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Abstract

In 2017, M. Lin formulated two conjectures concerning determinantal inequalities for positive semi-definite
matrices A and B, and which can be stated as follows

det(A2 + |AB|p) ≥ det(A2 + |BA|p) for p ≥ 0

and
det(A2 + |AB|p) ≥ det(A2 +ApBp) for 0 ≤ p ≤ 2.

The main goal of this paper is to confirm the first conjecture in a slightly more general setting namely in

the case when A and B are Hermitian, and also to prove the second conjecture when 0 ≤ p ≤ 4

3
. Various

related inequalities are then presented and we conclude with an open log-majorization question.

Keywords: Determinantal inequalities; Hermitian matrix; Positive semi-definite matrix; Log-majorization;
Eigenvalues; Furuta inequality.
2010 MSC: 15A45, 15A60, 47A64

1. Introduction1

Audenaert [2] proved the following determinantal inequality, for n × n positive semi-definite matrices2

A and B,3

det(A2 + |BA|) ≤ det(A2 +AB) (1)

that answers a question arising in the study of interpolation methods for image processing in diffusion tensor4

imaging. Recently, Lin [6] generalized Audenaert’s result by proving5

det(A2 + |BA|p) ≤ det(A2 +ApBp), 0 ≤ p ≤ 2. (2)

In the same paper, he complemented (1) by proving that6

det(A2 + |AB|) ≥ det(A2 +AB). (3)

Clearly, Inequalities (1) and (3) imply that7

det(A2 + |AB|) ≥ det(A2 + |BA|). (4)

∗Corresponding author
URL: mahdi.ghabries@gmail.com (Mohammad M. GHABRIES)

Preprint submitted to Linear Algebra and its Applications March 5, 2020

© 2020 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0024379520301300
Manuscript_b03f7ee2d19a122d450d8328c89c8343

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0024379520301300
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S0024379520301300


In the same paper, it was asked whether it is possible to find a generalization of (4) and put forward the8

following conjecture.9

Conjecture 1.1. Let A and B be positive semi-definite matrices. Then, for all p ≥ 0, we have

det(A2 + |AB|p) ≥ det(A2 + |BA|p).

In addition, he introduced the following conjecture which is a generalization of (3) and a complementing10

result for (2).11

Conjecture 1.2. Let A and B be n× n positive semi-definite matrices. Then, for 0 ≤ p ≤ 2 it holds that

det(A2 + |AB|p) ≥ det(A2 +ApBp).

Lin [6] was able to prove Conjecture 1.1 for p = 1 and for all p positive even integers, and Conjecture12

1.2 for p = 0, 1 and 2. All other cases for both conjectures remain unsolved.13

14

The main purpose of this paper is to confirm Conjecture 1.1 in a slightly more general setting; namely in15

the case where A andB are Hermitian matrices, and also to show that Conjecture 1.2 is valid for 0 ≤ p ≤ 4
3 .16

In addition, we shall prove that the determinantal inequality of Conjecture 1.2 is also true for all 2 ≤ p ≤ 4,17

however it remains open for 4
3 < p < 2.18

19

To proceed, we first fix some notation. Let Mn be the space of n × n complex matrices where its
identity matrix is denoted by In. The modulus of a complex matrix X is defined as |X| = (X∗X)1/2.
As usual, we shall write X ≥ 0 to indicate that X is positive semi-definite. Also, for Hermitian matrices
X,Y ∈Mn, we shall say thatX ≥ Y ifX−Y is positive semi-definite matrix. Moreover, if the eigenvalues
λ1(X), λ2(X), . . . , λn(X) of a matrix X are real, then we shall always assume that they are arranged in
decreasing order, that is

λ1(X) ≥ λ2(X) ≥ · · · ≥ λn(X).

For a Hermitian matrix X ∈Mn, we shall denote

λ(X) = (λ1(X), λ2(X), . . . , λn(X))
t

which is clearly a real vector of order n.20

21

Majorization relations are great tools for deriving determinantal inequalities, see for example [9, Chapter22

10] for more details on this subject. If λ(A), λ(B) ∈ Rn
+, then by λ(A) ≺wlog λ(B), we mean that λ(A) is23

weakly log-majorized by λ(B), that is24

k∏
i=1

λi(A) ≤
k∏

i=1

λi(B) for all k = 1, 2, ..., n. (5)

In addition, we shall write λ(A) ≺log λ(B) and we will say that λ(A) is log-majorized by λ(B) if (5) is25

true and equality holds for k = n.26
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2. Comparing det(A2 + |BA|p) with det(A2 + ApBp) when A,B ≥ 0.27

The main purpose here is to study the relation between the two determinantal quantities

det(A2 + |BA|p) and det(A2 +ApBp) for p ∈ [0,+∞) and with A,B ≥ 0.

We shall start with the following lemma which is obtained from a result proved by A. Matsumoto, R.28

Nakamoto and M. Fujii [7] by using anti-symmetric tensor product argument.29

Lemma 2.1. Let X and Y be two positive semi-definite matrices. Then,30

1. λ(X
k+t
2 Y tX

k+t
2 ) ≺wlog λ(X

k
2 (X

1
2Y X

1
2 )tX

k
2 ) for all 0 ≤ t ≤ 1 and k ≥ 0.31

2. λ(X
k+t
2 Y tX

k+t
2 ) �wlog λ(X

k
2 (X

1
2Y X

1
2 )tX

k
2 ) for all t ≥ 1 and 0 ≤ k ≤ 1.32

Next, we prove the following elementary lemma which constitutes one of the basis of our main results.33

In fact, it is a slight generalization1 of Lemma A on page 129 of [5].34

Lemma 2.2. Let X and Y be two invertible matrices. Then, for all t ∈ R,

(X∗Y ∗Y X)t = X∗Y ∗(Y XX∗Y ∗)t−1Y X.

Proof. Let X∗Y ∗ = U |X∗Y ∗| be the polar decomposition of the matrix X∗Y ∗, where U is unitary. Then,35

clearly we obtain U = X∗Y ∗|X∗Y ∗|−1, U∗ = |X∗Y ∗|−1Y X , and Y X = |X∗Y ∗|U∗.36

(X∗Y ∗Y X)t = (U |X∗Y ∗||X∗Y ∗|U∗)t

=
(
U |X∗Y ∗|2U∗

)t
= U |X∗Y ∗|2tU∗

= X∗Y ∗|X∗Y ∗|−1|X∗Y ∗|2t|X∗Y ∗|−1Y X
= X∗Y ∗(Y XX∗Y ∗)t−1Y X.

37

The next lemma is also needed for our purposes and it shows a close connection between log-majorization38

and determinantal inequalities and can be found in [6, (P2)].39

Lemma 2.3. Let X and Y be two matrices in Mn. If λ(X), λ(Y ) are in Rn
+ such that λ(X) ≺wlog λ(Y ),

then
det(In +X) ≤ det(In + Y ).

As a consequence, we have the following result.40

Theorem 2.1. Let A and B be two positive semi-definite matrices. Then41

1. det(A2 + |BA|p) ≥ det(A2 +ApBp) for 2 ≤ p ≤ 4.42

2. If 0 ≤ p ≤ 2 or p ≥ 4, then det(A2 + |BA|p) ≤ det(A2 +ApBp).43

1Thanks to the reviewer for pointing this out.
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Proof. 1. Without loss of generality, we shall assume that A and B are positive definite matrices as the44

general case can be then obtained by a continuity argument. For 2 ≤ p ≤ 4, then we can write45

λ(A−1(AB2A)
p
2A−1) = λ

(
A−1(AB(BA2B)

p
2−1BA)A−1

)
(by Lemma 2.2)

= λ
(
B(BA2B)

p
2−1B

)
= λ

(
(B2)

1
2

(
(B2)

1
2 (A2)(B2)

1
2

) p
2−1

(B2)
1
2

)
�wlog λ

(
(B2)1+

p
2−1(A2)

p
2−1
)

(by Lemma 2.1, Part 1)

= λ(Ap−2Bp).

So,46

λ(A−1(AB2A)
p
2A−1) �wlog λ(A

p−2Bp). (6)

Next, applying Lemma 2.3 on (6) gives47

det(In +A−1(AB2A)
p
2A−1) ≥ det(In +Ap−2Bp). (7)

Multiplying both sides of (7) by det(A2) > 0 completes the proof of the first part.48

49

2. The proof for the case where 0 ≤ p ≤ 2, is due to [6], while the case where p ≥ 4 can be done in a50

similar fashion as in the first case by making use this time of Part 2 of Lemma 2.1.51

3. Proof of Conjecture 1.152

The starting point here is a lemma dealing with a majorization inequality which appears in [8]. For the53

sake of completeness, we reproduce the proof here.54

Lemma 3.1. Let Y be a positive semi-definite matrix and X be any Hermitian matrix. Then for all p, q ∈
[0,+∞), it holds that

λ(XY pXY q) ≺wlog λ(X
2Y p+q).

Proof. By appealing to a standard argument (anti-symmetric product), then it suffices to prove that

λ1(XY
pXY q) ≤ λ1(X2Y p+q).

Without loss of generality, we shall assume that X is invertible as the general case can be done by
continuity argument. In addition, we shall assume that q ≤ p and λ1(X2Y p+q) = 1. Now, obviously
proving our claim is equivalent to showing that

λ1(XY
pXY q) ≤ 1.

The fact that the largest eigenvalue of the matrix X2Y p+q is equal to 1, clearly implies that

λj(X
2Y p+q) ≤ 1 for all 1 ≤ j ≤ n.

But this is equivalent to XY p+qX ≤ In which in turn gives55

Y p+q ≤ (X−1)2. (8)
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Next, applying Lowner-Heinz on (8) for a power 0 ≤ p
p+q ≤ 1, yields56

Y p ≤ ((X−1)2)
p

p+q . (9)

Again, taking a power 0 ≤ q
p ≤ 1 in both sides of (9), we get

Y q ≤
(
(X−1)2

) q
p+q .

Hence,57

(X2)
q

p+q ≤ Y −q. (10)

Therefore,58

λ1(XY
pXY q) = λ1

(
Y q/2XY pXY q/2

)
≤ λ1

(
Y q/2X((X−1)2)

p
p+qXY q/2

)
(by using (9))

= λ1

(
(Y q/2(X2)

q
p+q Y q/2

)
≤ λ1

(
Y q/2Y −qY q/2

)
(by using (10))

= λ1(In)

= 1.

59

As a result, we have the following theorem.60

Theorem 3.1. Let Y be a positive definite matrix and X be a Hermitian matrix. Then for all p, q ∈ [0,∞)61

λ(XY pXY −q) �wlog λ(X
2Y p−q). (11)

Proof. The proof will be divided into three cases.62

Case 1: Let q ≥ 2p. By Schur’s complement we have

M =

[
Y −

q
2XY pXY −

q
2 Y −

q
2X2Y p− q

2

Y p− q
2X2Y −

q
2 Y p− q

2XY −pXY p− q
2

]
≥ 0.

Applying Theorem 10.20 in [9, p. 352] gives

λ1

(
Y −

q
2XY pXY −

q
2

)
· λ1

(
Y p− q

2XY −pXY p− p
2

)
≥ λ1

(
Y −

q
2X2Y p− q

2

)2
.

That is,63

λ1
(
XY pXY −q

)
· λ1

(
XY 2p−qXY −p

)
≥ λ1

(
X2Y p−q)2 . (12)

In view of Lemma 3.1, it is worthy to observe that64

λ
(
X(Y −1)q−2pX(Y −1)p

)
≺wlog λ

(
X2(Y −1)q−p

)
= λ

(
X2Y p−q) .

5



Therefore,65

λ1
(
Y 2p−qXY −pX

)
= λ1

(
X(Y −1)q−2pX(Y −1)p

)
≤ λ1

(
X2Y p−q) .

Thus, from (12) we obtain

λ1
(
XY pXY −q

)
≥ λ1

(
X2Y p−q) for q ≥ 2p ≥ 0.

By a standard anti-symmetric tensor product argument, inequality (11) is true for all q ≥ 2p.66

67

Case 2: Let p ≤ q ≤ 2p. The idea of the proof here depends on writing the interval [p, 2p] =
∞⋃
k=2

[k+1
k p, 2p]68

and then proving (11) for each subinterval. We start with with case k = 2 i.e. for 2p ≥ q ≥ 3p
2 . Then,69

λ(Y pXY −qX) = λ
(
Y

3p
2 (Y −

p
2XY −

p
2 )Y p−q(Y −

p
2XY −

p
2 )Y

p
2

)
= λ

(
Y 2p(Y −

p
2XY −

p
2 )Y −(q−p)(Y −

p
2XY −

p
2 )
)

= λ
(
(Y −1)−2p(Y −

p
2XY −

p
2 )(Y −1)q−p(Y −

p
2XY −

p
2 )
)
.

Now considering this last expression and noticing that 2p ≥ 2(q − p) ≥ 0, then in view of Case 1;70

replacing Y with Y −1, X with Y −
p
2XY −

p
2 , 2p with q and lastly q − p with p, we obtain71

λ(Y pXY −qX) �wlog λ
(
Y 3p−q(Y −

p
2XY −

p
2 )2
)

= λ
(
Y 2p−qXY −pX

)
�wlog λ(Y

p−qX2) (again using Case 1 as p ≥ 2(2p− q) ≥ 0).

Next, using a similar argument, we prove (11) is true for k = 3 i.e. for 2p ≥ q ≥ 4p
3 . As earlier, we72

can write73

λ(Y pXY −qX) = λ
(
Y

3p
2 (Y −

p
2XY −

p
2 )Y p−q(Y −

p
2XY −

p
2 )Y

p
2

)
= λ

(
Y 2p(Y −

p
2XY −

p
2 )Y −(q−p)(Y −

p
2XY −

p
2 )
)

= λ
(
(Y −1)−2p(Y −

p
2XY −

p
2 )(Y −1)q−p(Y −

p
2XY −

p
2 )
)

�wlog λ
(
Y 3p−q(Y −

p
2XY −

p
2 )2
)

(in view of of Case 1 as 2p ≥ 2(q − p) ≥ 0)

= λ
(
Y 2p−qXY −pX

)
�wlog λ(Y

p−qX2) (similarly in view of Case k = 2 as p ≥ 3

2
(2p− q) ≥ 0).

Continuing this way, one can easily see (using induction) that for any positive integer k, inequality74

(11) is true for all q with 2p ≥ q ≥ (k+1)p
k . Finally, the proof for this case can be achieved by letting75

k tends to infinity.76

77
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Case 3: Let q ≤ p. To complete the proof of this case, it suffices to apply the preceding two cases on Y −1.78

79

As applications, we have the following result.80

Corollary 3.1. Let A and B be two Hermitian matrices. Then, for all p ∈ [0,∞) we have

det(A2 + |BA|p) ≤ det(A2 + |AB|p).

Proof. As usual, we shall assume that A and B are invertible, the general case is by continuity argument.81

Then, for all p ∈ [0,+∞) we have82

λ
(
A−1(AB2A)

p
2A−1

)
= λ

(
B(BA2B)

p
2−1B

)
(Using Lemma 2.2)

= λ
(
B2(BA2B)

p
2−1
)

≺wlog λ
(
B(BA2B)

p
2B(BA2B)−1

)
(Using Theorem 3.1)

= λ
(
A−1(BA2B)

p
2A−1

)
.

Next, applying Lemma 2.3 gives

det(In +A−1(AB2A)
p
2A−1) ≤ det(In +A−1(BA2B)

p
2A−1).

Finally, multiplying both sides with det(A2) > 0 yields

det(A2 + |BA|p) ≤ det(A2 + |AB|p).

83

4. Conjecture 1.284

In this section, our purpose is to find for what values of k and t the following majorization inequality85

λ(A
k
2−tBt) ≺log λ(A

k
4 (B

1
2A−1B

1
2 )tA

k
4 ) (13)

is valid, where A and B are positive definite matrices.86

87

We shall start here with the following lemma which is needed for our purposes and is well known as88

Furuta’s inequality [4].89

Lemma 4.1. Let A, B be two positive semi-definite matrices such that A ≥ B. Then, for all p ≥ 1, r ≥ 0,

A(p+2r)/p ≥ (ArBpAr)1/p.

Now we are in a position to prove the next theorem which shows that (13) is valid for all 0 ≤ t ≤ 1 and90

k ≥ 4t.91

Theorem 4.1. Let A and B be two positive definite matrices. Then for all 0 ≤ t ≤ 1 and k ≥ 4t

λ(A
k
2−tBt) ≺log λ(A

k
4 (B

1
2A−1B

1
2 )tA

k
4 ).

7



Proof. Let 0 ≤ t ≤ 1 and k ≥ 4t. Using Schur’s complement, we know that

M =

[
A

k
4−tBt(B−

1
2AB−

1
2 )tBtA

k
4−t A

k
4−tBtA

k
4

A
k
4BtA

k
4−t A

k
4 (B

1
2A−1B

1
2 )tA

k
4

]
≥ 0.

Then92 (
λ1(A

k
2−tBt)

)2
≤ λ1(A

k
4 (B

1
2A−1B

1
2 )tA

k
4 ) · λ1(A

k
4−tBt(B−

1
2AB−

1
2 )tBtA

k
4−t). (14)

As mentioned earlier, in order to prove our claim, then it is enough to prove that93

λ1(A
k
2−tBt) ≥ λ1(A

k
4−tBt(B−

1
2AB−

1
2 )tBtA

k
4−t), (15)

which is in turn equivalent to showing that

B
t
2A

k
2−tB

t
2 ≤ In ⇒ A

k
4−tBt(B−

1
2AB−

1
2 )tBtA

k
4−t ≤ In.

For this, let B
t
2A

k
2−tB

t
2 ≤ In, then A

k
2−t ≤ B−t. First, making use of Löwner-Heinz inequality for

0 ≤ t
k
2−t
≤ 1 gives

At ≤ B
− t2

k
2
−t .

Next, applying Lemma 4.1 yields(
B
− t2

k
2
−t

) p+2r
p

≥

[(
B
− t2

k
2
−t

)r

(At)p

(
B
− t2

k
2
−t

)r] 1
p

.

Now, replacing p with 1
t ≥ 1 and r with

k
2−t
2t2 ≥ 0 gives94

B
−

kt
2

k
2
−t ≥ (B−

1
2AB−

1
2 )t.

Pre-post multiplying both sides by Bt > 0 implies that95

(Bt)

k
2
−2t

k
2
−t = BtB

−
kt
2

k
2
−tBt ≥ Bt(B−

1
2AB−

1
2 )tBt. (16)

However, A
k
2−t ≤ B−t, so that A−(

k
2−t) ≥ Bt. By again appealing to Löwner-Heinz inequality for

0 ≤
k
2−2t
k
2−t

≤ 1 we obtain

(A−(
k
2−t))

k
2
−2t

k
2
−t ≥ (Bt)

k
2
−2t

k
2
−t ,

which gives96

A−(
k
2−2t) ≥ (Bt)

k
2
−2t

k
2
−t . (17)

Now it is worthy to observe that inequalities (16) and (17) yield97

A−(
k
2−2t) ≥ Bt(B−

1
2AB−

1
2 )tBt.

8



Hence, A
k
4−tBt(B−

1
2AB−

1
2 )tBtA

k
4−t ≤ In, and therefore, (15) is true for all 0 ≤ t ≤ 1 and k ≥ 4t.98

On the other hand, using (14) and (15) gives

λ1(A
k
2−tBt) ≤ λ1(A

k
4 (B

1
2A−1B

1
2 )tA

k
4 ), 0 ≤ t ≤ 1, k ≥ 4t.

Thus, by a standard anti-symmetric tensor product argument, we get

λ(A
k
2−tBt) ≺wlog λ(A

k
4 (B

1
2A−1B

1
2 )tA

k
4 ), 0 ≤ t ≤ 1, k ≥ 4t.

Finally, the proof is complete by making use of the fact that

det(A
k
2−tBt) = det(A

k
4 (B

1
2A−1B

1
2 )tA

k
4 ).

99

Our next goal is to show that (13) is also true for all 1
2 ≤ t ≤ 1 and k ≥ 6t − 2. First, we need the100

following lemma.101

Lemma 4.2. Let A and B be two positive definite matrices. Then, for all 1
2 ≤ t ≤ 1 and k ≥ 6t − 2, we

have

λ

(
A

k+2t
4

(
A−

1
2BA−

1
2

)2t
A

2t+k
4

)
�log λ(A

k
2−tB2t).

Proof. As in similar situations, it is enough to prove that for all 1
2 ≤ t ≤ 1 and k ≥ 6t− 2

λ1

(
A

k+2t
4

(
A−

1
2BA−

1
2

)2t
A

2t+k
4

)
≥ λ1(A

k
2−tB2t).

First, in view of Lemma 2.2, we obtain the following equality:

A
2t+k

4

(
A−

1
2BA−

1
2

)2t
A

2t+k
4 = A

2t+k−2
4 B

1
2

(
B

1
2A−1B

1
2

)2t−1
B

1
2A

2t+k−2
4 .

For the sake of clarification, we shall use the following notation. For all 1
2 ≤ t ≤ 1 and k ≥ 6t− 2, let102

X = A
2t+k−2

4 B
1
2

(
B

1
2A−1B

1
2

)2t−1
B

1
2A

2t+k−2
4 ,

Y = A
2t+k−2

4 B2tA
k−6t+2

4 , and

Z = A
k−6t+2

4 B2t− 1
2 (B−

1
2AB−

1
2 )2t−1B2t− 1

2A
k−6t+2

4 .

Now by making use of Schur complement, the following 2× 2 block matrix

M =

[
X Y
Y ∗ Z

]
is positive semi-definite and hence λ1(X) ·λ1(Z) ≥ λ1(Y )2. Our next goal is to show that λ1(Z) ≤ λ1(Y )

which in turn gives λ1(X) ≥ λ1(Y ). Noticing that λ1(Y ) = λ1(B
tA

k
2−tBt), then in order to prove

λ1(Z) ≤ λ1(Y ), it is suffices to show that

BtA
k
2−tBt ≤ In ⇒ Z ≤ In.

9



For this purpose, let BtA
k
2−tBt ≤ In, then clearly A

k
2−t ≤ B−2t. Using Löwner-Heinz inequality for

0 ≤ 2t−1
k
2−t
≤ 1 gives

A2t−1 ≤ B
− 2t(2t−1)

k
2
−t .

Now, applying Lemma 4.1 yields(
B
− 2t(2t−1)

k
2
−t

) p+2r
p

≥
[(
B
− 2t(2t−1)

k
2
−t

)r

(A2t−1)p
(
B
− 2t(2t−1)

k
2
−t

)r] 1
p

.

Next, taking p = 1
2t−1 ≥ 1 and r =

k
2−t

4t(2t−1) ≥ 0 implies that

B
−

( k
2
+t)(2t−1)

k
2
−t ≥ (B−

1
2AB−

1
2 )2t−1.

Pre-post multiplying both sides with B2t− 1
2 > 0 gives

B2t− 1
2B
−

( k
2
+t)(2t−1)

k
2
−t B2t− 1

2 =
(
B2t
) k−6t+2

2
k
2
−t ≥ B2t− 1

2 (B−
1
2AB−

1
2 )2t−1B2t− 1

2 .

Again, noticing that A
k
2−t ≤ B−2t implies that A−(

k
2−t) ≥ B2t, then by appealing to Löwner-Heinz

for 0 ≤
k−6t+2

2
k
2−t

≤ 1 we obtain

(A−(
k
2−t))

k−6t+2
2

k
2
−t ≥ (B2t)

k−6t+2
2

k
2
−t

which gives
A−(

k−6t+2
2 ) ≥ B2t− 1

2 (B−
1
2AB−

1
2 )2t−1B2t− 1

2 .

Hence,
Z = A

k−6t+2
4 B2t− 1

2 (B−
1
2AB−

1
2 )2t−1B2t− 1

2A
k−6t+2

4 ≤ In.

Therefore, for all 1
2 ≤ t ≤ 1 and k ≥ 6t− 2,

λ1(X) ≥ λ1(Y ).

Thus, by an anti-symmetric tensor product argument and by the fact that det(X) = det(Y ), we get

λ(X) �log λ(Y ).

Finally, noting that λ(X) = λ

(
A

k+2t
4

(
A−

1
2BA−

1
2

)2t
A

2t+k
4

)
and λ(Y ) = λ(A

k
2−tB2t), the proof is103

complete.104

Theorem 4.2. Let A and B be two positive definite matrices. Then, for all 1
2 ≤ t ≤ 1 and k ≥ 6t− 2

λ

(
A

k
4

(
B

1
2A−1B

1
2

)t
A

k
4

)
�log λ(A

k
2−tBt).
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Proof. Let 1
2 ≤ t ≤ 1 and k ≥ 6t− 2. Then, we can write105

λ

(
A

k
4

(
B

1
2A−1B

1
2

)t
A

k
4

)
= λ

(
A

k
4

(
A

1
2 (A−

1
2B

1
2A−1B

1
2A−

1
2 )A

1
2

)t
A

k
4

)
�wlog λ

(
A

k
2+t

(
A−

1
2B

1
2A−1B

1
2A−

1
2

)t)
(by Part 1 of Lemma 2.1)

= λ

(
A

k
2+t

(
A−

1
2B

1
2A−

1
2

)2t)
= λ

(
A

k+2t
4

(
A−

1
2B

1
2A−

1
2

)2t
A

k+2t
4

)
�log λ

(
A

k
2−t(B

1
2 )2t

)
(by Lemma 4.2)

= λ(A
k
2−tBt).

106

As a result of Theorem 4.1 and Theorem 4.2, we have the following corollary.107

Corollary 4.1. Let A and B be two positive semi-definite matrices. Then, for (0 ≤ p ≤ 2 and k ≥ 2p) or
for (1 ≤ p ≤ 2 and k ≥ 3p− 2) we have

det(Ak + |AB|p) ≥ det(Ak +ApBp).

Proof. Without loss of generality we may assume that A and B are positive definite matrices, the general108

case is by continuity argument. Suppose that 0 ≤ p ≤ 2 and k ≥ 2p. Then, replacing A with A−2, B with109

B2 and t with 0 ≤ p
2 ≤ 1 in Theorem 4.1 gives110

λ(Ap−kBp) ≺log λ(A
− k

2 (BA2B)
p
2A−

k
2 ). (18)

Applying Lemma 2.3 on (18) yields

det(In +A−
k
2 (BA2B)

p
2A−

k
2 ) ≥ det(In +Ap−kBp).

Next, multiplying both sides with det(Ak) > 0, we obtain

det(Ak + |AB|p) ≥ det(Ak +ApBp), 0 ≤ p ≤ 2, k ≥ 2p.

For the case when 1 ≤ p ≤ 2 and k ≥ 3p− 2, the proof can be done in a similar fashion by making use111

this time of Theorem 4.2.112

As an analogue of Theorem 2.1, Corollary 3.1, and Corollary 4.1, we have the following result which113

gives a partial answer of Conjecture 1.2.114

Theorem 4.3. Let A and B be two positive semi-definite matrices. Then, for all 0 ≤ p ≤ 4
3 or 2 ≤ p ≤ 4,

the following holds
det(A2 + |AB|p) ≥ det(A2 +ApBp).

11



Proof. Corollary 4.1 is a general case of

det(A2 + |AB|p) ≥ det(A2 +ApBp), 0 ≤ p ≤ 4

3
.

Combining Part 1 of Theorem 2.1 with Corollary 3.1 implies that for all 2 ≤ p ≤ 4

det(A2 + |AB|p) ≥ det(A2 + |BA|p) ≥ det(A2 +ApBp).

115

We conclude this paper with the following conjecture which is very much related to our work in this116

section, and whose validation for k = 2 would imply Conjecture 1.2.117

Conjecture 4.1. Let A and B be two positive definite matrices. Then for all k ≥ 0 and 0 ≤ t ≤ 1,

λ

(
A

k
4

(
B

1
2A−1B

1
2

)t
A

k
4

)
�log λ(A

k
2−tBt).
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