 reminds the uncertainties that should be accounted for. Section 3 reviews the state of 

the art of existing methods for fatigue analysis of offshore structures. Damage model and parameters 

are presented in section 4. Section 5 introduces the probabilistic framework with the a priori probabilistic 

modelling of random variables and Bayesian updating from probabilistic S-N curves. Finally, a 

sensitivity analysis is performed in section 6 in view to rank these random variables according to their 

effect on S-N curves. 

2. IDENTIFICATION OF SOURCES OF UNCERTAINTIES IN A FATIGUE ANALYSIS 

Uncertainties are usually assigned to categories (Ditlevsen, 1982). The first level of categories 

consists in distinguishing random (or aleatory) and epistemic uncertainties. Random uncertainties are 

also called intrinsic uncertainties. The second level distinguishes two types of epistemic uncertainties: 

measurement uncertainties and uncertainties due to insufficient knowledge (approximation of the reality 

trough a simplified model). 



 

 

  

2.1. Random uncertainties (intrinsic) 

These uncertainties are intrinsic to the phenomena and it is not possible to reduce the scatter 

whatever the research/industrial efforts. They are present at two levels in our study: (i) distribution of 

results of fatigue tests (Wöhler curve) cannot be reduced to a deterministic value; the uncertainty comes 

in particular from the imperfections in the steel production process. The microstructures of steel are 

different from a casting sheet or welding shape to another, for a given established quality control. Thus, 

for a given level of applied load, it will always remain a distribution of the number of cycles to failure. 

(ii) The second phenomenon concerns environmental data of wave and wind and also marine growth 

(Schoefs, 2008, Schoefs and Boukinda, 2010; Ameryoun et al., 2019). The uncertainty is especially 

present in the randomness of the sequence of heights, periods and directions of waves and in the 

succession of different speeds and directions of wind. 

2.2. Epistemic uncertainties 

Unlike random uncertainties, epistemic uncertainties (Dubois and Guyonnet, 2011) can be reduced 

by making more efforts (improving the quality of manufacture, weld shape, or measurement techniques, 

strain measurement, increasing the number of experimental trials ...). Even if it is impossible to restore 

the data distributions to deterministic values, it is possible to reduce the scatter. 

Indeed, no model can perfectly represent reality because of underlying assumptions. We 

incorporate here uncertainty associated with two-scale damage model. As explained above, the 

parameters need to be identified to calibrate the model on experimental trials. These tests include 

epistemic uncertainties. For instance, the scatter of experimental results may be reduced by increasing 

the number of tests (statistical uncertainty) and by using sensors whose accuracy is higher (sensitivity 

of measurement). 

Environmental data are also affected by epistemic uncertainties because of the precision of the 

measuring devices (satellite, anemometer ...) (Magnusson 2013). We can therefore improve knowledge 

of the phenomenon by accumulating on site records. 

2.3. Material and structural uncertainties 

For fatigue evaluation of welded structures, the Wöhler (or S-N) curve is built from fatigue tests on 

samples. The scatter of results (number of cycles until failure) include geometrical uncertainties, 

uncertainty on the welded process and uncertainty on material properties at the local scale after 

welding: we embrace all these sources of uncertainty in the terms Material and Structural uncertainties. 

It links the applied stress range to the number of cycles to failure in a log-log relation and is generally 



 

 

  

associated to 50% probability of survival. In design rules, 97.7% is commonly used. This design curve 

integrates material uncertainty and uncertainties generated by unrepeatability of the welding process. 

The Standards ARSMM (1985) and DNVGL (2014) define S-N curves. For an applied stress range ���, this distribution follows a normal distribution with a standard deviation of 0.2 from DNV-GL and of 

0.275 from ARSMM. In the following, the DNV-GL value is retained. A 97.7% probability of survival is 

associated to S-N curves presented in DNV-GL. With these information, it is possible to generate 

random values of number of cycles to failure for a selected stress range. Corresponding “experimental” 

test results can be simulated (Figure 1). Note that in case of large cracks, effect of the crack geometry 

on the component geometrical properties (area of cross section …) should also be considered (Schoefs 

et al., 2008). 

 

Figure 1: 50 simulated trials from S-N curve (DNV-GL) 

3. FATIGUE ASSESSMENT: EXISTING APPROACHES 

3.1. General principles of local stress computation 

In offshore wind industry, the rule commonly used for fatigue design method is provided by DNV-

GL (2014). It is based on the use of computation of vibration with finite elements models. This is a 

current modelling for a full jacket and is adapted to model the distribution of loads on the structure 

(Morison equation) (Morison, 1950). 

This method relies first on the stresses resulting from the normal force and bending moments on 

which stress concentration factors are applied. The stress concentration factors are dependent on the 

geometrical properties of the tubes and the shape of their connection (Figure 2). The combination is 

based on empirical formulas commonly known as Efthymiou formulas (Efthymiou, 1988). This allows 

studying the fatigue level of a geometric discontinuity where high stress concentration occurs, with a 

simple beam model of the structure. This method can be viewed as a one-dimensional approach. The 

randomness arises from the behaviour law of the material and natural loads. 

 

Figure 2: Stress computation points around the circumference of a welded tubular joint and Jacket structure 

realized by Atlantique Engineering Solutions for Alstom offshore prototype Haliade 150 (photo: courtesy of 

Bernard Biger) 



 

 

  

3.2. State of the art of S-N approaches 

For a stress range ��� and a stress concentration factor computed at each of the eight points 

regularly spaced along the weld (Figure 2-left), we can determine ��. According to the Miner rule (Miner, 

1945), the damage di for this range can be calculated knowing ��, the actual number of cycles for a 

stress range ���: d=��/�� . The fracture is supposed to occur when d=∑ 	� reaches a critical value 
� 

here taken equal to 1. 

Efforts that generate these stress ranges come mainly from two environmental phenomena, waves 

and wind. They can be presented in the form of spectrum or time series. Depending on the shape of 

the available data, the fatigue analysis can be of two types, spectral or temporal. 

Spectral fatigue is most commonly used. However, it does not allow updating of random variables 

from continuous time monitoring and is therefore not suitable for Structural Health Monitoring (SHM): 

that is the case for corrosion, crack initiation, local stresses, marine growth measurements. These ones 

can be recorded during the service lifetime. In addition, many simplifying assumptions are made and 

can be widely questioned. For instance, effect of mean stress and, obviously, loading history are not 

accounted explicitly and the linear cumulative Miner’s law of damage is said to be questionable too, 

especially in presence of complex sea-states as explained by Olagnon (Olagnon et al., 2014). 

3.3. State of the art of fracture mechanics in reliability context 

Another approach is also currently used to estimate remaining lifetime of jacket structures in the 

aim to optimize maintenance (Guedes Soares and Garbatov, 1998). Based on fracture mechanics, they 

proposed a study of maintained ship hull girders submitted to corrosion and fatigue in which they model 

parameters of crack propagation law as random variables. 

Following this approach, Moan (Moan et al. 1999) presented applications for jacket structures of 

Oil and Gas platforms. These structures were generally designed with a high conservatism because of 

dramatic consequences in case of failure. They used crack propagation models because a loss of 

tubular member is not always critical in such redundant structures. 

Dong (Dong et al. 2012) used this method in the case of jacket support structures for offshore wind 

turbines. They utilized this crack propagation approach based on Paris’ law (1) because crack 

observation can easily be done by visual inspection and stiffness can be updated (Schoefs et al., 2008). 

	�	� = ��∆��� (1) 



 

 

  

Where � is the crack depth, � is the number of stress cycles, � and � are material parameters 

and ∆� is the stress intensity factor range proposed by Newman and Raju (Newman Jr. and Raju, 

1981). For fatigue failure, they used the safety margin presented in (2), for which a Weibull distribution 

of �� is required. 

���� = � 	�����√����
� 

�!
− �#$�� − %$�&�' (1 + �+ , (2) 

Where �$ is the initial crack size, �� is the critical crack size, %$ is the initiation period, #$ is number 

of stress cycles a year, � is the geometry function multiplied by a random variable ��. Safety margin 

form is � = - − . where - is the resistance corresponding to the number of cycles during crack 

propagation from �$ to �� and . is the load corresponding to the number of cycles before time �. The 

safety margin we consider in the following writes: M(t) = D(t) - Dc, with Dc =1. The associated failure 

probability at any time � is defined by (3). 

/0��� = /����� < 0� (3) 

Authors (Dong et al. 2012) have shown the possibility to optimize operations and maintenances of 

jackets for OWT. But, in the field of OWT where design costs play a significant role on energy production 

cost, conservatism during design phase should be reduced: Jacket structures are less redundant than 

in oil and gas field. Thus, the approach proposed by Dong (Dong et al. 2012) becomes not adapted. 

This is why, this paper presents a new model of fatigue based on crack initiation approach. Indeed, it 

is estimated that no crack is acceptable. 

4. PROPOSED MODEL 

4.1. Two-scale damage model 

We retained a fatigue analysis based on a two-scale damage model, originally proposed by 

Lemaitre (Lemaitre 1996), applied to fatigue by Lemaitre (Lemaitre, 1999; Lemaitre and Desmorat 

2005) and applied to marine structures by Thevenet et al. (Thevenet et al., 2015). It postulates the 

existence of microscopic spherical inclusions in which the material properties are degraded. In these 

inclusions plasticity and damage occurs, while the surrounding material remains in elasticity. Quite 

recently, the assumption of weak domains proposed by Lemaitre has been justified by thermal imaging 

of the high cycle fatigue phenomenon (Chrysochoos and Louche 1998, 2000). It was observed during 



 

 

  

a test of monotonic loading that the heat sources, which reveal dissipative behaviour (plasticity or 

damage), are located only at some points and not everywhere. 

The model is used here for welded areas (Figure 2), commonly identified as crack apparition areas. 

Following the rules of conception (DNV-GL, 2014), the tensile stress in the weld, associated with the 

mode 1 crack opening, is calculated (at eight points) as a linear combination of the normal force and 

flexural momentums given by a beam model of the whole structure. Dealing only with this tensile stress, 

the damage model, initially in 3D, is used here in its 1D version. 

The surrounding sound material remains in elasticity during the cyclic loading: � = 34 where the 

macroscopic stress � ranges from −�� to ��, with |�| < �6, the macroscopic limit of elasticity, and where 

3 is the Young’s modulus and 4 the macroscopic strain. On the contrary, the microscopic inclusion, 

denoted by 7,  possesses a yield stress �68 smaller than �6 thus cycles show plastic evolutions B’A and 

A’B during which damage occurs (Figure 3). 

 

Figure 3: Two-scale model scheme (left) and response to a symmetric cycle (right). 

 

The effect of damage is to diminish both the apparent Young’s modulus and the stress level. 

Following the damage theory, the Hooke law in the inclusion is �~8 = 3�48 − 48:� where 48: is the plastic 

strain, 48; = 48 − 48: the elastic part of the strain, �~8 = �8 �1 − 
�⁄  the effective stress and 
 ∈ >0,1@ 
the damage level. According to the Lin-Taylor localization rule, the microscopic strain 48 is always equal 

to the macroscopic strain 4. 

For sake of simplicity, the plasticity is supposed to be of the linear kinematic hardening type with a 

Von-Mises type yield surface: 

A��~8 , B8� = |�~8 − B8| − �68 (4) 

Where B8 = CD ��1 − 
�48: is the back stress, proportional to the plastic strain 48: via the hardening 

modulus �. The damage is supposed isotropic and to evolve as: 

	
 = F�.GH I�J − JK�	J (5) 

Where � = ��~8�C23 is the release rate of elastic energy, . and M are material parameters and p, 

defined by 	J = |	48:| is the cumulated plastic strain. The fatigue damage starts when J reaches a 



 

 

  

threshold JK, as indicated by the Heaviside function I and increases up to the critical damage 
N  at 

which the crack initiation takes place supposed, in our approach, to lead instantaneously to failure. 

Figure 4 gives the flowchart of the two scales computation. 

 

Figure 4: Flowchart of the two scales damage computation 

 

An analytical resolution (Appendix 10.1) gives the number of cycles at the beginning of damage �O and the number of cycles leading to failure �P. These expressions summarize as �P = ��Q�R, S� 

where R = T�, ., M, �68, JK , 
NU is the vector material parameters. 

Figure  5 shows the link between the applied stress range and the number of cycles to failure. S-

N curves associated to 97.7% probability of survival is presented in (DNV-GL, 2014). Equations of the 

two-scales model have been used with a manual calibration of the parameters in order to fit the 97.7% 

curve. Figure 5 shows the good agreement between �P and the reference S-N curve, except for the 

rounding at the intersection of the two straight lines. However, experimental S-N curves do present 

such rounding and the damage model has this capacity. 

Figure 5: S-N curve from (Det Norske Veritas and Germanischer Lloyd 2014) 

The computation time for identification is a major issue in the case of SHM where the model will be 

extended to a numerical model involving a calculation of complete structure (in particular the structural 

node). It is therefore important to limit the size of our probabilistic space. To this end, we propose, in a 

first step, a Bayesian updating of random variable distributions and then a sensitivity analysis by 

elasticity (in the statistical sense). Indeed, we do not have prior distributions of the parameters in the 

literature. Only the variation ranges are known and will help as limits of prior uniform distributions.  

5. PROBABILISTIC MODELLING AND BAYESIAN UPDATING 

In this section, the objective is to provide probability density functions for each basic random 

variable. From the literature, we determine a prior distribution of the two-scale model parameters from 

the bounds given by Lemaitre (Lemaitre and Desmorat 2005; Lemaitre 1996). We propose a Bayesian 

updating of these distributions based on simulated trials from S-N curve presented in (DNV-GL, 2014). 

5.1. Probabilistic modelling 

Before updating, prior key steps of a probabilistic mechanical problem should be followed:  

• Identification of the basic variables. 



 

 

  

• Choice of marginal distributions. 

• Dependence between variables (co-moments ...). 

Elastic modulus 3 is commonly considered as a deterministic parameter because of its low 

coefficient of variation (around 5%) in comparison with others. The parameter M has a major impact on 

S-N curve shape. Tests revealed that, as suggested by Lemaitre himself, the best value of M should be 

1. M is hence considered as a deterministic parameter. Finally, �68 is deterministic because it can be 

easily identified on a S-N curve as the fatigue limit at 10V cycles. 

Thus, we choose R=(., JK, 
N� as the vector of random variables with associated uniform 

distributions. The choice of a uniform prior distribution includes a non-informative aspect unlike to 

normal or lognormal distributions for example. This non-informative prior distribution is usually 

introduced when the properties of the material are unknown (for instance after a complex degradation 

process), when no direct measurement of a parameter is available or when no probabilistic modelling 

or statistical analysis was carried out until now: this study in the latter case. A literature review has 

identified some values of the model parameters. This therefore gives a first assumption on their range 

of possible variation. The values found were not obtained for steel strictly identical to the present study; 

that is why the range of variation was extended. Also, no assumption on the correlation between 

random variables is considered. We are aware that this assumption is strong but at this stage of our 

study and from expert judgement, no other assumption can be stated. 

Table 1: Parameters ranges of variation 

5.2. Bayesian updating by MCMC 

When statistics of condition state measurements are obtained from inspection of a structural 

component and when some prior knowledge is available from a model, it is interesting to compare 

them. Differences are observed. In order to optimize future predictions, it is interesting to update the 

input parameters of the degradation model taking into account inspections or measurements. To this 

end, we decide to use Bayesian updating combined with the variability of input parameters (Dubourg, 

2011). Bayesian updating is an application of the continuous formulation of Bayes theorem. 

Measurements are samples (simulated trials) from the probabilistic distribution of S-N curves. 

Bayesian updating used in this study is based on Monte-Carlo Markov Chains Markov (MCMC) 

(Perrin, 2008). We carry out this method based on S-N curves and their distribution from DNV-GL 

(DNV-GL, 2014). Realizations are plotted on Figure 5. We focus on material parameters updating of R 

from analytical model ��Q�R, S� outputs (Berveiller et al. 2007, 2008).  



 

 

  

5.2.1. Bayes theorem 

Let JW�X� be the a priori multidimensional probability density (prior distribution) of R. This function 

can be estimated from experimental data or expert judgment. Due to lack of information, uniform 

distributions are used to described prior probability density JW�X�. Let �YZH (6) be a set of available 

observations used for updating. 

�YZH = T[�X:�; J = 1, … , /U (6) 

The observations are realizations of the random vector R. Thus, Bayes' theorem gives the posterior 

probability density AW�X� of the random vector R by: 

Â �_� = 1̀ JW�X�a�X, �YZH� (7) 

a�X, �YZH� is the likelihood of the observations and ` is a normalization constant used to define the 

probability density function AW�X�. 

5.2.2. Updating method 

Distribution of experimental observations and of model outputs are different. Thus, an 

approximation error of model outputs, called 3, exists. Error and observation variable have the same 

expression because a realization b�X:� of error 3 corresponds to an observation (8). We commonly 

consider that the error follows a normal distribution with a standard deviation �;.  

3 = Tb�X:�; J = 1, … , /U (8) 

Each observation can be written as a function of model ��Q�R� and the realization of the model 

error 3 �9�. 
[�X:� = ��Q�R� + b�X:� (9) 

Knowing the parametric form of the prediction model ��Q�R� and assuming that observations are 

independents, the likelihood of the observations can be written: 

a�X, �YZH� = d e f��Q�X� − [�X:��; gh
:ij  (10) 

Where e is density function of the standardized (zero mean and standard deviation 1) normal 

random variable. Thus, posterior distributions of the input parameters follow the pdf in (11). 



 

 

  

AW,k�X, �� = 1̀ JW�X�Jkl��;� d e f��Q�X� − [�X:��; gh
:ij  (11) 

In this study, prior probability density function of each variable is a uniform distribution defined on 

variation range identified from literature (section 5). The value of ` is obtained from equation (12). 

1̀ = � JW�X� d e f��Q�X� − [�X:��; gh
:ij 	XPmn

 (12) 

Where �W corresponds to dimension of vector R (here �W = 3). 

Monte-Carlo methods by Markov chains (MCMC) are numerical technics, which let to simulate 

posterior probability density function of R without evaluating equation (12). Only likelihood function and 

prior probability density function JW�X� of R are needed. The MCMC procedure is solved using a 

sequential Metropolis-Hastings algorithm (Hastings 1970; Metropolis and Ulam 1949). The algorithm 

selected in this paper is the version published by (Tarantola, 2005). 

5.2.3. Model error definition 

Error function used in MCMC algorithm has to be correctly defined. It means that all the 

measurements shall be compared with the different simulations. It depends on available measurements 

and model variability created by a new set of parameters. Natural expression of error function is: 

b�o = �;p:� − ��YK;q (13) 

Thus, the associated likelihood function is: 

a = d d e�b�o�Q
�

�
o  (14) 

Where � is the number of available measurements for stress range ��o and � is the number of 

stress ranges in the samples of simulated trials. 

With equation (13), error value evaluated for two levels of stress ranges ��o can be different with 

a factor 1000. Convergence of the algorithm is easier to ensure by reducing the biggest error. That is 

why MCMC algorithm correctly estimate the number of cycles associated with the lowest stress range ��o because this is where error value is the most important. Fatigue updating from S-N curves is very 

sensitive to this shortcoming since the scatter of NR is large. 



 

 

  

Table 2 presents four others expressions of error function in order to avoid this phenomenon. 

 

Table 2: Error and likelihood functions 

The number of observations / presented in (6) depends on error expression. / = � for functions 

2 to 4 and / = � × � for function 1. 

5.3. Results 

Due to error expression of Function 1 and a great number of observations, associated likelihood 

value is nearly null and close to the numerical accuracy of software. This is a problem for MCMC 

convergence. Thus, Function 1 cannot be chosen. Function 2 produces model outputs closed to S-N 

curve associated to 50% probability of survival. But, in a design process, it is important to correctly 

estimate distributions tails, especially the one of the low numbers of cycles. In this case, Function 4 

produces better results than other functions and is presented in Figure 6. Black dots represent the 

simulated trials used for the MCMC and grey dots represent results of simulations from identified 

parameters. 

Figure 6: Superposition of number of cycles distribution and of S-N curves  

5.3.1. Crude marginal distributions 

Figure 7 shows the posterior distributions of two parameters; others are available in Appendix 10.2. 

Distribution of 
N  is non-symmetric which already provides a first level of information about the 

probabilistic modelling of this variable (Weibull, Lognormal, etc.). 

Figure 7: Superposition of uniform prior distribution and discrete posterior distribution (� on the left and 
N on 

the right) 

After identification, coefficients of variation (CoV) calculated from discrete posterior distributions 

are given in Table 3 with acceptation levels of parameters. Coefficients of variation are quite low and 

acceptation levels are high enough. Thus, we can estimate that the model is correctly calibrated in a 

stochastic context. 

Table 3: Coefficients of variation and acceptation levels 

5.3.2. Correlation between input variables 

Linear correlation coefficients are determined after Bayesian updating (Table 4). They show that 

parameters are mainly independent. 

Table 4: Linear correlation coefficients 



 

 

  

Nevertheless, .-
� couple has a linear correlation coefficient greater than the others. It can be 

explained quite easily. Two phases are identified during fatigue test. The first one is before damage 

initiation: only � and JO impact the number of cycles associated with this phase. Thus, when � is fixed, 

only . and 
N  can be used to adjust model with observations. Relation between . and 
N is observed 

in the scatter diagram presented in Figure 8; others are available in Appendix 10.3. 

Figure 8: Correlation diagram of 
N and . 

6. SENSITIVITY ANALYSIS 

A first sensitivity analysis by elasticity method is realized from the analytical expression of the 

model using ranges of variation and associated uniform prior distribution of the parameters. A second 

sensitivity analysis is done using results from the Bayesian updating. 

6.1. Analytical expressions for sensitivity analysis 

Following the approach suggested in (Schoefs, 2008) for monotonic models, we realize a first order 

Taylor expansion (15) of (A10) in Appendix 10.1 around the mean values, which determines the relative 

sensibility s�P �P⁄  of �P from the logarithmic derivatives of (A10). 

s�P�P = t .uvwx s&y&yy  (15) 

With .uvwx, the weight associated with the parameter &y. 

We present for example in (16) the expression of the weight associated with parameter �. 

Expressions of other parameters are summarized in Appendix (section 10.4). 

.Nwx = �O�P
2�2� + 33

+ �P − �O�P {1
+ �2M + 1��~�8 (��~�8�CH + �2�68 − �~�8�CH,

��~�8�CH|j − �2�68 − �~�8�CH|j 8�C�� + 63���� + �68��2��� + 33�68��2� + 33�� 

(16) 

�O and �P are estimated from �� and mean values of the parameters. 



 

 

  

In the case of monotonic regular perturbation around the mean values, the sensitivity can also be 

expanded as: 

s&y&y ≅ �&y&y  (17) 

6.2. Results of the sensitivity analysis 

6.2.1. Before Bayesian updating 

The sensitivity analysis by elasticity is achieved using the mean values of variation ranges of each 

model parameter and its coefficient of variation. Information about parameter are summarized in Table 

5. 

Table 5: Ranges of variation, means and coefficient of variation of parameters before Bayesian updating 

Figure 9 plots the sensitivity to each variable in the SN. 

 

Figure 9: Sensitivity indexes in % (prior) 

There is a disparity in variables weight. This analysis shows that the most influential variables are �, . and 
N . . and 
N  have nearly the same weight because they play together in order to adjust model 

response (see 5.3.2). 

6.2.2. After Bayesian updating 

A second sensitivity analysis is realized after the Bayesian updating. Here, mean values of the 

parameters do not correspond with central values of variation ranges (Table 6). Results are presented 

in Figure 10 as a function of the stress range. 

Table 6: Ranges of variation, means and coefficient of variation of parameters after Bayesian updating 

 

Figure 10: Sensitivity indexes in % (posterior) 

Parameters weights are not really different except for low ranges (Log(∆σ)<5.102)). The same 

conclusion can be done. Curve represented from mean value of the parameters is interesting. Indeed, 

this curve shows that mean value of the parameters let to fit correctly with S-N curve at 50% probability 

of survival. 



 

 

  

7. CONCLUSION 

Fatigue reliability assessment in the time-domain is the most promising way for introducing 

Structural Health Monitoring in a risk analysis. That is required for optimizing operation and 

maintenance, by defining the optimal time of repair or detailed inspection. 

We can cite many advantages of this modelling we consider as essential, such as: 

• The time evolution of the damage which is essential for SHM and the consideration of historical 

loading; 

• The taking into account of all components of the stress tensor including the effect of mean  

stress; 

However, it presents two major drawbacks. The first one concerns the computation time which can 

be significant if a strategy is not implemented. The second one concerns the model for which it is 

necessary to lead a calibration over experimental tests by playing with the influential parameters. The 

paper faces this latter objective. The whole process of fatigue design faces the presence of 

uncertainties. It is important to be able to identify, quantify and spread them for assessing the lifetime.  

This goal requires a probabilistic model of damage propagation. The paper first reminds the two-

scale damage model that includes 6 parameters.  Another requirement is to use as much as possible 

the existing data, especially SN-curves that required huge experimental efforts during the four past 

decades. It is shown that the two-scale damage model fit well these SN-curves, including their lower 

limit. 

Finally, the paper considers the random SN-curves and fit the joint distribution of parameters after 

a specific development of the error function for the MCMC algorithm. A sensitivity analysis shows that: 

- only four variables play a dominant role and that the two others can be modelled as 

deterministic parameters; 

- the relative influence of these 4 variables depends of the level of stress; 

- some parameters are correlated and should be modelled as such when propagated for 

reliability assessment. 

This paper is the basis for future researches: reliability assessment and damage updating from 

Structural Health Monitoring of strains. 
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Figure 1: 50 simulated trials from S-N curve (DNV-GL) 

 

  

Figure 2: Stress computation points around the circumference of a welded tubular joint and Jacket structure 

realized by Atlantique Engineering Solutions for Alstom offshore prototype Haliade 150 (photo courtesy of 

Bernard Biger) 



 

 

  

 

 

Figure 3: Two-scale model scheme (left) and response to a symmetric cycle (right) 

 



 

 

  

 
Figure 4: Flowchart of the two scales damage computation 

 

 
Figure 5: S-N curve from (Det Norske Veritas and Germanischer Lloyd 2014) 

c two-scale fatigue model 



 

 

  

 
Figure 6: Superposition of number of cycles distribution and of S-N curves  

 

  

Figure 7: Superposition of uniform prior distribution and discrete posterior distribution (� on the left and �� on 

the right) 

97.7% probability of survival (DNV-GL) 

97.7% probability of survival (two-scale 
fatigue model) 

pdf of NR|σ (DNV-GL) 

pdf of NR|σ (two-scale fatigue model) 

c two-scale fatigue model 



 

 

  

 
Figure 8: Correlation diagram of �� and � 

 

 

Figure 9: Sensitivity indexes in % (prior) 



 

 

  

 
Figure 10: Sensitivity indexes in % (posterior) 
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Ranges of 

variation 

2 � 106 ∶ 3 � 10� 0 ∶ 	0.5 0.1 ∶ 1 0.001 ∶ 1 

Table 1: Parameters ranges of variation 
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Table 2: Error and likelihood functions 

 

 � �� �2 �	
CoV 11.51% 35.65% 46.96% 35.76% 

Acceptation 

levels 

82.9% 61.1% 84.4% 61.3% 

Table 3: Coefficients of variation and acceptation levels 
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Table 4: Linear correlation coefficients 
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Ranges of 

variation 

2 � 10
6 ∶ 3 � 10

6
 0 ∶ 0.5 0.1 ∶ 1 0.001 ∶ 1 

Mean 2.5 � 10
6
 0.25 0.55 0.5005 

CoV 11.55% 57.74% 47.24% 57.62% 

Table 5: Ranges of variation, means and coefficient of variation of parameters before Bayesian updating 
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Ranges of 

variation 

2 � 10
6 ∶ 3 � 10

6
 0 ∶ 0.5 0.1 ∶ 1 0.001 ∶ 1 

Mean 2.509 � 10
6
 0.3132 0.5543 0.6223 

C.O.V. 11.51% 35.65% 46.96% 35.76% 

Table 6: Ranges of variation, means and coefficient of variation of parameters after Bayesian updating 

 




