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A GENERAL BANACH–STONE TYPE THEOREM AND APPLICATIONS

LUIZ GUSTAVO CORDEIRO

UMPA, UMR 5669 CNRS – École Normale Supérieure de Lyon
46 allée d’Italie, 69364 Lyon Cedex 07, France

Abstract. One important class of tools in the study of the connections between algebraic and
topological structures are the “Banach–Stone type theorems”, which describe algebraic isomorphisms
of algebras (or groups, lattices, etc.) of functions in terms of homeomorphisms between the un-
derlying topological spaces. Several such theorems have been proven throughout the last century,
however not all of them are comparable, and in particular no single one is the strongest. In this
article, we describe a general framework which encompasses several of these results, and which
allows for new applications related to groupoid algebras, and to groups of circle-valued functions.
This is attained by a detailed study of “disjointness relations” on sets of functions, which play a
central role (even if not explicitly) in previously-proven Banach–Stone type theorems.
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Introduction

Let X be a locally compact and Hausdorff space, and consider K = R or C. The initial motivation
for this work is the question of whether we can recover X (up to homeomorphism) from Cc(X,K),
the set of continuous, compactly supported K-valued functions on X. This is a problem initiated
mostly after Stone’s seminal work [47] on the representations of Boolean algebras, and has proven
to be a rich area of study with several important applications in Logic, Functional Analysis, and
Operator Algebras.

By Milutin’s Theorem ([33], or [24, Chapter 36, Theorem 2.1]), just the topological vector space
structure of Cc(X,K), when endowed with the supremum norm, is not enough to recover X. On the
other hand, throughout the last century several authors have proved that by considering additional
algebraic structures on Cc(X,K) – such as that of a ring, a C*-algebra if K = C, a lattice if K = R,
etc. – we can in fact recover X. See Banach and Stone [1, 48], Gelfand and Kolmogorov [11],
Milgram [32], Gelfand and Naimark [12], Kaplansky [27], Jarosz [22], Li and Wong [31], Hernández
and Ródenas [17], Kania and Rmoutil [26].

In fact, the results of [27, 17] also hold for certain spaces of non-R or C-valued functions. In a
similar manner, Stone’s duality for Boolean algebras ([47]) can also be seen as a result on spaces of
functions: The Boolean algebra of clopen sets of a topological space X is order-isomorphic to the
lattice of functions C(X, {0, 1}), and if X is a Stone (zero-dimensional, compact Hausdorff) space,
then it completely determines X.

Our goal in this paper is to provide a unified and elementary approach to all these results, under
hypotheses that can be easily verified in different settings. For this, we use a stronger version of the
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“disjointness” relation for (supports of) functions as considered by Jarosz in [22]. As we will see in
Section 3, all of the results above immediately fall in this more general setting.

Let us describe the main idea in the case real-valued functions: Two functions f, g ∈ Cc(X,R)
are strongly disjoint if supp(f) ∩ supp(g) = ∅, in which case we write f ⊥⊥ g. Then it is
possible to describe, purely in terms of the relation ⊥⊥, the subsets of Cc(X,R) of the form
I(U) = {f : supp(f) ⊆ U}, where U ⊆ X is open. These sets are called ⊥⊥-ideals, and we have
a bijection x 7→ I(X \ {x}) between X and the set ̂Cc(X,R) of maximal ⊥⊥-ideals. This bijection
can be made into a homeomorphism, by endowing ̂Cc(X,R) with a topology, described again only
in terms of ⊥⊥. Therefore, any ⊥⊥-isomorphism T : Cc(X,R) → Cc(Y,R) will induce a homeomor-
phism Y ∼= ̂Cc(Y,R) ∼= ̂Cc(X,R) ∼= X. In all of the previously-proven theorems listed above, the
algebraic isomorphisms under considerations happen to be also ⊥⊥-isomorphisms, and thus those
results follow from this.

As supports of functions are central to the result above, and we wish also to look at a theory
involving non-scalar maps, we will need to extend the notion of support, which is the first problem
tackled in Section 1.

This article is organized as follows: In the first section we introduce all necessary terminology
and prove our main recovery theorem (Theorem 1.17). In Section 2, we study an important class
of maps, called “basic”, between spaces of functions, and which will appear in most applications.
These are the maps which are “classifiable” in a certain manner.

Due to the level of generality we seek, the first two sections are rather abstract, so the reader is
invited to read Definition 1.1 in order to get familiarized with the notation, read the main Theorem
1.17, and proceed directly to the applications in Section 3, referring back to previous parts of this
article as necessary (or desired).

In Section 3 we obtain classifications of isomorphisms for different algebraic structures on spaces
of continuous functions, including the ones mentioned at the beginning of this introduction. The new
applications consist of a classification of linear isomorphisms which are isometric with respect to L1-
norms (Theorem 3.20), classifications of classes of isomorphisms of algebras associated to groupoids
(Theorems 3.25, 3.27 and 3.41), and a classification of (uniform-metric) isometric isomorphisms
between groups of circle-valued functions.

Acknowledgements. Most of this work was done during my Ph.D. studies at the University of
Ottawa under supervision of professors Thierry Giordano and Vladimir Pestov, to both of whom I
express my sincere gratitude.

1. Disjointness and ⊥⊥-isomorphisms

Throughout this section, X will always denote a locally compact and Hausdorff space, H will
denote a Hausdorff space, and θ : X → H is a fixed continuous function. We denote by C(X,H)
the set of continuous functions from X to H. For two functions f, g : X → H, we denote

[f 6= g] = {x ∈ X : f(x) 6= g(x)} and [f = g] = X \ [f 6= g].

1.1. Disjointness relations. The main idea is that any manageable algebraic structure on H will
naturally lead us to consider a specific function θ, which behaves as a “neutral element”, and which
will be used to separate points of X. See Example 1.3 for the classical setting. We first generalize
the notion of support, in the obvious manner.

Definition 1.1. Given f ∈ C(X,H), we define the θ-support of f as

suppθ(f) = [f 6= θ].
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We define σθ(f) as the interior of suppθ(f), and Zθ(f) as the complement of suppθ(f):

σθ(f) = int suppθ(f) and Zθ(f) = X \ suppθ(f).

Let Cc(X, θ) be the set of continuous functions from X to H with compact θ-support. Whenever
there is no risk of confusion, we will drop θ from the notation and write simply supp(f), σ(f), Z(f)
and Cc(X).

Now we define the following relations: Given f, g ∈ C(X,H),
(1) f ⊥ g: if [f 6= θ] ∩ [g 6= θ] = ∅; we say that f and g are weakly disjoint ;
(2) f ⊥⊥ g: if supp(f) ∩ supp(g) = ∅; we say that f and g are strongly disjoint ;
(3) f ⊆ g: if σ(f) ⊆ σ(g);
(4) f b g: if supp(f) ⊆ σ(g).

Note that Zθ(f) is the complement of σθ(f) in the lattice of regular open sets of X (see [14,
Chapter 10]). Also, σθ(f) is the regularization of [f 6= θ], and thus it follows immediately that

f ⊥ g ⇐⇒ σ(f) ∩ σ(g) = ∅,
even though [f 6= θ] and σθ(f) are not equal in general.

Example 1.2. Suppose X = H = [0, 1], θ = 0 (the zero map [0, 1] → [0, 1]) and f = id[0,1], the
identity map of [0, 1]. Then [f 6= θ] = (0, 1] but σθ(f) = [0, 1].

As stated above, when H comes with additional structure, a particular choice of θ generally yields
a suitable notion of support, and the relations above may be described in terms of this structure.
This is the general technique used in the applications in Section 3.

Example 1.3. If H = R or C, and θ = 0 is the constant zero function, we obtain the usual notion
of support. We may describe ⊥ in terms of the multiplicative structure of Cc(X) = Cc(X, 0): f ⊥ g
if and only if fg = 0, which is the only absorbing element of Cc(X).

Example 1.4 (Kania–Rmoutil, [26]). Let X, H and θ as in the beginning of this section. Define
the compatibility ordering on Cc(X, θ) by

f � g ⇐⇒ g|suppθ(f) = f |suppθ(f).
Then θ is the minimum of � in Cc(X, θ). We can describe weak disjointness in Cc(X, θ) by

f ⊥ g ⇐⇒ inf
�
{f, g} = θ and {f, g} has a � -upper bound.

We will, moreover, be interested in recovering X not from the whole set Cc(X), but instead from
a subcollection A ⊆ Cc(X). We will need to assume, however, that there are enough functions in
A in order to separate points of X, and this is attained by assuming that an appropriate version of
Urysohn’s Lemma is valid. (This is the same type of assumption as made in [27] and in [17].)

Definition 1.5. Let A ⊆ Cc(X) be a subset containing θ. Denote σ(A) = {σ(f) : f ∈ A}. We say
that (X, θ,A) (or simply A) is

(1) weakly regular if σ(A) is a basis for the topology of X.
(2) regular if for every x ∈ X, every neighbourhood U of x and every c ∈ H there is f ∈ A with

f(x) = c and supp(f) ⊆ U .

We will need to analyze relations between ⊆,b,⊥ and ⊥⊥. In order to deal with finitely many
functions simultaneously, we will need to adapt the notion of open cover of a set to this language.

Definition 1.6. Suppose A ⊆ Cc(X) is weakly regular. A family A ⊆ A is a cover of an element
b ∈ A if the implication

h ⊥ a for all a ∈ A =⇒ h ⊥ b.
is valid for all h ∈ A.
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Lemma 1.7. Suppose A is weakly regular, and let A ⊆ A and b ∈ A. The following are equivalent:
(1) A is a cover of b;
(2) The closure of

⋃
a∈A[a 6= θ] contains supp(b).

Proof. (1)⇒(2): Let x ∈ supp(b). Take an open neighbourhood of x of the form σ(h), h ∈ A. Since
supp(b) = σ(b), the intersection σ(h) ∩ σ(b) is nonempty and thus h and b are not weakly disjoint.
From A being a cover, h is not weakly disjoint to some a ∈ A, which means that σ(h) ∩ [a 6= θ] is
nonempty. Since A is weakly regular, then x is in the closure of

⋃
a∈A[a 6= θ].

(2)⇒(1): Suppose h ∈ A is such that h ⊥ a for all a ∈ A. This means that

(
⋃
a∈A

[a 6= θ]) ∩ [h 6= θ] = ∅.

Taking the closure of the first term and using (2) we conclude that [b 6= θ]∩ [h 6= θ] ⊆ supp(b)∩ [h 6=
θ] = ∅, so h ⊥ b. �

If A ⊆ Cc(X) and θ ∈ A, note that ⊆ is a preorder on A, whose minimum is θ. Alternatively, θ
is the only element of A such that θ ⊥ θ. Thus the function θ is uniquely determined in terms of
either ⊥ or ⊆. We now proceed to prove that ⊆ and ⊥ “carry the same information”, as do b and
⊥⊥.

Proposition 1.8. Suppose A is weakly regular. If f, g ∈ A, then
(a) f ⊆ g ⇐⇒ ∀h(h ⊥ g ⇒ h ⊥ f);
(b) f ⊥ g ⇐⇒ The ⊆-infimum of {f, g} is θ;
(c) f ⊆ g ⇐⇒ ∀h(h b f ⇒ h b g);
(d) f ⊆ g ⇐⇒ ∀h(h ⊥⊥ g ⇒ h ⊥⊥ f);
(e) f ⊥⊥ g ⇐⇒ ∃h1, k1, . . . , hn, kn ∈ A such that {h1, . . . , hn} is a cover of f , hi b ki and

ki ⊥ g for all i;
(f) f b g ⇐⇒ ∀b ∈ A, ∃h1, . . . , hn ∈ A such that {h1, . . . , hn, g} is a cover of b and hi ⊥⊥ f .

By items (a) and (b), ⊥ and ⊆ are equi-expressible (i.e., each one is completely determined by the
other). By (c) and (d) one can recover ⊆ (and hence ⊥) from either b or ⊥⊥, which in turn implies,
from (e) and (f), that b and ⊥⊥ are also equi-expressible.

Proof. Items (a)-(d) are easy consequences of weak regularity of A, andX being a regular topological
space for items (c)-(d).

(e) ⇒: Suppose f ⊥⊥ g. Given x ∈ supp(f), weak regularity of A and regularity of the
topological space X give us hx, kx ∈ A such that x ∈ σ(hx), hx b kx and kx ⊥ g. Com-
pactness of supp(f) allows us to find the elements hi, ki we need, by going to a subcover of
{σ(hx) : x ∈ supp(f)}.
⇐: Suppose such hi, ki exist. Then by Lemma 1.7,

supp(f) ⊆
n⋃
i=1

supp(hi) ⊆
n⋃
i=1

σ(ki) ⊆ X \ supp(g),

and so f ⊥⊥ g.
(f) ⇒: Suppose f b g and take any b ∈ A. Since supp(b)\σ(g) is compact and does not intersect

supp(f), we can take h1, . . . , hn ∈ A such that hi ⊥⊥ f and supp(b) \σ(g) ⊆
⋃
i σ(hi), which

implies that {h1, . . . , hn, g} is a cover of b.
⇐: By compactness os supp(f) and supp(g), take b1, . . . , bM in A such that supp(f) ∪

supp(g) ⊆
⋃M
k=1 σ(bk). For each k take functions hki satisfying the right-hand side of (f),

relative to bk.
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Given k, we have σ(bk) ⊆
⋃
i supp(hki ) ∪ supp(g), so by taking complements we obtain⋂

i Z(hki ) ∩ Z(g) ∩ σ(bk) = ∅, or equivalently
⋂
i Z(hki ) ∩ σ(bk) ⊆ σ(bk) \ Z(g) ⊆ supp(g).

Taking interiors on both sides yields
⋂
i Z(hki ) ∩ σ(bk) ⊆ σ(g).

Now from hji ⊥⊥ f we obtain

supp(f) ⊆
⋂
i,j

Z(hji ) ∩
M⋃
k=1

σ(bk) ⊆
M⋃
k=1

[⋂
i

Z(hki ) ∩ σ(bk)

]
⊆ σ(g),

so f b g. �

Remark. One should be careful with the connections between the pairs of relations (⊥,⊥⊥) and
(⊆,b). For example, ⊥ and ⊥⊥ may coincide but ⊆ and b may not and vice-versa. See the example
below.

Example 1.9. Let X = H = R and θ = 0, so that we are dealing with the usual notion of support.
Let {(an, bn) : n ∈ N} (where an < bn) be a countable basis of open intervals for the usual topology
of R. Up to small modifications, we may assume that all the numbers an, bn and bn+1 are distinct.
In particular, the sets Un := (an, bn) have pairwise disjoint boundaries.

For each n, let fn ∈ Cc(R) with σ(fn) = Un, e.g. fn(x) = max(0, (x − ãn)(b̃n − x)), and let
A = {fn : n ∈ N}, which is weakly regular. Then ⊥ and ⊥⊥ coincide on A, as do ⊆ and b, since the
boundaries of all Un are pairwise disjoint.

Letting V = (ã1, b̃1 + 1) and gV be a continuous function with σ(gV ) = V , then ⊥ and ⊥⊥ still
coincide in A ∪ {gV }, however ⊆ and b do not, since f1 ⊆ gV but not f1 b gV .

Alternatively, setW = (b̃1, b̃1+1) and let gW be any continuous function with σ(gW ) = W . Then
⊆ and b still coincide in A ∪ {gW }, however ⊥ and ⊥⊥ do not, because f1 ⊥ g but not f1 ⊥⊥ g.

1.2. ⊥⊥-ideals. Recall that X, H and θ ∈ C(X,H) are fixed, as in the beginning of the section.
We fix also a weakly regular family A ⊆ Cc(X, θ).

One technique that is commonly used in the proofs of Banach–Stone type theorems is to describe
an order-isomorphism between X and “maximal ideals” of A, where the notion of an “ideal” depends
on whatever kinds of algebraic signature one is working. See for example [32, Lemma 2.2], [17,
Proposition 2.7], [27, Lemma 3]. This idea also appears in some manner in the proofs of the main
results of [31] and [22], and of [1, p. 170, Théorème 3].

We will follow this idea by considering ⊥⊥-ideals. Although their definition (1.12) is given simply
in terms of the relation ⊥⊥, Theorem 1.14 provides a much more manageable description of them.

A strengthening of the notion of cover will be necessary (see Lemma 1.11 for the intuition).

Definition 1.10. A finite family B ⊆ A is said to be a strong cover of an element a ∈ A if there
is another finite family B̃ ⊆ A such that:
(SC1) For all b̃ ∈ B̃, there is some b ∈ B with b̃ b b;
(SC2) B̃ is a cover of a (see Definition 1.6).

The following proposition shows that strong covers encode information about the closures of sets.
It is a direct consequence of the definition of b and Lemma 1.7.

Lemma 1.11. A finite family B ⊆ A is a strong cover of a ∈ A if and only if supp(a) ⊆
⋃
b∈B σ(b).

Definition 1.12. A ⊥⊥-ideal in A is a subset I ⊆ A such that, for all a ∈ A,

a ∈ I ⇐⇒ there is a finite subset B ⊆ I which is a strong cover of a.

Note that every ⊥⊥-ideal of A contains θ (since the empty set is a strong cover of θ).
We will now prove that the lattice of open subsets of a space X is order-isomorphic to the lattice

of ⊥⊥-ideals of a weakly regular tuple (X, θ,A).
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Definition 1.13. Suppose (X, θ,A) is weakly regular. Given an open set U ⊆ X, denote I(U) =
{f ∈ A : supp(f) ⊆ U}, and , given a ⊥⊥-ideal I ⊆ A, denote U(I) =

⋃
f∈I σ(f).

Lemma 1.11 and weak regularity of A imply that I(U) is a ⊥⊥-ideal of A for any open U ⊆ X.

Theorem 1.14. Suppose (X, θ,A) is weakly regular.
(a) For every ⊥⊥-ideal I of A, I = I(U(I));
(b) For every open subset U ⊆ X, U = U(I(U));
(c) The map U 7→ I(U) is an order isomorphism between the lattices of open sets of X and
⊥⊥-ideals of A.

Proof. (a) Let I be a ⊥⊥-ideal. The inclusion I ⊆ I(U(I)) follows easily from the definition of
⊥⊥-ideals: if f ∈ I, then take a finite strong cover B ⊆ I of f , so that supp(f) ⊆

⋃
b∈B σ(b) ⊆

U(I).
Conversely, if f ∈ I(U(I)) then supp(f) ⊆ U(I) =

⋃
b∈I σ(b). Using compactness of

supp(f) we find a finite family B ⊆ I with supp(f) ⊆
⋃
b∈B σ(b), so B is a strong cover of

f (Lemma 1.11) and therefore f ∈ I.
(b) Suppose U ⊆ X is open. By weak regularity of (X, θ,A) and since X is regular, we have

U =
⋃
f∈A

supp(f)⊆U

σ(f) =
⋃

f∈I(U)

σ(f) = U(I(U)).

(c) The previous items prove that U 7→ I(U) is a bijection, with inverse I 7→ U(I). It is clear
that both maps are order-preserving. �

1.3. The main theorems. The main theorem (1.17) now follows easily from the previous subsec-
tion. Fix two locally compact Hausdorff spaces X and Y , and for Z ∈ {X,Y } a Hausdorff space
HZ , a continuous map θZ : Z → HZ , and a subset A(Z) ⊆ Cc(Z, θZ).

Definition 1.15. We call a map T : A(X)→ A(Y ) a ⊥⊥-morphism if f ⊥⊥ g implies Tf ⊥⊥ Tg; T is
a ⊥⊥-isomorphism if it is bijective and both T and T−1 are ⊥⊥-morphisms. ⊥, ⊆ and b-isomorphisms
are define analogously.

By Proposition 1.8(a), ⊥-morphisms coincide with ⊆ morphisms. We obtain:

Theorem 1.16. Suppose (X, θX ,A(X)) and (Y, θY ,A(Y )) are weakly regular and T : A(X)→ A(Y )
is a ⊥-isomorphism. Let f, g ∈ A(X). Then σ(f) ⊆ σ(g) if and only if σ(Tf) ⊆ σ(Tg). In
particular, Z(f) = ∅ if and only if Z(Tf) = ∅.

Assume (X, θ,A(X)) is weakly regular. Let Â(X) be the collection of maximal ⊥⊥-ideals of A,
and endow it with the topology generated by the sets

U(f) =
{
I ∈ Â(X) : ∃g b f such that g 6∈ I

}
, f ∈ A(X).

By Theorem 1.14, we obtain a bijection κX : X → Â(X), κX(x) = I(X \ {x}). Since for all x ∈ X
and f ∈ A(X),

x ∈ σ(f) ⇐⇒ ∃g b f such that x ∈ supp(g) ⇐⇒ κX(x) ∈ U(f),

then κX(σ(f)) = U(f), which proves that κX is a homeomorphism. Performing a similar procedure
with Y and using standard duality arguments, we obtain our main theorem:

Theorem 1.17. If A(X) and A(Y ) are weakly regular and T : A(X)→ A(Y ) is a ⊥⊥-isomorphism
then there is a unique homeomorphism φ : Y → X such that φ(supp(Tf)) = supp(f) for all f ∈
A(X) (equivalently, φ(σ(Tf)) = σ(f), or φ(Z(Tf)) = Z(f), for all f ∈ A(X)).
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Definition 1.18. The unique homeomorphism φ associated with T as in 1.17 will be called the
T -homeomorphism.

We finish this section by proving that Theorem 1.17 is sharp, in the sense that the analogous
result for ⊥-isomorphisms is not true in general. We can even be more bold and find counter-
examples in settings which are usually regarded as “well-behaved”; namely, we will consider only
real-valued functions and the usual notion of support (i.e., Cc(X) = Cc(X, 0) for a space X), and
compact spaces.

Moreover, we will provide two examples: one where the underlying topological spaces do not have
the same small inductive dimension (Corollary 1.23), and one where they do (Corollary 1.25).

Let us fix some notation, and recall some basic facts about Stone duality. We refer to [46, 49] for
details (see also [25, II.4.4])

Notation. Given a Hausdorff space X, denote by ROK(X) the generalized Boolean algebra of
regular open subsets of X with compact closure, and by KO(X) the generalized Boolean algebra of
compact-open subsets of X. Given A ∈ ROK(X), we define ΣX(A) = {f ∈ Cc(X) : σ(f) = A}.

Given a generalized Boolean algebra B, let Spec(B) be the spectrum of B, i.e., the space of
non-trivial lattice homomorphisms from B to the two-element lattice {0, 1}, with the topology of
pointwise convergence. (Equivalently, it may be regarded as the space of ultrafilters of B.)

Stone duality. The usual form of Stone duality states that the category of Stone (i.e., zero-
dimensional, compact Hausdorff) spaces is dual to that of Boolean algebras. This extends to the
locally compact spaces and generalized Boolean algebras, and in particular we obtain: Every zero-
dimensional, locally compact Hausdorff space X is (naturally) homeomorphic to Spec(KO(X)), and
every generalized Boolean algebra B is (naturally) isomorphic to KO(Spec(B)). For a more general
version, see [3].

In order to find non-homeomorphic spacesX and Y such that Cc(X) and Cc(Y ) are ⊥-isomorphic,
we need the following result:

Proposition 1.19. Suppose that:
(i) X and Y are separable, locally compact Hausdorff spaces;
(ii) For all nonempty A ∈ ROK(X) and B ∈ ROK(Y ), ΣX(A) and ΣY (B) are nonempty;
(iii) ϕ : ROK(X)→ ROK(Y ) is an order isomorphism (with respect to set inclusion).

Then Cc(X) and Cc(Y ) are ⊥-isomorphic.

Proof. Given A ∈ ROK(X), the sets ΣX(A) and ΣY (ϕ(A)) have the same cardinality: They are
either singletons if A = ∅, or have cardinality 2ℵ0 otherwise, by (ii) and sinceX and Y are separable.
Consider any bijection TA : ΣX(A)→ ΣY (ϕ(A)). Then the map

T : Cc(X)→ Cc(Y ), T (f) = Tσ(f)(f)

is a ⊥-isomorphism. �

The following are two technical lemmas which will allow us to construct spacesX and Y satisfying
the hypotheses of the theorem above.

Lemma 1.20. Suppose that C is a zero-dimensional, locally compact Hausdorff space and KO(C)
is conditionally complete (i.e., every bounded family has a supremum). Then ROK(C) = KO(C).

Proof. The only non-trivial part is proving ROK(C) ⊆ KO(C). Given A ∈ ROK(C), the family
{V ∈ KO(C) : V ⊆ A} is bounded in KO(C), so let U be its supremum in KO(C). As C is zero-
dimensional we have A ⊆ U . To prove the reverse inclusion, we first show that U \A = ∅.

If W ∈ KO(C) and W ⊆ U \ A, then A ⊆ U \W , from which it follows that U ⊆ U \W , so
W = ∅. This proves that U \A = ∅, because C is zero-dimensional, and so U ⊆ A. However, U is
clopen and A is regular open, which implies A = U . �
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Lemma 1.21. If X is a separable locally compact Hausdorff space, then C = Spec(ROK(X)) is
separable as well.

Proof. Let {xn : n ∈ N} be a countable dense subset of X. For each n, Zorn’s Lemma implies that
exists φn ∈ C such that φn(U) = 1 whenever xn ∈ U . Then {φn}n is easily seen to be dense in
C. �

Lemma 1.22. If X is a second-countable locally compact Hausdorff space and A ∈ ROK(X), then
there is f ∈ Cc(X) such that σ(f) = A.

Proof. First choose a countable family of compact subsets Kn ⊆ A such that
⋃
nKn = A. For

each n we can, by Urysohn’s Lemma and regularity of X, find a continuous function fn : X → [0, 1]
such that fn(k) = 1 for all k ∈ Kn and supp(fn) ⊆ A. Letting f =

∑∞
n=1 2−nfn we obtain

[f 6= 0] = σ(f) = A, because A is regular. �

Given locally compact Hausdorff X, let C = Spec(ROK(X)). The generalized Boolean algebra
ROK(X) is conditionally complete, so by Stone duality, KO(C) is also conditionally complete, and
hence coincides with ROK(C). As a consequence of Lemmas 1.20, 1.21 and 1.22 and Proposition
1.19 when X = [0, 1], we conclude:

Corollary 1.23. There exists a zero-dimensional, compact Hausdorff topological space C (namely,
C = Spec(ROK([0, 1]))) – which is, in particular, not homeomorphic to [0, 1] – such that C(C) and
C([0, 1]) are ⊥-isomorphic.

For our second example, we will consider only second-countable spaces. The next lemma is again
a technical lemma which can be proven by elementary topological considerations, so we omit its
proof.

Lemma 1.24. Let X be a topological space and U a dense open subset of X. Then the map

ϕU : RO(X)→ RO(U), ϕU (A) = A ∩ U
is an order isomorphism.

Let S1 = {z ∈ C : |z| = 1} be the complex unit circle.

Corollary 1.25. C([0, 1]) and C(S1) are ⊥-isomorphic.

Proof. Let X = (0, 1) and Y = S1 \{1}. Then X and Y are homeomorphic, and two applications of
Lemma 1.24 imply that RO([0, 1]) and RO(S1) are order-isomorphic. Lemmas 1.21 and 1.22, and
Proposition 1.19, imply that C([0, 1]) and C(S1) are ⊥-isomorphic. �

2. Basic maps

In this section we will develop techniques to classify isomorphisms for spaces of functions with
different algebraic structures. As in the preceding sections, we will be interested mostly in spaces of
continuous functions between topological spaces, however the initial notions we will deal with can
be defined in purely set-theoretical terms.

Let X and HX be sets, and consider a class A(X) ⊆ (HX)X of HX -valued functions on X. Given
a point x ∈ X, denote by A(X)|x the set of images of x under elements of A(X), i.e.

(2.1) A(X)|x = {f(x) : f ∈ A(X)} .
If Y is another set and φ : Y → X is a map, denote by

Y ×(φ,A(X)) HX =
⋃
y∈Y
{y} ×A(X)|φ(y) = {(y, f(φ(y))) : y ∈ Y, f ∈ A(X)} .

Note that Y ×(φ,A(X)) HX is equal to Y ×HX if and only if the following property is satisfied:
For every y ∈ Y and every c ∈ HX , there exists f ∈ A(X) such that f(φ(y)) = c.
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Definition 2.1. Let X, HX , Y and HY be sets, φ : Y → X be a function, and consider a class of
functions A(X) ⊆ (HX)X .

Given maps φ : Y → X and χ : Y ×(φ,A(X)) HX → HY , we define T(φ,χ) : A(X)→ (HY )Y by

(2.2) (T(φ,χ)f)(y) = χ(y, f(φ(y)), ∀f ∈ A(X), ∀y ∈ Y.

Definition 2.2. Let X, HX , Y and HY be sets, φ : Y → X be a function, and consider classes of
functions A(X) ⊆ (HX)X and A(Y ) ⊆ (HY )Y . A map T : A(X) → A(Y ) is called φ-basic if there
exists χ : Y ×(φ,A(X)) HX → HY such that T = T(φ,χ). We call such χ a (φ, T )-transform.

We denote sections of χ by χ(·, y) : A(X)|φ(y) → HY (where y ∈ Y ).

(In the definition above, we ignore the fact that the codomain of T is A(Y ), while the codomain
of T(φ,χ) is (HY )Y .)

In simpler terms, a basic map is one that is induced naturally by the transformation φ : Y → X,
and the field {χ(y, ·) : y ∈ Y } of partial functions on HX .

Example 2.3. Let φ : Y → X and ψ : HX → HY be functions. Then the map

T : (HX)X → (HY )Y , T f = ψ ◦ f ◦ φ
is φ-basic, and the (φ, T )-transform χ is given by χ(y, z) = ψ(z).

The next example will appear, in some form, in most applications in Section 3.

Example 2.4. Suppose that X is a locally compact Hausdorff space, HX is a Hausdorff space,
θX ∈ C(X,HX) and A(X) ⊆ Cc(X, θX). Let Y and HY be topological spaces, φ : Y → X be a
homeomorphism, and χ : Y ×HX → HY be a continuous map such that for every y ∈ Y , the section
χ(y, ·) : HX → HY is a bijection.

For every f ∈ A(X), define Tf ∈ C(Y,HY ) as

Tf : Y → HY , T f(y) = χ(y, f(φ(y))),

and let A(Y ) = {Tf : f ∈ A(X)}. Also define θY = TθX . Then
1. T is φ-basic, and the (φ, T )-transform is the restriction of χ to Y ×(φ,A(X)) HX ;
2. (X, θX ,A(X)) is (weakly) regular if and only if (Y, θY ,A(Y )) is (weakly) regular. In this

case, T is a ⊥⊥-isomorphism and φ is the T -homeomorphism.

Note that not every ⊥⊥-isomorphism is given as in the previous example.

Example 2.5. Suppose that X = Y is compact Hausdorff, HX = HY = R and θX = θY = 0, so
we simply write C(X) = C(X,R). Let T : C(X) → C(X) be any bijection satisfying [f 6= 0] =
[Tf 6= 0] for all f ∈ C(X). Then T is a ⊥⊥-isomorphism, and the T -homeomorphism is the identity
idX : X → X. Let us look at two particular cases:

• Suppose that X is not a singleton, T (1) = 2, T (2) = 1, and Tf = f for every f 6= 1, 2.
Then T is non-basic (see Proposition 2.6(a)) and discontinuous with respect to either the
topology of uniform convergence, or the topology of pointwise convergence.
• If X = {∗} is a singleton, we identify C(X) with R, so any self-bijection T : R → R
preserving 0 is a basic ⊥⊥-automorphism. In this case, the T -transform χ coincides with T
(or more precisely χ(∗, z) = T (z) for all z ∈ R), and most (cardinality-wise) of these are
discontinuous: indeed, there are 22

ℵ
0 c self-bijections of R \ {0}, but only 2ℵ0 of these are

continuous.

In the next proposition, we again consider only sets (without topologies).

Proposition 2.6. Let A(X) ⊆ (HX)X and A(Y ) ⊆ (HY )Y , and consider maps φ : Y → X and
T : A(X)→ A(Y ). Then
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(a) T is φ-basic if and only if for all y ∈ Y , the following implication holds:

(2.3) f(φ(y)) = g(φ(y)) =⇒ Tf(y) = Tg(y), ∀f, g ∈ A(X).

In this case,
(b) the (φ, T )-transform χ is unique.
(c) A section χ(y, ·) is injective if and only if

(2.4) Tf(y) = Tg(y) =⇒ f(φ(y)) = g(φ(y)), ∀f, g ∈ A(X).

(d) A section χ(y, ·) is surjective if and only if HY = {Tf(y) : f ∈ A(X)}.

Proof. For one direction of (a), if T satisfies (2.3), define χ by

χ(y, t) = Tf(y),

whenever f ∈ A(X) is any function satisfying f(φ(y)) = t. Then χ(y, t) does not depend on the
choice of f by implication (2.3), and hence T is φ-basic.

The converse direction of (a), as well as items (b), (c) and (d) are immediate from the formula
Tf(y) = χ(y, f(φ(y))), which holds for all f ∈ A(X) and y ∈ Y . �

In our applications, we will use item (a) above several times, by proving that a given ⊥⊥-
isomorphism T : A(X) → A(Y ), between regular classes of functions, is basic with respect to the
associated homeomorphism φ : Y → X given by Theorem 1.17. This is, in fact, the only possibility:
If ψ : Y → X is any map such that T is ψ-basic, then ψ is the T -homeomorphism! Since this fact
will not be used later in the article we refer its proof to [8, Proposition 3.3.7].

2.1. Algebraic signatures and basic maps. In the next section we will consider different alge-
braic structures on spaces of continuous functions. To this end, recall (see [19]) that an algebraic
signature is a collection η of pairs (∗, n), where ∗ is a (function) symbol and n is a non-negative
integer, called the arity of ∗. A model of η consists of a set H and a map associating to each
(∗, n) ∈ η a function ∗ : Hn → H, (c1, . . . , cn) 7→ c1 ∗ · · · ∗ cn. (We use the convention that H0 is a
singleton set, so that a 0-ary function symbol is the same as a constant.)

For example, the usual signature of groups consists of one binary symbol · (for the product), one
unary symbol ( )−1 (the inversion) and one constant/0-ary symbol 1 (the unit).

If H is a model of η and X is a set then the function space HX can also be regarded as a model
of η with the pointwise structure: (f1 ∗ · · · ∗ fn)(x) = f1(x) ∗ · · · ∗ fn(x) for all f1, . . . , fn ∈ HX , all
x ∈ X, and all n-ary function symbols ∗.

A morphism of two models H1 and H2 of a given signature η is a map m : H1 → H2 such
that for any n-ary function symbol ∗ of η and any x1, . . . , xn ∈ H1, we have m(x1 ∗ · · · ∗ xn) =
m(x1) ∗ · · · ∗m(xn).

Finally, a submodel of a model H of a signature η is a subset K ⊆ H such that for all n-ary
symbols ∗ of η and any d1, . . . , dn ∈ K, d1 ∗ · · · ∗ dn ∈ K, so that K can be naturally regarded as a
model of η.

In the topological setting, a continuous model H of a signature η is defined in the same manner,
but we assume that all maps are continuous. In this case, if X is a topological space then C(X,H)
is a submodel of HX .

Proposition 2.7. Let X and Y be sets. Suppose that HX and HY are models for an algebraic
signature η, and that A(X) and A(Y ) are submodels of (HX)X and (HY )Y . Then for all x ∈ X,
A(X)|x is a submodel of HX , and similarly A(Y )|y is a submodel of HY for all y ∈ Y . (See Equation
(2.1).)

Let T : A(X) → A(Y ) be a basic map with respect to a function φ : Y → X, and let χ be the
T -transform. Then T is a morphism (for η) if and only if every section χ(y, ·) is a morphism (from
A(X)|φ(y) to A(Y )|y).
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Proof. Given x ∈ X, the evaluation map πx : (HX)X → HX , πx(f) = f(x), is a morphism, and it
follows that A(X)|x = πx(A(X)) is a submodel of HX .

Note that for all y ∈ Y , χ(y, ·)◦π|φ(y) = πy ◦T . On one hand, T is a morphism if and only if πy ◦T
is a morphism for all y. On the other, π|φ(y) is a surjective morphism from A(X) to A(X)|φ(y). It
follows that T is a morphism if and only if χ(y, ·) is a morphism for all y ∈ Y . �

2.2. Group-valued maps. In several applications, we will consider groups of functions, and in
this case a slight, but nevertheless important, simplification of Proposition 2.6(a) will be used.

Proposition 2.8. Suppose that HX and HY are groups, A(X) and A(Y ) are subgroups of (HX)X

and (HY )Y , respectively, T : A(X) → A(Y ) is a group isomorphism and φ : Y → X is a function.
Then T is φ-basic if and only if for all y ∈ Y ,

f(φ(y)) = 1 =⇒ Tf(y) = 1, ∀f ∈ A(X).

Assume that H is a topological group and X is a locally compact Hausdorff space. Any subgroup
A of C(X,H) contains the constant function 1, and if θ ∈ A, then the map f 7→ fθ−1 is a ⊥⊥-
isomorphism between (X, θ,A) and (X, 1,A). In this case, since we will be mostly interested in
group isomorphisms between subgroups of C(X,H), we may always assume that θ = 1. In the case
that H = R or C, as additive groups, we recover the usual notion of support.

2.3. Continuity. Now, we study continuity of basic ⊥⊥-isomorphisms and relate it to the continuity
of its transform. For this, it is necessary to construct functions which attain predetermined values
on infinitely many points (e.g. the points of some converging net). One procedure for this is by
“cutting and pasting” continuous functions, although this sometimes requires some first countability
or connectedness hypotheses in order to maintain control of the final function. This technique is
somewhat elementary, although one needs to take some care in order to guarantee continuity, so we
refer the most cumbersome details to [8, Section 3.3.3], and sketch the main points of the proofs.
The next proposition can be proven by elementary Topology.

Proposition 2.9. If F is an infinite subset of a regular Hausdorff space X, then there exists a
countable infinite subset {y1, y2, . . .} ⊆ F and pairwise disjoint open sets Un such that yn ∈ Un for
all n.

For the next proposition, recall ([54, 27.4]) that a topological space H is locally path-connected if
every point t ∈ H admits a neighbourhood basis consisting of path-connected subsets.

Proposition 2.10. Let X be a locally compact Hausdorff space, {xn}n be a sequence of elements
of X, {Un}n a sequence of pairwise disjoint open subsets of X with xn ∈ Un for all n.

Let H be a Hausdorff first-countable locally path-connected topological space and consider a family
{gn : Un → H}n of continuous functions such that gn(xn) converges to some t ∈ H. Then

(a) there exists a continuous function f : X → H such that f(xn) = gn(xn) for all sufficiently
large n, and f(x) = t for all x 6∈

⋃
n Un.

(b) if H = R, there is a continuous function f : X → R such that f = gn on a neighbourhood of
xn and f(x) = t for all x 6∈

⋃
n Un.

Proof. Item (b) is an easy application of Tietze’s Extension Theorem, so we concentrate on item
(a). Let {Wn}n be a decreasing basis of path-connected neighbourhoods of t. Disregarding any n
such that gn(xn) does not belong to W1, and repeating the sets Wk if necessary (i.e., considering a
new sequence of neighbourhoods of t of the form

W1,W1, . . . ,W1,W2,W2, . . . ,W2, . . . ,

where each Wk is repeated finitely many times) we may assume that tn := gn(xn) ∈Wn.
11



For each n, take a continuous path αn : [0, 1] → Wn such that αn(0) = tn and αn(1) = t. Now
take continuous functions bn : X → [0, 1] such that bn(xn) = 0 and bn = 1 outside Un. Define f as
αn ◦ bn on each Un, and as t on X \

⋃
n Un.

The only non-trivial part about continuity of f is proving that f is continuous on the boundary
∂ (
⋃
n Un). If x belongs to this set then f(x) = t. Given a basic neighbourhood WN of t, we have

that
⋂N
n=1(αn◦bn)−1(WN ) is a neighbourhood of x contained in f−1(WN ), and thus f is continuous.

Item (b) uses similar arguments. �

Theorem 2.11. Let X and Y be locally compact Hausdorff and for Z ∈ {X,Y }, HZ a Hausdorff
space and θZ ∈ C(Z,HZ) be given such that (Z, θZ , Cc(Z, θZ)) is regular.

Suppose that T : Cc(X, θX)→ Cc(Y, θY ) is a ⊥⊥-isomorphism, that φ : Y → X is the T -homeomorphism
φ, and that that T is φ-basic. Let χ : Y ×HX → HY be the corresponding (φ, T )-transform. Consider
the following statements:

(i) χ is continuous.
(ii) Each section χ(y, ·) is a continuous;
(iii) T is continuous with respect to the topologies of pointwise convergence.

Then the implications (i)⇒(ii)⇐⇒ (iii) always hold.
If X, Y and HX are first countable, HX is locally path-connected and θX is constant, then

(ii)⇒ (i).

Remarks. (1) In the last part of the theorem, if HX admits any structure of topological group
then the condition that θX is constant can be dropped, since we may simply compose T
with the ⊥⊥-isomorphism f 7→ fθ−1.

(2) The domain of the (φ, T )-transform χ is Y × HX because we assume that Cc(X, θX) is
regular.

Proof. The implication (i)⇒(ii) is trivial.
(ii)⇒(iii): Suppose fi → f pointwise. Then for all y, the section χ(y, ·) is continuous, thus

Tfi(y) = χ(y, fi(φ(y)))→ χ(y, f(φ(y))) = Tf(y).

This proves that Tfi → Tf pointwise.
(iii)⇒(ii): Assume that T is continuous with respect to pointwise convergence. Let y ∈ Y be fixed.

Suppose that ti → t in HX , and let us prove that χ(y, ti) → χ(y, t). Choose any function
f ∈ Cc(X, θX) such that f(φ(y)) = t.

Let Fin(X) be the collection of finite subsets of X, ordered by inclusion. For every
F ∈ Fin(X) and every i ∈ I, regularity of Cc(X, θX) allows us to construct f(F,i) ∈ Cc(X, θX)
such that
(i) f(F,i)(x) = f(x) pointwise if x ∈ F and x 6= φ(y); and
(ii) f(F,i)(φ(y)) = ti.
Ordering Fin(X) by set inclusion, we have that f(F,i) → f pointwise as (F, i) → ∞, so
Tf(F,i) → Tf pointwise as well. For each F ∈ Fin(X) and i ∈ I, we have

χ(y, ti) = χ(y, f(F,i)(φ(y))) = Tf(F,i)(y)

so by considering i and F sufficiently large we see that χ(y, ti)→ Tf(y) = χ(y, t) as i→∞.
We now assume further that X, Y and HX are first countable, HX is locally path-connected and

θX is constant. Let c ∈ HX such that θX(x) = c for all x ∈ X.
(ii)⇒(i): Assume that each section χ(y, ·) is continuous. In order to prove that χ is continuous,

we simply need to prove that for any converging sequence (yn, tn) → (y, t) in Y ×HX , we
can take a subsequence (yn′ , tn′) such that χ(yn′ , tn′)→ χ(y, t) as n′ →∞.
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Given a converging sequence (yn, tn) → (y, t), consider an open Y ′ ⊆ Y with compact
closure such that y, yn ∈ Y ′ for all n.

We have two cases: If for a given z ∈ Y the set N(z) = {n ∈ N : yn = z} is infinite, then
we necessarily have z = y. Restricting the sequence (yn, tn) to N(y) and using continuity of
the section χ(y, ·), we obtain χ(yn, tn) = χ(y, tn)→ χ(y, t) as n→∞, n ∈ N(y).

Now assume that none of the sets N(z) = {n ∈ N : yn = z} (z ∈ Y ) is infinite. We may
then take a subsequence and assume that all the elements yn are distinct, and actually
never equal to y. Using Propositions 2.9 and 2.10(a), and taking another subsequence if
necessary, we find a continuous function f : φ(Y ′)→ HX such that f(φ(yn)) = tn and f = t
on X \

⋃
n Un. In particular, f = t on the boundary ∂(φ(Y ′)).

We now need to extend f to an element of Cc(X, θX) (this is where we use that θX = c
is constant). We have two cases:
Case 1: t is in the path-connected component of c:

Since HX is locally path-connected, there is a continuous path β : [0, 1] → HX with
β(0) = t and β(1) = c. Let g : X → [0, 1] be a function with g = 0 on φ(Y ′) and g = 1
outside of a compact containing φ(Y ′). By defining f = β ◦ g outside of φ(Y ′), we
obtain f ∈ Cc(X, θX). (f is continuous because f = t = β ◦ g on ∂(φ(Y ′).)

Case 2: t is not in the path-connected component of c:
Since HX is locally path-connected, its path-connected components are clopen, and reg-
ularity of Cc(X, θX) then implies that X (and thus also Y = φ(X)) is zero-dimensional.
In particular, we could have assumed at the beginning that Y ′ is clopen, so simply set
f = c outside of φ(Y ′).

In any case, we obtain f ∈ Cc(X, θX) with f(φ(y)) = t and f(φ(yn)) = tn, so

χ(yn, tn) = Tf(yn)→ Tf(y) = χ(y, t). �

2.4. Non-vanishing bijections. Let X and Y be compact Hausdorff spaces, HX and HY Haus-
dorff spaces, θX ∈ C(X,HX), θY ∈ C(Y, θY ) and A(X) and A(Y ) regular subsets of Cc(X, θX) and
Cc(Y, θY ), respectively.

Definition 2.12 ([17]). We call a bijection T : A(X)→ A(Y ) non-vanishing if for every f1, . . . , fn ∈
A(X),

n⋂
i=1

[fi = θX ] = ∅ ⇐⇒
n⋂
i=1

[Tfi = θY ] = ∅.

Proposition 2.13. If T : A(X)→ A(Y ) is a non-vanishing bijection, then T is a ⊥⊥-isomorphism.

Proof. First note that f ⊥ g if and only if [f = θX ] ∪ [g = θX ] = X, or equivalently if every closed
subset of X intersects [f = θX ] or [g = θX ].

As the sets [h = θX ] (h ∈ A(X)) form a closed basis, Cantor’s Intersection Theorem implies that
f ⊥ g is equivalent to the following statement:

“For all h1, . . . , hn ∈ A(X), if
⋂n
i=1[hi = θX ] ∩ [f = θX ] and

⋂n
i=1[hi = θX ] ∩ [g = θX ]A are both

empty, then
⋂n
i=1[hi = θX ] = ∅.”

This condition is preserved under non-vanishing bijections, and so T is a ⊥-isomorphism.
that f ⊥⊥ g is equivalent to the following statement: “There are finite families {ai}, {bj} and {ck}

in A(X) such that
(i)
⋂
i,j,k[ai = θX ] ∩ [bj = θX ] ∩ [ck = θX ] = ∅;

(ii) ai ⊥ bj for all i and j;
(iii) f ⊥ bj , f ⊥ ck, g ⊥ ai, and g ⊥ ck for all i, j and k.”
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These statements should be interpreted as follows: Let A =
⋃
i[ai 6= θX ], B =

⋃
j [bj 6= θX ] and

C =
⋃
k[ck 6= θX ]. Item (i) states that A ∪ B ∪ C = X, item (ii) states that A ∩ B = ∅, and item

(iii) states that supp(f) ∩ B = supp(f) ∩ C = supp(g) ∩ A = supp(g) ∩ C = ∅. In other words, A
and B are two disjoint open sets used to separate supp(f) and supp(g), respectively, and the set
C covers the remainder of X (while not intersecting supp(f) nor supp(g)). The existence of such
A,B,C clearly implies f ⊥⊥ g, and the converse follows from regularity of A(X) and compactness
arguments.

Similar statements hold with Y in place of X, and all of these properties are preserved by non-
vanishing bijections. Therefore T is a ⊥⊥-isomorphism. �

Theorem 2.14. For every non-vanishing bijection T : A(X)→ A(Y ) there is a unique homeomor-
phism φ : Y → X such that [f = θX ] = φ([Tf = θY ]) for all f ∈ A(X).

Proof. By Proposition 2.13, we already know that T is a ⊥⊥-isomorphism, so let φ be the T -
homeomorphism. Recall (Definition 1.1) that σθX (f) = int([f 6= θX ]) and ZθX (f) = int([f = θX ])
for all f ∈ A(X). Let us prove that

f(x) = θX(x) ⇐⇒ ∀h1 . . . , hn ∈ A(X),

if x 6∈
n⋃
i=1

σθX (hi) then
n⋂
i=1

[hi = θX ] ∩ [f = θX ] 6= ∅,(2.5)

Intuitively, the functions hi above should be thought of in such a way that
⋃
i=1 n[hi 6= θX ] is a

“large subset” of [f = θX ] \ {x}.
Formally, for the direction “⇒”, assume that f(x) = θX(x) and h1, . . . , hn are such that x 6∈⋃
i σ

θX (hi). Then x ∈
⋂
i[hi = θX ] ∩ [f = θX ], and this set is nonempty.

For the converse we prove the contrapositive. Assume that f(x) 6= θX(x). Regularity of A(X)
and compactness of [f = θX ] give us h1, . . . , hn ∈ A(X) such that hi(x) 6= θX(x) for all i, and
[f = θX ] ⊆

⋃
i[hi 6= θX ], which negates the right-hand side of (2.5).

Since φ(σθY (Th)) = σθX (h) for all h ∈ A(X) and T is non-vanishing, the condition of (2.5) is
preserved by T and therefore, φ has the desired property. �

3. Consequences

In this section we will recover several known results, some in greater generality than in their
original statements, dealing with different algebraic structures on classes of continuous functions
and their isomorphisms.

The general procedure we will use is the following: Suppose that X and Y are locally compact
Hausdorff spaces, HX and HY are Hausdorff spaces, θX ∈ C(X,HX), θY ∈ C(Y,HY ) and A(X)
and A(Y ) regular subsets of Cc(X, θX) and Cc(Y, θY ), respectively.

1. Describe the relation ⊥⊥ with the algebraic structure at hand. In general, we will first
describe ⊥ and use it in order to describe ⊥⊥.

2. Given an algebraic isomorphism T : A(X)→ A(Y ) for appropriate classes of functions A(X)
and A(Y ), the first item ensures that T is a ⊥⊥-isomorphism, so let φ : Y → X be the T -
homeomorphism.

At this point, we have proved that the algebraic isomorphism T : A(X) → A(Y ) determines an
isomorphism φ : Y → X. Since we moreover would like to describe T in terms of φ, we proceed as
follows using the theory of Section 2:

3. Prove that T is φ-basic, as in Definition 2.2. Let χ be the (φ, T )-transform.
4. Items 1.-3. also apply to T−1, which is thus also a basic ⊥⊥-isomorphism.
5. Items 3. and 4. imply, by Proposition 2.6(a) and (b), that the sections χ(y, ·) are injective

and in the case that A(Y ) is regular, item (d) implies that χ(y, ·) is also surjective.
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6. If we have a classification of algebraic isomorphisms between HX and HY , this classification
will apply to each section χ(y, ·) of the (φ, T )-transform, by Proposition 2.7. This will in
turn describe T completely.

3.1. Milgram’s Theorem. In this subsection, we will always assume that X (and similarly Y )
is a locally compact Hausdorff space. We first generalize Milgram’s theorem (and by consequence,
Gelfand–Kolmogorov and Gelfand–Naimark) as follows: Let SX be a non-trivial path-connected
Hausdorff topological monoid with zero 0 and unit 1, and which is both:

• 0-right cancellative: for all s, r, t ∈ S, st = rt 6= 0 implies s = r;
• categorical at 0: st = 0 implies s = 0 or t = 0.

Common examples of such semigroups are the following, under usual product: R, C, [−1, 1], the
closed complex unit disc, Gl(n,R) ∪ {0}, and other variations.

We consider θX = 0, the zero map from X to SX . Let us also write Cc(X,SX) for Cc(X, 0)
(to make the counter-domain explicit). Consider Y , θY and SY similarly. Urysohn’s Lemma and
path-connectedness of SX implies that Cc(X,SX) is regular.

Following the procedure in the beginning of this section, we first describe ⊥⊥ in multiplicative
terms:

Lemma 3.1. If f, g ∈ Cc(X,SX), then

(3.1) f ⊥⊥ g ⇐⇒ ∃h ∈ Cc(X,SX) such that hf = f and hg = 0.

Proof. The condition in the right-hand side of (3.1) states that h = 1 on supp(f) and h ⊥ g, so the
implication “⇐” is immediate. The implication “⇒” (i.e., the existence of such h provided f ⊥⊥ g)
follows from Urysohn’s Lemma and path-connectedness of SX . �

As a consequence, any multiplicative isomorphism Cc(X,SX)→ Cc(Y, SY ) is a ⊥⊥-isomorphism.

Corollary 3.2. If T : C(X,SX) → Cc(Y, SY ) is a multiplicative isomorphism, then X and Y are
homeomorphic.

To recover Milgram’s original theorem in full generality, we restrict now to the case SX = SY = R
in order to obtain an explicit description of T as above.

First, we will need to recall the classification of multiplicative isomorphisms of R. The general
case may be found in [29, Theorem 3.1.3], but for our purposes it will suffice to consider only the
continuous isomorphisms (which were already described in [32, Lemma 4.3], for example).

Proposition 3.3. Let τ : R→ R be a multiplicative isomorphism. Then τ is continuous if and only
if 0 < x < 1 implies 0 < τ(x) < 1. In this case, τ has the form τ(x) = sgn(x)|x|p for some p > 0.

We will now classify multiplicative isomorphisms from Cc(X,R) and Cc(Y,R). Note that the
following theorem is a generalization of [32, Theorem A] to the locally compact setting.

Theorem 3.4 (Milgram’s Theorem [32, Theorem A], for locally compact spaces). Let X and Y be
locally compact Hausdorff spaces and let T : Cc(X,R) → Cc(Y,R) be a multiplicative isomorphism.
Then there exists a homeomorphism φ : Y → X, a closed, discrete and isolated subset F ⊆ Y , and
a continuous positive function p : Y \ F → (0,∞) satisfying

Tf(y) = sgn(f(φ(y)))|f(φ(y))|p(y)

for all f ∈ Cc(X,R) and y ∈ Y \ F .

Proof. By Lemma 3.1, T is a ⊥⊥-isomorphism, so let φ be the T -homeomorphism. We prove that T
is φ-basic in a few simple steps.

1. If f, h ∈ Cc(X,R), then f = 1 on supp(h) (i.e., fh = h) if and only if Tf = 1 on supp(Th)
(i.e., (Tf)(Th) = (Th)). This implies that

15



2. If f, h ∈ Cc(X,R), then f 6= 0 on supp(h) if and only if Tf 6= 0 on supp(Th).
Indeed, if f 6= 0 on supp(h), we can find g ∈ Cc(X,R) such that g = 1/f on supp(h).

Item 1. implies that TfTg = 1 on supp(Th), and in particular Tf 6= 0 on supp(Th). As
the sets of the form σ(h) form a basis of X, we conclude that

3. If f ∈ Cc(X,R) and y ∈ Y , then f(φ(y)) 6= 0 if and only if Tf(y) 6= 0.
A similar argument to that of item 2. also proves that

4. If f, g, h ∈ Cc(X,R), then f and g coincide and are nonzero on supp(h) if and only if Tf
and Tg coincide and are nonzero on supp(h).

5. In particular, from 3., f(φ(y)) = 0 if and only if Tf(y) = 0.
6. If f ∈ Cc(X,R) and y ∈ Y , then f(φ(y)) = 1 if and only if Tf(y) = 1:

Suppose this was not the case, say f(φ(y)) = 1 but Tf(y) 6= 1. From item 1. above we
know that y is not isolated. If necessary, as T is a ⊥-isomorphism, Theorem 1.16 allows
us to change f by a function which equals 1/f on some neighbourhood of φ(y) and assume
that Tf(y) > 1. The rest of the argument is similar to that of [32, Lemma 4.1]: We first
take a sequence of distinct points yn, all contained in some compact neighbourhood of y,
satisfying
• f(φ(yn))n → 1 = f(φ(y)); and
• Tf(yn)→ Tf(y), so in particular Tf(yn)n →∞.

Using Propositions 2.9 and 2.10(b), we may find g ∈ Cc(X,R) which coincides with fn on
some neighbourhood of φ(yn). But then Tg coincides with (Tf)n on a neighbourhood yn
(because T is a ⊥-isomorphism), contradicting the fact that Tg is bounded.

We conclude, from 5. and 6., that T is φ-basic. Let χ : Y × R→ R be the T -transform.
Let F = {y ∈ Y : χ(y, ·) is discontinuous}. Let us prove that F is closed and discrete, or equiv-

alently that F ∩ K is finite for all compact K ⊆ Y . Otherwise, by Proposition 3.3, there would
be distinct y1, y2, . . . ∈ K and a strictly decreasing sequence tn → 0 such that χ(yn, tn) > n. Go-
ing to a subsequence if necessary, we can construct, by Proposition 2.10(b), f ∈ Cc(X,R) with
f(φ(yn)) = tn, so Tf(yn) > n for all n, a contradiction to the boundedness of Tf .

To prove that F is isolated we prove that it is open: If z ∈ F , then there is t ∈ (0, 1) with
χ(z, t) > 1. Take f ∈ Cc(X,R) such that f = t on a neighbourhood U of φ(z). In particular
Tf(z) > 1, so there is a neighbourhoodW of z such that Tf > 1 onW . Then for all y ∈ φ−1(U)∩W ,
χ(y, t) = Tf(y) > 1, so y ∈ F .

Therefore, F consists of isolated points, since Y is locally compact. For y 6∈ F , Proposition 2.7
and Proposition 3.3 imply that χ(y, ·) has the form χ(y, t) = sgn(t)|t|p(y) for some p(y) > 0. As
for the continuity of p, Let U be any relatively compact open subset of Y not intersecting F , and
f ∈ Cc(X,R) with f = 2 on φ(U). Then Tf(y) = f(y)p(y) = 2p(y), so p = log2 ◦Tf on U . This
proves that T is continuous on Y \ F . �

3.2. Group-Valued functions; the Hernández–Ródenas Theorem. Given topological groups
G and H, denote by AbsIso(G,H) the set of algebraic group isomorphisms from G to H, and by
TopIso(G,H) the set of topological (i.e., homeomorphisms which are) group isomorphisms.

Let X and Y be compact Hausdorff spaces and G a Hausdorff topological group. In [17, Theorem
3.7], Hernández and Ródenas classified non-vanishing group morphisms (not necessarily isomor-
phisms) T : C(X,G)→ C(Y,G) which satisfy the following properties:

(i) There exists a continuous group morphism ψ : G→ C(X,G), where C(X,G) is endowed with
the topology of pointwise convergence, such that for all α ∈ G and all y ∈ Y , T (ψ(α))(y) =
α;

(ii) For every continuous endomorphism θ : G→ G and every f ∈ C(X,G), T (θ ◦ f) = θ ◦ (Tf).
If T is a group isomorphism and T−1 is continuous (with respect to uniform convergence) then
condition (i) is immediately satisfied, however this is not true for (ii): For example, if TopIso(G,G) is
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non-abelian and ρ ∈ TopIso(G,G) is any non-central element, then the map T : C(X,G)→ C(X,G)
given by Tf = ρ◦f is a group isomorphism, and a self-homeomorphism of C(X,G) with the topology
of uniform convergence, which does not satisfy (ii).

In the next theorem we obtain the same type of classification as in [17, Theorem 3.7], without
assuming condition (ii), however we consider only non-vanishing group isomorphisms. Given a
compact Hausdorff space X, a topological group G and α ∈ G, denote by α the constant function
X → G, x 7→ α. We endow C(X,G) with the topology of pointwise convergence.

Theorem 3.5. Suppose that G and H are Hausdorff topological groups, and X and Y are compact
Hausdorff spaces for which (X, 1G, C(X,G)) and (Y, 1H , C(Y,H)) are regular.

Let T : C(X,G) → C(Y,H) be a non-vanishing group isomorphism (Definition 2.12). Then
there exist a homeomorphism φ : Y → X and a map w : Y → AbsIso(H,G) such that Tf(y) =
w(y)(f(φ(y)) for all y ∈ Y and f ∈ C(X,G).

If T is continuous on the constant functions then each w(y) is continuous and T is continuous
on C(X,G). If both T and T−1 are continuous on the constant functions then w(y) ∈ TopIso(H,G)
and T is a homeomorphism for the topologies of pointwise convergence.

Proof. By Theorem 2.14 and Proposition 2.8, there is a homeomorphism φ : Y → X such that T
is φ-basic, and the sections χ(y, ·) : G → H of the (φ, T )-transform χ are group morphisms by
Proposition 2.7. Similar facts hold for T−1, so Proposition 2.6 implies that each section χ(y, ·) is
bijective. Letting w(y) = χ(y, ·) we are done with the first part.

Now note that for all α ∈ G and y ∈ Y ,

w(y)(α) = w(y)(α(φ(y))) = Tα(y)

which implies that every w(y) is continuous if and only if T is continuous on the constant functions
(because the map α 7→ α from G to C(X,G) is a homeomorphism onto its image). In this case,
from the equality

Tf(y) = w(y)(f(φ(y)) for all f ∈ C(X,G) and y ∈ Y,

we can readily see that T is continuous. The last part, assuming also that T−1 is continuous on the
constant functions, is similar, using T−1 and w(y)−1 in place of T and w(y). �

3.3. Kaplansky’s Theorem. Let R be a totally ordered set without supremum nor infimum,
regarded as a topological space with the order topology, and let X be a locally compact Hausdorff
space. We consider the pointwise order on C(X,R): f ≤ g if and only if f(x) ≤ g(x) for all x,
which makes C(X,R) a lattice: for all f, g ∈ C(X,R) and x ∈ X,

(f ∨ g)(x) = max {f(x), g(x)} , and (f ∧ g)(x) = min {f(x), g(x)} .

Denote by Cb(X,R) the sublattice of bounded continuous functions from X to R.
In [27] Kaplansky proved that if X is compact and R-normal (this is a stronger version of strong

regularity; see [27, p. 618]), then the lattice C(X,R) determines X completely, and in [28], classified
additive lattice isomorphisms between these lattices of functions in the case that R = R. We improve
on these results in the following ways: We allow X to be non-compact (only locally compact), obtain
a recovery theorem for X from a subcollection A of Cb(X,R) (Theorem 3.11), and classify lattice
isomorphisms in the case of non-real-valued functions for first-countable spaces (Theorem 3.13).

We will consider sublattices A of Cb(X,R) which satisfy

(L1) for all f, g ∈ A, [f 6= g] is compact;
(L2) for all f ∈ A, every open set U ⊆ X, every x ∈ U and α ∈ R, there exists g ∈ A such that

g(x) = α and [g 6= f ] ⊆ U .
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Condition (L1) is equivalent to saying that A ⊆ Cc(X, θ), where θ is some (any) element of A,
and condition (L2) is a form of regularity. These conditions are satisfied in the settings that have
been previously studied.

Example 3.6 (Kaplansky, [27]). Suppose that X is compact and A is an R-normal sublattice of
C(X,R). Condition (L1) is trivial, so let us check that A satisfies (L2): Suppose f , U , x and α are
as in that condition. For the sake of the argument we can assume f(x) ≤ α. Let β be any lower
bound of f(X), and from R-normality find h ∈ A such that h(x) = α and h = β outside U . Then
g = f ∨ h has the desired properties.

Example 3.7 (Li–Wong, [31]). Suppose that X is compact, R = R, and A is a regular additive
subgroup of C(X,R), so (L1) is also trivial and again we need to verify condition (L2): Let f , U ,
x and α be as in (L2). By regularity, take h such that supp(h) ⊆ U and h(x) = α − f(x). Then
g = f + h has the desired properties

We will now recover the main result of [27], The following lemma is based on [43].

Lemma 3.8. Let A be a sublattice of Cb(X,R) satisfying (L1) and (L2), and let f0 be any element
of A. Let A≥f0 = {f ∈ A : f ≥ f0}. Then (X, f0,A≥f0) is weakly regular and for f, g ∈ A≥f0,

(a) f ⊥ g ⇐⇒ f ∧ g = f0 (which is the minimum of A≥f0);
(b) f b g is equivalent to the following statement:

“for every bounded subset H ⊆ A such that h ⊆ f for all h ∈ H,
there is an upper bound k of H such that k ⊆ g.”(K)

Proof. Weak regularity is immediate from (L2) and the fact that R does not have a supremum, and
item (a) is trivial. Let us prove (b). First suppose f b g and H ⊆ A is a bounded subset such
that h ⊆ f for all h ∈ H. Let α ∈ R be an upper bound of

⋃
h∈H h(X). From weak regularity

and compactness of supp(f), we can take finitely many functions k1, . . . , kn such that ki b g, and
for every x ∈ supp(f) there is some i with ki(x) > α. Letting k =

∨n
i=1 ki we obtain the desired

properties.
Conversely, suppose that condition (K) holds. Let α be any upper bound of f0(X) and again

take β > α. Let H = {h ∈ A≥f0 : h ≤ β, h ⊆ f}. Let k be an upper bound of H with k ⊆ g. By
Property (L2), we have σ(f) =

⋃
h∈H σ(h), so k ≥ β on σ(f) and thus also on supp(f), which

implies f b k. Since k ⊆ g then f b g. �

As an immediate consequence of Lemma 3.8 and Theorem 1.17 we have the following generaliza-
tion of Kaplansky’s Theorem:

Theorem 3.9 (Kaplansky [27]). Suppose R has no supremum nor infimum, A(X) and A(Y )
are sublattices of Cb(X,R) and Cb(Y,R), respectively, satisfying conditions (L1) and (L2), and
T : A(X)→ A(Y ) is a lattice isomorphism. Then for any f0 ∈ A, T restricts to a ⊥⊥-isomorphism
of the regular sublattices A(X)≥f0 and A(Y )≥Tf0. In particular, X and Y are homeomorphic.

Our immediate goal is to prove that the homeomorphism between X and Y given by Theorem
3.9 does not depend on the choice of function f0 in Lemma 3.8.

Lemma 3.10. Under the conditions of Theorem 3.9, let φ : Y → X be the T |A(X)≥f0
-homeomorphism.

If f, g ∈ A(X)≥f0 then φ−1(int([f = g])) = int([Tf = Tg]).

Proof. We will use the superscript “f0” as in Definition 1.1, that is, for all f ≥ f0.
σf0(f) = int([f 6= f0]), and Zf0(f) = int([f = f0]).

and similarly with Tf0 in place of f0. Then φ is the only homeomorphism satisfying σf0(f) =
φ(σTf0(Tf)), or equivalently Zf0(f) = φ(ZTf0(Tf)), for all f ≥ f0.
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First, assume that f ≤ g, and let U = int([f = g]). For all x ∈ [f < g], choose a function
kx ∈ A(X)≥f0 such that

• σf0(kx) ∩ [f = g] = ∅;
• kx(x) = g(x);
• kx ≤ g.

Then g = sup {f, kx : x ∈ [f < g]}, so Tg = sup {Tf, Tkx : x ∈ [f < g]}..
Let us prove that Tf(y) = Tg(y) for all y ∈ φ(U). Since U ⊆

⋂
x∈[f<g] Z

f0(kx), then φ−1(U) ⊆⋂
x∈[x<g] Z

Tf0(Tkx).
Given y ∈ φ(U), use property (L2) to find h ∈ A(Y ) such that h(y) = Tf(y) and h = Tg outside

of φ(U). Then h′ = (Tf ∨ h) ∧ Tg is an upper bound of {Tf, Tkx : x ∈ [f < g]}, so it is also an
upper bound of Tg, and in particular

Tg(y) ≤ ((Tf ∨ h) ∧ Tg)(y) = Tf(y) ≤ (Tf ∨ h)(y) = Tf(y),

so Tg(y) = Tf(y).
In the general case, if f = g on an open set U then f = f ∧ g = g on U , so the previous case

implies that Tf and Tg both coincide with T (f ∧ g) on φ−1(U). �

Theorem 3.11. Under the conditions of Theorem 3.9, there exists a unique homeomorphism
φ : Y → X such that φ(int([Tf = Tg])) = int([f = g]) for all f, g ∈ A(X). (In this case we
will still call φ the T -homeomorphism.)

Proof. For each f0 ∈ A(X), let φf0 : Y → X be the T |A(X)≥f0
-homeomorphism. Given f0, g0 ∈

A(X), Lemma 3.10 implies that φf0∧g0 satisfies the property of both the T |A(X)≥f0
and the T |A(X)≥g0

-
homeomorphisms, so φf0 = φf0∧g0 = φg0 . We are done by letting φ = φf0 for some arbitrary
f0 ∈ A(X). �

A natural goal now is to classify the lattice isomorphisms as given in Theorem 3.11, which
is possible when we consider first-countable spaces. A similar argument to that of Theorem 2.6
appears in [5], although in a different context (considering lattices of possibly unbounded real-
valued continuous functions on complete metric spaces). See also [20, 21].

Let us reinforce the assumptions, assumed throughout this subsection, that X denotes a locally
compact Hausdorff space and R is a totally ordered set without maximum or minimum with the
order topology. The following is a version of Proposition 2.10 in this setting, and is also proven by
“cutting and pasting” (aided by the lattice operations of R), so we omit the details.

Proposition 3.12. Assume further that X and R are first-countable, and that θ ∈ Cb(X,R) is
such that Cc(X, θ) satisfies (L2). Suppose that {xn}n is an injective sequence in X, converging to
x∞ ∈ X. Let gn ∈ C(X,R) be functions such that gn(xn)→ θ(x).

Then there exists f ∈ Cc(X, θ) such that f = gn on a neighbourhood of xn for each n, and that
f = θ outside of a compact containing {xn : n ∈ N} (which may be taken as small as desired with
this property).

Theorem 3.13. Suppose that X, Y and R are first-countable, that Cc(X, θX) and Cc(Y, θY ) sat-
isfy (L2), and that T : Cc(X, θX) → Cc(Y, θY ) is a lattice isomorphism. Then there are a unique
homeomorphism φ : Y → X and a continuous function χ : Y ×R→ R such that

(3.2) Tf(y) = χ(y, f(φ(y))) for all y ∈ Y and f ∈ Cc(X, 0)

and χ(y, ·) : R→ R is an increasing bijection for each y ∈ Y .

Proof. Let φ : Y → X be the T -homeomorphism. We just need to prove that T is φ-basic, so assume
y ∈ Y and f(φ(y)) = g(φ(y)). In order to prove that Tf(y) = Tg(y), we may assume that f ≤ g,
by considering the auxiliary function f ∧ g.
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If y is isolated in Y , then f and g coincide on the open set {φ(y)}, so Tf and Tg coincide on the
open set {y}.

Assume then that y is not isolated. Since Y is first-countable, let (yn)n be an injective sequence
in Y converging to y. By Proposition 3.12, there is h ∈ Cc(X, θ) such that

• If n is even, h = f on a neighbourhood of φ(yn);
• If n is odd, h = g on a neighbourhood of φ(yn).

Then φ(y) ∈ int[f = h], so t ∈ int[Tf = Th] and so Tf(y) = Th(y). Similarly, Tg(y) = Th(y) =
Tf(y). This proves that T is φ-basic. Let χ be the (φ, T )-transform.

Proposition 2.7, applied to the signature of lattices (with the binary symbol “∨” interpreted as
“join”) implies that the sections χ(y, ·) are lattice isomorphisms of R for all n, and in particular
homeomorphisms. The proof that χ is continuous is similar to that of implication (ii)⇒(i) of
Theorem 2.11 (using Proposition 3.12 instead of 2.10). �

In the case of additive lattice isomorphisms of spaces of real-valued functions, we do not require
the first-countability hypothesis.

Theorem 3.14. Suppose R = R, and T : Cc(X) → Cc(Y ) is an additive lattice isomorphism.
Then there are a unique homeomorphism φ : Y → X and a unique positive continuous function
p : Y → (0,∞) such that Tf(y) = p(y)f(φ(y)) for all f ∈ Cc(X) and y ∈ Y .

Proof. First note that for all f ∈ Cc(X), |f | = (f ∨ 0)− (f ∧ 0), so T |f | = |Tf |. Let φ : Y → X be
the T -homeomorphism, given by Theorem 3.11.

The proof that T is φ-basic is similar to that of item 6. of the proof of Theorem 3.4. Let χ be
the T -transform. Each section χ(y, ·) is an additive order-preserving bijection (Propositions 2.7 and
2.6) and hence has the form χ(y, t) = p(y)t for some p(y) > 0. If Tf(y) 6= 0, then f(φ(y)) 6= 0 as
well and p = Tf/(f ◦ φ) on a neighbourhood of y, thus p is continuous. �

3.4. Li–Wong Theorem. We will now recover a theorem of Li and Wong, [31, Theorem 2.2], which
can be seen as a generalization of Theorem 3.14. We will proceed in the opposite direction, i.e., by
proving their result instead as a consequence of the more general Theorem 3.9. Let K = R or C.
Theorem 3.15 (Li–Wong [31]). Let X and Y be compact Hausdorff spaces, and A(X) and A(Y ) be
two regular vector sublattices of C(X,K) and C(Y,K), respectively. Suppose that T : A(X)→ A(Y )
is a K-linear isomorphism which preserves non-vanishing functions, that is, for all f ∈ A(X),

0 ∈ f(X) ⇐⇒ 0 ∈ Tf(Y ).

Then there is a homeomorphism φ : Y → X and a continuous non-vanishing function p : Y → K
such that Tf(y) = p(y)f(φ(y)) for all f ∈ A(X) and y ∈ Y .

The following technical lemma is the main necessary tool of the proof. We do not assume that
A(X) contains the constant functions, however since it is a regular lattice then it contains a strictly
positive function F satisfying 0 < F < 1/2 (see the beginning of the proof of Theorem 3.15 below).
The use of the constant function “1/2” in the proof of [31, Lemma 2.3] can be replaced by F .

Lemma 3.16 ([31, Lemma 2.3]). Any T as in Theorem 3.15 is a ⊥-isomorphism.

Proof of Theorem 3.15. We will use Theorem 3.11. First we need to modify T to obtain a lattice
isomorphism. Since A(X) is a sublattice, then for all f ∈ A(X),

f+ = max(f, 0), f− = max(−f, 0) and |f | = f+ + f− belong to A(X).

As A(X) is regular and X is compact, we can take finitely many functions f1, . . . , fn ∈ A(X)
such that for all x ∈ X, fi(x) 6= 0 for some i, and therefore the function F =

∑n
i=1 |fi| belongs to

A(X) and is non-vanishing, so TF is also non-vanishing. We define new classes of functions

B(X) = {f/F : f ∈ A(X)} , B(Y ) = {G/TF : g ∈ A(Y )} .
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It is immediate to see that B(X) and B(Y ) are regular, and contain the constant functions of X and
Y , respectively. Define a linear isomorphism S : B(X)→ B(Y ), S(f) = T (fF )/TF , which preserves
non-vanishing functions and satisfies S(1) = 1. Given a scalar λ, linearity and the non-vanishing
property of S imply that, for all f ∈ B(X),

λ 6∈ f(X) ⇐⇒ f − λ is non-vanishing
⇐⇒ Sf − λ is non-vanishing ⇐⇒ λ 6∈ Sf(Y ),

so f(X) = Sf(Y ), i.e., S preserves images of functions.
However, in order to apply Theorem 3.11 we also need to make sure that B(X) and B(Y ) are

lattices. As F > 0, it readily follows that B(X) is a (self-adjoint) sublattice of C(X,K), however
this is not so immediate for B(Y ).

As S preserves images of functions, it preserves real functions. If f ∈ B(X), then S(Re(f)) and
S(Im(f)) are real functions such that Sf = S(Re(f))+ iS(Im(f)). As T is a ⊥-isomorphism then S
is also a ⊥-isomorphism, so we also obtain S(Re(f)) ⊥ S(Im(f)). This is enough to conclude that
S preserves real and imaginary parts of functions, from which it follows that B(Y ) is self-adjoint.
Similarly, S preserves positive and negative parts of functions. In particular, if f ∈ B(Y ) then
f+ ∈ B(Y ), and this is enough to conclude that B(Y ) is a sublattice of C(Y,K), and that S is an
order-preserving isomorphism.

We may then consider only real-valued functions, and the complex case will follow by linearity
(and since S preserves real and imaginary parts). By Kaplansky’s Theorem (3.11), we can construct
the S-homeomorphism φ : Y → X. Now we need to prove that S is φ-basic.

Suppose f(x) 6= 0 for a given x ∈ X, and let us assume, without loss of generality, that f(x) > 0.
Then f > 0 on some neighbourhood U of x. Again using compactness of X \ U and regularity of
the sublattice B(X) we can construct a function g ∈ B(X) such that g = 0 on some neighbourhood
of x and g > 0 on X \ U . Letting f̃ = f ∨ g, we have f̃ = f on some neighbourhood of x, so
Sf̃ = Sf on some neighbourhood of φ−1(x). But f̃ is non-vanishing, so Sf̃ is also non vanishing
and in particular Sf(φ−1(x)) 6= 0. This proves that S is basic with respect to φ.

Letting χ : Y × R → R be the S-transform, we have that all sections χ(y, ·) are linear and
increasing (Theorem 2.7), hence of the form χ(y, t) = P (y)t for a certain P (y) > 0. Since S(1) = 1
then P = 1, that is, χ(y, t) = t for all t ∈ R.

Finally, for all f ∈ A(X) and y ∈ Y ,

Tf(y) = (TF )(y)

[
S

(
f

F

)
(y)

]
= (TF )(y)χ

(
y,
f

F
(φ(y))

)
=

TF (y)

F (φ(y))
f(φ(y)),

as we wanted. �

3.5. Jarosz’ Theorem. Throughout this subsection, we fix K = R or C. Given a locally compact
Hausdorff space X, we let Cc(X) = Cc(X, 0), the vector space of compactly supported K-valued
functions.

Theorem 3.17 (Jarosz [22]). If T : Cc(X)→ Cc(Y ) is a linear ⊥-isomorphism, then there exist a
homeomorphism φ : Y → X and a continuous non-vanishing function p : Y → K such that Tf(y) =
p(y)f(φ(y)) for all f ∈ Cc(X) and y ∈ Y .

Proof. First assume that X and Y are compact, and let us show that f 6= 0 everywhere if
and only if Tf 6= 0 everywhere. Suppose otherwise, say f(x) = 0, and we have two cases: first, if
f is constant on a neighbourhood of x, this means that Z(f) 6= ∅, and Theorem 1.16 implies that
Z(Tf) 6= ∅, and in particular Tf(y) = 0 for any y ∈ Z(Tf).

In the second case, if f is not constant on any neighbourhood of x, an argument similar to the
one in the proof of Theorem 3.4 yields a contradiction to Tf being bounded, so Tf(y) = 0 for some
y ∈ Y .
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The result follows in this case from the Li–Wong Theorem (Theorem 3.15).
Now let X and Y be arbitrary locally compact Hausdorff. Given b ∈ Cc(X), set

Tb : C(supp(b))→ C(supp(Tb)) as Tbf = (Tf ′)|supp(Tb), where f ′ is any element of Cc(X) extending
f . Note that Tbf does not depend on the choice of f ′, because T is an additive ⊥-isomorphism (and
Theorem 1.16).

Since f ⊥⊥ g if and only if f |supp(b) ⊥⊥ g|supp(b) for all b, the previous case allows us to obtain
functions pb and φb such that Tf(y) = pb(y)f(φb(y)) for all y ∈ supp(Tb). Clearly, if b ⊆ b′ then
pb
′ |supp(b) = pb and φb′ |supp(b) = φb

′ . Thus defining p and φ as p(y) = pb(y) and φ(y) = φb(y) where
b ∈ Cc(X) is such that y ∈ supp(b) we obtain the desired maps. �

3.6. Banach–Stone Theorem. We use the same notation as in the previous subsection. Given a
locally compact Hausdorff space X, endow Cc(X) with the supremum norm: ‖f‖∞ = supx∈X |f(x)|.

Recall that, by the Riesz–Markov–Kakutani Representation Theorem ([36, Theorem 2.14]), con-
tinuous linear functionals on Cc(X) correspond to (integration with respect to) regular Borel mea-
sures on X. As a consequence, the extremal points T of the unit ball of the dual of Cc(X) have the
form T (f) = λf(x) for some x ∈ X and |λ| = 1.

Given f ∈ Cc(X), denote by N(f) the set of extremal points T in the unit ball of the dual space
Cc(X)∗ such that T (f) 6= 0. From the previous paragraph we obtain

(BS) f ⊥ g ⇐⇒ N(f) ∩N(g) = ∅,

and the Banach–Stone Theorem is an immediate consequence of Jarosz’ Theorem.

Theorem 3.18 (Banach–Stone [48]). Let X and Y be locally compact Hausdorff spaces and let
T : Cc(X) → Cc(Y ) be an isometric linear isomorphism. Then there exists a homeomorphism
φ : Y → X and a continuous function p : Y → S1 for which

Tf(y) = p(y)f(φ(y)) ∀f ∈ C(X), ∀y ∈ Y.

3.7. L1-spaces. Let K = R or C be fixed. Given a topological space X, Cc(X) will denote the
space of K-valued compactly supported continuous functions on X, where supports are the usual
ones: supp(f) = [f 6= 0].

Following [41], a Borel measure µ on X will be called regular if
• µ is locally finite (i.e., all compact sets have finite measure);
• For every Borel E ⊆ X, µ(E) = inf {µ(V ) : E ⊆ V, V open};
• For every open U ⊆ X with µ(U) <∞, µ(U) = sup {µ(K) : K ⊆ U, K compact}.

and recall that the support of µ is the set of points x ∈ X whose neighbourhoods always have
positive measure. We say that µ is fully supported (on X) is the support of µ coincides with X, i.e.,
if every nonempty open subset has positive measure.

We will now prove that the Cc(X) endowed with the L1-norm of a fully supported measure µ
completely determine both X and µ. The following lemma describes the ⊥ relation in terms of the
L1-norm, and follows from elementary measure-theoretic considerations.

Lemma 3.19. Let X be a locally compact Hausdorff space and µ a fully supported, locally finite
Borel measure on X. If ‖ · ‖1 denotes the corresponding L1-norm, then for all f, g ∈ Cc(X), f ⊥ g
if and only if

(3.3) ‖Af +Bg‖1 = |A|‖f‖1 + |B|‖g‖1 ∀A,B ∈ K

Theorem 3.20. Let X and Y be locally compact Hausdorff spaces with fully supported regular Borel
measures µX and µY , and let T : Cc(X) → Cc(Y ) be a linear isomorphism which is isometric with
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respect to the L1-norms. Then there exists a homeomorphism φ : Y → X and a continuous function
p : Y → S1 such that

Tf(y) = p(y)
dµX

d(φ∗µY )
(φ(y))f(φ(y))

for all f ∈ Cc(X) and y ∈ Y .

Proof. By the previous lemma, T is a ⊥-isomorphism, so Jarosz’ Theorem (3.17) implies that there
are a homeomorphism φ : Y → X and a non-vanishing continuous function P : Y → C such that
T (f)(y) = P (y)f(φ(y)) for all f ∈ Cc(X) and y ∈ Y .

Now using the fact that T is isometric, we have, for every f ∈ Cc(X),∫
X
|f |dµX =

∫
Y
|Tf |dµY =

∫
Y
|P ||f ◦ φ|dµY =

∫
X
|P ◦ φ−1||f |d(φ∗µY )

which means that |P ◦φ−1| is a continuous instance of the Radon–Nikodym derivative dµX/d(φ∗µY ).
Since p = P/|P | : Y → S1 is continuous, we obtain the result. �

3.8. Measured groupoid convolution algebras. In the next three results, we will focus on
convolution algebras of topological groupoids. First, we will consider measured groupoids in the
sense of Hahn. See [15, 16, 36, 37, 42]. Note that throughout this section we consider only regular
measures.

Recall that a groupoid G is a small category with inverses, and a topological groupoid is a groupoid
endowed with a topology making the product and inversion maps continuous.

The source and range maps on G are defined as s(a) = a−1a and r(a) = aa−1, respectively. The
unit space of G is G(0) = s(G), and is identified with the object space of G. We denote by G(2) =
{(a, b) ∈ G× G : s(a) = r(b)} the set of composable pairs, i.e., pairs (a, b) for which the product ab is
defined. Given x, y ∈ G(0), we denote Gy = r−1(x), Gx = s−1(x), and G

y
x = Gy ∩ Gx. We call Gxx the

isotropy group at x. The product of two subsets A,B ⊆ G is AB =
{
ab : (a, b) ∈ (A×B) ∩ G(2)

}
.

Common examples of topological groupoids are: Equivalence relations, topological groups (where
G(0) is a singleton) and topological spaces (where G = G(0)). More generally, every continuous group
action induces a transformation groupoid.

Initially, given a locally compact Hausdorff topological groupoid G, we consider Cc(G), the space
of real or complex-valued, compactly supported, continuous functions on G, simply as a vector space
(with pointwise operations). Recall the notion of a Haar system:

Definition 3.21 ([36, Definition 2.2]). A (continuous) left Haar system for a locally compact
Hausdorff topological groupoid G is a collection of regular Borel measures λ =

{
λx : x ∈ G(0)

}
on G

such that
(i) For each x ∈ G(0), λx has support contained in Gx;
(ii) (left invariance) For each a ∈ G, λr(a)(aE) = λs(a)(E) for every compact E ⊆ Gs(a);
(iii) (continuity) For each f ∈ Cc(G), the map G(0) → C, x 7→

∫
fdλx, is continuous.

We will not make any distinction of whether each λx is considered as a measure on G or as a measure
on Gx. We say that λ is fully supported if the support of λx is all of Gx for all x ∈ G(0).

Left invariance of λ implies that for all a ∈ G and f ∈ Cc(Gr(a))∫
f(s)dλr(a)(s) =

∫
f(at)dλs(a)(t)

and we endow Cc(G) with convolution product

(fg)(a) =

∫
f(s)g(s−1a)λr(a)(s) =

∫
f(at)g(t−1)λs(a)(t),
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which makes Cc(G) an algebra. It follows that for all f, g ∈ Cc(G),

(3.4) supp(fg) ⊆ supp(f) supp(g).

Definition 3.22. Let G be a locally compact Hausdorff topological groupoid with a left Haar system
λ. Given a regular Borel measure µ on G(0), the measure induced by µ and λ is the unique regular
Borel measure (λ ◦ µ) on G which satisfies

(λ ◦ µ)(E) =

∫
G(0)

λx(E)dµ(x)

for every compact E ⊆ G. (The existence of (λ ◦ µ) is guaranteed by the Riesz–Markov–Kakutani
Representation Theorem.)

If µ is fully supported on G(0) and λ is a fully supported Haar system on a locally compact
Hausdorff groupoid G, then (λ ◦ µ) is fully supported on G.

The following lemma will allow us to verify if certain maps are groupoid morphisms.

Lemma 3.23. Given a topological groupoid G with G(0) Hausdorff and a, b ∈ G, we have s(a) = r(b)
if and only if for every pair of neighbourhoods U of a and V of b the product UV is nonempty.

Proof. From the second condition one can construct two nets (ai)i and (bi)i (over the same ordered
set) converging to a and b, respectively, such that s(ai) = r(bi), and so s(a) = r(b) because G(0) is
Hausdorff. The reverse implication is trivial. �

Lemma 3.24. If λ and µ are continuous Haar systems on a locally compact Hausdorff topological
groupoid G such that the Radon–Nikodym derivatives Dx = dλx

dµx exist for all x ∈ G(0), then D is
invariant in the sense that for all a ∈ G and µs(a)-almost every g ∈ Gs(a), Dr(a)(ag) = Ds(a)(g).

Proof. Using invariance of µ and λ, we have, for every f ∈ Cc(Gs(a)),∫
f(t)Dr(a)(at)dµs(a)(t) =

∫
f(a−1s)Dr(a)(s)dµr(a)(s)

=

∫
f(a−1s)dλr(a)(s) =

∫
f(t)dλs(a)(t).

Thus t 7→ Dr(a)(at) satisfies the property of the Radon–Nikodym derivative dλs(a)/dµs(a) = Ds(a),
hence these functions coincide µs(a)-a.e. �

Now we prove that the convolution algebra Cc(G) together with the L1-norm coming from λ ◦ µ,
where λ is a fully supported Haar system on G and µ is a fully supported measure on G(0) completely
determines the triple (G, λ, µ), up to isomorphism (compare to [34]). We denote by S1 the circle
group (of complex numbers with absolute value 1 under multiplication).

Theorem 3.25. Let G and H be locally compact Hausdorff groupoids. For each Z ∈ {G,H}, let λZ
be a fully supported Haar system on Z, and µZ a fully supported regular Borel measure on Z(0).

If T : Cc(G)→ Cc(H) is an algebra isomorphism which is isometric with respect to the L1-norms
of (λZ ◦ µZ) (Z ∈ {G,H}), then there are a topological groupoid isomorphism φ : H → G and a
continuous morphism p : H→ S1 such that

Tf(h) = p(h)D(φ(h))f(φ(h))

where D is a continuous instance of the Radon–Nikodym derivative

D(a) =
dλ

r(a)
G

d(φ∗λ
φ−1(r(a))
H )

(a)

and in this case, µG = φ∗µH.
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Proof. Again applying Lemma 3.19 and Jarosz’ Theorem (3.17), we can find a homeomorphism
φ : H→ G and a continuous non-vanishing scalar function P such that

Tf(h) = P (h)f(φ(h)) for all f ∈ Cc(G) and h ∈ H.

Let us check that φ is a groupoid morphism. Suppose (a, b) ∈ H(2), and consider neighbourhoods
U and V of φ(a) and φ(b), respectively.

Choose non-negative functions fU , fV ∈ Cc(H) such that

supp(fa) ⊆ φ−1(U), supp(fb) ⊆ φ−1(V ) and fa(a) = fb(b) = 1.

Then ab ∈ supp(fafb), because λH has full support, and so φ(ab) ∈ supp(T−1(fafb)). As φ is the
T -homeomorphism and T is an isomorphism, the inclusion in (3.4) implies φ(ab) ⊆ UV . By Lemma
3.23, the product φ(a)φ(b) is defined, and moreover, continuity of the product implies that every
neighbourhood of φ(a)φ(b) contains φ(ab). Since G is Hausdorff then φ(ab) = φ(a)φ(b). Therefore
φ is a morphism and a homeomorphism, thus a topological groupoid isomorphism.

We now need to rewrite the function P as P (h) = p(h)D(φ(h)) as in the statement of the theorem,
and to this end we use multiplicativity of T and compare integrals. If f, g ∈ Cc(G) and c ∈ H, then
on one hand

T (fg)(c) = (TfTg)(c) =

∫
Gr(c)

Tf(t)Tg(t−1c)λ
r(c)
H (t)

=

∫
Hr(c)

P (t)f(φ(t))P (t−1c)g(φ(t−1c))dλ
r(c)
H (t)

=

∫
Gφ(r(c))

P (φ−1(s))f(s)P (φ−1(s)−1c)g(s−1φ(c))d(φ∗λ
r(c)
H )(s)(3.5)

and on the other

T (fg)(c) = P (c)(fg)(φ(c)) = P (c)

∫
Gφ(r(c))

f(t)g(t−1φ(c))dλ
φ(r(c))
G (t)(3.6)

Now let f ∈ Cc(G
φ(r(c))) be an arbitrary non-negative function. Define g ∈ Cc(Gφ(s(c))) by

g(t) = f(φ(c)t−1). Extending f and g arbitrarily to elements of Cc(G), Equations (3.5) and (3.6)
become

(3.7)
∫
Gφ(r(c))

P (φ−1(s))P (φ−1(s)−1c)|f(s)|2dφ∗λr(c)H (s) = P (c)

∫
Gφ(r(c))

|f(s)|2dλφ(r(c))G (s)

for all non-negative f ∈ Cc(Gφ(r(c))) and all c ∈ H. Define D : G→ C (or R in the real case) by

D(s) =
P (φ−1(s))P (φ−1(s)−1)

P (φ−1(r(s)))
.

Using Equation (3.7) with y = r(c) in place of c, we obtain∫
Gφ(y)

D(s)|f(s)|2d(φ∗λ
y
H)(s) =

∫
Gφ(y)

|f(s)|2dλφ(y)G (s)

for all f ∈ Cc(Gφ(y)), thus D is a continuous instance of the Radon–Nikodym derivative

D(s) =
dλ

φ(y)
G

d(φ∗λ
y
H)

(s) =
dλ

φ(r(c))
G

d(φ∗λ
r(c)
H )

(s).

Now applying this to Equation (3.7), and using regularity of all measures involved, we conclude
that for λφ(r(c))G -a.e. s ∈ Gφ(r(c))

P (φ−1(s))P (φ−1(s)−1c) = D(s)P (c)
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and since all functions involved are continuous, and λφ(r(c))G has full support, the same equality is
actually valid for all s ∈ Gφ(r(c)). Equivalently, for all c ∈ H and all t ∈ Hr(c), P (t)P (t−1c) =
D(φ(t))P (c). Together with Lemma 3.24, this implies that the map p = P/(D ◦ φ) is a continuous
groupoid morphism from H to the group of non-zero scalars.

Now let us verify that µG and φ∗µH are equivalent measures. By regularity of the measures,
we may extend the formula T (f) = P · (f ◦ φ) to obtain a linear isomorphism between the classes
of measurable functions on G and on H, and which restricts to an isometry from L1(λG ◦ µG)

to L1(λH ◦ µH). Suppose that K ⊆ G(0) has positive µG-measure, and let f = 1r−1(K) be the
characteristic function of r−1(K). Then Tf = P · 1φ−1(r(K)). As ‖f‖G > 0, then ‖Tf‖H > 0 as well,
so the support of Tf has positive (λH ◦ µH)-measure, and this implies that r(supp(Tf)) = φ−1(K)
has positive µH-measure. Therefore µG is absolutely continuous with respect to φ∗µH. The reverse
implication is similar.

To prove that p takes value in S1, let us denote by ‖ · ‖Z the L1-norm with respect to (λZ ◦ µZ)
when Z ∈ {G,H}. For all f ∈ Cc(G) we have

‖Tf‖H =

∫
H(0)

(∫
Hy

|Tf |dλyH

)
dµH(y) =

∫
H(0)

(∫
Hy

D|p(f ◦ φ)|dλyH

)
dµH(y)

=

∫
G(0)

(∫
Gx
|(p ◦ φ−1)f |dλxG

)
d(φ∗µH)(x)

=

∫
G(0)

(∫
Gx
|(p ◦ φ−1)(s)|

(
d(φ∗µH)

dµG
(x)

)
|f(s)|dλxG(s)

)
dµG(x)

=

∫
G(0)

(∫
Gx
|(p ◦ φ−1)(s)|

(
d(φ∗µH)

dµG
(r(s))

)
|f(s)|dλxG(s)

)
dµG(x)

=

∫
G

|p ◦ φ−1|
(
d(φ∗µH)

dµG
◦ r
)
|f(s)|d(λG ◦ µG)

and since ‖Tf‖H = ‖f‖G =
∫
G
|f |d(λG ◦ µG), we obtain

(3.8) |p ◦ φ−1| = dµG
d(φ∗µH)

◦ r (λG ◦ µG)-a.e.

Since p is a morphism then p(H(0)) = {1}, which, along with Equation (3.8) and continuity of p,
yields |p| = |p ◦ r | = 1 on H. The same Equation (3.8) then also implies µG = φ∗µH. �

Remark. In the case of groups, the same type of classification was first proven by Wendel in [53],
when considering the whole L1-algebras of locally compact Hausdorff groups instead of only algebras
of compactly supported continuous functions. Further generalizations of Wendel’s Theorem were
proven in [50] and [51], and closely results in [23] and [52].

3.9. (I, r)-Groupoid convolution algebras. In the next result we will again use the convolution
algebras of topological groupoids, however now we will consider another norm, which was already
defined in the work of Hahn ([16]) and played an important role in Renault’s work ([36]). A locally
compact Hausdorff groupoid is étale if the range map r : G→ G(0) is a local homeomorphism. From
this, it follows that G(0) is open in G, that the product map is open and that Gx is discrete for all
x ∈ G(0) (see [40]).

Let G be a locally compact étale Hausdorff groupoid, K = R or C and θ = 0, and let λ be a Haar
system for G. Again, we will consider the convolution algebra Cc(G) = Cc(G,K) as defined in the
previous subsection.

Every left Haar system on an étale groupoid is essentially the counting measure ([36, 2.7]), in the
sense that for all x, y ∈ G(0), the map a 7→ λr(a)({a}) is constant on set Gyx.
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We define the (I, r)-norm on Cc(G) as

‖f‖I,r = sup
x∈G(0)

∫
|f |dλx.

As G is Hausdorff, the unit space G(0) of G is a closed subgroupoid of G, hence (trivially) étale,
Hausdorff and locally compact itself. The convolution product on Cc(G

(0)) coincides with the
pointwise product, and the (I, r)-norm is the uniform one: ‖f‖I,r = ‖f‖∞ = supx∈G(0) |f(x)|.

Moreover, G(0) is also open in G (because G is étale), so we can identify Cc(G(0)) with the subalgebra{
f ∈ Cc(G(0) : supp(f) ⊆ G(0)

}
of Cc(G).

Definition 3.26. The algebra Cc(G(0)), identified as a subalgebra of Cc(G), is called the diagonal
subalgebra of Cc(G). If G and H are locally compact étale Hausdorff groupoids, an isomorphism
T : Cc(G)→ Cc(H) is called diagonal-preserving if T (Cc(G

(0))) = Cc(H
(0)).

Theorem 3.27. Let G and H be locally compact Hausdorff étale groupoids with continuous fully
supported left Haar systems λG and λH , respectively, and T : Cc(G)→ Cc(H) a diagonal-preserving
algebra isomorphism, isometric with respect to the (I, r)-norms. Then there is a (unique) topological
groupoid isomorphism φ : H→ G and a continuous morphism p : H→ S1 such that

Tf(h) = p(h)D(φ(h))f(φ(h))

where D is a continuous instance of the Radon–Nikodym derivative

D(a) =
dλ

r(a)
G

d(φ∗λ
φ−1(r(a))
H )

(a).

Proof. By the Banach–Stone Theorem (3.18), there is a homeomorphism φ : H(0) → G(0) and a
continuous function P : H(0) → S1 such that Tf(y) = P (y)f(φ(y)) for all f ∈ Cc(G(0)) and y ∈ H(0).
Since T is multiplicative we obtain P = 1. (The same conclusion can be obtained in a similar manner
by Milgram’s or Jarosz’ Theorem.)

For each x ∈ G(0), let {axi : i ∈ Ix} be a net of functions in Cc(G(0)) satisfying:
(i) 0 ≤ axi ≤ 1, and axi (x) = 1;
(ii)

⋂
i supp(axi ) = {x};

(iii) If j ≥ i then [axj 6= 0] ⊆ [axi 6= 0].
Items (ii)-(iii) and compactness of each supp(axi ) imply that {[axi 6= 0] : i ∈ Ix} is a neighbourhood
basis at x. For y ∈ H(0), let ayi = T (a

φ(y)
i ) = a

φ(y)
i ◦ φ, so that the net

{
ayi : i ∈ Iφ(y)

}
satisfies

(i)-(iii) as well.
Continuity of λG implies that for all x ∈ G(0) and f ∈ Cc(G), limi∈Ix ‖axi f‖I,r =

∫
|f(γ)|dλx(γ),

and similarly on H.
Given f, g ∈ Cc(G), we use Lemma 3.19 to obtain

f ⊥ g ⇐⇒ ∀x (f |Gx ⊥ g|Gx in C(Gx))

⇐⇒ ∀x∀A,B(lim ‖axi (Af +Bg)‖I,r = lim(|A|‖axi f‖I,r + |B|‖axi g‖I,r
and the last condition is preserved by T , so by Jarosz’ Theorem T is of the form Tf(α) =

P̃ (α)f(φ̃(α)) for a certain homeomorphism φ̃ : H→ G and a non-vanishing continuous scalar func-
tion P̃ . We can readily see that φ̃ and P̃ are extensions of φ and P , respectively, so instead let us
simply denote φ̃ = φ and P̃ = P .

The proof that φ is a groupoid isomorphism, and that P can be decomposed as P = (D ◦φ)p for
the (continuous) Radon–Nikodym derivative D and some continuous morphism p : H → C \ {0} is
the same as in Theorem 3.25, but the verification that |p| = 1 is different.
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Given y ∈ H(0) and f ∈ Cc(G), using the definition of D as a Radon–Nikodym derivative,∫
Hy

|Tf |dλyH =

∫
Hy

|p|(D ◦ φ)|f ◦ φ|dλyH =

∫
Gφ
−1(y)

|p ◦ φ−1||f |dλφ(y)G .

Considering again the functions aφ(y)i and ayi , and the fact that T is isometric we obtain∫
Gφ
−1(y)

|p ◦ φ−1||f |dλφ(y)G = lim
i∈Iφ(y)

‖ayi Tf‖I,r = lim
i∈Iφ(y)

‖aφ(y)i f‖I,r =

∫
|f |dλφ(y)G

for all f ∈ Cc(G), which implies that |p| = 1 λyH-a.e. Since p is continuous and λH is fully supported,
we conclude that |p| = 1 on H. �

3.10. Steinberg Algebras. Steinberg algebras were independently introduced in [44] and [7], as
algebraic analogues of groupoid C*-algebras, and are generalizations of Leavitt path algebras and
universal inverse semigroup algebras. We refer to [2] and [6] for more details.

A locally compact, zero-dimensional étale groupoid is called ample. A bisection of a groupoid G is
a subset A ⊆ G such that the source and range maps are injective on A. If G is an ample Hausdorff
groupoid, we denote by KB(G) the semigroup of compact-open bisections of G, which forms a basis
for the topology of G.

In this section, R is a fixed commutative ring with unit. Given an ample Hausdorff groupoid
G, we denote by RG the R-module of R-valued functions on G. Given A ⊆ G, we define 1A as the
characteristic function of A (with values in R).

Steinberg algebras were The goal of this section is to prove that the Steinberg algebra of an
ample Hausdorff groupoid G together with its diagonal algebra completely characterize G. Although
the main theorem of this subsection (Theorem 3.41) is partially stated and proven (for more gen-
eral graded Steinberg algebras) in [6, Corollary 3.14], we can obtain a precise classification of the
diagonal-preserving isomorphisms of Steinberg algebras, as described in Theorem 3.41 and Corollary
3.42

We will need to recover the bisections of G from AR(G), and in particular the compact-open subsets
of G(0). The main idea is, again, to identify subsets of G(0) with their characteristic functions, and
these are precisely the functions which attain only the values 0 and 1. We thus need to assume an
extra condition on the ring R.

Definition 3.28 ([30, X.7]). A (nontrivial) commutative unital ring R is indecomposable if its only
idempotents are 0 and 1. Equivalently, R is indecomposable if it cannot be written as a direct sum
R ' R1 ⊕R2, where R1 and R2 are nontrivial rings.

A subset A of a groupoid G is a bisection if and only if AA−1 ∪ A−1A ⊆ G(0). A similar type of
condition will be used to recover an ample Hausdorff groupoid G from the pair (AR(G), DR(G)).

Definition 3.29. A normalizer of DR(G) is an element f ∈ AR(G) for which there exists g ∈ AR(G)
such that

(i) fDR(G)g ⊆ DR(G) and gDR(G)f ⊆ DR(G);
(ii) fgf = f and gfg = g.

We denote by NR(G) the set of normalizers of DR(G). An element g satisfying (i) and (ii) above
will be called and inverse of f relative to DR(G).

It can be verified that NR(G) is a multiplicative subsemigroup of AR(G), which is moreover an
inverse semigroup. In particular, the inverse relative to DR(G) of an element f ∈ NR(G) is unique.
However, we will not necessitate these results.

Example 3.30. If A ∈ KB(G) then 1A ∈ NR(G). More generally, if λ1, . . . , λn are invertible
elements in R and U1, . . . , Un are compatible disjoint compact-open bisections (that is,

⋃
i Ui is also
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a bisection), then f =
∑

i λi1Ui is a normalizer of DR(G). The unique inverse of f relative to DR(G)

is given by f∗ =
∑

i λ
−1
i 1U−1

i
, that is, f∗(a) = f(a−1)−1 for all a ∈ supp(f)−1.

In order to recover G from (AR(G), DR(G)), we need that all normalizers of DR(G) have the form
described in the example above, so additional conditions will have to be assumed on the groupoids
we consider.

The following property was considered in [45], when working on the same recovery problem.

Definition 3.31. If G is an ample Hausdorff groupoid and R is an indecomposable (commutative,
unital) ring, we say that (G, R) satisfies the local bisection hypothesis if supp(f) is a bisection for
all f ∈ NR(G).

Lemma 3.32. Suppose that (G, R) satisfies the local bisection hypothesis and f ∈ Nr(G). Then for
all a ∈ supp(f), f(a) is invertible in R.

Proof. Let g be an inverse of f relatively to DR(G). First note that fg = f1s(supp(f))g ∈ DR(G).
Let a ∈ supp(f). Since fg is an idempotent in DR(G), the product in DR(G) is pointwise

and R is indecomposable, then fg(r(a)) ∈ {0, 1}. Moreover, as supp(f) is a bisection we have
f(a) = fgf(a) = (fg)(r(a))f(a), so (fg)(r(a)) = 1.

Again using that supp(f) is bisection, we obtain

1 = fg(r(a)) = f(a)g(a−1)

so f(a) is invertible in R. �

The following stronger condition was considered in [6], and is more easily checked than the one
above. Recall that if R is a ring and G is a group, a trivial unit of the group-ring RG is an element
of the form ug, where u is invertible in R and g ∈ G.

Definition 3.33. If G is an ample Hausdorff groupoid and R is an indecomposable (commutative,
unital) ring, we say that (G, R) satisfies condition (S) if the set of all x ∈ G(0) such that the group
ring RGxx has only trivial units is dense in G(0).

The property of a group-ring RG (where G is a group and R is a ring) having only trivial units
has been studied, for example, in [18]. A group G is indexed if there exists a non-trivial group
morphism from G to Z, and indicable throughout if every nontrivial finitely generated subgroup of
G is indexed. (Note that if G is indicable throughout then G is torsion-free.)

Theorem 3.34 ([18, Theorem 13]). If G is indicable throughout and R is an integral domain, then
RG has only trivial units.

Every free group, and every torsion-free abelian group is indicable throughout. The class of
indicable throughout groups is closed under products, free products and extensions (see [18]).

The following result from [6] provides a large class of groupoids satisfying the local bisection
hypothesis. Although in [6] the authors assume stronger hypotheses (namely, that R is an integral
domain and RGxx does not have zero divisors for all x in a dense subset of G(0)), their proof works
under the weaker assumptions we adopt.

Lemma 3.35 ([6, Lemma 3.5(2)]). Suppose that G is an ample Hausdorff groupoid, R is an in-
decomposable ring and that (G, R) satisfies condition (S). Then (G, R) satisfies the local bisection
hypothesis.

An important class of groupoids consists of the topologically principal ones, whose associated
algebras have been extensively studied (see, for example, [4, 10, 35, 39]). In fact it is possible to
classify C*-algebras which come from them (see [38]).

29



Definition 3.36. A topological groupoid G is topologically principal if the set of all x ∈ X whose
isotropy group Gxx is trivial is dense in G(0).

It follows that if G is an ample Hausdorff topologically principal groupoid and R is an indecom-
posable ring, then (G, R) satisfies the local bisection hypothesis.

We are ready to classify diagonal-preserving isomorphisms of Steinberg algebras of groupoids
and rings satisfying the local bisection hypothesis. For this, let us first define the class of maps of
interest:

Definition 3.37. LetR and S be rings and G be a groupoid. Denote by Iso+(R,S) the set of additive
isomorphisms from R to S. A map χ : G→ Iso+(R,S) satisfying χ(ab)(rs) = χ(a)(r)χ(b)(s) for all
(a, b) ∈ G(2) and r, s ∈ R will be called a cocycle.

Example 3.38. Consider C2 = {1, g}, the group of order 2, acting on itself by left multiplication and
consider the transformation groupoid G = C2nC2. Let R = S = Z. If we define χ : G→ Iso+(R,S)
by χ(1, y)(r) = r and χ(g, r) = −r, then χ is a cocycle. Note that χ(g, 1) is not a ring isomorphism.

Example 3.39. Suppose R is a unital ring and χ : G → Iso+(R,R) is a cocycle. Then χ is
a morphism from the groupoid G to the group (under composition) Iso+(R,R) if, and only if,
χ(x) = idR for all x ∈ G(0).

Proposition 3.40. Let R and S be commutative unital rings, G a groupoid and χ : G→ Iso+(R,S)
a cocycle. Then

(a) For all x ∈ G(0), χ(x) is a ring isomorphism;
(b) For all a ∈ G, if u ∈ R is invertible then χ(a)(u) is invertible in S, and χ(a)(u)−1 =

χ(a−1)(u).
(c) For all a ∈ G, χ(s(a)) = χ(r(a)). In other words, the restriction of χ to G(0) is invariant.

Proof. The cocycle condition states that χ(ab)(rs) = χ(a)(r)χ(b)(s) for all a, b, r, s. Taking a = b =
x yields (a). Taking b = a−1, r = u and s = u−1 yields (b), and for item (c) we use commutativity
of S:

χ(s(a))(r) = χ(a−1a)(1r) = χ(a−1)(1)χ(a)(r) = χ(a)(r)χ(a−1)(1) = χ(r(a))(r). �

We endow Iso+(R,S) with the topology of pointwise convergence, so that a map χ from a topolog-
ical spaceX to Iso+(R,S) is continuous if and only if for every r ∈ R, the mapX 3 x 7→ χ(x)(r) ∈ S
is continuous, that is, locally constant.

Theorem 3.41. Let G and H be ample Hausdorff groupoids. Let R and S be two indecomposable
(commutative, unital) rings such that (G, R) and (H, S) satisfy the local bisection hypothesis. Let
T : AR(G)→ AS(H) be a diagonal-preserving ring isomorphism, that is, T (DR(G)) = DS(H).

Then there exists a unique topological groupoid isomorphism φ : H→ G and a continuous cocycle
χ : H→ Iso+(R,S) such that Tf(a) = χ(a)(f(φ(a))) for all a ∈ H and f ∈ AR(G).

Proof. Since T preserves the respective diagonal algebras, it also preserves their normalizers, i.e.,
T (NR(G)) = NS(H). Let us describe disjointness first for elements in NR(G). The local bisection
hypothesis implies, by Lemma 3.32, that an element f of NR(G) has the form

f =

n∑
i=1

λi1Ui

where λ1, . . . , λn are invertible elements in R and U1, . . . , Un are disjoint compact-open bisections
of G such that

⋃n
i=1 Ui = supp(f) is also a compact-open bisection. A similar statement holds for

NS(H).
If f, g ∈ NR(G), then f ⊆ g if and only if f = gp for some p ∈ DR(G): Indeed,
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• If f = gp then supp(f) ⊆ supp(g) supp(p) ⊆ supp(g);
• Conversely, if supp(f) ⊆ supp(g) take p = g∗f . Then

supp(p) ⊆ supp(g∗) supp(f) ⊆ (supp(g))−1 supp(g) ⊆ G(0)

where the last inclusion follows from supp(g) being a bisection. The equality f = gp follows
from the definition of p and since r(supp(f)) ⊆ r(supp(g)).

Therefore T preserves inclusion of normalizers. Since NR(G) contains {1U : U ∈ KB(G)} then it
is regular (Definition 1.5), because KB(G) is a basis for the topology of G. Hence T also preserver
disjointness of normalizers (Proposition 1.8).

To prove that T preserves disjointness in all of AR(G), we decompose elements of AR(G) in terms
of elements of NR(G) and DR(G): if f, g ∈ AR(G), then f ⊥ g if and only if there are finite collections
of normalizers fi, gj ∈ NR(G) and elements f̃i, g̃j ∈ DR(G) (1 ≤ i ≤ n, 1 ≤ j ≤ m) such that

f =
∑
i

fif̃i, g =
∑
j

gj g̃j and fi ⊥ gj for all i, j

Indeed, if there are such fi, gj , f̃i, g̃j then supp(f) ⊆
⋃
i supp(fi) and supp(g) ⊆

⋃
j supp(gj), and

the latter sets are disjoint.
Conversely, we write f =

∑
i λi1Ai , where the Ai are pairwise disjoint compact-open bisections

and λi 6= 0, and take fi = 1Ai and f̃i = λi1s(Ai), so that supp(f) =
⋃n
i=1 supp(fi). Similarly, writing

g =
∑

j g̃jgj where gj ∈ NR(G) and supp(g) =
⋃
j supp(gj), then f ⊥ g implies fi ⊥ gj for all i and

j.
Therefore, T is a ⊥-isomorphism. Note that ⊥⊥ and ⊥ coincide in AR(G), since its elements are

locally constant (similarly to Example 1.4). Then T is a ⊥⊥-isomorphism, so let φ : H → G be the
T -homeomorphism. The verification that φ is a groupoid isomorphism is similar to that of Theorem
3.25.

Since elements of AR(G) (and AS(H)) are locally constant, then for all f ∈ AR(G),

f(φ(a)) = 0 ⇐⇒ φ(a) ∈ Z(f) ⇐⇒ x ∈ Z(Tf) ⇐⇒ Tf(a) = 0.

and therefore T is basic (by additivity of T and Proposition 2.8). Let χ be the T -transform. Since
T is additive with the pointwise operations, each section χ(α) = χ(α, ·) is additive (by Proposition
2.7). This yields a map χ : G→ Iso+(R,S), and we need now to verify that χ is a cocycle.

If (a, b) ∈ H(2) and r, s ∈ R, choose compact-open bisections U, V of G containing φ(a) and φ(b),
respectively. Then using multiplicativity of T we obtain

χ(ab)(rs) = χ(ab)
(
(r1U )(s1V )(φ(ab))

)
= T

(
(r1U )(s1V )

)
(ab)

=
(
T (r1U )T (s1V )

)
(ab) =

∑
cd=ab

T (r1U )(c)T (s1V )(d)

=
∑
cd=ab

χ(c)
(
r1U (φ(c))

)
χ(d)

(
s1V (φ(d))

)
If cd = ab is such that the last term above is nonzero, then r(c) = r(a) and φ(c) ∈ U , so since U
is a bisection we obtain a = c. Similarly, d = b, therefore χ(ab)(rs) = χ(a)(r)χ(b)(s), and χ is a
cocycle.

It remains only to prove that χ is continuous: Let r ∈ R be fixed, a ∈ H and U any compact-open
bisection containing φ(a). For all b ∈ φ−1(U),

χ(b)(r) = χ(b)(r1U (φ(b))) = T (r1U )(b)

which means that the map b 7→ χ(b)(r) coincides with T (r1U ) on φ−1(U) and thus it is continuous.
�
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We should note that according to [45], the local bisection hypothesis is preserved by diagonal-
preserving isomorphisms, so the same result is valid if we assume, in principle, that only (G, R)
satisfies this condition.

From this we can immediately classify the group of diagonal-preserving automorphisms of Stein-
berg algebras satisfying the local bisection hypothesis. Let G be a groupoid and R a ring. Denote by
Coc(G, R) the set of all continuous cocycles χ : G→ Iso+(R,R), which is a group with the canonical
(pointwise) structure: (χρ)(a) = χ(a) ◦ ρ(a) for all χ, ρ ∈ C(G, R) and a ∈ G, where ◦ denotes
composition.

Let Aut(G) be the group of topological groupoid automorphisms of G. Then Aut(G) acts on
Coc(G, R) in the usual (dual) manner: for φ ∈ Aut(G), χ ∈ Coc(G, R) and a ∈ G set (φχ)(a) =
χ(φ−1a).

Denote by Aut(AR(G), DR(G)) the group of diagonal-preserving ring automorphisms of AR(G).
From Theorem 3.41 we immediately obtain:

Corollary 3.42. If (G, R) satisfies the local bisection hypothesis, then the group Aut(AR(G), DR(G))
is isomorphic to the semidirect product C(G, R) o Aut(G).

3.11. Groups of circle-valued functions. A natural question in C*-algebra theory is whether
we can extend isomorphisms of unitary groups of C*-algebras to isomorphisms (or anti/conjugate-
isomorphisms) of the whole C*-algebras. Dye proved in [9] that this is always possible for continuous
von Neumann factors, however this is not true in the general C*-algebraic case, even in the com-
mutative case. Therefore we should consider isomorphisms between unitary groups which preserve
more structure than just the product, such as an analogue to that of Theorem 3.15. Recall that the
unitary group of a commutative C*-algebra C(X), where X is compact Hausdorff, is C(X,S1).

Theorem 3.43. Let X and Y be two Stone (zero-dimensional, compact Hausdorff) spaces. Suppose
that T : C(X,S1) → C(Y, S1) is a group isomorphism such that 1 ∈ f(X) ⇐⇒ 1 ∈ Tf(X). Then
there exist a homeomorphism φ : Y → X, a finite isolated subset F ⊆ Y and a continuous function
p : Y \ F → {±1} satisfying Tf(y) = f(φ(y))p(y) for all y ∈ Y \ F .

In particular, if X (and/or Y ) do not have isolated points then F = ∅.

The following lemma, based on [31], will be crucial to the proof of the theorem.

Lemma 3.44. Suppose that X is a Stone space. For every pair of continuous functions f, g : X → S1
and for every finite subset F ⊆ X such that f(F )∪g(F ) does not contain 1, there exists h ∈ C(X,S1)
such that

h(x) 6∈ {f(x), g(x)} for all x and h(F ) = {1}.

Proof. For every point y ∈ F , choose a clopen set Uy containing y such that f(Uy)∪ g(Uy) does not
contain 1. For every other point x ∈ X ′ := X \

⋃
y∈F Uy, there is a clopen set U ⊆ X ′ such that

f(U)∪ g(U) 6= S1. Using compactness of X ′ and taking complements and intersections if necessary
we can find a clopen partition U1, . . . , Un of X ′ such that f(Ui)∪g(Ui) 6= S1 for all i. Simply choose
zi ∈ S1 \ (f(Ui) ∪ g(Ui)) and define h = zi on Ui, and h = 1 on

⋃
f∈F Uf . �

Proof of Theorem 3.43. For the notion of support we will use (Definition 1.1), we take θ = 1, the
constant function at 1, so regularity of C(X,S1) is immediate.

Suppose that f ⊥ g but that Tf and Tg are not disjoint. By Lemma 3.44, there exists H ∈
C(Y, S1) such that H 6= Tf, Tg everywhere, but that 1 ∈ H(Y ). Let h = T−1H. Then T (f−1h)
and T (g−1h) do not attain 1, which implies that f−1h and g−1h do not attain 1 as well. Thus

h−1(1) = X ∩ h−1(1) = (f−1(1) ∪ g−1(1)) ∩ h−1(1)

= (g−1(1) ∩ h−1(1)) ∪ (f−1(1) ∩ h−1(1)) ⊆ (g−1h)−1(1) ∪ (f−1h)−1(1) = ∅.
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But (Th)−1(1) = H−1(1) is nonempty, contradicting the given property of T .
Therefore f ⊥ g implies Tf ⊥ Tg, and the same argument yields the opposite implication, so

T is a ⊥-isomorphism. Let A(X) and A(Y ) be the subgroups of order-2 elements of C(X,S1) and
C(Y, S1), respectively (i.e., the groups of continuous functions with values in {−1, 1}).

A(X) and A(Y ) are also regular, since X and Y are zero-dimensional, and the restriction
T |A(X) : A(X) → A(Y ) is a ⊥⊥-isomorphism, because ⊥ and ⊥⊥ coincide on A(X) and A(Y ). Let
φ : Y → X be the corresponding T |A(X)-homeomorphism.

Let h ∈ C(X,S1) be arbitrary. Since σ(h) =
⋃
a∈A(X),a⊆h σ(a) and T is a ⊥-isomorphism, we

obtain by Theorem 1.16 that, for all h ∈ C(X,S1),

φ(σ(Th)) =
⋃

a∈A(X)
a⊆h

φ(σ(Ta)) =
⋃

a∈A(X)
a⊆h

σ(a) = σ(h)

Since φ is a homeomorphism it preserves closures, from which it follows that T is also a ⊥⊥-
isomorphism, and φ is also the T -homeomorphism.
Claim: f(φ(y)) = 1 ⇐⇒ Tf(y) = 1.

Suppose f(φ(y)) 6= 1. Choose a function g ∈ C(X,S1) which coincides with f on a neighbourhood
of φ(y) and such that 1 6∈ g(X). Then 1 6∈ Tg(Y ) and since Tf coincides with Tg on a neighbourhood
of y then Tf(φ(y)) = Tg(φ(y)) 6= 1. The other direction is analogous, and thus we have proved the
claim.

Therefore T is basic. Let χ be the T -transform, so that each section χ(y, ·) is an automorphism
of the circle. If χ(y, ·) is continuous then it has the form χ(y, z) = zp(y) where p(y) ∈ {±1}. Let us
prove that for all except finitely many y ∈ Y , the section χ(y, ·) is continuous.

Let F = {y ∈ Y : χ(y, ·) is discontinuous}, and suppose that F were infinite. By Proposition 2.9,
there are countably infinitely many distinct points yn ∈ F (n ∈ N), such that no yn lies in the
closure of the other ones. We can choose a sequence zn → 1 such that χ(yn, zn) lies in the second
quadrant of the circle. Define f(φ(yn)) = zn, f = 1 on the boundary of {φ(yn) : n ∈ N} and extend
f continuously to all of X. Let y be a cluster point of {yn}n, so that in particular f(φ(y)) = 1.
Then

Tf(y) = χ(y, 1), T f(yn) = χ(yn, zn)

But y is an accumulation point of the yn, and Tf(yn) lies in the second quadrant while Tf(y) = 1,
a contradiction to the continuity of Tf .

Therefore F is finite, so now we show that it is open in order to conclude that its points are
isolated in Y . Let y ∈ Y and choose z0 ∈ S1 of the form z0 = eit where −π/4 ≤ t ≤ π/4, but such
that χ(y, z0) is in the second or third quadrant, so in particular it is not z0 nor z−10 . Denote by z0
the constant function at z0, we that

T (z0)(y) = χ(y, z0) 6= z0, z
−1
0 .

Since T (z0) is continuous, there is a neighbourhood U of y such that χ(x, z0) 6= z0, z
−1
0 for all x ∈ U ,

so x ∈ F .
Therefore Y ′ = Y \ F is also compact, and we already constructed the function p : Y ′ → {±1}

with the desired property. To see that p is continuous, denote by i the constant function x 7→ i and
note that

p−1(1) =
{
y ∈ Y ′ : χ(y, i) = i

}
=
{
y ∈ Y ′ : T (i)(y) = i

}
= T (i)−1(i) ∩ Y ′

and similarly p−1(−1) = T (i)−1(−i) ∩ Y ′, so these two sets, which are complementary in Y ′, are
closed and hence clopen. �
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Example 3.45. As an easy example where the subset F ⊆ Y in the previous theorem is nonempty,
let X = Y = {∗} be (equal) singletons, and let t : S1 → S1 be a discontinuous automorphism of S1.

Consider the map T : C(X,S1)→ C(Y,S1), T (f)(∗) = t(f(∗)) (in other words, T is the function
obtained from t by identifying C(X,S1) and C(Y,S1) with S1). Then T satisfies the hypotheses of
the previous theorem but F = Y .

We now endow C(X,S1) with the uniform metric:

d∞(f, g) = sup
x∈X
|f(x)− g(x)|

(which is the metric coming from the C*-algebra C(X,C)).

Theorem 3.46. If X and Y are as above and T : C(X,S1)→ C(Y, S1) is an isometric isomorphism,
then there is a homeomorphism φ : Y → X and a continuous function p : Y → {±1} such that
Tf(y) = f(φ(y))p(y) for all y ∈ Y .

Proof. We identify each λ ∈ S1 with the corresponding constant map on X or Y . The constant
function −1 is characterized by the following two properties:

• (−1)2 = 1;
• If g3 = 1, then d∞(−1, g) ∈ {1, 2}.

Thus T (−1) = −1. A function f does not attain 1 if and only if d∞(−1, f) < 1, so T preserves
functions not attaining 1, and we apply Theorem 3.43 (or more precisely its proof) in order to
obtain a homeomorphism φ : Y → X, a function χ : Y × S1 → S1 and a continuous function
p : Y ′ → {−1, 1}, where Y ′ = {y ∈ Y : χ(y, ·) is continuous}, such that

Tf(y) = χ(y, f(φ(y)) and χ(y′, t) = tp(y
′)

for all y ∈ Y , y′ ∈ Y ′ and f ∈ C(X,S1). It remains only to prove that Y ′ = Y , i.e., every section
χ(y, ·) is continuous.

If λi → λ in S1 then we also have uniform convergence of the corresponding constant functions,
so

χ(y, λi) = T (λi)y → T (λ)y = χ(y, λ)

thus χ(y, ·) is continuous for all y. �
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