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Abstract 12 

Precipitation risk and water management is a key challenge for densely 13 

populated urban areas. Applications derived from high spatio-temporal 14 

resolution observation of precipitations are to make our cities more weather-15 

ready. Finer resolution data available from dual polarised X-band radar 16 

measurements enhance engineering tools as used for urban planning policies 17 

as well as protection (mitigation/adaptation) strategies to tackle climate-change 18 

related weather events. For decades engineering tools have been developed to 19 

work conveniently either with very local rain gauge networks, or with mainly C-20 

band radars that have gradually been set up for space-time remote sensing of 21 

precipitation. Most of the time, the C-band radars continue to be calibrated by 22 

the existing rain gauge networks. Inhomogeneous distributions of these 23 

networks lead to only a partial information on the rainfall fields. Here we show 24 

that the statistics of measured rainfall is strongly biased by the fractality of the 25 
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measuring networks and that this fractality needs to be properly taken into 26 

account to retrieve the original properties of the rainfall fields, in spite of the 27 

radar data calibration. In this work, we use the semi-distributed hydrological 28 

modelling over the Bièvre catchment to generate a virtual rain gauges’ network. 29 

And, firstly, performing a fractal analysis of this network distribution, we 30 

demonstrate that the semi-distributed hydrological models statistically reduce 31 

the distributed (weather radar) rainfall fields into rainfall measured by a much 32 

scarcer network of virtual rain gauges. Then, with the help of the Intersection 33 

Theorem and multifractal theory, we statistically compare the virtual rain 34 

gauges’ data with the rainfall data measured by the dual-polarimetric X-band 35 

radar operated at Ecole des Ponts with a spatial resolution of 250 m, providing 36 

pre-factors that indicate the need of a proper re-normalisation of rain gauge 37 

rainfall data when comparing (or calibrating) with radar data and the possible 38 

counterproductivity of this conditioning.  39 

 40 

Keywords: rain gauge network; spatio-temporal variability; X-band radar; 41 

fractals; multifractals; semi-distributed hydrological model  42 

 43 

1. Introduction 44 

The increase in global urbanisation and population density emphasises 45 

the importance and the need to improve the adaptation of urban areas mainly to 46 

climate change (Pumo et al., 2017; Arnone et al., 2018). Managing extreme 47 

weather events, particularly intense precipitation ones and heat waves, in these 48 

areas is a major challenge for the future. The population’s demand for a better 49 

quality of life motivates an improvement in the ability to measure, understand, 50 
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model and predict hydrometeorological processes in urban environments, 51 

aiming at better flood control and associated risk management. Conventional 52 

local measurements in urban areas generally do not meet the World 53 

Meteorological Organization (WMO) criteria for the measurement of 54 

precipitation (WMO, 2014). Better spatio-temporal scales with accuracy and 55 

reliability are required (Fabry et al., 1994; Berne et al., 2004). In this way, the 56 

use of ground-based remote sensing has been very important in elucidating 57 

complex urban environment structures, thus expanding hydrometeorological 58 

challenges (NRC, 2012).  59 

Weather radars have the capability to estimate rainfall fields with high 60 

spatio-temporal resolutions and have been used to cope the sparseness of rain 61 

gauge networks. Nevertheless, the initial measurement of reflectivities adopted 62 

by those devices, not providing direct precipitation rates such as rain gauges, 63 

usually generates significant uncertainties. Then, with the growing use of radars 64 

to estimate rain rates, many studies have been developed to adjust and/or 65 

merge weather radars (mostly considering non-polarimetric ones) with rain 66 

gauge networks (Einfalt et al., 2005; Allegretti et al., 2012; Lo Conti et al., 67 

2015). On the other hand, especially for high rainfall intensities, in order to 68 

reduce these uncertainties and improve the rainfall estimates, dual polarisation 69 

technology using specific differential phase (KDP) has been employed, which 70 

does not necessarily requires rain gauge adjustments according to some 71 

authors (Bringi and Chandrasekar 2001; Illingworth and Blackman 2002; 72 

Figueras i Ventura et al., 2012; Chandressekar et al., 2015). This technology 73 

explores the flatness of large raindrops to analyse the phase difference of the 74 
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reflected vertical and horizontal signals and then directly obtain the precipitation 75 

rates.  76 

Coming together with rainfall data improvement, an efficient storm water 77 

management also deals with the accuracy and reliability of hydrological models, 78 

mainly in urban areas which present higher levels of imperviousness leading to 79 

shorter response times (Berne et al., 2004; Segond et al., 2007; Furusho et al., 80 

2014; Ochoa-Rodriguez et al., 2015; Arnone et al., 2018). This requests the use 81 

of high resolution models, which means reducing the size of the sub-82 

catchments in the semi-distributed models or adopting the fully-distributed 83 

models (Fewtrell et al., 2011; Ichiba, 2016; Pina et al., 2016; Pumo et al., 2017; 84 

Alves de Souza et al., 2018; Paz et al., 2019). 85 

This work presents a discussion of the rain gauge networks’ limitations 86 

and the implications to hydrological modelling with the help of fractal and 87 

multifractal analysis. The study was carried out over the Bièvre catchment, 88 

which is a 110 km2 semi-urbanised area located in the southwest of Paris 89 

region, using the rainfall data of the dual-polarimetric X-band radar recently 90 

installed on the roof of the École des Ponts ParisTech (ENPC).  91 

The paper is organised in five sections. Section 2 describes the case 92 

study and the rainfall data. The methodology of fractal and multifractal analyses 93 

are presented in Section 3. Section 4 presents the results and discussion. And 94 

finally, the conclusions are presented in Section 5. 95 

 96 

2. Case Study and Rainfall Data 97 

The Bièvre Valley, which is a 110 km2 semi-urbanised area in the 98 

southwest of Paris region, was selected as case study. The Bièvre River is 33 99 
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km-long tributary of the Seine River and its upstream catchment is managed by 100 

two local authorities: the CASQY (“Communauté d’Agglomération de Saint-101 

Quentin-en-Yvelines” – Saint-Quentin-en-Yvelines Agglomération Community) 102 

in the upstream portion and the SIAVB (“Syndicat Intercommunal 103 

d’Assainissement de la Vallée de la Bièvre” – Inter-municipal local authority for 104 

Sanitation of the Bièvre Valley) in the downstream portion. 105 

The Bièvre catchment was modelled using InfoWorks CS (Collection 106 

Systems) (Paz, 2018; Paz et al., 2018), a widely used semi-distributed model 107 

(Soft, 2010), with the operation responsibility given to the company Veolia since 108 

1991 by the local authority SIAVB to perform a real time control of the 109 

hydrological area. This hydrological model is integrated in the Optim Sim 110 

platform, developed by Veolia, that mimics the actual regulation of the storage 111 

basins (Paz, 2018; Paz et al., 2018) in two simulation modes: the “replay mode” 112 

and the “forecasting mode”. The first one extracts rainfall data from the 6 SIAVB 113 

rain gauges’ network database (using the Thiessen polygons technique) to 114 

replay past events. And the “forecasting mode” uses different rainfall data, e.g. 115 

from weather radar measurements, to simulate the catchment hydrological 116 

behaviour. The catchment area is divided into 27 sub-catchments, as displayed 117 

on Figure 1. 118 

 119 
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 120 

Figure 1: Illustration of rainfall measurement devices available over the Bièvre catchment: the X-band radar (yellow 121 

star), the C-band radar (red star) and the six rain gauges (blue dots).  122 

This modelling had been firstly calibrated using the rainfall data from the 123 

Météo-France C-band radar of Trappes, located in a direct proximity (∼ 0 - 20 124 

km) of the catchment (see Fig. 1), with a resolution of 1 km x 1 km x 5 min. 125 

These C-band radar data are firstly obtained as reflectivity (dBZ) and then, after 126 

some post-treatments and filtering process, they are transformed into rainfall 127 

intensity (R) by applying the Marshall-Palmer Z-R equation (Marshall and 128 

Palmer, 1948), with fixed parameters � � 200 and � � 1.6 (Eq. (1)), which 129 

means that the polarimetric capability of this radar of Trappes has not been 130 

used. In addition, this catchment also contains a network of six tipping bucket 131 

rain gauges (see Fig. 1), which had been used to calibrate the C-band radar 132 

data. 133 


 � ��� (1) 

 134 
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However, in this study, we used rainfall data from the ENPC dual-135 

polarimetric X-band radar of Champs-sur-Marne (see Fig. 1), with distances 136 

ranging between 25 to 45 km and a 250 m x 250 m x 3.41 min resolution. The 137 

ENPC X-band Dual Polarization Surface Rainfall Intensity (DPSRI) product still 138 

considers the Z-R relationship for low intensities, but for high intensities it uses 139 

the specific differential phase (KDP) (Selex, 2015): 140 

� � 19.63|���|�.���,    ��� 
 > 35 ��
 � � ��� > 0.3!/#$ (2) 

 141 

For the purpose of this work, six different rainfall events were selected: 142 

12-13/09/2015 (44 hours); 16/09/2015 (11.3 hours); 05-06/10/2015 (31 hours); 143 

21-23/05/2016 (59.5 hours); 28-31/05/2016 (87.7 hours); and 17/06/2016 (24 144 

hours). 145 

 146 

3. Methods: (multi)fractals 147 

When studying some objects of very irregular or fragmented form (with 148 

unusual properties in classical geometry), Mandelbrot (1974) named them as 149 

“fractals” (“fractus” means irregular in Latin). Nevertheless, fractal objects must 150 

not just be irregular, but also scale invariant, which means that their form 151 

remains unchanged at different scales of observation. This brings the properties 152 

of self-similarity (a zoomed part of the object looks similar to the object itself, 153 

with an isotropic variation) and self-affinity (when the variation is anisotropic). 154 

In classical geometry, dimensions are integers characterising regular 155 

spaces as straight lines (1D), planar figures (2D) and volumes (3D). If we take 156 

an object, embedded in an Euclidian dimension �, of linear size %, it can be 157 

covered by & small objects of linear size ', with a scale ratio ( (� %/'). 158 
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In the case of fractal objects and sets, the dimension is no longer an 159 

integer and is called fractal dimension (�)) (Mandelbrot, 1967, 1977; 160 

Mandelbrot and Pignoni, 1983; Feder, 1988). Even if its theoretical computation 161 

is rather complex, an easier way to evaluate it is through the box-counting 162 

method (Hentschel and Procaccia, 1983; Lovejoy et al., 1987). It takes into 163 

account that when ( →∞ there is a power-law relation between the fractal 164 

dimension and the number of “non-empty” pixels of the set (&*) at the scale (: 165 

&* ≈ (,- (3) 

 166 

where ≈ means the asymptotic equivalence. 167 

Therefore, the box-counting method can be easily applied considering a 168 

simple methodology to change the resolution of a given dataset. Let us define . 169 

as the geometrical set (embedded in a space of dimension �; in this paper we 170 

will consider the 2-D space) to be analysed and &*,/ the number of non-171 

overlapping pixels at the resolution ( necessary to cover the set .. Thus, the 172 

method consists in firstly counting the number of non-empty pixels at the 173 

smallest pixel size ('), then we multiply the pixel size by two at each step of 174 

process (practically, it means that in the 2-D case we merge 4 by 4 pixels at 175 

each scale variation step) and count again the number of non-empty pixels at 176 

this new size, and we continue this procedure until we achieve the maximum 177 

pixel size (%). Once we have counted the numbers of non-empty pixels (&*) at 178 

different scales ((), we display them in a log-log plot (( 01 &*). Then, if . is a 179 

fractal set, the points of this plot will be along a straight line, and, from Eq. (1), 180 

we can estimate the fractal dimension �) as its slope. 181 
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Furthermore, the codimension of a fractal set is usually (geometrically) 182 

defined as (Mandelbrot, 1967, 1977; Feder, 1988; Falconer, 1990): 183 

2 �  � − �) 

4) 

 184 

Then, it is also possible to probabilistically define the fractal codimension, 185 

using Eqs. (3) and (4), where the probability that a cube embedded in the set 186 

ℝ, at a scale ( is contained in the fractal set is given by: 187 

(,5,- ≈  (6 

5) 

This last definition is more general because it enables 2 > �, which 188 

would imply �) < 0 from Eq. (4). 189 

The concept of fractal dimension is related to the sparseness of a 190 

dataset and it is well applied to binary fields (e.g., rainfall occurrence, rain 191 

gauge network distribution). Many geophysical fields with different intensity 192 

levels, and also irregular geometries and scale invariance, can be seen as 193 

fractal fields at different thresholds (singularities). Then, for each singularity it is 194 

possible to calculate its fractal dimension, which means that the field is 195 

characterised by several fractal dimensions according to the imposed threshold 196 

(Grassberger, 1983; Hentschel and Procaccia, 1983; Schertzer and Lovejoy, 197 

1984); i.e., for each given threshold, a different fractal dimension is estimated 198 

for the field that exceeds the threshold. These fields were named by Parisi and 199 

Frisch (1985) as “multifractals”. 200 

Multifractals rely on the assumption that a geophysical field is generated 201 

through a multiplicative cascade process (Schertzer and Lovejoy, 1987, 2011) 202 
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produced by random multiplicative modulation of large-scale structures into 203 

small-scale ones. Furthermore, rainfall fields have been widely studied as 204 

presenting multifractal behaviour (Schertzer and Lovejoy, 1987; Ladoy et al., 205 

1993; Tessier et al., 1993; Olsson et al., 1996; de Lima et al., 1999; Deidda, 206 

2000; Veneziano et al., 2006; García-Marin et al., 2008; Serinaldi, 2010; 207 

Ochoa-Rodriguez et al., 2015; Paz, 2018). 208 

As just mentioned, the multifractal fields are characterised by a hierarchy 209 

of fractal dimensions (and codimensions). Then, by referring to the notion of 210 

fractal codimension, one can calculate, for a given multifractal field 8*, the 211 

probability of obtaining a singularity of order greater than or equal to 9 at the 212 

scale (: 213 

Pr<8* ≥ (>? � (,-<>?(, ≈  (56<>? 
6) 

 214 

where the codimension function 2<9? � � − �)<9? is convex and increases with 215 

(. 216 

Additionally, multifractal fields can also be described by their statistical 217 

moments. Schertzer and Lovejoy (1987, 1991) introduced the scaling moment 218 

function �<@?, which is also convex and characterises the various @AB order 219 

statistical moments of the multifractal field 8*: 220 

〈8*D〉 ≈  (F<D? 
7) 

 221 

where @ is the statistical moments order and 〈8*D〉 is the @AB moment mean of the 222 

intensities at the scale (. 223 
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Furthermore, Parisi and Frisch (1985) demonstrated that the two 224 

functions 2<9? and �<@? have a one-to-one relationship, which is highlighted by 225 

the Legendre transform: 226 

�<@? � $�G>H@9 − 2<9?I ⇔ 2<9? � $�GDH@9 − �<@?I 
8) 

 227 

These related expressions bring the correspondence between the orders 228 

of moments (@) and the singularities (9), such that: 229 

@> � 2K<9? ;  2<9? � @>9 − �<@>?  (9) 

9D � �K<@? ;  �<@? � @9D − 2<9D?           (10) 

 230 

where at the moment of order @ corresponds the singularity 9D, and conversely, 231 

at the singularity 9 corresponds the order of moment @>. In addition, it is 232 

possible to see from Eq. (6) that more rare rainfall events (with very large 233 

singularities 9) correspond to bigger values of 2<9?. Consequently, due to the 234 

convexity of both 2<9? and �<@? and to the Legendre transform, for @ > 1, these 235 

extreme events also correspond to bigger values of @ and �<@?. 236 

As both statistical functions 2<9? and �<@? have the only constraint of 237 

convexity, there is an infinity of parameters required to characterise a 238 

multifractal process. However, Schertzer and Lovejoy (1987, 1997) explored the 239 

concept of universality (usually used in physics, where among an infinite 240 

number of parameters only a few would be relevant) and developed the 241 

Universal Multifractals (UM) (see Schertzer and Lovejoy, 2011, for a more 242 

recent review). In this context, 2<9? and �<@? can be fully described by only 243 

three “UM parameters” (M, NO and P) as: 244 
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K<q? � @P + T NOM − 1 <@U − @? ;  M ≠ 1    NO @ log<@?    ;  M � 1 
(1

1) 

c<9 + P? �
[\
]NO ^ 9NOM′ + 1M`UK    ;  M ≠ 1

NO aGb ^ 9NO − 1`   ;  M � 1 
(1

2) 

 245 

where 
OU + OUK � 1, for all M ≠ 1, and: 246 

− M is the Levy’s multifractality index (0 ≤ M ≤ 2). It measures the degree of 247 

multifractality of the process. In particular, if M � 0 we observe a monofractal 248 

process (also entitled d-model, Mandelbrot (1974)) and M � 2 corresponds to 249 

the maximum of multifractality for a model (improperly called lognormal); 250 

− NO is the codimension of the mean singularity of the field. It measures the 251 

mean inhomogeneity, where NO � 0 for a homogeneous field. The more it 252 

increases, the more the singularity of the field average is dispersed. We thus 253 

observe a field rarely exceeding its mean, but which can do so in an 254 

extremely strong way; 255 

− P is the Hurst’s exponent, which measures the degree of non-conservation of 256 

the field. Values of P close to zero indicate higher conservativeness of the 257 

process. 258 

 259 

While performing a multifractal analysis of a (rainfall) field, we should 260 

determine its statistical functions 2<9? and �<@?. The Trace Moment (TM) 261 

method (Schertzer and Lovejoy, 1987) allows to directly determine the scaling 262 

moments function �<@? for any @ > 0.  263 
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As �<@? > 0 for @ > 1, 〈8*D〉 ≈  (F<D? → ∞ when ( → ∞. Then, to avoid this 264 

divergence, the concept of flux (Π*) is used, given by: 265 

Π* � h 8* �,G 

13) 

 266 

And the trace of the  @AB-power of the flux is: 267 

i�j8*Dk � lh<8*?D �D,Gm ≈  (F<D?5,<D5O? 
14) 

 268 

In practice, the method consists in taking the  @AB-power of each value of 269 

the field 8* at the scale (, and then the ensemble average of @AB-power 270 

moments is calculated at that scale. Then, from Eq. (14), the same process is 271 

repeated for different scales (, the resulting averages are displayed as a 272 

function of ( in a log-log plot, and a linear regression is performed to obtain the 273 

value of �<@? (which will be estimated as the given slope). Finally, by repeating 274 

this process also with other values of @, we obtain the �<@? function (and, via 275 

Legendre transform, the 2<9? function). 276 

Thus, once we know �<@?, it is possible to (indirectly) determine the UM 277 

parameters M and NO: 278 

NO � �′<1? (15)

M � �′′<1? NO⁄  (16)

 279 

In the framework of UM, Lavallée et al. (1993) developed the Double 280 

Trace Moment (DTM) method to directly determine the parameters M and NO, 281 

which means that there is no need to firstly obtain �<@? (and 2<9?). This 282 
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technique is in fact a generalisation of the TM method and considers that the 283 

@AB-order moments of the renormalised o-power of a conservative field 8* 284 

remain scale invariant. Then, the idea is to apply the TM method to this 285 

renormalised field (through the �<@, o? function): 286 

〈p8*<q?rD〉 ≈ (F<D,q? ⇒ 〈 8*qD
〈8*q〉D〉 ≈ (F<Dq?(DF<q? � (F<Dq?5DF<q? (1

7) 

where 8*<q? � tuv〈tuv〉 . 287 

Then:  288 

�<@, o? � �<@o? − @�<o? (1

8) 

 289 

Since this method is especially applied for UM, considering Eq. (11), Eq. 290 

(18) becomes: 291 

�<@, o? � oU�<@? (1

9) 

From Eq. (19), the parameter M can be directly estimated as the slope of 292 

the linear part of �<@, o? vs. o in a log-log plot, for a given q. And in the same 293 

log-log plot, the parameter NO can be also estimated from the interception value 294 

of the linear part and the axis log <o? � 0 (Hoang, 2011). 295 

In addition, according to the Intersection Theorem (Schertzer and 296 

Lovejoy, 1987), considering two independent (multi)fractal fields 8O,* and 8�,* 297 

embedded in the same space and presuming that the intersection of both (8O,* ∩298 

8�,*) is not empty, for the given intersection the probability of obtaining a 299 

singularity of order greater than or equal to 9 at the scale ( is: 300 
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Prx8O,* ∩ 8�,* ≥ (>y � Prx8O,* ≥ (>y Prx8�,* ≥ (>y 

20) 

 301 

Therefore, following Eq. (6), the resulting codimension is the addition of 302 

independent (multi)fractal processes: 303 

ctz∩t{<9? � ctz<9? + ct{<9? 
21) 

 304 

In the following Section, we will use the fractal and multifractal (with the 305 

help of the DTM method and the Intersection Theorem) approaches to discuss 306 

the rain gauge networks’ limitations and the implications to hydrological 307 

modelling. 308 

 309 

4. Results and Discussion 310 

In this work, the sub-catchments’ distribution of the pilot site of Bièvre 311 

catchment, which had already been modelled with the semi-distributed model 312 

InfoWorks CS (Paz, 2018; Paz et al., 2018), was used to construct a network of 313 

virtual rain gauges located in the centre of mass of each sub-catchment. Then, 314 

an area of 8 km x 8 km was selected using the X-band radar grid (Fig. 2). This 315 

choice corresponds to the most homogeneous distribution of virtual rain gauges 316 

over a square area of Bièvre catchment, containing 15 of the 27 virtual rain 317 

gauges. 318 
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 319 

Figure 2: Virtual rain gauges’ distribution (green dots) and 6 SIAVB rain gauges 320 

(blue dots) over the 27 sub-catchments, and the 8 km x 8 km selected ENPC X-band 321 

radar grid. 322 

 323 

Four different rainfall fields have been analysed over the selected area 324 

(Fig. 3): (a) original radar data; (b) original radar data corresponding to each 325 

centroid pixel; (c) sub-catchment averaged rainfall radar data; (d) sub-326 

catchment averaged rainfall radar data being concentrated at the corresponding 327 

centroid pixel; as well as a (e) fractal distribution of the corresponding virtual 328 

rain gauges, located at the centroid pixels. 329 
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330 
  331 

Figure 3: Four different rainfall radar data fields analysed over the 332 

selected area (demonstrated here with data of the 12 September 2015 event): 333 

(a) original data; (b) original data corresponding to each centroid pixel; (c) sub-334 

catchment averaged rainfall; (d) sub-catchment averaged rainfall being 335 

concentrated at the corresponding centroid pixels. And the 15 sub-catchment 336 

centroid pixels corresponding to the virtual rain gauges’ locations (e). 337 

 338 

Firstly, the fractal analysis of the 15 virtual rain gauge pixels’ distribution 339 

(which will also be called rainfall support) was performed using the box-counting 340 

method (Fig. 4) with a simple Scilab routine (Gires et al., 2017, 2018), which 341 

applies the methodology described in the previous section (see Eq. (3)) to the 342 

dataset. It is possible to identify a scaling break (with two different behaviours 343 

for the small scales and the large scales) at the spatial scale of 2 km, which is in 344 

fact the average sub-catchment’s size and close to the 1-km resolution of the C-345 

band radar rainfall data that have been used for the model calibration. Then, a 346 

relatively high fractal dimension (Df = 1.66) obtained over the large-scale range 347 

<a?

<c? <d?

<b?
<e?
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corresponds to the network of 15 virtual rain gauges at 2-km scale. This number 348 

of gauges remains still reasonable, although only 6 real rain gauges are 349 

available for the full Bièvre catchment (i.e. 4 over the selected area). Preserving 350 

the same fractal dimension Df = 1.66 over smaller scales up to 250 m (the 351 

resolution of the X-band radar rainfall) would result in N = 315 virtual rain 352 

gauges (and/or sub-catchments). Thus, a smaller number of gauges (N = 15), 353 

characterised by much lower fractal dimension (Df = 0.185), significantly 354 

reduces the captivity of spatial rainfall variability over small scales and hence its 355 

representability in the model having a constant rainfall per sub-catchment of 2-356 

km characteristic scale. 357 

 358 

Figure 4: Fractal analysis of the centroid pixels’ distribution, providing the linear regression coefficients R21 (small 359 

scales) and R22 (large scales). 360 

This result from the fractal analysis of the 15 virtual rain gauge network 361 

distribution corroborates the researches from Austin (1987), Schertzer and 362 

Lovejoy (1987), Seed and Austin (1990), Vieux and Vieux (2005), Villarini et al. 363 
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(2008), Peleg et al. (2013), which identify the difficulties of sparsely distributed 364 

rain gauge networks to capture the high spatial and temporal variability of 365 

precipitation fields (specially high convective ones), while comparing to weather 366 

radars. On the other hand, when dealing with the sub-catchment sizes, it also 367 

confirms the findings of Thorndahl et al. (2017), based on a review of the state 368 

of the art about the use of weather radar rainfall data in urban hydrology 369 

(Schilling, 1991; Berne et al., 2004; Einfalt et al., 2004; Ochoa-Rodriguez et al., 370 

2015), in which they associate the better spatial and temporal resolution of 371 

radar rainfall data to decreasing catchment sizes.  372 

Then, to better evaluate the unfortunate consequences of sparse rain 373 

gauge networks, the multifractal analyses were performed over the studied 374 

rainfall fields in conditions (a), (b), (c) and (d), and then related to the fractal 375 

analysis of the rain gauge’s distribution with the help of the Legendre transform. 376 

Firstly, the DTM method was applied (Fig. 5), following the methodology 377 

described in Section 3 (Eq. (19)), on ensemble of data over the whole rainfall 378 

event (each time step being considered as an independent realisation) with 379 

scaling break. The values obtained for M and NO for the six studied events are 380 

presented at Tables: 1 (rainfall fields (a)), 2 (rainfall fields (b)), 3 (rainfall fields 381 

(c)) and 4 (rainfall fields (d)). 382 
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 383 

 384 

 385 

Figure 5: Application of DTM method (demonstrated here with data of the 12-386 

13 September 2015 event): Evaluation of empirical �<@, o? with scaling break at 2 km, 387 
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providing the linear regression coefficients R21 (small scales) and R22 (large scales) 388 

(top); Evaluation of M at small scales (centre); Evaluation of M at large scales (bottom). 389 

 390 

 391 

Events 

Small Scales Large Scales 

M NO M NO 

12-13/09/2015 1.776 0.047 1.76 0.153 

16/09/2015 1.676 0.027 0.922 0.094 

05-06/10/2015 2.029 0.05 1.775 0.189 

21-23/05/2016 1.324 0.041 1.242 0.161 

28-31/05/2016 1.656 0.045 1.665 0.199 

17/06/2016 1.305 0.127 1.058 0.574 

Table 1: Estimated UM parameters for rainfall fields in condition (a). 392 

 393 

Events 

Small Scales Large Scales 

M NO M NO 

12-13/09/2015 -0.009 1.757 0.746 0.659 

16/09/2015 0.023 1.769 0.244 0.539 

05-06/10/2015 0.07 1.788 0.636 0.623 

21-23/05/2016 0.015 1.778 0.295 0.571 

28-31/05/2016 -0.003 1.761 0.613 0.64 

17/06/2016 -0.009 1.753 0.487 1.016 

Table 2: Estimated UM parameters for rainfall fields in condition (b). 394 

 395 

Events 

Small Scales Large Scales 

M NO M NO 

12-13/09/2015 0.642 0.087 1.397 0.131 
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16/09/2015 0.247 0.075 0.602 0.092 

05-06/10/2015 0.684 0.09 1.421 0.152 

21-23/05/2016 0.309 0.083 0.844 0.127 

28-31/05/2016 0.493 0.084 1.31 0.149 

17/06/2016 0.661 0.123 0.969 0.341 

Table 3: Estimated UM parameters for rainfall fields in condition (c). 396 

 397 

Events 

Small Scales Large Scales 

M NO M NO 

12-13/09/2015 -0.014 1.751 0.66 0.6 

16/09/2015 0.011 1.762 0.153 0.514 

05-06/10/2015 0.039 1.769 0.515 0.591 

21-23/05/2016 -0.003 1.763 0.278 0.545 

28-31/05/2016 -0.019 1.75 0.587 0.601 

17/06/2016 -0.006 1.749 0.545 0.871 

Table 4: Estimated UM parameters for rainfall fields in condition (d). 398 

 399 

Due to the fact that the rainfall fields (condition (a)) and the virtual rain 400 

gauge’s network distribution (condition (e)) are fully independent, the 401 

Intersection theorem (see Section 3) implies that the codimension function of 402 

their product (condition (b)) will correspond to the following sum of the 403 

codimension functions: 404 

c<�?�<�?∩<�?<9? � c<�?<9? + c<�?<9? 
22) 

 405 

And then, by Legendre transform (see Section 3), the scaling moment 406 

function of the product (condition (b)) will correspond to the sum of the scaling 407 
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moment functions of the rainfall field (condition (a)) and the virtual rain gauge 408 

network (condition (e)): 409 

K<�?�<�?∩<�?<@? � K<�?<@? + K<�?<@? 

23) 

 410 

The relationships similar to Eqs. (22) and (23) stand for the rainfall fields 411 

(condition (c)), virtual rain gauge network (condition (e)) and their product 412 

(condition (d)) as well. Figures 6 and 7 present the theoretical  �<@? curves for 413 

all fields taking into account the estimated values (from Fig. 4 and Tables 1, 2, 3 414 

and 4), for small scales (250 m – 2 km) and large scales (2 km - 8 km) 415 

respectively; considering that M was simulated as 0 when the estimated M < 0, 416 

and as 2 when the estimated M > 2. 417 

 418 
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 419 

Figure 6: �<@? relations at small scales for the six studied events. 420 

 421 
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 422 

Figure 7: �<@? relations at large scales for the six studied events. 423 

 424 

From Figure 6 one may note that the monofractality of fields (b) and (d) 425 

at small scales (denoted by the estimated M values close to 0 in Tables 2 and 4, 426 

respectively) affects the suitability of the Intersection Theorem (see Section 3 427 
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and Eq. (23)). On the other hand, for the large scales in Figure 7 the theoretical 428 

expression given by Eq. (23) works better for some of the events than for 429 

others: the K<�?<@? + K<�?<@? curves fit better the K<�?<@? ones for 05-430 

06/10/2015, 21-23/05/2016, 28-31/05/2016 and 17/06/2016 events than those 431 

for 12-13/09/2015 and 16/09/2015 events. This could be easily understood by 432 

evaluating the linear term of the Eq. (23). Indeed, the scaling moment function 433 

of the network will correspond to the d-model, using Eq. (4): 434 

K<�?<@? � 2<@ − 1? 

24) 

 435 

where over the large scales: 2 � 2 − 1.66 � 0.34, and this is independently 436 

either of rainfall events, or rainfall fields. 437 

Then: 438 

K<�?<@? � NOM − 1 <@U − @? + 2<@ − 1? � NOM − 1 @U − ^ NOM − 1 − 2` @ − 2 

25) 

 439 

The resulting scaling moment function is no longer UM function, but still 440 

could be well approximated by it, at least between statistical moments of the 441 

orders 1-3, when the pre-factor p �zU5O − 2r of the linear term remains positive. 442 

With 2 � 0.34 and UM parameters from Tables 1 and 3 over large scales one 443 

may obtain the following estimates (Tab. 5) of these pre-factors for conditions 444 

(a) and (c): 445 

 446 

Events 
Rainfall 

field (a) 

Rainfall 

field (c) 
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12-13/09/2015 -0.139 -0.01 

16/09/2015 -1.545 -0.571 

05-06/10/2015 -0.096 0.021 

21-23/05/2016 0.325 -1.154 

28-31/05/2016 -0.041 0.141 

17/06/2016 9.557 -11.34 

Table 5: Estimated pre-factors over large scales for rainfall fields in conditions (a) and (c). 447 

Finally, the results from the multifractal analyses presented in this section 448 

indicate a twofold discussion: (i) the events with stronger negative values of the 449 

pre-factor give less empirical agreement with the theoretical expression of Eq. 450 

(23); (ii) and, on the contrary, a larger positive pre-factor leads to a much 451 

stronger convergence between the theoretical and empirical curves. 452 

 453 

5. Conclusions 454 

In this study we performed (multi)fractal analysis on rain gauge network 455 

and X-band radar rainfall data in the context of (urban) hydrological modelling. 456 

The main objectives of this work are to analyse the impacts of the rainfall data 457 

spatio-temporal variability on hydrological modelling, presenting the limitations 458 

of sparse rain gauge networks compared to high-resolution radar data, and to 459 

discuss the suitability of radar-rain gauge conditioning considering the fractality 460 

of rain gauge networks.  461 

This paper takes the the Bièvre catchment, which is a semi-urbanised 462 

area of 110 km2 located in the southwest of Paris region, as a case study. In 463 

this work, we used the semi-distributed modelling distribution of this area 464 

performed with the InfoWorks CS and considered a virtual rain gauge in the 465 

centre of mass of each sub-catchment. Then, we compared the rainfall data 466 
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distributions of the virtual rain gauge network with those obtained from the 467 

ENPC dual-polarised X-band radar. Firstly, we performed a fractal analysis of 468 

the virtual rain gauge network distribution and identified a scaling break at 2 km. 469 

Then we took advantage of the Intersection Theorem associated to the 470 

multifractal theory to analyse the relationship between both rain gauge and 471 

radar data. 472 

The obtained results suggest that the semi-distributed hydrological 473 

models statistically reduce the rainfall fields into rainfall measured by a much 474 

scarcer network of virtual rain gauges and that inhomogeneous distributions of 475 

rain gauging networks lead to only partial information on the rainfall fields. A 476 

scaling break is retrieved in the fractal analysis of the virtual rain gauge 477 

distribution at the scale of 2 km, which is close to the average sub-catchment’s 478 

size. The fractality of the rainfall support (here represented by the fixed number 479 

of 15 virtual rain gauges over the selected 8 km x 8 km area) is biased by this 480 

distribution, where the small-scale behaviour is clearly different of the large-481 

scale one. This implies that, to respect the rainfall support fractality and its 482 

capability to consider the rainfall variability over the small scales, the same 483 

fractality of the large scales should be found at the small scales. In fact, the 484 

statistics of measured rainfall are strongly biased by the fractality of the 485 

measuring networks. This fractality needs to be properly taken into account to 486 

retrieve the original properties of the rainfall fields, in spite of the radar data 487 

calibration.  488 

Additionally, a proper rainfall data re-normalisation is needed when 489 

comparing gauged rainfall with the radar data, and consequently when 490 

quantifying the impacts of space-time variability within hydrological modelling. 491 
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One may also note that a conditioning by the rain gauges could be rather 492 

counterproductive for rainfall events with 
�zU5O being weaker than the 493 

codimension of the fractal rain gauge networks. 494 

Furthermore, since the Bièvre catchment was calibrated to C-band radar 495 

data, in case of the number and distribution of the virtual rain gauges would be 496 

reliable in comparison to the C-band radar resolution (1 km2) – actually the 497 

SIAVB network has only 6 rain gauges –, the number of rain gauges to perform 498 

the calibration of better-resolution radar data (e.g. non polarimetric X-band 499 

radar) should be big enough to respect the same fractality of the big scales. 500 

This also means that the size of the sub-catchments should be comparable to 501 

the resolution of the rainfall data used, which would drastically increase the 502 

number of sub-catchments and become unmanageable.  503 

 504 
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