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Milnor-Witt Cycle Modules
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Abstract

We generalize Rost’s theory of cycle modules [Ros96] using the Milnor-Witt K-theory
instead of the classical Milnor K-theory. We obtain a (quadratic) setting to study general
cycle complexes and their (co)homology groups. The standard constructions are devel-
oped: proper pushfoward, (essentially) smooth pullback, long exact sequences, spectral
sequences and products, as well as the homotopy invariance property; in addition, Gysin
morphisms for lci morphisms are constructed. We prove an adjunction theorem linking
our theory to Rost’s. This work extends Schmid’s thesis [Sch98].
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1 Introduction

Historical approach
Back in the nineties, Rost developed the theory of cycle modules [Ros96] which was used in the famous
proof of Milnor conjecture by Voevodsky (see [SV00] or [Voe11]). Indeed, a crucial step in the proof was
the construction of the motive associated to some quadratic forms [Ros98]. In [Ros96], a cycle module
M over a perfect field k is the data of a Z-graded abelian group M(E) for every finitely generated
field extension E/k, equipped with restriction maps, (finite) corestriction maps, a Milnor K-theory
module action and residue maps ∂. These data are subject to some axioms (r1a), . . . , (r3e) such that
Milnor K-theory groups form a Rost cycle module. From the formal definitions, Rost produced a
general theory that encompassed previous ones (Quillen K-theory and étale cohomology, for instance).
Moreover, Rost’s theory is fundamentally linked with the theory of motives: cycle modules can be
realized geometrically. This can be illustrated by the following theorem.

Theorem 1 (Déglise). [Dé03] Let k be a perfect field. The category of Rost cycle modules over k is
equivalent to the heart of the category of Voevodsky’s motives DM(k,Z) with respect to the homotopy
t-structure.

The idea of A1-homotopy theory, due to Morel and Voevodsky, was to apply techniques from
algebraic topology to the study of schemes (the affine line A1 playing the role of the unit interval
[0, 1]). This idea gave rise to many important results and new categories, such as DM(k,Z) mentioned
above and SH(k), the stable homotopy category [MV99].

In his study of SH(k), Morel (in joint work with Hopkins) defined for a field E the Milnor-Witt
K-theory KMW

∗ (E) (see [Mor12, Definition 3.1]). This Z-graded abelian group behaves in positive
degrees like Milnor K-theory groups KM

n (E), and in non-positive degrees like Grothendieck-Witt and
Witt groups of quadratic forms GW(E) and W(E). The Milnor-Witt K-theory was used for solving
some splitting problems for projective modules. For instance, generalizing ideas from the theory of
Chow groups, one can use the Rost-Schmid complex of Morel to define the Chow-Witt groups C̃H

∗
(X)

for a smooth k-scheme X (recalled in 7.5), and the Euler class of a vector bundle of rank r over X
(with a given trivialization of its determinant) as an element in C̃H

r
(X). When X = SpecA is a

2-dimensional smooth affine variety and r = 2, Barge and Morel proved in [BM00] that the Euler class
associated to a projective module P of rank 2 over A vanishes if and only if P ' P ′ ⊕ A for some
projective module P ′.

Current and future work
In this paper, we develop a conjectured1 theory that studies general cycle complexes C∗(X,M,VX) and
their (co)homology groups A∗(X,M,VX) (called Chow-Witt groups with coefficients) in a quadratic2
setting. The general coefficient systems M for these complexes are called Milnor-Witt cycle modules.
The main example of such a cycle module is given by the Milnor-Witt K-theory (see Theorem 4.13);
other examples can be deduced from Claim 4, Example 4.7 or Theorem 12.5 (e.g. the representability
of hermitian K-theory in SH(k) will lead to a MW-cycle module, associated with hermitian K-theory).
A major difference with Rost’s theory is that the grading to be considered is not Z but the category
of virtual bundles (or, equivalently, the category of virtual vector spaces), where a virtual bundle V
is, roughly speaking, the data of an integer n and a line bundle L (see Appendix A).

Intuitively, Milnor-Witt cycle modules are given by (twisted) graded abelian groups equipped with
extra data (restriction, corestriction, KMW -action and residue maps). The difficult part was to find
good axioms mimicking Rost’s and taking into account the twists naturally arising in the non-oriented
setting (virtual vector bundles play a major role). One important difference with the construction
of Rost cycle modules [Ros96, Definition 1.1] is that we only need a weakened rule R1c: we do not

1See [Ros96, Remark 2.6] and [Mor12, Remark 5.37].
2Or rather: symmetric bilinear, since we allow fields of characteristic 2.
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consider multiplicities (we will show in future work that formulas involving multiplicities do hold as a
consequence of our axioms). Moreover, we had to add another rule in our definition in order to link
our theory with the classical one later (see R4a and Section 12).

Following [Ros96, §3], we define the necessary operations needed on: pushforwards, pullbacks,
multiplication with units and the motivic Hopf map η, and boundary maps. Since our rules do not
handle multiplicities, we first define pullbacks only for (essentially) smooth morphisms. We prove the
usual functoriality theorems and show how to compute the (co)homology groups in special cases.

We can summarize the results as follows:

Theorem 2. (See Section 5 and Section 6) For any scheme X, any virtual bundle VX and any
Milnor-Witt cycle module M , there is a complex C∗(X,M,VX) equipped with pushforwards, pullbacks,
a Milnor-Witt K-theory action and residue maps satisfying the standard functoriality properties.

This formalism generalizes Schmid’s thesis [Sch98] and provides more details to Morel’s work
[Mor12], regarding twists by virtual vector bundles.

An example of an application is as follows. Consider the localization sequence:

C̃Hp(Z)→ C̃Hp(X)→ C̃Hp(X \ Z),

where Z ⊂ X is a closed subvariety. Milnor-Witt cycle modules can be used to extend this exact
sequence on the left and right, this is done in Section 7.

In Section 8, we prove a result similar to the Gersten Conjecture: the cohomology groups
Ap(X,M,VX) are trivial when X is a smooth semi-local scheme, VX a virtual bundle over X and
p > 0. The proof is akin to Rost’s Theorem 6.1 [Ros96] and follows the classical ideas of Gabber and
Panin.

Moreover, we prove the much expected homotopy invariance property, framing our work in A1-
homotopy theory:

Theorem 3. (see Theorem 9.4) Let X be a scheme, V a vector bundle over X, π : V → X the
canonical projection and VX a virtual vector bundle over X. Then, for every q ∈ Z, the canonical
morphism

π∗ : Aq(X,M,VX)→ Aq(V,M,−TV/X + VV )

is an isomorphism.

Our proof of this theorem does not follow Rost’s ideas. Indeed, in his original paper [Ros96,
§7], Rost constructs a cycle module Aq[ρ,M ] from any cycle module M and any scheme morphism
ρ : Q → B, then uses a spectral sequence involving this new cycle module to prove the theorem. We
could not easily extend the construction to our setting for some reasons related to twists. However,
following ideas of Déglise (see [Dé14, §2]), we define a coniveau spectral sequence that helps us to
reduce to the known case (see (H)). Note that we could also prove the result by giving a homotopy
inverse on the complex level (as Rost did in [Ros96, §8]; see also [Mor12, Theorem 4.38]).

In [Ros96, §12], Rost defines pullback maps f∗ (or Gysin morphisms) for morphisms f : X → Y
between smooth schemes. In Section 10, we do the same but for a more general set of maps, the classical
local complete intersection (lci) morphisms, between possibly singular schemes. We prove functoriality
and base change theorems which will prove to be useful later when considering multiplicities.

In Section 11, we construct products in our setting. Using the Gysin morphisms, we define then
an intersection product on the homology groups of smooth schemes. In particular, we recover the
intersection product already defined for Chow-Witt groups (see [Fas18, §3.4]). We will use these
notions to study the multiplicities naturally arising. Note however that we do not define a tensor
product between Milnor-Witt cycle modules (but it can be obtained from Claim 4 below).

In future work, we will prove that Milnor-Witt cycle modules have a geometric interpretation in
SH(k) as expected:

3
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Claim 4. Let k be a perfect field. The category of Milnor-Witt cycle modules is equivalent to the heart
of the Morel-Voevodsky stable homotopy category (with respect to the homotopy t-structure):

MMW
k ' SH(k)

♥.

This result generalizes Theorem 1 and answers affirmatively an old conjecture of Morel (see [Mor12,
Remark 2.49]). Note that we already have a description of the heart SH(k)

♥ in terms of homotopy
modules (which are strictly A1-invariant Nisnevich sheaves with an additional structure defined over
the category of smooth schemes, see [Mor03, §5.2] or [Dé11, §1]). Cycle modules may be easier to
work with since they are defined over fields. An important corollary of Claim 43 is the following result
(which was proved independently by Ananyevskiy and Neshitov in [AN18, Theorem 8.12]):

Corollary 5. Let k be a perfect field. The heart of the Morel-Voevodsky stable homotopy category
is equivalent to the heart of the category of MW-motives [DF18] (both equipped with their respective
homotopy t-structures):

SH(k)
♥ ' D̃M(k)

♥
.

In a forthcoming work, we will generalize the theory of Milnor-Witt cycle modules over k to any
base scheme S. We will also define general flat pullbacks and study the associated multiplicities.

Outline of the paper
In Section 2, we recall some known properties of the Milnor-Witt K-theory (residue maps, specialization
maps, transfer maps, homotopy invariance). Our main references are the original work of Morel [Mor12,
§2] and also work of Calmès-Fasel (see [Fas18]). This will constitute our central example of a Milnor-
Witt cycle module.

In Section 3 and Section 4, we define the main objects of our theory: Milnor-Witt cycle modules.
These are Milnor-Witt cycle premodules satisfying two axioms (FD) and (C) which allow the associated
complexes to have well-defined differentials.

In Section 5 and Section 6, we define the basic operations needed further on: pushforwards,
pullbacks, multiplication by units and the motivic Hopf map η, and boundary maps. We prove the
basic compatibility properties for these operations.

In Section 7, we define homology groups called Chow-Witt groups with coefficients and describe
how they are related to the classical Chow-Witt groups. We show how to compute these groups in
some special cases in Section 8 and Section 9.

In Section 10, we define Gysin pullbacks for regular closed immersions and lci morphisms. We
then proceed to construct products on the level of complexes in Section 11.

In Section 12, we define a pair of functors between our category of Milnor-Witt cycle modules and
Rost’s category of classical cycle modules. We can infer from Claim 4 that this is an adjunction but,
for completeness, we give an elementary proof of this fact (conditionally to Claim 3.10 whose proof is
postponed to another paper).

Finally, in Appendix A, we show how to define the category of virtual objects associated to an
exact category and recall its basic properties (see [Del87, §4]).

Notation
Throughout the paper, we fix a (commutative) field k and we assume moreover that k is perfect (of
arbitrary characteristic). We consider only schemes that are noetherian and essentially of finite type4
over k. All schemes and morphisms of schemes are defined over k.

3This result seems closely related to the work of Bachmann and Yakerson. Indeed, in [BY18], the authors
construct (for a strictly homotopy invariant sheaf M , a smooth k-scheme X and a natural number q) a cycle
complex C∗(X,M, q) which may be compared to the complex defined in Section 5.

4That is, isomorphic to a limit of finite type schemes with affine étale transition maps.
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By a field E over k, we mean a finitely generated extension of fields E/k.
We denote by Fk the category of fields over k (with obvious morphisms).
If A is a commutative ring, denote by V(A) the category of projective A-modules of finite type

and V(A) the category of virtual projective A-modules of finite type (see [Del87, §4] which uses the
notation K(A); see also Appendix A for more details). Recall that there is a contravariant equivalence
functor from V(A) to the category of vector bundles over X = SpecA (we follow the conventions of
[GD71, §9]). We will sometimes go from one category to the other without mentioning this functor.

Let f : X → S be a morphism of schemes and VS be a virtual bundle over S. We denote by VX
or by f∗VS or by VS ×S X the pullback of VS along f .

Now let Fk be the category whose objects are couples (E,VE) where E is a field over k and
VE ∈ V(E) is a virtual vector space (of finite dimension over E). A morphism (E,VE) → (F,VF ) is
the data of a morphism E → F of fields over k and an isomorphism VE⊗E F ' VF of virtual F -vector
spaces5.

A morphism (E,VE) → (F,VF ) in Fk is said to be finite (resp. separable) if the field extension
F/E is finite (resp. separable).

Let F/E be a field extension, we denote by ΩF/E the F -vector space of relative (Kähler) differen-
tials. We use the same notation to denote its canonical image in the category of virtual vector spaces.
Dually, let X/S be a scheme morphism, we denote by TX/S the sheaf of modules of differentials.

Let E be a field (over k) and v a (discrete) valuation on E. We denote by Ov its valuation ring,
by mv its maximal ideal and by κ(v) its residue field. We consider only valuations on E of geometric
type, that is we assume: k ⊂ Ov, the residue field κ(v) is finitely generated over k and satisfies
tr.degk(κ(v)) + 1 = tr.degk(E) (in particular, E cannot be k).

Let E be a field and v be a valuation on E. We denote by Nv the κ(v)-vector space mv/m
2
v and

call it the normal bundle of v.
For E a field (resp. X a scheme), denote by A1

E (resp. A1
X) the virtual vector space of dimension

1 over E (resp. the virtual affine space of rank one over X).

Acknowledgment
I deeply thank my two PhD advisors Frédéric Déglise and Jean Fasel. I would also like to thank
the referee for their many insightful comments and suggestions. This work received support from the
French "Investissements d’Avenir" program, project ISITE-BFC (contract ANR-lS-IDEX-OOOB).

2 Main Example: the Milnor-Witt K-theory
We describe the Milnor-Witt K-theory, as defined by Morel (see [Mor12, §3] or [Fas18, §1.1]).

Definition 2.1. Let E be a field. The Milnor-Witt K-theory algebra of E is defined to be the quotient
of the free Z-graded algebra generated by the symbols [a] of degree 1 for any a ∈ E× and a symbol η
in degree −1 by the following relations:

• [a][1− a] = 0 for any a ∈ E× \ {1}.

• [ab] = [a] + [b] + η[a][b] for any a, b ∈ E×.

• η[a] = [a]η for any a ∈ E×.

• η(η[−1] + 2) = 0.

The relations being homogeneous, the resultant algebra is Z-graded. We denote it by KMW
∗ (E).

2.2. Notation We will use the following notations.

• [a1, . . . , an] = [a1] . . . [an] for any a1, . . . , an ∈ E×.
5This category satisfies a universal property over Fk (one could generalize [Del87, §4] for fibred categories).
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• 〈a〉 = 1 + η[a] for any a ∈ E×.

• ε = −〈−1〉.

• nε =
∑n
i=1〈(−1)i−1〉 for any n ≥ 0, and nε = ε(−n)ε if n < 0.

2.3. Twisted Milnor-Witt K-theory Let E be a field and VE a virtual vector bundle over E with
rank n and determinant LE . The group E× of invertible elements of E acts naturally on L×E , the set
of non-zero elements in LE ; hence the free abelian group Z[L×E ] is a Z[E×]-module. Define

KMW (E,VE) = KMW
n (E)⊗Z[E×] Z[L×E ].

By abuse of notation, we might denote by η the element (η ⊗ 1) ∈ KMW (E,−A1) and by [u] the
element ([u]⊗ 1) ∈ KMW (E,A1) (where u ∈ E×).

Let VE and WE be two virtual bundles over E. The product of the Milnor-Witt K-theory groups
induces a product

KMW (E,VE)⊗KMW (E,WE)→ KMW (E,VE +WE)
(x⊗ l, x′ ⊗ l′) 7→ (xx′)⊗ (l ∧ l′),

so that KMW (E,−) is a lax monoidal functor from the category of virtual bundles over E to the
category of abelian groups.

2.4. Residue morphisms (see [Mor12, Theorem 3.15]) Let E be a field endowed with a discrete
valuation v. We choose a uniformizing parameter π. As in the classical Milnor K-theory, we can define
a residue morphism

∂πv : KMW
∗ (E)→ KMW

∗−1 (κ(v))

commuting with the multiplication by η and satisfying the following two properties:

• ∂πv ([π, a1, . . . , an]) = [a1, . . . , an] for any a1, . . . , an ∈ O×v .

• ∂πv ([a1, . . . , an]) = 0 for any a1, . . . , an ∈ O×v .

This morphism does depend on the choice of π. Indeed, if we consider another uniformizer π′ and
write π′ = uπ where u is a unit, then we have ∂πv (x) = 〈u〉∂π′v (x) for any x ∈ KMW

∗ (E). Nevertheless,
by making a choice of isomorphism Nv ' A1

κ(v) (where Nv = mv/m
2
v is the normal cone of v), we can

define a twisted residue morphism that does not depend on π:

∂v : KMW (E,VE)→ KMW (κ(v),−Nv + Vκ(v))
x⊗ l 7→ ∂πv (x)⊗ (π̄∗ ∧ l)

where V is a virtual vector bundle over Ov, π̄ is the canonical projection of π modulo mv and π̄∗ its
canonical associated linear form (see also Example A.3).

We have the following proposition (see [Mor12, Lemma 3.19]).

Proposition 2.5. Let j : E ⊂ F be a field extension, and let w be a discrete valuation on F which
restricts to a discrete valuation v on E with ramification index e. Let i : κ(v) → κ(w) be the field
extension of the residue fields. Let V be a virtual vector bundle over Ov. Then, we have a commutative
diagram

KMW (E,VE)
∂v //

j∗

��

KMW (κ(v),−Nv + Vκ(v))

eε·i∗
��

KMW (F,VF )
∂w // KMW (κ(w),−Nw + Vκ(w))

where the right vertical map eε · i∗ is defined by

6
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x⊗ ρ̄∗ ⊗ l 7→ eεi(x)⊗ π̄∗ ⊗ l

where π is a uniformizer for w and ρ = πe is a uniformizer for v.

2.6. Specialization map (see [Mor12, Lemma 3.16]) Keeping the previous notations, we also have a
specialization map

sπv : KMW
∗ (E)→ KMW

∗ (κ(v))

commuting with the multiplication by η and satisfying

sπv ([πm1a1, . . . , π
mnan]) = [a1, . . . , an]

for any a1, . . . , an ∈ O×v and any integers m1, . . . ,mn. If π′ is another uniformizer, write π′ = πu
where u is a unit. Then, for any x ∈ KMW

∗ (E), we have sπ
′

v (x) = sπv (x)− [ū]∂π
′

v (x).

It is related with the residue map as follows:

sπv (α) = 〈−1〉∂πv ([−π] · α)

for any α ∈ KMW
∗ (E). One can define a twisted specialization map (also denoted by sπv ) as follows:

sπv : KMW (E,VE)→ KMW (E,VE)
x⊗ l 7→ sπv (x)⊗ l.

It satisfies:

sπv = Θπ ◦ ∂v ◦ γ[−π]

where γ[−π] : KMW (E,VE) → KMW (E,A1
E + VE) is the multiplication by ([−π] ⊗ 1) and where Θπ

is induced by the composite of two isomorphisms −Nv + A1
E ' A1

E + (−Nv) ' 0 of virtual vector
bundles (the first one is the canonical switch isomorphism; the second one comes from the choice of
uniformizer π).

2.7. The homotopy exact sequence Let E be a field with a virtual vector bundle VE , and let
E(t) be the function field of E in the variable t. Any point x of codimension 1 in A1

E corresponds
to a maximal ideal mx in E[t], generated by a unique irreducible monic polynomial πx which is a
uniformizing parameter of the mx-adic valuation vx on E(t). Additionally, the valuation v∞ at ∞ is
given by v∞(f/g) = deg(g) − deg(f) and we can choose (as in [Mor12, §4.2]) the rational function
−1/t as uniformizing parameter. For any a ∈ E(t)×, there is only a finite number of x such that
vx(a) 6= 0. Furthermore, since the Milnor-Witt K-theory of E is generated by elements of degree 1
(and η in degree −1), it follows that the total residue map

d : KMW (E(t),ΩE(t)/k +VE(t))→
⊕

x∈(A1
E)(1) KMW (E(x),ΩE(x)/k +VE(x))

with d =
∑
x Θx ◦ ∂vx is well-defined (where Θx comes from the canonical isomorphism −Nvx +

ΩE(t)/k ⊗E(t)E(x) ' ΩE(x)/k of virtual vector bundles). The following theorem (see [Mor12, Theorem
3.24] for a non-twisted statement) is one of the most fundamental results of Milnor-Witt K-theory.
Let i∗ : KMW (E,A1

E + ΩE/k +VE)→ KMW (E(t),ΩE(t)/k +VE(t)) be the morphism induced by the
field extension E ⊂ E(t) and the canonical isomorphism A1

E(t) + ΩE/k ⊗EE(t) ' ΩE(t) of virtual
vector bundles.

Theorem 2.8 (Homotopy invariance). With the previous notations, the following sequence is split
exact

0 // KMW (E,A1
E + ΩE/k +VE)

i∗ // KMW (E(t),ΩE(t)/k +VE(t))
d //

⊕
x∈(A1

E)(1) KMW (κ(x),Ωκ(x)/k +Vκ(x)) // 0.

7
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Proof. See [Mor12, Theorem 3.24], [Fas18, Proposition 1.20].

2.9. Transfer maps Let ϕ : E → F be a monogeneous finite field extension with VE a vir-
tual vector bundle over E and choose x ∈ F such that F = E(x). The homotopy exact se-
quence implies that for any β ∈ KMW (F,ΩF/k +VF ) there exists γ ∈ KMW (E(t),ΩE(t)/k + VE(t))
with the property that d(γ) = β. Now the valuation at ∞ yields a morphism
∂
−1/t
∞ : KMW (E(t),ΩE(t)/k + VE(t))→ KMW (E,ΩE/k + VE) which vanishes on the image of i∗.

We denote by ϕ∗(β) or by TrFE(β) the element −∂−1/t(γ); it does not depend on the choice of γ. This
defines a group morphism

ϕ∗ : KMW (F,ΩF/k + VF )→ KMW (E,ΩE/k + VE)

called the transfer map and also denoted by TrFE . The following result completely characterizes the
transfer maps.

Lemma 2.10. Keeping the previous notations, let

d : KMW (E(t),ΩF (t)/k + VE(t))→ (
⊕

x KMW (E(x),ΩE(x)/k + VE(x)))⊕KMW (E,ΩE/k + VE)

be the total twisted residue morphism (where x runs through the set of monic irreducible polynomials in
E(t)). Then, the transfer maps Tr

E(x)
E are the unique morphisms such that

∑
x(Tr

E(x)
E ◦dx) + d∞ = 0.

Proof. See [Mor12, §4.2].

Let ϕ : E → F be a finite field extension. We can find a factorization

E = F0 ⊂ F1 ⊂ · · · ⊂ Fn = F

such that Fi/Fi−1 is monogeneous for any i = 1, . . . , n. We set TrFE = TrF1

E ◦ · · ·◦TrFFn−1
. Morel proved

(see [Mor12, Theorem 4.27]) that the definition does not depend on the choice of the factorization
(thanks to the twists).

The pullback TrFE is functorial by definition. It satisfies the usual projection formulae and the
following base change theorem.

Proposition 2.11 (Base change). Let ϕ : (E,VE)→ (F,VF ) and ψ : (E,VE)→ (L,VL) with ϕ finite
and ψ separable. Let R be the ring F ⊗E L. For each p ∈ SpecR, let ϕp : (L,VL)→ (R/p,VR/p) and
ψp : (F,VF )→ (R/p,VR/p) be the morphisms induced by ϕ and ψ. One has

ψ∗ ◦ ϕ∗ =
∑

p∈SpecR

(ϕp)
∗ ◦Θp ◦ (ψp)∗

where Θp is induced by the canonical isomorphism ΩF/E ⊗F (R/p) ' Ω(R/p)/L (since ψ is separable).

Proof. This follows from general base change theorem on the Milnor-Witt K-theory (see [Fas08, Corol-
laire 12.3.7]).

Finally, transfer maps are compatible with residue maps in the following sense.

Proposition 2.12. Let E → F be a finite extension of fields over k, let v be a valuation on E and let
V be a virtual Ov-module. For each extension w of v, we denote by ϕw : (κ(v),Vκ(v))→ (κ(w),Vκ(w))
the morphism induced by ϕ : (E,VE)→ (F,VF ). We have:

∂v ◦ ϕ∗ =
∑
w ϕ
∗
w ◦ ∂w.

Proof. This follows from a more general result of Morel: transfer maps induce morphims of the corre-
sponding Rost-Schmid complexes [Mor12, §5].6

6The reader looking for a more elementary proof of the proposition may try to follow the ideas of [Sus80].
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3 Milnor-Witt Cycle Premodules
We now define the main object of this paper. See the subsequent remarks for more details.

Definition 3.1. A Milnor-Witt cycle premodule M (also written: MW-cycle premodule) is a functor
from Fk to the category Ab of abelian groups with the following data D1,. . . , D4 and the following
rules R1a,. . . , R4a.

D1 Let ϕ : (E,VE) → (F,VF ) be a morphism in Fk. The functor M gives a morphism ϕ∗ :
M(E,VE)→M(F,VF ).

D2 Let ϕ : (E,VE)→ (F,VF ) be a morphism in Fk where the morphism E → F is finite. There is a
morphism ϕ∗ : M(F,ΩF/k +VF )→M(E,ΩE/k +VE).

D3 Let (E,VE) and (E,WE) be two objects of Fk. For any element x of KMW (E,WE), there is a
morphism

γx : M(E,VE)→M(E,WE + VE)

so that the functor M(E,−) : V(E) → Ab is a left module over the lax monoidal functor
KMW (E,−) : V(E)→ Ab (see [Yet03, Definition 39]; see also remarks below).

D4 Let E be a field over k, let v be a valuation on E and let V be a virtual projective Ov-module of
finite type. Denote by VE = V ⊗Ov E and Vκ(v) = V ⊗Ov κ(v). There is a morphism

∂v : M(E,VE)→M(κ(v),−Nv + Vκ(v)).

R1a Let ϕ and ψ be two composable morphisms in Fk. One has

(ψ ◦ ϕ)∗ = ψ∗ ◦ ϕ∗.

R1b Let ϕ and ψ be two composable finite morphisms in Fk. One has

(ψ ◦ ϕ)∗ = ϕ∗ ◦ ψ∗.

R1c Consider ϕ : (E,VE)→ (F,VF ) and ψ : (E,VE)→ (L,VL) with ϕ finite and ψ separable. Let R
be the ring F ⊗E L. For each p ∈ SpecR, let ϕp : (L,VL) → (R/p,VR/p) and ψp : (F,VF ) →
(R/p,VR/p) be the morphisms induced by ϕ and ψ. One has

ψ∗ ◦ ϕ∗ =
∑

p∈SpecR

(ϕp)
∗ ◦ (ψp)∗.

R2 Let ϕ : (E,VE) → (F,VF ) be a morphism in Fk, let x be in KMW (E,WE) and y be in
KMW (F,ΩF/k +W ′F ) where (E,WE) and (F,W ′F ) are two objects of Fk.

R2a We have ϕ∗ ◦ γx = γϕ∗(x) ◦ ϕ∗.

R2b Suppose ϕ finite. We have ϕ∗ ◦ γϕ∗(x) = γx ◦ ϕ∗.

R2c Suppose ϕ finite. We have ϕ∗ ◦ γy ◦ ϕ∗ = γϕ∗(y).

R3a Let E → F be a field extension and w be a valuation on F which restricts to a non trivial valuation
v on E with ramification e. Let V be a virtual Ov-module so that we have a morphism ϕ :
(E,VE) → (F,VF ) which induces a morphism ϕ : (κ(v),−Nv + Vκ(v))→ (κ(w),−Nw + Vκ(w)).
We have

∂w ◦ ϕ∗ = γeε ◦ ϕ∗ ◦ ∂v.

R3b Let E → F be a finite extension of fields over k, let v be a valuation on E and let V be a
Ov-module. For each extension w of v, we denote by ϕw : (κ(v),Vκ(v))→ (κ(w),Vκ(w)) the
morphism induced by ϕ : (E,VE)→ (F,VF ). We have

9
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∂v ◦ ϕ∗ =
∑
w(ϕw)∗ ◦ ∂w.

R3c Let ϕ : (E,VE)→ (F,VF ) be a morphism in Fk and let w be a valuation on F which restricts to
the trivial valuation on E. Then

∂w ◦ ϕ∗ = 0.

R3d Let ϕ and w be as in R3c, and let ϕ : (E,VE) → (κ(w),Vκ(w)) be the induced morphism. For
any uniformizer π of v, we have

∂w ◦ γ[−π] ◦ ϕ∗ = ϕ∗.

R3e Let E be a field over k, v be a valuation on E and u be a unit of v. Then

∂v ◦ γ[u] = γε[u] ◦ ∂v and
∂v ◦ γη = γη ◦ ∂v.

R4a Let (E,VE) ∈ Fk and let Θ be an endomorphism of (E,VE) (that is, an automorphism of
VE). Denote by ∆ the canonical map7 from the group of automorphisms of VE to the group
KMW(E, 0). Then

Θ∗ = γ∆(Θ) : M(E,VE)→M(E,VE).

Here is a series of remarks about our definition.

3.2. One could expand the definition and work with coefficients in an arbitrary abelian category instead
of Ab.
3.3. The maps ϕ∗ and ϕ∗ are respectively called the restriction and corestriction morphisms. We also
use the notations ϕ∗ = resF/E and ϕ∗ = coresF/E .

The map ∂v is called the residue map.

3.4. D1 and R1a are redundant, given the fact that M is a (covariant) functor.

3.5. Intuitively, the data D3 state that we have a left
⊕
WE∈V(E) KMW (E,WE)-module structure on

the abelian group ⊕
VE∈V(E)M(E,VE).

This statement is inaccurate for the following reasons. First, one should avoid the use of infinite direct
sums (our theory ought to work if we replace Ab by any abelian category). Moreover, we have implied
that ⊕

WE∈V(E)

KMW (E,WE)

is a ring which is, rigorously speaking, not true. Among other reasons, the multiplicative structure on
this abelian group does not have an identity element because we do not have strict equality between
a virtual vector bundle WE and 0 +WE (there is only a canonical isomorphism). Instead, we should
say that KMW (E,−) : V(E) → Ab is a lax monoidal functor (see [Yet03, Definition 5]) and that
M(E,−) : V(E)→ Ab is a left module over KMW (E,−) (see [Yet03, Definition 39]).

Finally, we add that the functor KMW (E,−) is skewed or antisymetric in the sense that for
any virtual vector bundles VE and WE of rank m,n (respectively), and for any x ∈ KMW (E,VE)
and y ∈ KMW (E,WE), we have xy = (−1)nmΘ(yx) where Θ is induced by the canonical switch
isomorphismWE+VE ' VE+WE . Intuitively, the switch isomorphism Θ corresponds to multiplication
by 〈−1〉nm = (−ε)nm hence we say that the abelian group equipped with the obvious multiplication
maps ⊕

WE∈V(E) KMW (E,WE)

7See 3.17 for more details.
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is ε-commutative.

3.6. A MW-cycle premodule M can be equipped with a right KMW -module action as follows. For
x ∈ KMW (E,WE), define

ρx : M(E,VE)→M(E,VE +WE)

to be the composite (−1)nmΘ◦γx where Θ is induced by the canonical switch isomorphism VE+WE '
WE + VE and where m,n are the ranks of WE ,VE , respectively.
3.7. With the notations of D4, note that we have a short exact sequence of κ(v)-vector space

0→ Nv → ΩOv/k ⊗Ovκ(v)→ Ωκ(v)/k → 0

and that we have a canonical isomorphism

ΩOv/k ⊗Ovκ(v) ' ΩE/k ⊗Ovκ(v)

so that the data D4 is equivalent to having a map

δv : M(E,ΩE/k +VE)→M(κ(v),Ωκ(v)/k +Vκ(v)).

3.8. We assume that R1b also contains the rule ϕ∗ = Id when ϕ is the identity map.

3.9. In R1c, the fact that the extension is separable means that there are no multiplicities to consider.
This rule is weaker than the corresponding one used by Rost (see [Ros96, Definition 1.1.(R1c)]) but
it is sufficient for our needs. Indeed, we will (in a future paper) prove the following theorem (see also
Theorem 10.13).

Claim 3.10 (Strong R1c). Let ϕ : (E,VE) → (F,VF ) and ψ : (E,VE) → (L,VL) with ϕ fi-
nite. Let R be the ring F ⊗E L. For each p ∈ SpecR, let ϕp : (L,VL) → (R/p,VR/p) and
ψp : (F,VF )→ (R/p,VR/p) be the morphisms induced by ϕ and ψ. One has

ψ∗ ◦ ϕ∗ =
∑

p∈SpecR

mp · (ϕp)∗ ◦ (ψp)∗

where mp are some quadratic forms.

The multiplicities mp remain to be defined. One expected property is that the rank of mp is the
usual multiplicity as defined in [Ros96, §1] (that is, the length of the localized ring R(p)).

3.11. In the rules R2a, R2b and R2c, ϕ∗(x) and ϕ∗(y) are defined as in 2.9. Moreover, these three
rules are sometimes called projection formulae and could be illustrated with the following identities:

ϕ∗(x · ρ) = ϕ∗(x) · ϕ∗(ρ),
ϕ∗(ϕ∗(x) · µ) = x · ϕ∗(µ),
ϕ∗(y · ϕ∗(ρ)) = ϕ∗(y) · ρ.

Rigorously, we should write R2b as Θ ◦ ϕ∗ ◦ Θ′ ◦ γϕ∗(x) = γx ◦ ϕ∗ where Θ,Θ′ are induced by the
canonical isomorphisms WF + ΩF/k ' ΩF/k +WF and ΩE/k +WE ' WE + ΩE/k, respectively.

3.12. With the notation of R3a, notice that we do have an isomorphism Nv⊗κ(v)κ(w) ' Nw of virtual
vector spaces defined as in 2.5. Moreover, we consider eε to be an element of KMW (κ(w), 0). We will
show in a future paper that we could weaken this rule by considering only unramified extensions.

3.13. The rule R3b could be understood as

δv ◦ ϕ∗ =
∑
w(ϕw)∗ ◦ δw.

11
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3.14. In the rule R3d, the element [−π] is considered to be in KMW (F,A1
F ) so that the map ∂w◦γ[−π]◦ϕ∗

takes value in M(κ(w),−Nw + A1
κ(w) + Vκ(w)) (not in M(κ(w),Vκ(w)), as needed). In order to fix

the issue, we make (as in the previous Section) a choice of isomorphism between A1
κ(w) and Nw

using the uniformizer π so that we can consider the composite of the following two8 isomorphisms
−Nw + A1

κ(w) ' A1
κ(w) + (−Nw) ' 0. Thanks to the data D1, this induces an isomorphism:

Θπ : M(κ(w),−Nw + A1
κ(w) + Vκ(w))→M(κ(w),Vκ(w)).

The attentive reader might be pleased to see the rule R3d stated as:

Θπ ◦ ∂w ◦ γ[−π] ◦ ϕ∗ = ϕ∗.

Actually, we want more flexibility regarding the grading so that we may worry less about hidden
isomorphisms. Indeed, keeping the previous notations, consider an isomorphism W ' A1

Ow + V of
virtual Ow-modules. It induces (via D1) two group isomorphisms:

Θκ(w) : M(κ(w),−Nv +Wκ(w))→M(κ(w),−Nv + A1
κ(w) + Vκ(w)) and

ΘF : M(F,WF )→M(F,A1
F + VF ).

The rule R3d should state that we have the identity:

Θπ ◦Θ−1
κ(w) ◦ ∂w ◦ΘF ◦ γ[−π] ◦ ϕ∗ = ϕ∗.

In this paper, we will encounter a number of similar cases where equality holds only up to a canon-
ical isomorphism. It will always be an isomorphism Θ coming from the data D1 and an isomorphism
between virtual spaces.

Definition 3.15. With the previous notations, we denote by sπw the morphism

Θπ ◦ ∂w ◦ γ[−π] : M(F,VF )→M(κ(w),Vκ(w))

and we call it the specialization map.

3.16. A more rigorous way to state R3e would be to write:

∂v ◦ γ[u]⊗1 = −Θ ◦ γ[u]⊗1 ◦ ∂v and
∂v ◦ γη⊗1 = −Θ′ ◦ γη⊗1 ◦ ∂v,

where Θ (resp. Θ′) is induced by the isomorphism A1
F + (−Nv) ' −Nv + A1

F (resp. −A1
F + (−Nv) '

−Nv + (−A1
F )) of virtual vector bundles. As in the previous remark concerning R3d, we actually want

to be flexible regarding the grading and allow isomorphisms of virtual vector bundles in the axioms.

3.17. The rule R4a does not appear in the classical theory of [Ros96], obviously. We mainly
need this rule to prove the adjunction theorem (see 12.5). Keeping the notations of this rule,
we note that the automorphism Θ : VE → VE of virtual vector spaces induces an automorphism
det(Θ) : det(VE)→ det(VE) (of dimension 1 vector spaces) which corresponds to a unit δΘ ∈ F×; by
definition ∆(Θ) = 〈δΘ〉 (recall the notation defined in 2.2).

3.18. As in [Ros96, §1.1], the rule R3e implies:

R3f Let (E,VE) and (E,WE) be two objects in Fk, let v be a valuation on E and π be a uniformizer
of v. For any x ∈ KMW (E,WE) and ρ ∈M(E,VE), we have

∂v(x · ρ) = ∂v(x) · sπv (ρ) + (−1)nΘs(s
π
v (x) · ∂v(ρ)) + (−1)nΘπ([−1] · ∂v(x) · ∂v(ρ)),

sπv (x · ρ) = sπv (x) · sπv (ρ),

8Beware of the switch isomorphism −Nw +A1
κ(w) ' A1

κ(w) + (−Nw) which corresponds (in some sense) to
multiplication by 〈−1〉.
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where n = rk(WE), Θs is induced by the switch isomorphism WE + (−Nv) ' −Nv +WE and
Θπ is induced by the composite isomorphism

(A1
κ(v) + (−Nv)) +Wκ(v) + (−Nv) +Vκ(v) ' 0 +Wκ(v) + (−Nv) +Vκ(v) ' −Nv +Wκ(v) +Vκ(v).

3.19. With the previous notations, if π′ is another uniformizer of v, put π′ = uπ. Then (by R3e and
R4a)

sπ
′

v (x) = sπv (x)−Θπ′([u] · ∂v(x)),

where Θπ′ is induced by the isomorphism A1
κ(v) + (−Nv) ' 0 defined by π′.

The following theorem follows from the results of Section 2.

Theorem 3.20. The functor KMW is a MW-cycle premodule.

Proof. The Milnor-Witt K-theory is indeed equipped with the data D1 (see 2.3), D2 (see 2.9), D3
(see 2.3) and D4 (see 2.4). Rule R1a and rule R1b are obvious from the definitions. Rule R1c is
Theorem 2.11. The projection formulae R2a, R2b and R2c are straightforward computations. Rule
R3a is Theorem 2.5. Rule R3b is Theorem 2.12. Rule R3c, rule R3d and rule R3e are straightforward
computations (see [Mor12, Theorem 3.15 and Proposition 3.17]).

We prove Rule R4a. Let (E,VE) ∈ Fk and let Θ be an endomorphism of (E,VE). The map Θ
induces a morphism of dimension 1 vector spaces

det(VE)→ det(VE)
l 7→ δΘ · l

where δΘ ∈ E×. We need to prove that

Θ∗ = γ∆(Θ) : KMW
n (E)⊗Z[E×] det(VE)→ KMW

n (E)⊗Z[E×] det(VE)

where n is the rank of VE and ∆(Θ) is the quadratic form 〈δΘ〉. Let x ∈ KMW
n (E) and l ∈ det(VE),

we have Θ∗(x⊗ l) = x⊗ (δΘ · l) = (x · 〈δΘ〉)⊗ l = γ∆(Θ)(x⊗ l), hence the result.

Definition 3.21. A pairing M ×M ′ →M ′′ of MW-cycle premodules over k is given by bilinear maps
for each (E,VE), (E,WE) in Fk

M(E,VE)×M ′(E,WE)→M ′′(E,VE +WE)
(ρ, µ)→ ρ · µ

which respect the KMW -module structure and which have the properties P1, P2, P3 stated below.

P1 For x ∈ KMW (E,WE), ρ ∈M(E,VE), µ ∈M ′(E,V ′E),

P1a (x · ρ) · µ = x · (ρ · µ),

P1b (ρ · x) · µ = ρ · (x · µ).

P2 Let ϕ : E → F (finite in P2b, P2c), λ ∈ M(E,VE), ν ∈ M(F,ΩF/k +WF ), ρ ∈M ′(E,V ′E),
µ ∈M ′(F,ΩF/k +W ′E),

P2a ϕ∗(λ · ρ) = ϕ∗(λ) · ϕ∗(ρ) ,

P2b Θ(ϕ∗(Θ′(ϕ∗(λ) · µ))) = λ · ϕ∗(µ) where Θ,Θ′ are induced by the canonical isomorphisms WF +
ΩF/k ' ΩF/k +WF and ΩE/k +WE ' WE + ΩE/k, respectively,

P2c ϕ∗(ν · ϕ∗(ρ)) = ϕ∗(ν) · ρ.

P3 For a valuation v on E, x ∈M(E,VE), ρ ∈M ′(E,WE) and a uniformizer π of v, one has

13
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∂v(x · ρ) = ∂v(x) · sπv (ρ) + (−1)nΘs(s
π
v (x) · ∂v(ρ)) + (−1)nΘπ([−1] · ∂v(x) · ∂v(ρ))

where n is the rank of VE , where Θs is induced by the switch isomorphism
WE + (−Nv) ' −Nv +WE and where Θπ is induced by the composite isomorphism

(A1
κ(v) + (−Nv)) +Wκ(v) + (−Nv) +Vκ(v) ' 0 +Wκ(v) + (−Nv) +Vκ(v) ' −Nv +Wκ(v) +Vκ(v).

A ring structure on a MW-cycle premodule M is a pairing M × M → M which induces on⊕
VE∈V(E)M(E,VE) an associative and ε-commutative ring structure (see also 3.5).

Example 3.22. By definition, a Milnor-Witt cycle premoduleM comes equipped with a pairing KMW×
M →M . When M = KMW , this defines a ring structure on M .

4 Milnor-Witt Cycle Modules
4.1. Throughout this section, M denotes a Milnor-Witt cycle premodule over k.

Let X be a scheme over k and VX be a virtual bundle over X.
For x in X the virtual bundle VX ×X Specκ(x) over Specκ(x) corresponds to a virtual vector

space Vx over κ(x) via the equivalence between vector bundles over Specκ(x) and κ(x)-vector spaces.
Throughout this paper, we write

M(x,VX) = M(κ(x),Ωκ(x)/k +Vx).

If X is irreducible, we write ξX or ξ for its generic point.
If X is normal, then for any x ∈ X(1) the local ring of X at x is a valuation ring so that D4 gives

us a map ∂x : M(ξ,VX)→M(x,VX).
Now suppose X is an arbitrary scheme over k and let x, y be two points in X. We define a map

∂xy : M(x,VX)→M(y,VX)

as follows. Let Z = {x}. If y 6∈ Z, then put ∂xy = 0. If y ∈ Z, let Z̃ → Z be the normalization and put

∂xy =
∑
z|y

coresκ(z)/κ(y) ◦ ∂z

with z running through the finitely many points of Z̃ lying over y.

Definition 4.2. A Milnor-Witt cycle module M over k is a Milnor-Witt cycle premodule M which
statisfies the following conditions (FD) and (C).

(FD) Finite support of divisors. Let X be a normal scheme, VX be a virtual vector bundle over
X and ρ be an element of M(ξX ,VX). Then ∂x(ρ) = 0 for all but finitely many x ∈ X(1).

(C) Closedness. Let X be integral and local of dimension 2 and VX be a virtual bundle over X.
Then

0 =
∑

x∈X(1)

∂xx0
◦ ∂ξx : M(ξX ,VX)→M(x0,VX)

where ξ is the generic point and x0 the closed point of X.

4.3. Of course (C) makes sense only under presence of (FD) which guarantees finiteness in the sum.
More generally, note that if (FD) holds, then for any scheme X, any virtual bunde VX over X, any
x ∈ X and any ρ ∈M(x,VX) one has ∂xy (ρ) = 0 for all but finitely many y ∈ X.

4.4. If X is integral and (FD) holds for X, we put

14
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d = (∂ξx)x∈X(1) : M(ξ,VX)→
⊕

x∈X(1)

M(x,VX).

Definition 4.5. A morphism ω : M → M ′ of Milnor-Witt cycle modules over k is a natural trans-
formation which commutes9 with the data D1,. . . , D4 (in other words, it is a left map in the
sense of [Yet03, Definition 40]).

Remark 4.6. We denote by MMW
k the category of Milnor-Witt cycle modules (where arrows are given

by morphisms of MW-cycle modules). This is an abelian category.

Example 4.7. Let M be a Milnor-Witt cycle module. For any integer n, we define a Milnor-Witt cycle
module M{n} by

M{n}(E,VE) = M(E,n · A1
E + VE)

for any (finitely generated) field E/k and any virtual bundle VE over E.
Now, we define a Milnor-Witt cycle module M [η−1] as follows. Let I be the category of finite

ordinal numbers (objects are natural numbers n and arrows are given by the relation n ≤ m). We
consider the functor FM : I →MMW

k that takes a natural number n to M{−n} and an arrow n ≤ m
to the multiplication by ηm−n. By definition, the Milnor-Witt cycle module M [η−1] is the colimit of
the diagram FM . In particular, for M = KMW and for any field E, we obtain the following group
isomorphism which respects the multiplication in some obvious sense:⊕

n∈Z KMW [η−1](E,n · A1
E) ' KMW

∗ (E)[η−1].

The ring KMW
∗ (E)[η−1] is known to be isomorphic to W (E)[η±1].

4.8. In the following, let F be a field over k, VF be a virtual bundle over SpecF and A1
F = SpecF [t]

be the affine line over SpecF with function field F (t).

Proposition 4.9. Let M be a Milnor-Witt cycle module over k. With the previous notations, the
following properties hold.

(H) Homotopy property for A1. We have a short exact sequence

0 // M(F,A1
F + ΩF/k +VF )

res // M(F (t),ΩF (t)/k +VF (t))
d //

⊕
x∈(A1

F )(1) M(κ(x),Ωκ(x)/k +Vκ(x)) // 0

where the map d is defined in 4.4.

(RC) Reciprocity for curves. Let X be a proper curve over F and VF a virtual bundle10 over
SpecF . Then

M(ξX ,VX)
d //

⊕
x∈X(1)

M(x,VX)
c // M(F,ΩF/k +VF )

is a complex, that is c ◦ d = 0 (where c =
∑
x coresκ(x)/F ).

4.10. Axiom (FD) enables one to write down the differential d of the soon-to-be-defined complex
C∗(X,M,VX), axiom (C) guarantees that d ◦ d = 0, property (H) yields the homotopy invariance of
the Chow groups A∗(X,M,VX) and finally (RC) is needed to establish proper pushforward.

4.11. For an integral scheme X and VX a virtual bundle over X, we put

9In particular, it commutes with multiplication by η (up to canonical isomorphisms). This fact will be
important for Theorem 12.5.

10We also write VF for the corresponding virtual F -vector space.
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A0(X,M,VX) = ker d =
⋂

x∈X(1)

ker ∂ξx ⊂M(ξX ,VX).

Theorem 4.12. Let M be a Milnor-Witt cycle premodule over the perfect field k. Then M is a cycle
module if and only if the following properties (FDL) and (WR) hold for all fields F over k and all
virtual F -vector space VF .

(FDL) Finite support of divisors on the line. Let ρ ∈M(F (t),VF (t)). Then ∂v(ρ) = 0 for all
but finitely many valuations v of F (t) over F .

(WR) Weak Reciprocity. Let ∂∞ be the residue map for the valuation of F (t)/F at infinity.
Then

∂∞(A0(A1
F ,M,VA1

F
)) = 0.

The proofs of Proposition 4.9 and Theorem 4.12 are almost the same as Rost’s (see [Ros96, Theorem
2.3]). Indeed, we can check that all involved twists match (up to canonical isomorphisms) and, of
course, we use the identity [ab] = [a] + [b] + η[a][b] every time Rost use [ab] = [a] + [b] (this causes no
harm to the proof since η commutes with our data).

Theorem 4.13. The Milnor-Witt K-theory KMW is a MW-cycle module.

Proof. We already know that it is a Milnor-Witt cycle premodule. For the two remaining axioms, it
suffices to prove (FD) and (H) which are true (see Section §2.7 and Theorem 2.8; see also [Mor12,
Theorem 3.24]).

5 The Five Basic Maps
The purpose of this section is to introduce the cycle complexes and each operation on them needed
further on. Note that the five basic maps defined below are analogous to those of Rost (see [Ros96,
§3]); they are the basic foundations for the construction of more refined maps such as Gysin morphisms
(see Section 10).

5.1. Let M and N be two Milnor-Witt cycle modules over k, let X and Y be two schemes, let VX and
VY be two virtual bundles over X and Y respectively, and let U ⊂ X and V ⊂ Y be subsets. Given a
morphism

α :
⊕
x∈U

M(x,VX)→
⊕
y∈V

M(y,VY ),

we write αxy : M(x,VX)→M(y,VY ) for the components of α.

5.2. Milnor-Witt cycle complexes. Let M be a Milnor-Witt cycle module, let X be a scheme,
VX be a virtual bundle over X and p be an integer. Put X(p) the set of p-dimensional points of X.
Define

Cp(X,M,VX) =
⊕

x∈X(p)

M(x,VX)

and

d : Cp(X,M,VX)→ Cp−1(X,M,VX)

where dxy = ∂xy as in 4.1. This definition makes sense by axiom (FD).

Proposition 5.3. With the previous notations, we have d ◦ d = 0.

Proof. Same as in [Ros96, §3.3]. Axiom (C) is needed.
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Definition 5.4. The complex (Cp(X,M,VX), d)p≥0 is called the Milnor-Witt complex of cycles on X
with coefficients in M .

5.5. Pushforward Let f : X → Y be a k-morphism of schemes, let VY be a virtual bundle over Y
and denote by VX its pullback along f . Define

f∗ : Cp(X,M,VX)→ Cp(Y,M,VY )

as follows. If y = f(x) and if κ(x) is finite over κ(y), then (f∗)
x
y = coresκ(x)/κ(y). Otherwise, (f∗)

x
y = 0.

5.6. Pullback Let f : X → Y be an essentially smooth morphism of schemes. Let VY a virtual
bundle over Y and VX be its pullback along f . Suppose X connected and denote by s the relative
dimension of f . Define

f∗ : Cp(Y,M,VY )→ Cp+s(X,M,−TX/Y + VX)

as follows. If f(x) = y, then (f∗)yx = Θ ◦ resκ(x)/κ(y), where Θ is the canonical isomorphism induced
by TSpecκ(x)/ Specκ(y) ' TX/Y ×X Specκ(x). Otherwise, (f∗)yx = 0. If X is not connected, take the
sum over each connected component.
Remark 5.7. The fact that the morphism f is (essentially) smooth implies that there are no multi-
plicities to consider. We do not consider the case of flat morphisms in this paper (this can be done
after studying the multiplicities mentioned in Claim 3.10). However, we define Gysin morphisms for
lci projective morphisms in Section 10.
5.8. Multiplication with units Let a1, . . . , an be global units in O∗X , let VX be a virtual bundle.
Define

[a1, . . . , an] : Cp(X,M,VX)→ Cp(X,M,n · A1
X + VX)

as follows. Let x be in X(p) and ρ ∈M(κ(x),Ωκ(v)/k +Vx). We consider11 〈−1〉np[a1(x), . . . , an(x)] as
an element of KMW (κ(x), n · A1

κ(x)). If x = y, then put [a1, . . . , an]xy(ρ) = Θ(〈−1〉np[a1(x), . . . , an(x)] ·
ρ) where Θ is induced by the canonical isomorphism n·A1

κ(x)+Ωκ(x)/k ' Ωκ(x)/k +n·A1
κ(x). Otherwise,

put [a1, . . . , an]xy(ρ) = 0.
5.9. Multiplication with η Define

η : Cp(X,M,VX)→ Cp(X,M,−A1
X + VX)

as follows. If x = y, then ηxy(ρ) = γη(ρ). Otherwise, ηxy(ρ) = 0.
5.10. Boundary maps Let X be a scheme of finite type over k with a virtual bundle VX , let i : Z → X
be a closed immersion and let j : U = X \ Z → X be the inclusion of the open complement. We will
refer to (Z, i,X, j, U) as a boundary triple and define

∂ = ∂UZ : Cp(U,M,VU )→ Cp−1(Z,M,VZ)

by taking ∂xy to be as the definition in 4.1 with respect to X. The map ∂UZ is called the boundary map
associated to the boundary triple, or just the boundary map for the closed immersion i : Z → X.
5.11. Generalized correspondences We will use the notation

α : [X,VX ]•→ [Y,VT ]

or simply

α : X•→ Y

to denote maps of complexes which are sums of composites of the five basics maps f∗, g∗, [a], η, ∂ for
schemes over k. Unlike Rost in [Ros96, §3], we look at these morphisms up to quasi-isomorphisms so
that a morphism α : X•→ Y may be a weak inverse of a well-defined morphism of complexes.

11Instead of multiplying by 〈−1〉 and using R4a, we could make a canonical choice of isomorphism with
determinant (−1) and use D1 (by R4a, any choice will work).
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6 Compatibilities
In this section we establish the basic compatibilities for the maps considered in the last section. Fix
M a Milnor-Witt cycle module.

Proposition 6.1. 1. Let f : X → Y and f ′ : Y → Z be two morphisms of schemes. Then

(f ′ ◦ f)∗ = f ′∗ ◦ f∗.

2. Let g : Y → X and g′ : Z → Y be two essentially smooth morphisms. Then (up to the canonical
isomorphism given by TZ/X ' TZ/Y + (g′)∗TY/Z):

(g ◦ g′)∗ = g′∗ ◦ g∗.

3. Consider a pullback diagram

U
g′
//

f ′

��

Z

f

��

Y
g
// X

with f, f ′, g, g′ as previously. Then

g∗ ◦ f∗ = Θ ◦ f ′∗ ◦ g′∗

where Θ is the canonical isomorphism induced by TU/Z ' TY/X ×Y U .

Proof. 1. This is clear from the definition and by R1b.

2. The claim is trivial by R1a (again, there are no multiplicities).

3. This reduces to the rule R1c (see [Ros96, Proposition 4.1]).

Proposition 6.2. Let f : Y → X be a morphism of schemes. If a is a unit on X, then

f∗ ◦ [f̃∗(a)] = [a] ◦ f∗

where f̃∗ : O∗X → O∗Y is induced by f .

Proof. This comes from R2b.

Proposition 6.3. Let a be a unit on a scheme X.

1. Let g : Y → X be an essentially smooth morphism. One has

g∗ ◦ [a] = [g̃∗(a)] ◦ g∗.

2. Let (Z, i,X, j, U) be a boundary triple. One has

∂UZ ◦ [j̃∗(a)] = ε[̃i∗(a)] ◦ ∂UZ .

Moreover,

∂UZ ◦ η = η ◦ ∂UZ .

Proof. The first result comes from R2a, the second from R2b and R3e.

Proposition 6.4. Let h : X → X ′ be a morphism of schemes. Let Z ′ ↪→ X ′ be a closed immersion.
Consider the induced diagram given by U ′ = X ′ \ Z ′ and pullback:
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Z �
�

//

f

��

X

h
��

U? _oo

g

��

Z ′
� � // X ′ U ′.?

_oo

1. If h is proper, then

f∗ ◦ ∂UZ = ∂U
′

Z′ ◦ g∗.

2. If h is essentially smooth, then

f∗ ◦ ∂U ′Z′ = ∂UZ ◦ g∗.

Proof. This will follow from Proposition 6.6.

Lemma 6.5. Let g : Y → X be a smooth morphism of schemes of finite type over a field of constant
fiber dimension 1, let σ : X → Y be a section of g and let t ∈ OY be a global parameter defining the
subscheme σ(X). Moreover, let g̃ : U → X be the restriction of g where U = Y \ σ(X) and let ∂ be
the boundary map associated to σ. Then

Θ ◦ ∂ ◦ [t] ◦ g̃∗ = (idX)∗ and ∂ ◦ g̃∗ = 0,

with Θ the canonical isomorphism given by TU/X ' A1
U .

Proof. In order to simplify the notations, we identify X with σ(X) through σ and we forget the
canonical isomorphism Θ. By definition, the map ∂ ◦ [t] ◦ g̃∗ is∑

x∈X

∑
y∈g−1(x)\{x}

∂yx ◦ [t] ◦ resκ(y)/κ(x) :
⊕
x∈X

M(x,VX)→
⊕
x∈X

M(x,VX).

Fix x ∈ X and let y ∈ g−1(x) \ {x}. If y = ξx is the generic point of g−1(x), then we have

∂ξxx ◦ [t] ◦ resκ(ξx)/κ(x) = resκ(x)/κ(x) = Id

according to R3d. Otherwise

∂yx ◦ [t] ◦ resκ(y)/κ(x) = ε · [t] · ∂yx ◦ resκ(y)/κ(x) = 0

according to R3e and R3c. The second equality is proved in a similar fashion.

Proposition 6.6. 1. Let f : X → Y be a proper morphism of schemes. Then

dY ◦ f∗ = f∗ ◦ dX .

2. Let g : Y → X be an essentially smooth morphism. Then

g∗ ◦ dX = dY ◦ g∗.

3. Let a be a unit on X. Then

dX ◦ [a] = ε[a] ◦ dX .

Moreover,

dX ◦ η = η ◦ dX .

4. Let (Z, i,X, j, U) be a boundary triple. Then

dZ ◦ ∂UZ = −∂UZ ◦ dU .
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Proof. Same as [Ros96, Proposition 4.6]. The first assertion comes from Proposition 6.1.1 and R3b,
the second from R3c, Proposition 6.1.3, Proposition 6.6.1 and R3a (note that the proof is actually
much easier in our case since there are no multiplicities to consider). The third assertion follows from
the definitions and Proposition 6.3.2, the fourth from the fact that d ◦ d = 0.

Remark 6.7. Note the quadratic form ε playing the role of (−1) in the third formula but not in the
fourth.

7 Milnor-Witt Cycle Complexes and Chow-Witt Groups
7.1. Milnor-Witt Cycle Complexes Let M be a Milnor-Witt cycle module, let X be a scheme
with a virtual bundle VX and p an integer. We have defined (see Definition 5.4)

Cp(X,M,VX) =
⊕

x∈X(p)

M(x,VX)

with differential

d = dX : Cp(X,M,VX)→ Cp−1(X,M,VX).

In the same way, we can define

Cp(X,M,VX) =
⊕

x∈X(p)

M(x,VX)

with differential

d = dX : Cp(X,M,VX)→ Cp+1(X,M,VX)

and show that this gives us another complex.

Definition 7.2. The Chow-Witt group of p-dimensional cycles with coefficients in M is defined as
the p-th homology group of the complex C∗(X,M,VX) and denoted by Ap(X,M,VX). Similarly, we
define a cohomology group Ap(X,M,VX) with C∗(X,M,VX).

7.3. According to the previous section (see Proposition 6.6), the morphisms f∗ for f proper, g∗ for g
essentially smooth, multiplication by [a1, . . . , an] or η, ∂UY (anti)commute with the differentials.

7.4. Let (Z, i,X, j, U) be a boundary triple. We can split the complex C∗(X,M,VX) as

C∗(X,M,VX) = C∗(Z,M,VZ)⊕ C∗(U,M,VU )

so that there is a long exact sequence

. . .
∂ // Ap(Z,M,VZ)

i∗ // Ap(X,M,VX)
j∗
// Ap(U,M,VU )

∂ // Ap−1(Z,M,VZ)
i∗ // . . . .

7.5. Classical Chow-Witt Groups. Recall some definitions about the classical theory of Chow-
Witt groups (see [Fas08]). We note that the results below are true in any characteristic.

Let X be a smooth scheme and let p, r ∈ Z. For x ∈ X(p), Nx is a virtual κ(x)-vector space of
dimension p. Denote Λx =

∧pNx its determinant and Λ∗x its dual.
The Rost-Schmid complex in Milnor-Witt K-theory C(X,KMW

r ) is the complex

· · · →
⊕

x∈X(p)

KMW
r−p (κ(x), p,Λ∗x)→

⊕
x∈X(p+1)

KMW
r−p−1(κ(x), p+ 1,Λ∗x)→ . . .

whereKMW
r−p (κ(x), p,Λ∗x) = KMW (κ(x),Λ∗x+(r−p−1)·A1

κ(x)) (see also [Mor12, Definition 5.7]). Denote

by C̃H
p
(X)r its p-th cohomology group. By definition, the classical Chow-Witt group is C̃H

p
(X)p and

is simply denoted by C̃H
p
(X). It is related with our previous constructions as follows.
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Proposition 7.6. Let X be a smooth scheme and let p, r ∈ Z. Then we have a canonical isomorphism

Ap(X,KMW ,−TX/k + r · A1
X) ' C̃H

p
(X)r.

In particular with r = p,

Ap(X,KMW ,−TX/k + p · A1
X) ' C̃H

p
(X)

Proof. Let x be in X(p). We have the following canonical isomorphisms

KMW
r−p (κ(x), p,Λ∗x) ' KMW (κ(x),Λ∗x + (r − p− 1) · Aκ(x)),

' KMW (κ(x),−Λx + 2 · Aκ(x) + (r − p− 1) · Aκ(x)),

' KMW (κ(x),−(Λx + (p− 1) · Aκ(x)) + r · Aκ(x)),

' KMW (κ(x),−Nx + r · Aκ(x)),

' KMW (κ(x),Ωκ(x)/k −TX/k ×X κ(x) + r · Aκ(x)),

' KMW (x,−TX/k + r · AX),

and so ⊕
x∈X(p)

KMW
r−p (κ(x), p,Λ∗x) ' Cp(X,KMW ,−TX/k + r · AX).

By definition, the differentials agree, hence the result.

8 Acyclicity for Smooth Local Rings
Fix M a MW-cycle module over k. We follow [Ros96, §6]. We prove that the cohomology of the
complex associated to M can be computed using the Zariski sheaf given by

U 7→ A0(U,M).

In a future paper, we will show a similar result corresponding to the Nisnevich topology.

Theorem 8.1. Let X be an essentially smooth and semi-local scheme, and let be VX a virtual bundle
over X. Then

Ap(X,M,VX) = 0

for p > 0.

The proof is postponed till the end of the section; we will need the following lemmas.
Let V be a vector space over k and let A(V ) be the associated affine space. For a linear subspace

W of V let

πW : A(V )→ A(V/W ),
πW (v) = v +W

be the projection.

Lemma 8.2. Let X ⊂ A(V ) be an equidimensional closed subscheme of dimension d and let Y be a
closed subscheme with dimY < d. Moreover, let S ⊂ Y be a finite subset such that X is smooth in S.
Then for a generic (d− 1)-codimensional linear subspace W of V the following conditions hold.

• The restriction πW |Y : Y → A(V/W ) is finite.

• The restriction πW |X : X → A(V/W ) is locally around S smooth.

Proof. See [Ros96, Proposition 6.2].
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The existence of the generic space W is not guaranteed over finite base fields. Note that if X is
semi-local, then X×k Spec(k(t)) is also semi-local and essentially smooth over k. The following lemma
shows that we can assume k to be infinite.

Lemma 8.3. Let X be a scheme over k and let g : Xk(t) → X be the (smooth) base change. Then

g∗ : A∗(X,M,VX)→ A∗(Xk(t),M,−TXk(t)/X + VXk(t)
)

is injective.

Proof. (see also 10.9) Let U ⊂ A1
k be an open set containing 0 and write XU = X×k (U \{0}). Define

s∗U as the composition

Cp+1(XU ,M,−TXU/X + VXU )

s∗U

��

[t]
// Cp+1(XU ,M,VXU )

∂U

��

Cp(X,M,VX) Cp(X ×k {0},M,VX×k{0}).
'oo

This defines a morphism on the homology groups, also denoted by s∗U . Consider the
map g∗U : Ap(X,M,VX)→ Ap+1(XU ,M,−TXU/X + VXU ) (induced by the canonical projection
gU : XU → X) so that we have g∗ = colimU g

∗
U where the limit is taken over the open sets U ⊂ A1

k

containing 0. Define likewise s∗ = colimU s
∗
U . Since s

∗
U ◦ g∗U = id for all U (by R3d, see also the proof

of Lemma 6.5), we see that s∗ is a section of g∗.

Proposition 8.4. Let X be a smooth scheme over a field and let Y ⊂ X be a closed subscheme of
codimension ≥ 1. Then for any finite subset S ⊂ Y there is an open neighborhood X ′ of S in X such
that the map

i∗ : A∗(Y ∩X ′,M,VY ∩X′)→ A∗(X
′,M,VX′)

is the trivial map. Here i : Y ∩X ′ → X ′ is the inclusion.

Proof. Same as in [Ros96, Proposition 6.4]. This uses Lemma 6.5.

Proof of Theorem 8.1. We may assume that X is connected. Put d = dimX. Consider pairs (U, S)
where U is a smooth d-dimensional scheme of finite type over k and S ⊂ U is a finite subset such that
X is the localization of U in S. Then

C∗(X,M,VX) = colim(U,S) C
p(U,M,VU ).

Moreover,

Cp(U,M,VU ) = Cd−p(U,M,VU ) = colimY Cd−p(Y,M,VY )

where Y runs over the closed p-codimensional subsets of U . Hence

Ap(X,M,VX) = colim(U,S)A
p(U,M,VU ) = colim(U,S) colimY Ad−p(Y,M,VY ).

Finally, Proposition 8.4 tells that the map Ad−p(Y,M,VY ) → Ap(U,M,VU ) → Ap(U ′,M,VU ′) is
trivial for U ′ ⊂ U small enough.

Corollary 8.5. Let X be a smooth scheme over k, let VX be a virtual bundle over X and letMX be
the Zariski sheaf on X given by

U 7→ A0(U,M,VU ) ⊂M(ξX ,VX)

for open subsets U of X. There are natural isomorphisms

Ap(X,M,VX)→ Hp
Zar(X,MX).

Proof. Same as [Ros96, Corollary 6.5].
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9 Homotopy Invariance
Following [Dé14, §2], we define a coniveau spectral sequence that will help us reduce the homotopy
invariance property to the known case (H).

Proposition 9.1. Let F be a field, X = SpecF its spectrum, AnX the affine vector bundle of rank n
over X, π : AnX → X the canonical projection and VX a virtual vector bundle over X. Then, for every
q ∈ Z, the canonical morphism

π∗ : Aq(X,M,VX)→ Aq(AnX ,M,−TAnX/X + VAnX )

is an isomorphism.

Proof. Same as [Sch98, Satz 6.1.1] or [Fas08, Théorème 11.2.4]. If q 6= 0, then the
map is trivial. We assume q = 0. By induction, we can reduce to the case n =
1. In this case, we have A1

X = SpecF [t] for some parameter t. By definition,
A0(X,M,VX) = M(F,ΩF/k +VF ) and A0(AnX ,M,−TA1

X/X
+ VAnX ) is the cokernel of the map

d : M(F (t),ΩF (t)/k −A1
F (t) + VF (t))→

⊕
x∈(A1

F )(1) M(κ(x),Ωκ(x)/k −A1
κ(x) + Vκ(x)) defined in 4.4.

Thus, the result follows from Proposition 4.9, (H).

Let X be a scheme with a virtual bundle VX , let V be a scheme and let π : V → X be an essentially
smooth morphism.

A flag on X is a decreasing sequence (Zp)p∈Z of closed subschemes of X such that codimX(Zp) ≥ p
where, by convention, Zp = X if p < 0 and Zp = ∅ if p > dimX. The set of flags of X is denoted by
Flag(X) and it is ordered by the inclusion termwhise so that it becomes a filtrant set.

Let Z = (Zp)p∈Z be a flag of X and define π∗Z = (π∗Zp)p∈Z a flag over V by π∗Zp = V ×X Zp.
For p, q ∈ Z, define

Dp,q
Z = Ap+q−1(V − π∗Zp,M,V(X−π∗Zp)),

Ep,qZ = Aq(π∗Zp − π∗Zp+1,M,V(π∗Zp−π∗Zp+1)).

We have a long exact sequence

. . . // Dp+1,q−1
Z

j∗p
// Dp,q

Z

∂p
// Ep,qZ

ip,∗
// Dp+1,q

Z
// . . .

so that (Dp,q
Z , Ep,qZ )p,q∈Z is an exact couple where j∗p and ip,∗ are induced by the canonical immer-

sions. By the general theory (see [McC01, Chapter 3]), this defines a spectral sequence that converges
to Ap+q(V,M,VV ) because the Ep,q1 -term is bounded (since the dimension of V is finite).

For p, q ∈ Z, denote by

Dp,q
1,π = colimZ∈Flag(X)D

p,q
Z ,

Ep,q1,π = colimZ∈Flag(X)E
p,q
Z

where the colimit is taken over the flags Z of X (see Proposition 6.4 for functoriality). Since filtered
direct limits are exact in the derived category of abelian groups, the previous spectral sequences give
the following theorem.

Theorem 9.2. We have the convergent spectral sequence

Ep,q1,π ⇒ Ap+q(V,M,VV ).

We need to compute this spectral sequence. This is done in the following theorem.

Theorem 9.3. For p, q ∈ Z, we have a canonical isomorphism

Ep,q1,π '
⊕

x∈X(p)

Aq(Vx,M,VVx).
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Proof. (see [Dé14, §4] for a similar result in the oriented case) Denote by Ip the set of pairs (Z,Z ′)
where Z is a reduced closed subscheme of X of codimension p and Z ′ ⊂ Z is a closed subset containing
the singular locus of Z. Notice that any such pair (Z,Z ′) can be (functorially) extented into a flag
of X. Moreover, for any x in X, consider {x} the reduced closure of x in X and F(x) be the set of
closed subschemes Z ′ of {x} containing its singular locus. The following equalities are all canonical
isomorphisms:

Ep,q1,π ' colimZ∈Flag(X)A
q(V ×X (Zp − Zp+1),M,V(V×X(Zp−Zp+1)))

' colim(Z,Z′)∈Ip A
q(V ×X (Z − Z ′),M,V(V×X(Z−Z′)))

'
⊕

x∈X(p)

colimZ′∈F(x)A
q(V ×X ({x} − Z ′),M,V

V×X({x}−Z′))

'
⊕

x∈X(p)

Aq(Vx,M,VVx).

Theorem 9.4 (Homotopy Invariance). Let X be a scheme, V a vector bundle of rank n over X,
π : V → X the canonical projection and VX a virtual vector bundle over X. Then, for every q ∈ Z,
the canonical morphism

π∗ : Aq(X,M,VX)→ Aq(V,M,−TV/X + VV )

is an isomorphism.

Proof. From a noetherian induction and the localization sequence 7.4, we can reduce to the case where
V = AnX is the affine vector bundle of rank n. With the previous notations, Theorem 9.2 gives the
spectral sequence

Ep,q1,π ⇒ Ap+q(V,M,−TV/X + VV )

where Ep,q1,π is (abusively) defined as previously, but twisted accordingly. By Theorem 9.3, the page Ep,q1,π

is isomorphic to
⊕

x∈X(p) Aq(Vx,M,−TVx/Xx +VVx). According to Proposition 9.1, this last expression
is isomorphic (via the map π) to

⊕
x∈X(p) Aq(Specκ(x),M,Vx) (in other words, the theorem is true

when X is the spectrum of a field). Using again 9.3, this group is isomorphic to Ep,q1,IdX
, which

converge to Ap+q(X,M,VX). By Proposition 6.4, the map π induces a morphism of exact couples
(Dp,q

1,IdX
, Ep,q1,IdX

) → (Dp,q
1,π, E

p,q
1,π) hence we have compatible isomorphisms on the pages which induce

the pullback π∗ : Aq(X,M,VX)→ Aq(V,M,−TV/X + VV ) (see also [Wei94, 5.2.12]).

10 Gysin Morphisms

Gysin morphisms for regular embeddings
We define Gysin morphisms for regular closed immersions and prove functoriality theorems. As always,
the main tool is the deformation to the normal cone.

Let i : Z → X be a closed immersion, and let VX be a virtual bundle over the scheme X. Let t be
a parameter such that Ak = Spec k[t], and let q : X ×k (A1

k \ {0})→ X be the canonical projection.
Denote by D = DZX the deformation space such that D = U tNZX where U = X×k (A1

k \{0}) (see
[Ros96, §10] for more).

Consider the morphism

J(X,Z) = JZ/X : C∗(X,M,VX)→ C∗(NZX,M,VNZX)

defined by the composition:
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Cp(X,M,VX)
q∗

//

JZ/X

��

Cp+1(U,M,−TU/X + VU )

[t]

��

Cp(NZX,M,VNZX) Cp+1(U,M,VU )
∂

oo

where the multiplication with t is twisted by the isomorphism TU/X ' A1
U (which only depends on t)

and ∂ is the boundary map as in 5.10. This defines a morphism (also denoted by J(X,Z) or JZ/X)
by passing to homology.

Assume moreover that i : Z → X is regular of codimension m, the map π : NZX → Z is a vector
bundle over X of dimension m. By homotopy invariance (Theorem 9.4), we have an isomorphism

π∗ : Ap(Z,M,NZX + VZ)→ Ap+m(NZX,M,VNZX)

where NZX is the virtual vector bundle associated to NZX (we have used the canonical isomorphism
π∗(NZX) = TNZX/Z). Denote by rZ/X = (π∗)−1 its inverse.

Definition 10.1. With the previous notations, we define the map

i∗ : Ap(X,M,VX)→ Ap−m(Z,M,NZX + VZ)

by putting i∗ = rZ/X ◦ JZ/X and call it the Gysin morphism of i.

The following lemmas are needed to prove functoriality of the previous construction (see Theorem
10.6).

Lemma 10.2. Let i : Z → X be a regular closed immersion and g : V → X be an essentially smooth
morphism. Denote by N(g) the projection from N(V, V ×X Z) = NZ(X)×X V to NZX. Then

Θ ◦ J(V, V ×X Z) ◦ g∗ = N(g)∗ ◦ J(X,Z),

where Θ comes from the canonical isomorphism TN(V,Y×XV )/N(X,Y ) ' TV/X ×V N(V, Y ×X V ).

Proof. See [Ros96, Lemma 11.3]. This follows from our Proposition 6.1.2, Proposition 6.4.2 and
Proposition 6.3.2.

Lemma 10.3. Let Z → X be a closed immersion and let p : X → Y be essentially smooth. Let VY
be a virtual vector bundle over Y . Suppose that the composite

q : NZX → Z → X → Y

is essentially smooth of same relative dimension as p. Then

Θ ◦ J(X,Z) ◦ p∗ = q∗

where Θ comes from the canonical isomorphism TNZX/Y ' TV/Y ×X NZX.

Proof. Same as [Ros96, Lemma 11.4] except that Rost only needs the composite morphism

f : D(X,Z) // X ×k A1
k

p×Id
// Y ×k A1

k

to be flat. We need moreover (in order to use our Proposition 6.5) the fact that f is essentially smooth
which is true because it is flat and its fibers are essentially smooth.

Lemma 10.4. Let ρ : T → T ′ be a morphism, let T ′1, T ′2 ⊂ T ′ be closed subschemes and let Ti =
T ×T ′ T ′i for i = 1, 2. Let VT ′ be a virtual bundle vector bundle over T ′.

Put T3 = T \ (T1 ∪ T2), T0 = T1 ⊂ T2, T̃1 = T1 \ T0, T̃2 = T2 \ T0 and let ∂3
1 , ∂

1
0 , ∂

3
2 , ∂

2
0 be the

boundary maps for the closed immersions

25



Niels Feld Milnor-Witt Cycle Modules

T̃1 → T \ T2, T0 → T1, T̃2 → T \ T1, T0 → T2,

respectively. Then

0 = ∂1
0 ◦ ∂3

1 + ∂2
0 ◦ ∂3

2 : [T3,VT3 ]•→ [T0,VT0 ]

at the homology level (recall the notation introduced in 5.11).

Proof. Corresponding to the set theoretic decomposition of T we have

A∗(T,M,VT ) = A∗(T0,M,VT0
)⊕A∗(T̃1,M,VT̃1

)⊕A∗(T̃2,M,VT̃2
)⊕A∗(T3,M,VT3

).

Then dT ◦ dT = 0 gives the result.

Lemma 10.5. Let T = D = D(X,Y, Z), T1 = D|({0} × A1
k), T2 = D(A1

k × {0}) where D is
the double deformation cone (see [Ros96, §10.5]). We keep the notations of Lemma 10.4. Then
T3 = X ×k (A1

k \ {0})× (A1
k \ {0}) and T0 = D|{0, 0}. Let π : T3 → X be the projection and let t, s be

the coordinates of A2
k = Spec k[t, s], so that T1 = {t = 0}, T2 = {s = 0}.

Let Z → Y → X be regular closed immersions. Then (up to canonical isomorphisms Θ and Θ′)

∂1
0 ◦ ∂3

1 ◦ [t, s] ◦ π∗ = Θ ◦ J(NYX,NYX|Z) ◦ J(X,Y ),
∂2

0 ◦ ∂3
2 ◦ [s, t] ◦ π∗ = Θ′ ◦ J(NZX,NZY ) ◦ J(X,Z).

Proof. Same as [Ros96, Lemma 11.7] except one has to be careful with the twists (this uses Lemma
10.2).

Theorem 10.6. Let l : Z → Y and i : Y → X be regular closed immersions of respective codimension
n and m. Then i ◦ l is a regular closed immersion of codimension m + n and (up to a canonical
isomorphism)

(i ◦ l)∗ = l∗ ◦ i∗ as morphism Ap(X,M,VX)→ Ap−m−n(Z,M,NZX + VZ).

Proof. The first assertion follows from [Gro67, 19.1.5.(iii)] which also gives the canonical isomorphism
of virtual vector spaces NZX = NZY + NYX ×Y Z. The second assertion follows from 10.2, 10.4,
10.5 and 10.3 as in [Ros96, Theorem 13.1].

We conclude with one interesting property.

Proposition 10.7 (Base change for regular closed immersions). Consider the cartesian square

Z
i //

g

��

X

f

��

Z ′
i′ // X ′

where i, i′ are regular closed immersions and f, g are proper morphisms. Suppose moreover that we
have a canonical isomorphism of virtual vector spaces NZ′X ′ ' NZX×XX ′. Then (up to the canonical
isomorphism Θ induced by the previous isomorphism)

Θ ◦ g∗ ◦ i∗ = i′∗ ◦ f∗.
Proof. It suffices to prove that the following diagram is commutative (recall the notation introduced
in 5.11):

X •
q∗

//
•

f∗

��

(1)

X × (A1
k \ {0})•

[t]
//

•

(f×Id)∗

��

(2)

X × (A1
k \ {0})•

∂ //

•

(f×Id)∗

��

(3)

NZX •
' //

•

h∗

��

(4)

Z
•

g∗

��

X ′ •
q′∗

// X ′ × (A1
k \ {0})•

[t]
// X ′ × (A1

k \ {0})•
∂′ // NZ′X ′ •

' // Z ′

with obvious notations (see the definition of Gysin morphisms). The (cartesian) squares (1) and (4)
commute by the base change theorem for essentially smooth morphisms (see Proposition 6.1.3). The
squares (2) and (3) commute by Proposition 6.2.1 and Proposition 6.4.1, respectively.

26



Niels Feld Milnor-Witt Cycle Modules

Gysin morphisms for lci projective morphisms
We define Gysin morphisms for lci projective morphisms12 and prove functoriality theorems (see [Dé08,
§5] for similar results in the classical oriented case). One could also define Gysin morphisms for
morphisms between two essentially smooth schemes as in [Ros96, §12].

Lemma 10.8. Consider a regular closed immersion i : Z → X and a natural number n. Consider the
pullback square

PnZ
l //

q

��

PnX
p

��

Z
i // X.

Then l∗ ◦ p∗ = q∗ ◦ i∗ (up to the canonical isomorphism induced by Tq − q∗Ni ' l∗Tp −Nl).

Proof. This follows from the definitions and Lemma 10.2.

Lemma 10.9. Consider a natural number n and an essentially smooth scheme X. Let p : PnX → X be
the canonical projection. Then for any section s : X → PnX of p, we have s∗p∗ = Id (up to a canonical
isomorphism).

Proof. We can assume that X = Spec k, then apply rule R3d (see also the proof of Lemma 6.5).

Lemma 10.10. Consider the following commutative diagram:

PnX
p

  

Y

i
>>

i′   

X

PmX

q

>>

where i, i′ are regular closed immersions and p, q are the canonical projection. Then i∗ ◦ p∗ = i′
∗ ◦ q∗

(up to the canonical isomorphism induced by Ni′ − (i′)∗Tq ' Ni − i∗Tp).

Proof. Let us introduce the following morphisms:

PnX
p

  

Y

i

22

ν //

i′
,,

PnX ×X PmX
q′

99

p′

%%

X

PmX

q

>>

Applying Proposition 6.1.2, we are reduced to prove i∗ = ν∗q′∗ and i′∗ = ν∗p′∗. In other words, we
are reduced to the case m = 0 and q = IdX .

In this case, we introduce the following morphisms:

12By definition, a map f : Y → X between two schemes is called a local complete intersection projective

morphism (or lci projective) if there exist a natural number n and a factorization Y
i // PnX

p
// X of f

into a regular closed immersion followed by the canonical projection.
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Y
i

$$

s

  

PnY l
//

q

��

PnX
p

��

Y
i′ // X.

Then the lemma follows from Lemma 10.8, Lemma 10.9 and Theorem 10.6.

Let X and Y be two schemes and let f : Y → X be a projective lci morphism. Consider an

arbitrary factorization Y
i // PnX

p
// X of f into a regular closed immersion followed by the

canonical projection. By the preceding lemma, the composition i∗p∗ does not depend on the chosen
factorization.

We recall the definition of Tf , the virtual tangent bundle of f (see [Fas18, §3]; see also [Ful98,

B.7.6]). Consider a factorization Y
i // PnX

p
// X as before and define Tpi = i∗TPnX/X −NY (PnX)

the relative (virtual) bundle with respect to the factorization f = pi. Consider next a commutative
diagram

PnX

h

��

p

  

Y

i
>>

i′   

X

PmX

q

>>

where pi = qi′ = f are two factorizations of f and where h is smooth. By taking the pullback, we
can construct a third factorization f = π(i× i′) such that we have canonical isomorphisms of virtual
vector bundles

Tπ(i×i′)

{{ ##

Tpi Tqi′ .

Hence we can define Tf as the limit (over all factorizations) of Tpi.

Definition 10.11. Keeping the previous notations, we define the Gysin morphism associated to f as
the morphism

f∗ = Θ ◦ i∗ ◦ p∗ : A∗(X,M,VX)→ A∗(Y,M,−Tf + VY )

where Θ is the canonical isomorphism coming from Tf ' Tpi.

Proposition 10.12. Consider projective morphisms Z
g
// Y

f
// X . Then (up to the canonical

isomorphim induced by Tfg ' Tg + g∗Tf ):

g∗ ◦ f∗ = (f ◦ g)∗.

Proof. (see also [Dé08, Proposition 5.14] for the classical oriented case)

We choose a factorization Y
i // PnX

p
// X (resp. Z

j
// PmX

q
// X ) of f (resp. fg)

and we introduce the diagram
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PmX

q

��

PnX ×X PmX

p′

OO

q′

%%

PmY
q′′

%%

i′
99

PnX
p

  

Z g //

k

>>

j

55

Y

i

99

f // X

in which p′ is deduced from p by base change, and so on for q′ and q′′. Then, by using the factorization
given in the preceding diagram, the proposition follows from 10.8, 10.6, 10.10 and 6.1.2.

Now consider a cartesian square of schemes

X ′
f ′
//

g′

��

Y ′

g

��

X
f
// Y

with f proper and g lci. Suppose morever that the square is tor-independent, that is for any x ∈ X,
y′ ∈ Y ′ with y = f(x) = g(y′) and for any i > 0 we have

Tor
OY,y
i (OX,x,OY ′,y′) = 0.

From the fact that cotangent complex is stable under derived base change, it follows that there is a
canonical isomorphism f

′∗Tg ' Tg′ so that the following proposition makes sense.

Proposition 10.13 (Base change for lci morphisms). Keeping the previous assumptions, we have (up
to the canonical isomorphism induced by the previous isomorphism):

f ′∗ ◦ g′∗ = g∗ ◦ f∗.

Proof. It suffices to consider the case where g is the projection of a projective bundle or a regular
closed immersion. It follows from Proposition 6.1 in the first case and from Proposition 10.7 in the
second.

11 Products
11.1. Cross products Let M ×M ′ → M ′′ be a pairing of MW-cycle modules over k. Let Y and
Z be two essentially smooth schemes over k equipped with virtual vector bundles VY and WZ . We
define the cross product

× : Cp(Y,M,VY )× Cq(Z,M ′,WZ)→ Cp+q(Y × Z,M ′′,VY×Z +WY×Z)

as follows. For y ∈ Y , let Zy = Specκ(y)×Z, let πy : Zy → Z be the projection and let iy : Zy → Y ×Z
be the inclusion. For z ∈ Z we understand similarly Yz, πz : Yz → Y and iz : Yz → Y × Z. We give
the following two equivalent definitions:

ρ× µ =
∑
y∈Y(p)

(iy)∗(ρy · π∗y(µ)),

ρ× µ =
∑
z∈Z(q)

(iz)∗(π
∗
z(ρ) · µ).
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We give more details on this definition. The map

(iy)∗ : Cq(Zy,M,VZy +WZy )→ Cp+q(Y × Z,M,VY×Z +WY×Z)

is by definition the inclusion corresponding to Zy(q) ⊂ (Y × Z)(p+q). Let y ∈ Y and denote by ρy the
y-component of ρ in M(κ(y),Ωκ(y)/k + Vy). Write π∗y(µ) =

∑
u∈Zy(q)

(π∗y(µ))u. By definition,

ρy · π∗y(µ) =
∑

u∈Zy(q)

Θu(resκ(u)/κ(y)(ρy) · (π∗y(µ))u),

where Θu is the canonical isomorphism induced by TZy/Z × Specκ(u) ' Tκ(y)/k × Specκ(u).
To check equality of the two definitions, consider the u-component for u ∈ Y × Z. Let y, z be the

images of u under the projections Y × Z → Y,Z. The u-components are either trivial or given by

(ρ× µ)u = resκ(u)/κ(y)(ρy) · resκ(u)/κ(z)(µz).

11.2. Associativity Consider four pairings

M ×M ′ → N ,
M ′ ×M ′′ → N ′,
N ×M ′′ → N ′′,
M ×N ′ → N ′′.

For X another scheme and ν ∈ Cr(X,M,VX), we have the identity

ν × (ρ× µ) = (ν × ρ)× µ.

Indeed, consider the u-component for u ∈ X × Y × Z. Let x, y, z be the images of u in X,Y, Z,
respectively. The u-component is either trivial or given by

(ν × ρ× µ)u = resκ(u)/κ(x)(νx) · resκ(u)/κ(y)(ρy) · resκ(u)/κ(z)(µz)

where the right hand of the equality makes sense if we assume the pairings to be compatible in some
obvious sense.

11.3. Commutativity Let M be a MW-cycle module with a ring structure. Let τ : Y × Z → Z × Y
be the interchange of factors. For ρ ∈ Cp(Y,M,VY ) and µ ∈ Cq(Z,M,WZ) one has

τ∗(ρ× µ) = (−1)mnΘ(µ× ρ) ∈ Cp+q(Z × Y,M,VZ×Y +WZ×Y )

where m and n are the rank of VY and WZ (respectively) and where Θ is induced by the switch
isomorphism WZ×Y + VZ×Y ' VZ×Y +WZ×Y .

This is immediate from the definitions.

11.4. Chain rule For ρ ∈ Cp(Y,M,VY ) and µ ∈ Cq(Z,M,WZ) one has

d(ρ× µ) = d(ρ)× µ+ εnρ× d(µ)

where n = rkVY . The proof comes from R3a, R3c, R3d and P3 (see also [Ros96, §14.4] for more
details).

11.5. Intersection For X smooth, the product induces a map

Ap(X,M,VX)×Aq(X,M,WX)→ Ap+q(X ×X,M,VX×X +WX×X).

By composing with the Gysin morphism

∆∗ : Ap+q(X ×X,M,VX×X +WX×X)→ Ap+q(X,M,−T∆ + VX +WX)

induced by the diagonal ∆ : X → X ×X, we obtain the map
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Ap(X,M,VX)×Aq(X,M,WX)→ Ap+q(X,M,−T∆ + VX +WX).

The preceding considerations and the functoriality of the Gysin maps prove the following theorem.

Theorem 11.6. If M is a MW-cycle module with a ring structure and X a smooth scheme over
k, the pairing turns

⊕
VX∈V(X)A

∗(X,M,VX) into a graded commutative associative algebra over⊕
VX∈V(X)A

∗(X,KMW ,VX) (see also 3.5 for another formulation).

In particular, we obtain a product on C̃H(X) which coincides with the intersection product (defined
in [Fas18, §3.4], see also [Fas08]). Indeed, our construction of Gysin morphisms follows the classical
one (using deformation to the normal cone) and our cross products correspond to the one already
defined for the Milnor-Witt K-theory (see [Fas18, §3]).

12 Adjunction between MW-Cycle Modules and Rost Cycle
Modules

12.1. Denote by Fk the category whose objects are couple (E,n) where E is a (finitely generated)
field over k and n an integer, and where a morphism (E,m) → (F, n) is the data of a field extension
E → F and the identity m = n.

ConsiderM a classical cycle module (à la Rost, see [Ros96, §1]). By definition,M is a functor from
Fk to the category of abelian groups with some data (d1), . . . , (d4) and rules (r1a), . . . , (r3e), (fd) and
(c) (we use small letters to designate Rost’s axioms so that (d1) corresponds to D1, etc). Equivalently,
M is a functor from the category of finitely generated fields to the category of Z-graded abelian groups
satisfying the same conditions.

We define a Milnor-Witt cycle module Γ∗(M) as follows. Let (E,VE) be in Fk and put

Γ∗(M)(E,VE) = M(E, rkVE).

The data D1,. . . , D4 are defined in an obvious way (for D2 notice that rk ΩF/k = rk ΩE/k if F/E is
finite ; for D3 the generator η acts trivially).

Moreover, we can check that this defines a fully faithful exact functor

Γ∗ : MM
k →MMW

k .

where MM
k (resp. MMW

k ) is the category of Rost cycle modules (resp. Milnor-Witt cycle modules).

Remark 12.2. Let VX be a virtual vector bundle of rank n over a scheme X and let p be an integer.
With the notations of Section 7 and the one in [Ros96, §5], we have

Cp(X,Γ∗(M),VX) = Cp(X,M,n).

In order to define the adjoint functor, we need to following lemma.

Lemma 12.3. Let (E,VE) be in Fk and let Θ : VE → n ·A1
E, Θ′ : VE → n ·A1

E be two trivializations.
The induced isomorphisms

Θ∗ : M(E,VE)→M(E,n · A1
E),

Θ′∗ : M(E,VE)→M(E,n · A1
E)

are related as follows:

(Θ−Θ′)∗(M(E,VE)) ⊂ η[u] ·M(E,n · A1
E),

for some u ∈ E×. Hence, they are equal modulo η.

Proof. By R1a, write (Θ − Θ′)∗ = ((Θ ◦ Θ′−1)∗ − Id) ◦ Θ′∗. The rule R4a gives an element u ∈ E×
such that

31



Niels Feld Milnor-Witt Cycle Modules

(Θ ◦Θ′−1)∗ = γ〈u〉.

Since η[u] = 〈u〉 − 1, the result follows.

12.4. Let M be a Milnor-Witt cycle module. We want to define a cycle module à la Rost Γ∗(M). If
E is a field over k and n an integer, denote byMn(E) = M(E,n ·A1

E) and consider the graded group

M(E) =
⊕
n∈Z
Mn(E).

This is in fact a module over the ring KMW
∗ (E). Now consider I(E) =M(E)η the left sub-KMW

∗ (E)-
module generated by η. Define Γ∗(M) as follows:

Γ∗(M)(E) =M(E)/I(E).

This is a Z-graded abelian group.

• (d1) Let ϕ : E → F be a morphism of fields. The collection of maps

Mn(E)→Mn(F )

given by D1 defines a map

ϕ∗ : Γ∗(M)(E)→ Γ∗(M)(F )

of degree 0.

• (d2) Let ϕ : E → F be a finite morphism of fields. Denote by r = rk ΩF/k = rk ΩE/k. For
n ∈ Z, We define a map ϕ∗Θ as in the following commutative diagram.

Mn(F )
ϕ∗Θ //

Θ '
��

Mn(E)

Θ′'
��

M(F,ΩF/k + (n− r) · A1
F )

ϕ∗
// M(E,ΩE/k + (n− r) · A1

E)

where Θ and Θ′ are isomorphisms induced by ΩF/k ' r · A1
F and ΩE/k ' r · A1

E , respectively.
Hence (by R2a and R2b) we have a morphism of graded groups

ϕ∗Θ,Θ′ : Γ∗(M)(F )→ Γ∗(M)(E)

of degree 0. By Lemma 12.3, this morphism does not depend on Θ,Θ′.

• (d3) We have an obvious action of KMW
∗ (E) on Γ∗(M) where η acts trivially.

• (d4) Let E be a field with a valuation v. Let Θ : Nv → A1
κ(v) be an isomorphism of virtual

κ(v)-vector spaces. For n ∈ Z, this defines a map ∂Θ as in the following commutative diagram.

Mn(E)
∂Θ //Mn−1(κ(v))

M(E,n · A1
F )

∂ // M(E,−Nv + n · A1
E).

'

OO

Hence (by R3e) we have a morphism of graded groups

∂Θ : Γ∗(M)(E)→ Γ∗(M)(κ(v))
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of degree (−1). By Lemma 12.3, this morphism does not depend on Θ.

Since ε modulo η is (−1), we easily check that Γ∗(M) satisfies all axioms of Rost’s cycle modules,
except for R1c which can be deduced from Claim 3.10.

Moreover, we can check that this defines a functor

Γ∗ : MMW
k →MM

k .

We now prove the following adjunction theorem (hence our theory extends Rost’s).

Theorem 12.5 (Adjunction Theorem). The two previously defined functors form an adjunction
Γ∗ a Γ∗ between the category of Milnor-Witt cycle modules and the category of classical cycle mod-
ules:

Γ∗ : MMW
k � MM

k : Γ∗.

Proof. Let M be a Milnor-Witt cycle module and N a Rost cycle module. We define a map

Φ : HomMM
k

(Γ∗(M), N)→ HomMMW
k

(M,Γ∗(N)).

Let E be a field. By definition, Γ∗(M)(E) is a Z-graded abelian group; we write:

Γ∗(M)(E) =
⊕

n∈Z Γ∗(M)(E,n).

We consider Γ∗(M) as a functor (E,n) 7→ Γ∗(M)(E,n) with data (d1), . . . , (d4) and rules
(r1a), . . . , (r3e), (fd) and (c). Let α be a morphism from Γ∗(M) to N . By definition, we have (for
any field E and any integer n) maps

α(E,n) : Γ∗(M)(E,n)→ N(E,n)

compatible (in an obvious sense) with data (d1), . . . , (d4) (see [Ros96, Definition 1.3]).
Let E be a field and VE be a virtual vector bundle of rank n over E. We want to define a map:

Φ(α)(E,VE) : M(E,VE)→ Γ∗(N)(E,VE).

Consider Θ : VE ' n · A1
E a trivialisation. We have a map Φ(α)Θ

E defined as the composite:

M(E,VE)
Θ //

Φ(α)Θ
(E,VE)

��

M(E,n · A1
E)

ιn //
⊕

m∈ZM(E,m · A1
E)

modη

��

Γ∗(N)(E,VE) Γ∗(M)(E,n)
α(E,n)

oo Γ∗(M)(E)
pn

oo

where ιn and pn are the canonical maps (recall that Γ∗(N)(E,VE) = N(E,n) by definition). By
Lemma 12.3, the map Φ(α)Θ

(E,VE) does not depend on Θ and is denoted by Φ(α)(E,VE). In order to
prove that Φ(α) : (E,VE) 7→ Φ(α)(E,VE) is a morphism of Milnor-Witt cycle modules, we have to
check that it is compatible with D1, D2, D3 and D4.

We prove compatibility with D1. Let ϕ : E → F be an extension of fields and VE a virtual vector
bundle of rank n over E. We want to prove that the following diagram (1) is commutative:

M(E,VE)

ϕ∗

��

(1)

Θ //

Φ(α)(E,VE)

&&

M(E,n · A1
E)

ιn //

ϕ∗

��

⊕
m∈ZM(E,m · A1

E)

ϕ∗

��

modη

((

Γ∗(N)(E,VE)

ϕ∗

��

Γ∗(M)(E,n)

ϕ∗

��

α(E,n)

oo Γ∗(M)(E)

ϕ∗

��

pn
oo

M(F,VF )
Θ //

Φ(α)(F,VF ) &&

M(F, n · A1
F )

ιn //
⊕

m∈ZM(F,m · A1
E)
modη

((

Γ∗(N)(F,VE) Γ∗(M)(F, n)
α(F,n)

oo Γ∗(M)(F )
pn

oo
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where the maps are defined as before. The left back square is commutative according to R2a and
R4a. The left front square is commutative since α is compatible with (d1). The remaining squares are
commutative by definition. Hence the square (1) is commutative.

We prove compatibility with D2. Let ψ : F → E be a finite extension of fields and VF a virtual
vector bundle of rank n over F . Denote by r the rank of ΩE/k. We want to prove that the following
diagram (2) is commutative:

M(E,ΩE/k +VE)

ψ∗

��

(2)

Θ //

Φ(α)(E,ΩE/k +VE)

((

M(E, (r + n) · A1
E)

ι(r+n)
//

ψ∗

��

⊕
m∈ZM(E,m · A1

E)

ψ∗

��

modη

''

Γ∗(N)(E,ΩE/k +VE)

ψ∗

��

Γ∗(M)(E, (r + n))

ψ∗

��

α(E,r+n)

oo Γ∗(M)(E)

ψ∗

��

p(r+n)

oo

M(F,ΩF/k +VF )
Θ //

Φ(α)(F,ΩF/k +VF ) ((

M(F, (r + n) · A1
F )

ι(r+n)
//
⊕

m∈ZM(F,m · A1
E)
modη

''

Γ∗(N)(F,ΩE/k +VE) Γ∗(M)(F, (r + n))
α(F,r+n)

oo Γ∗(M)(F )
p(r+n)

oo

where the maps are defined as before. The left back square is commutative according to R2b and
R4a. The left front square is commutative since α is compatible with (d2). The remaining squares are
commutative by definition. Hence the square (2) is commutative.

We prove compatibility with D3. Let E be a field and VE a virtual vector space of dimension n
over E. Let u ∈ E× be a unit and consider multiplication with [u] ∈ KMW (E,A1). We want to prove
that the following diagram (3) is commutative:

M(E,VE)

γ[u]

��
(3)

Θ //

Φ(α)(E,VE)

((

M(E,n · A1
E)

ιn //

γ[u]

��

⊕
m∈ZM(E,m · A1

E)

γ[u]

��

modη

''

Γ∗(N)(E,VE)

γ[u]

��

Γ∗(M)(E,n)

γ[u]

��

α(E,n)

oo Γ∗(M)(E)

γ[u]

��

pn
oo

M(E,A1
E + VE)

Θ //

Φ(α)
(E,A1

E
+VE) ((

M(E, (n+ 1) · A1
E)

ιn+1
//
⊕

m∈ZM(E,m · A1
E)
modη

''

Γ∗(N)(E,A1
E + VE) Γ∗(M)(E,n+ 1)

α(E,n+1)

oo Γ∗(M)(E)
pn+1

oo

where the maps are defined as before. The left back square is commutative according to R4a. The left
front square is commutative since α is compatible with (d3). The remaining squares are commutative
by definition. Hence the square (3) is commutative. The same proof works for the generator η, hence
Φ(α) is compatible with D3.

We prove compatibility with D4. Let E be a field over k, let v be a valuation on E and let V be
a virtual projective Ov-module of finite type. Denote by VE = V ⊗Ov E and Vκ(v) = V ⊗Ov κ(v). We
want to prove that the following diagram (4) is commutative:
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M(E,VE)

∂v

��
(4)

Θ //

Φ(α)(E,VE)

**

M(E,n · A1
E)

ιn //

∂v

��

⊕
m∈ZM(E,m · A1

E)

∂v

��

modη

((

Γ∗(N)(E,VE)

∂v

��

Γ∗(M)(E,n)

∂v

��

α(E,n)

oo Γ∗(M)(E)

∂v

��

pn
oo

M(κ(v),−Nv + Vκ(v))
Θ //

Φ(α)(F,VF ) **

M(κ(v), (n− 1) · A1
κ(v))

ιn−1
//
⊕

m∈ZM(κ(v),m · A1
κ(v))
modη

((

Γ∗(N)(κ(v),−Nv + Vκ(v)) Γ∗(M)(κ(v), n− 1)
α(κ(v),n−1)

oo Γ∗(M)(κ(v))
pn−1

oo

where the maps are defined as before. The left back square is commutative according to R4a. The left
front square is commutative since α is compatible with (d4). The remaining squares are commutative
by definition. Hence the square (4) is commutative.

Thus, we have defined a map

Φ : HomMM
k

(Γ∗(M), N)→ HomMMW
k

(M,Γ∗(N))

α 7→ Φ(α)

which is natural in M and N .
Let M be a Milnor-Witt cycle module and N a Rost cycle module, we now define a map

Ψ : HomMMW
k

(M,Γ∗(N))→ HomMM
k

(Γ∗(M), N).

Let β be an element of HomMMW
k

(M,Γ∗(N)). Let E be a field. By definition, we have maps13

β(E,n) : M(E,VE)→ N(E,n)

for any virtual vector space VE of rank n over E. These maps are compatible with data D1, D2, D3
and D4 according to Definition 4.5. Thus, we can define a map⊕

n∈Z β(E,n) :
⊕

n∈ZM(E,n · A1
E)→

⊕
n∈ZN(E,n)

which can be factorized as

Ψ(β)E : Γ∗(M(E))→ N(E) =
⊕

n∈ZN(E,n)

since β commutes with the KMW -action and η acts trivially on the Milnor-Witt cycle module Γ∗(N)
by definition. Since β commutes with data D1, D2, D3 and D4, we can prove that the map
Ψ(β) : E 7→ Ψ(β)E is a morphism of Rost cycle modules.

Thus, we have defined a map

Ψ : HomMMW
k

(M,Γ∗(N))→ HomMM
k

(Γ∗(M), N)

β 7→ Ψ(β)

which is natural in M and N .
Since the map Ψ is inverse to Φ, we conclude that the two functors Γ∗ and Γ∗ form an adjunction

Γ∗ a Γ∗ between the category of Milnor-Witt cycle modules and the category of classical cycle modules:

Γ∗ : MMW
k � MM

k : Γ∗.

13The fact that β commutes with D1 implies that these maps depend only on the rank n of VE .
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A Virtual Objects
In this section, we closely follow [Del87, §4] and show how to construct the category V(A) of virtual
objects from an exact category A.
A.1. Recall that an exact category is an additive category A equipped with a set of exact sequences
X � Y � Z satisfying various axioms (see [Buh10, Definition 2.1]). Our main example consists in
the category of vector bundles over a scheme X (with locally split short exact sequences).

A.2. A (commutative) Picard category is a non-empty category P where all arrows are isomorphisms,
with a functor + : P × P → P following some associativity and commutativity constraints, and such
that for any object P , the two functors X 7→ X + P and X 7→ P +X are autoequivalences of P.

One can show that there is a zero object 0 (unique up to unique isomorphism) and that any object
X has an inverse −X (unique up to unique isomorphism) such that X+(−X) ' 0. The commutativity
condition gives switch isomorphisms X + Y ' Y + X compatible with the associative data. Beware
that these switch isomorphisms are not identities in general.

The functorX 7→ −X is compatible with + as follows: the isomorphism (X+Y )+((−X)+(−Y )) '
(X + (−X)) + (Y + (−Y )) ' 0 + 0 ' 0 is such that (−X) + (−Y ) is (isomorphic to) −(X + Y ).
Nevertheless, beware that the diagram

((−X) +X) + (−X)
' //

'
��

(−X) + (X + (−X))

'
��

0 + (−X)
' // (−X)

' // (−X) + 0

is not commutative.

Example A.3 (Graded line bundles, see also [Fas18], §1.3). Let S be a scheme and L(S,Z) be the
category of graded line bundles over S. An object of this category is a pair (a, L) where L is a line
bundle (an invertible OX -module) and a is a locally constant integer (an element of Γ(S,Z)). A map
(a, L) → (a′, L′) between two such objects is an isomorphism L → L′ of line bundles with the data
a = a′. By definition, we have (a, L) + (a′, L′) = (a + a′, L ⊗ L′). The associativity constraint is
deduced from the one ruling the tensor product and the commutativity constraint (a, L) + (a′, L′) '
(a′, L′) + (a, L) is given by l ∧ l′ 7→ (−1)aa

′
l′ ∧ l (also called Koszul sign convention). The unit object

0 is (0,OX). For any object (a, L), there is an isomorphism L ⊗ L∨ ' OX induced by the pairing
L× L∨ → OX , (l, ϕ) 7→ ϕ(l) (where L∨ denotes the dual of L). Hence the following isomorphism:

(a, L) + (−a, L∨) ' (0,OX).

A.4. Let A be an exact category. We construct the category V(A) of virtual objects of A. Denote
by Aiso the category with the same objects as A but with morphisms the isomorphisms of A. Let P
be a Picard category. Consider the functors [−] : Aiso → P with data (a), (b) and rules (c), (d), (e)
described as follows:

(a) (additivity) For any short exact sequence Σ : A′ � A � A′′, we have a morphism [Σ] : [A] →
[A′] + [A′′], functorial in morphisms of short exact sequences.

(b) If 0 is a zero object in A, then we have an isomorphism [0]→ 0.

(c) Let ϕ : A→ B be an isomorphism in A. Denote by Σ the short exact sequence 0→ A→ B (resp.
A→ B → 0). Then [ϕ] (resp. [ϕ]−1) is the composite

[A]
[Σ]
// [0] + [B]

(b)
// [B]

(resp.

[B]
[Σ]
// [B] + [0]

(b)
// [A]).
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(d) (associativity) Consider the following filtration C ⊃ B ⊃ A ⊃ 0. Then the diagram (with
morphisms given by (a))

[C] //

��

[A] + [C/A]

��

[B] + [C/B] // [A] + [B/A] + [C/B]

is commutative.

(e) ((a) is additive) For any A = A′ ⊕ A′′, the short exact sequences Σ : A′ → A → A′′ and
Σ′ : A′′ → A→ A′ give a commutative triangle

[A′] + [A′′] //

[Σ]
%%

[A′′] + [A′]

[Σ′]
yy

[A].

For any commutative Picard category P, the functors [−] : A → P satisfying the conditions (a),...,(e)
define a category denoted by [[−]]P . One can prove that there is a (commutative) Picard category
V(A) with functors [−]A : Aiso → V(A) satisfying the conditions (a),...,(e) which is universal in the
sense that for any Picard category P with functors [−] : Aiso → P satisfying (a),...,(e), the category
[[−]]P is equivalent to the category of additive functors V(A)→ P. By definition, V(A) is the category
of virtual objects of A.
A.5. Let T : A → B be an exact functor between two exact categories (it respects short exact
sequences). With the previous notations, the composition [−]◦T : Aiso → V(B) is a functor satisfying
(a),...,(e) thus it induces an additive functor V(A)→ V(B).

A.6. Let S be a scheme and denote by Vect(S) the category of vector bundle over S. We put V(S) =
V(Vect(S)) (also denoted byK(S) in [Del87, §4]). Any scheme morphism f : X → S defines a pullback
f∗ : V(S)→ V(X).

A.7. Let S be a scheme and V be a vector bundle over S. The rank rk(V ) of V is a locally constant
integer on S. The determinant det(V ) of V is the line bundle Λrk(V )(V ). We also call determinant of
V (and write Det(V )) the graded line bundle (rk(V ),det(V )). For any short exact sequence

V ′ � V � V ′′,

we have an isomorphism

det(V ′)⊗ det(V ′′)→ det(V )

illustrated by the symbols

(e′1 ∧ · · · ∧ e′n)⊗ (e′′1 ∧ · · · ∧ e′′m) 7→ e′1 ∧ · · · ∧ e′n ∧ ẽ′′1 ∧ · · · ∧ ẽ′′m.

This induces an isomorphism between the associated line bundles which satisfies conditions (a),...,(e).
The universal property gives a factorization of Det : Vect(S) → L(S,Z) through a functor V(S) →
L(S,Z) also denoted by Det.

Note in particular that for a vector bundle V = V ′ ⊕ V ′′, the two short exact sequences give the
following commutative diagram:

det(V ′)⊗ det(V ′′)
(−1)nm

//

'

''

det(V ′′)⊗ det(V ′)

'

ww

det(V )
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where n,m are the rank of V ′, V ′′, respectively.
If V is a virtual vector bundle over S (i.e. an object of V(S)), then we can write the graded

line bundle Det(V) as (rk(V),det(V)) so that we can define the rank and the determinant of V in an
obvious way.

In this article, we are mostly interested in the case where S = Spec(A) is a local scheme. One can
then prove that the functor Det : V(S)→ L(S,Z) is an equivalence.
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