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Abstract 18 

 19 

Accurate species identification is crucial in ecological research on sentinel species 20 

such as earthworms. Here, we developed a reliable and cost-efficient method for the rapid 21 

identification of taxa within the Allolobophora chlorotica complex of cryptic earthworm 22 

species. We combined high resolution melting (HRM) analysis with DNA barcoding (Bar-23 

HRM) in a three-step approach: (i) selection of a mini-barcode in the 16S mitochondrial gene, 24 

(ii) test of the method on a panel of 16 reference individuals and (iii) identification at the 25 

species level of 24 unknown specimens. Thus, we proved the efficacy of Bar-HRM to 26 

discriminate between cryptic sister (or sibling) earthworm species and we provided a 27 

standardized method that can be easily adapted to other taxa.  28 

 29 
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Accurate species identification is a fundamental issue of current biological and 38 

ecological researches (e.g. Elphick, 2008). Until quite recently, earthworm species 39 

identification was almost only conducted on morphological characters (Bartlett et al., 2010). 40 

Nowadays, molecular techniques are more frequently used and multiple studies revealed 41 

cryptic diversity (i.e. two or more distinct species that were classified as a single one due to 42 

morphological similarity, Bickford et al., 2007) even within long known earthworm 43 

morphospecies (e.g. King et al., 2008; James et al., 2010; Novo et al., 2010; Taheri et al., 44 

2018). Biologically relevant differences were identified between cryptic species, highlighting 45 

that correct identification of earthworm specimens is crucial for further study of these 46 

ecologically important species (review in Marchan et al., 2018). 47 

In the last decade, the DNA barcoding approach (Hebert et al., 2003) using the 48 

mitochondrial gene coding for cytochrome c oxidase subunit I (COI) has become the most 49 

used molecular taxonomy tool in earthworms (e.g. Decaens et al., 2016; Porco et al., 2018). In 50 

addition to allowing the detection of cryptic or overlooked diversity cases in earthworms, this 51 

approach is a way to recover specific level data for juvenile specimens and to process 52 

numerous specimens without the intervention of a taxonomist (Porco et al., 2018). While this 53 

approach holds many advantages, it can turn out to be relatively expensive when applied to 54 

large sample sizes and requires an access to a Sanger-sequencing or a high-throughput next-55 

generation sequencing (NGS) platform. 56 

Recently, DNA-based identification of genetic variants was made possible without any 57 

sequencing step. The high resolution melting (HRM) analysis is a highly sensitive method 58 

allowing to discriminate DNA sequences differing of only one substitution or one base pair 59 

indel (Wittwer, 2009). Following a real-time PCR, DNA fragments (from 80 to 250 bp long) 60 

are denatured with increasing temperature and the resulting changes in fluorescence caused by 61 

the release of an intercalating dye from the DNA duplex are monitored. Combining HRM 62 
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analysis to DNA barcoding (Bar-HRM) is thus a way to rapidly distinguish genetically 63 

differentiated groups based on the thermal denaturation curves of amplified mini-barcodes 64 

(Behrens-Chapuis et al., 2018; Chen et al., 2019). Thereby, Bar-HRM has appeared to be an 65 

effective, simple, cheap (in long term and large scale investigation) and time-saving tool for 66 

species identification (Fernandes et al., 2017; Fidler et al., 2017; Sun et al., 2017; 67 

Osathanunkul et al., 2018). 68 

The goal of the present study was to propose a standardized method of species 69 

identification using Bar-HRM, from the evaluation of mini-barcode discriminating power to 70 

the species assignation of unknown individuals, and to test its usefulness to distinguish cryptic 71 

earthworm species using the Allolobophora chlorotica aggregate as a model. Two colour 72 

morphs were described in the Allolobophora chlorotica aggregate, a green morph 73 

representing a single taxon although composed of two divergent mitochondrial lineages (L2 74 

and L3), and a pink colour morph, composed of at least two taxa (L1 and L4, Dupont et al., 75 

2016). The two colour morphs are known to have contrasting ecological preferences linked to 76 

soil moisture (Satchell, 1967; Lowe and Butt, 2007) and to present postzygotic reproductive 77 

isolating mechanisms (Lowe and Butt, 2008). Confirmation of species status for the L1, 78 

L2/L3 and L4 lineages was obtained with microsatellite markers by Dupont et al. (2016) who 79 

revealed that hybridization was rare among these taxa. The status of three other lineages (i.e. 80 

L5, L6 and L7) remains however unclear (King et al., 2008; Dupont et al., 2011).  81 

Here, we focused on the relatively well-defined L1, L2/L3 and L4 taxa. The 82 

development of the bar-HRM method was led in three main steps. In a first time, we tested 83 

whether the set of EwD/EwE primers developed by Bienert et al. (2012) for earthworms and 84 

allowing to amplify a 111 bp mini-barcode region in the mitochondrial 16S rRNA gene was 85 

adequate to discriminate these taxa. In order to estimate the distribution of the theoretical 86 

melting temperatures (i.e. temperature at which 50% of DNA double-strands are dissociated) 87 
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of this mini-barcode among the L1, L2/L3 and L4 taxa, we used 41 published A. chlorotica 88 

agg. 16S sequences (Genbank Accession Numbers AM774359-93, KJ912500-505, 89 

JN869755-756). To compute the expected melting temperatures (TmTHEO) from DNA 90 

sequences of the EwD/EwE region, we implemented the model described in Khandelwal & 91 

Bhyravabhotla (2010). Results showed significantly differentiated means between taxa (L1 = 92 

78.4 ± 0.30, L2/L3 = 79.7 ± 0.47 and L4 = 80.6 ± 0.38) but slightly overlapping TmTHEO 93 

ranges (Fig. 1). Because HRM takes into account the shape of the whole curve, in addition to 94 

the expected melting temperature, we assumed that it should still be possible to correctly 95 

identify specimens even from different DNA fragments displaying close melting 96 

temperatures. Interestingly, despite the divergence between L2 and L3 haplotypes in a 97 

phylogenetic tree built using a longer fragment of the 16S gene (Supplementary material, Fig 98 

S1), the TmTHEO of these lineages, belonging to a single species, were not distinguishable 99 

using the EwD/EwE mini-barcode. 100 

In a second time, we composed a panel of 16 reference individuals belonging to each 101 

of the three taxa (4 L1, 8 L2/L3 and 4 L4). These reference individuals were selected based on 102 

their already published COI sequences (Genbank Accession Number -AN- in supplementary 103 

material Table S1) in order to capture both intra and inter-lineage diversity and a 445 bp 104 

fragment of the 16S gene was subsequently sequenced using EwA/EwF primers (Bienert et 105 

al., 2012; AN in Table S1). The HRM analysis of these reference panel individuals was 106 

carried out in triplicates using MeltDoctor HRM Master Mix (Applied Biosystems) according 107 

to the manufacturer protocol in 10 µL reaction volume and using EwD/EwE primers. The 108 

fluorescence data was normalized by the use of the exponential background removal method 109 

described in Palais and Wittwer (2009) in order to obtain the curves describing the decrease of 110 

double-stranded DNA fractions in response to the temperature. We observed a clear 111 
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separation of the melting curves of the three taxa (Fig. 2a). The experimental melting 112 

temperatures (TmOBS) ranges, i.e. between the lower and the higher TmOBS, did not overlap.  113 

Finally, species identification was tested on 24 unknown specimens sampled in 114 

Parisian parks and morphologically identified as members of the A. chlorotica aggregate. 115 

Because the samples were stored in ethanol before DNA extraction (using the DNeasy ® 116 

Blood & Tissue Kit, Qiagen, according to manufacturer protocol), and have therefore lost 117 

their pigmentation, their colour morph could not be determined. The HRM analyses of the 118 

unknown samples and the reference panel samples were conducted at the same time. The 119 

distances between each unknown sample melting curve and every reference panel curves were 120 

computed as the mean integral of the absolute difference between the two curves considered 121 

(Palais and Wittwer, 2009). The unknown specimens could thus be assigned to one of the taxa 122 

based on the lowest distance between their melting curve and the one of the reference samples 123 

(Fig. 2b). Then, the identification of the 24 specimens was controlled by the sequencing of 124 

their 16S gene using EwA/EwF primers (Table S1). Among them, 11 different haplotypes 125 

were identified (Table S1) using the Dna SP V 5.10.01 software (Librado and Rozas, 2009). 126 

HRM results matched with the 16S sequencing results for 10 of these haplotypes (i.e. 22 127 

individuals). An erroneous identification comes from a haplotype (present in 2 individuals, 128 

Table S1) assigned to the L4 taxa using the bar-HRM method while it clustered with L2 129 

haplotypes in a phylogenetic tree (Supplementary material, Fig S1). This 16S haplotype 130 

sequence was indeed expected to display a melting temperature closer to the L2/L3 group 131 

than to the L4 group (Fig. 3). So, there is a discrepancy, in this particular case, between the 132 

expected and observed melting temperatures and this haplotype appears to be a significant 133 

outlier (Bonferroni test). Although this 16S haplotype clustered with the L2 lineage, it is 134 

nevertheless noteworthy that the phylogenetic tree revealed a sequence quite divergent 135 

(Supplementary material, Fig S1), a result that could partly explain the discrepancy. In order 136 
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to increase the specific identification accuracy and therefore correctly assign the identified 137 

outliers, we propose to use a multi-locus bar-HRM method. For instance, a mini-barcode 138 

designed in the NADH dehydrogenase subunit 1 (ND1) mitochondrial gene allowed to 139 

discriminate between L1/L2 and L3/L4 groups of lineages (Primers designed for this study: 140 

ND1F374 – TRGCTGGATGAAGHTCAAA and ND1R519 – 141 

GCAAGYCARGCATGRAAA; 163 bp amplicon, Ta = 52°C, Fig. S2 and S3).  142 

 To conclude, we demonstrated the effectiveness of HRM for distinguishing cryptic 143 

species of earthworms. We developed a simple and rapid bar-HRM method allowing to 144 

successfully identify most of the tested specimens belonging to the A. chlorotica agg. We 145 

believe that this Bar-HRM method could be easily adapted to other earthworm species 146 

following the three-step procedure described here. It could be used for accurate species 147 

identification, which is an essential step in many fields of ecology. For instance, rearing of 148 

earthworms may be necessary for laboratory experiments in ecotoxicology or soil restoration 149 

(Lowe and Butt, 2005). To ensure a successful rearing, it is necessary to mix specimens from 150 

the same species (i.e. in order to avoid reproductive isolation). The bar-HRM method may be 151 

particularly useful to rapidly confirm morphological species distinction. This method is 152 

indeed much faster than sequencing because PCR and HRM steps are performed in the same 153 

reaction tube without any other post-PCR manipulations. For species confirmation, melting 154 

profiles of samples can be compared to those of reference species in a database. The 155 

prerequisite is thus to have a good knowledge of the taxonomical status of the target taxa, as it 156 

is now the case for several complexes of earthworm species (e.g. A. chlorotica, Dupont et al., 157 

2011; Pontoscolex corethrurus, Taheri et al. 2018). 158 

 159 

  160 
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Figure legends 254 

 255 

Figure 1: Expected melting temperatures (TmTHEO) of the 16S EwD/EwE fragment according 256 

to the three Allolobophora chlorotica agg. taxa, computed from published sequences. 257 

 258 

Figure 2: Melting curves profiles. a) panel of 16 reference individuals (L1 yellow, L2/L3 259 

blue, L4 orange) and b) panel of 16 reference individuals (dotted line) and 24 assigned 260 

unknown specimens (solid line) with non-matching control individuals in purple. HRM 261 

analysis of each individual was carried out in triplicates. 262 

 263 

Figure 3: Relationship between expected melting temperatures (computed) and experimental 264 

melting temperatures (measured by HRM) for all the individuals (reference panel individuals 265 

and assigned individuals) with the assignment to the three species indicated by colours (L1 266 

yellow, L2/L3 blue, L4 orange). The 2 non-matching control individuals sharing the same 267 

haplotype are indicated in purple.  268 
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